Add channel layout support to the AC-3 encoder.
[FFMpeg-mirror/lagarith.git] / libavcodec / aac.c
blob0d2d0efe654cc4b49ac4b5699d10d64efccde4c5
1 /*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/aac.c
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
31 * supported tools
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
44 * Y frequency domain prediction
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
79 #include "avcodec.h"
80 #include "internal.h"
81 #include "get_bits.h"
82 #include "dsputil.h"
83 #include "lpc.h"
85 #include "aac.h"
86 #include "aactab.h"
87 #include "aacdectab.h"
88 #include "mpeg4audio.h"
89 #include "aac_parser.h"
91 #include <assert.h>
92 #include <errno.h>
93 #include <math.h>
94 #include <string.h>
96 union float754 { float f; uint32_t i; };
98 static VLC vlc_scalefactors;
99 static VLC vlc_spectral[11];
102 static ChannelElement* get_che(AACContext *ac, int type, int elem_id) {
103 static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
104 if (ac->tag_che_map[type][elem_id]) {
105 return ac->tag_che_map[type][elem_id];
107 if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
108 return NULL;
110 switch (ac->m4ac.chan_config) {
111 case 7:
112 if (ac->tags_mapped == 3 && type == TYPE_CPE) {
113 ac->tags_mapped++;
114 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
116 case 6:
117 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
118 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
119 encountered such a stream, transfer the LFE[0] element to SCE[1] */
120 if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
121 ac->tags_mapped++;
122 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
124 case 5:
125 if (ac->tags_mapped == 2 && type == TYPE_CPE) {
126 ac->tags_mapped++;
127 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
129 case 4:
130 if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
131 ac->tags_mapped++;
132 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
134 case 3:
135 case 2:
136 if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
137 ac->tags_mapped++;
138 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
139 } else if (ac->m4ac.chan_config == 2) {
140 return NULL;
142 case 1:
143 if (!ac->tags_mapped && type == TYPE_SCE) {
144 ac->tags_mapped++;
145 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
147 default:
148 return NULL;
153 * Configure output channel order based on the current program configuration element.
155 * @param che_pos current channel position configuration
156 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
158 * @return Returns error status. 0 - OK, !0 - error
160 static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
161 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) {
162 AVCodecContext *avctx = ac->avccontext;
163 int i, type, channels = 0;
165 if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
166 return 0; /* no change */
168 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
170 /* Allocate or free elements depending on if they are in the
171 * current program configuration.
173 * Set up default 1:1 output mapping.
175 * For a 5.1 stream the output order will be:
176 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
179 for(i = 0; i < MAX_ELEM_ID; i++) {
180 for(type = 0; type < 4; type++) {
181 if(che_pos[type][i]) {
182 if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
183 return AVERROR(ENOMEM);
184 if(type != TYPE_CCE) {
185 ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
186 if(type == TYPE_CPE) {
187 ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
190 } else
191 av_freep(&ac->che[type][i]);
195 if (channel_config) {
196 memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
197 ac->tags_mapped = 0;
198 } else {
199 memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
200 ac->tags_mapped = 4*MAX_ELEM_ID;
203 avctx->channels = channels;
205 return 0;
209 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
211 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
212 * @param sce_map mono (Single Channel Element) map
213 * @param type speaker type/position for these channels
215 static void decode_channel_map(enum ChannelPosition *cpe_map,
216 enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
217 while(n--) {
218 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
219 map[get_bits(gb, 4)] = type;
224 * Decode program configuration element; reference: table 4.2.
226 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
228 * @return Returns error status. 0 - OK, !0 - error
230 static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
231 GetBitContext * gb) {
232 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
234 skip_bits(gb, 2); // object_type
236 sampling_index = get_bits(gb, 4);
237 if(sampling_index > 12) {
238 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
239 return -1;
241 ac->m4ac.sampling_index = sampling_index;
242 ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
243 num_front = get_bits(gb, 4);
244 num_side = get_bits(gb, 4);
245 num_back = get_bits(gb, 4);
246 num_lfe = get_bits(gb, 2);
247 num_assoc_data = get_bits(gb, 3);
248 num_cc = get_bits(gb, 4);
250 if (get_bits1(gb))
251 skip_bits(gb, 4); // mono_mixdown_tag
252 if (get_bits1(gb))
253 skip_bits(gb, 4); // stereo_mixdown_tag
255 if (get_bits1(gb))
256 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
258 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
259 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
260 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
261 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
263 skip_bits_long(gb, 4 * num_assoc_data);
265 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
267 align_get_bits(gb);
269 /* comment field, first byte is length */
270 skip_bits_long(gb, 8 * get_bits(gb, 8));
271 return 0;
275 * Set up channel positions based on a default channel configuration
276 * as specified in table 1.17.
278 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
280 * @return Returns error status. 0 - OK, !0 - error
282 static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
283 int channel_config)
285 if(channel_config < 1 || channel_config > 7) {
286 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
287 channel_config);
288 return -1;
291 /* default channel configurations:
293 * 1ch : front center (mono)
294 * 2ch : L + R (stereo)
295 * 3ch : front center + L + R
296 * 4ch : front center + L + R + back center
297 * 5ch : front center + L + R + back stereo
298 * 6ch : front center + L + R + back stereo + LFE
299 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
302 if(channel_config != 2)
303 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
304 if(channel_config > 1)
305 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
306 if(channel_config == 4)
307 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
308 if(channel_config > 4)
309 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
310 = AAC_CHANNEL_BACK; // back stereo
311 if(channel_config > 5)
312 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
313 if(channel_config == 7)
314 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
316 return 0;
320 * Decode GA "General Audio" specific configuration; reference: table 4.1.
322 * @return Returns error status. 0 - OK, !0 - error
324 static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
325 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
326 int extension_flag, ret;
328 if(get_bits1(gb)) { // frameLengthFlag
329 ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
330 return -1;
333 if (get_bits1(gb)) // dependsOnCoreCoder
334 skip_bits(gb, 14); // coreCoderDelay
335 extension_flag = get_bits1(gb);
337 if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
338 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
339 skip_bits(gb, 3); // layerNr
341 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
342 if (channel_config == 0) {
343 skip_bits(gb, 4); // element_instance_tag
344 if((ret = decode_pce(ac, new_che_pos, gb)))
345 return ret;
346 } else {
347 if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
348 return ret;
350 if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
351 return ret;
353 if (extension_flag) {
354 switch (ac->m4ac.object_type) {
355 case AOT_ER_BSAC:
356 skip_bits(gb, 5); // numOfSubFrame
357 skip_bits(gb, 11); // layer_length
358 break;
359 case AOT_ER_AAC_LC:
360 case AOT_ER_AAC_LTP:
361 case AOT_ER_AAC_SCALABLE:
362 case AOT_ER_AAC_LD:
363 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
364 * aacScalefactorDataResilienceFlag
365 * aacSpectralDataResilienceFlag
367 break;
369 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
371 return 0;
375 * Decode audio specific configuration; reference: table 1.13.
377 * @param data pointer to AVCodecContext extradata
378 * @param data_size size of AVCCodecContext extradata
380 * @return Returns error status. 0 - OK, !0 - error
382 static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
383 GetBitContext gb;
384 int i;
386 init_get_bits(&gb, data, data_size * 8);
388 if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
389 return -1;
390 if(ac->m4ac.sampling_index > 12) {
391 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
392 return -1;
395 skip_bits_long(&gb, i);
397 switch (ac->m4ac.object_type) {
398 case AOT_AAC_MAIN:
399 case AOT_AAC_LC:
400 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
401 return -1;
402 break;
403 default:
404 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
405 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
406 return -1;
408 return 0;
412 * linear congruential pseudorandom number generator
414 * @param previous_val pointer to the current state of the generator
416 * @return Returns a 32-bit pseudorandom integer
418 static av_always_inline int lcg_random(int previous_val) {
419 return previous_val * 1664525 + 1013904223;
422 static void reset_predict_state(PredictorState * ps) {
423 ps->r0 = 0.0f;
424 ps->r1 = 0.0f;
425 ps->cor0 = 0.0f;
426 ps->cor1 = 0.0f;
427 ps->var0 = 1.0f;
428 ps->var1 = 1.0f;
431 static void reset_all_predictors(PredictorState * ps) {
432 int i;
433 for (i = 0; i < MAX_PREDICTORS; i++)
434 reset_predict_state(&ps[i]);
437 static void reset_predictor_group(PredictorState * ps, int group_num) {
438 int i;
439 for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
440 reset_predict_state(&ps[i]);
443 static av_cold int aac_decode_init(AVCodecContext * avccontext) {
444 AACContext * ac = avccontext->priv_data;
445 int i;
447 ac->avccontext = avccontext;
449 if (avccontext->extradata_size > 0) {
450 if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
451 return -1;
452 avccontext->sample_rate = ac->m4ac.sample_rate;
453 } else if (avccontext->channels > 0) {
454 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
455 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
456 if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8)))
457 return -1;
458 if(output_configure(ac, ac->che_pos, new_che_pos, 1))
459 return -1;
460 ac->m4ac.sample_rate = avccontext->sample_rate;
461 } else {
462 ff_log_missing_feature(ac->avccontext, "Implicit channel configuration is", 0);
463 return -1;
466 avccontext->sample_fmt = SAMPLE_FMT_S16;
467 avccontext->frame_size = 1024;
469 AAC_INIT_VLC_STATIC( 0, 144);
470 AAC_INIT_VLC_STATIC( 1, 114);
471 AAC_INIT_VLC_STATIC( 2, 188);
472 AAC_INIT_VLC_STATIC( 3, 180);
473 AAC_INIT_VLC_STATIC( 4, 172);
474 AAC_INIT_VLC_STATIC( 5, 140);
475 AAC_INIT_VLC_STATIC( 6, 168);
476 AAC_INIT_VLC_STATIC( 7, 114);
477 AAC_INIT_VLC_STATIC( 8, 262);
478 AAC_INIT_VLC_STATIC( 9, 248);
479 AAC_INIT_VLC_STATIC(10, 384);
481 dsputil_init(&ac->dsp, avccontext);
483 ac->random_state = 0x1f2e3d4c;
485 // -1024 - Compensate wrong IMDCT method.
486 // 32768 - Required to scale values to the correct range for the bias method
487 // for float to int16 conversion.
489 if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
490 ac->add_bias = 385.0f;
491 ac->sf_scale = 1. / (-1024. * 32768.);
492 ac->sf_offset = 0;
493 } else {
494 ac->add_bias = 0.0f;
495 ac->sf_scale = 1. / -1024.;
496 ac->sf_offset = 60;
499 #if !CONFIG_HARDCODED_TABLES
500 for (i = 0; i < 428; i++)
501 ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
502 #endif /* CONFIG_HARDCODED_TABLES */
504 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
505 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
506 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
507 352);
509 ff_mdct_init(&ac->mdct, 11, 1);
510 ff_mdct_init(&ac->mdct_small, 8, 1);
511 // window initialization
512 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
513 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
514 ff_sine_window_init(ff_sine_1024, 1024);
515 ff_sine_window_init(ff_sine_128, 128);
517 return 0;
521 * Skip data_stream_element; reference: table 4.10.
523 static void skip_data_stream_element(GetBitContext * gb) {
524 int byte_align = get_bits1(gb);
525 int count = get_bits(gb, 8);
526 if (count == 255)
527 count += get_bits(gb, 8);
528 if (byte_align)
529 align_get_bits(gb);
530 skip_bits_long(gb, 8 * count);
533 static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
534 int sfb;
535 if (get_bits1(gb)) {
536 ics->predictor_reset_group = get_bits(gb, 5);
537 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
538 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
539 return -1;
542 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
543 ics->prediction_used[sfb] = get_bits1(gb);
545 return 0;
549 * Decode Individual Channel Stream info; reference: table 4.6.
551 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
553 static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
554 if (get_bits1(gb)) {
555 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
556 memset(ics, 0, sizeof(IndividualChannelStream));
557 return -1;
559 ics->window_sequence[1] = ics->window_sequence[0];
560 ics->window_sequence[0] = get_bits(gb, 2);
561 ics->use_kb_window[1] = ics->use_kb_window[0];
562 ics->use_kb_window[0] = get_bits1(gb);
563 ics->num_window_groups = 1;
564 ics->group_len[0] = 1;
565 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
566 int i;
567 ics->max_sfb = get_bits(gb, 4);
568 for (i = 0; i < 7; i++) {
569 if (get_bits1(gb)) {
570 ics->group_len[ics->num_window_groups-1]++;
571 } else {
572 ics->num_window_groups++;
573 ics->group_len[ics->num_window_groups-1] = 1;
576 ics->num_windows = 8;
577 ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index];
578 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
579 ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index];
580 ics->predictor_present = 0;
581 } else {
582 ics->max_sfb = get_bits(gb, 6);
583 ics->num_windows = 1;
584 ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index];
585 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
586 ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index];
587 ics->predictor_present = get_bits1(gb);
588 ics->predictor_reset_group = 0;
589 if (ics->predictor_present) {
590 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
591 if (decode_prediction(ac, ics, gb)) {
592 memset(ics, 0, sizeof(IndividualChannelStream));
593 return -1;
595 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
596 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
597 memset(ics, 0, sizeof(IndividualChannelStream));
598 return -1;
599 } else {
600 ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
601 memset(ics, 0, sizeof(IndividualChannelStream));
602 return -1;
607 if(ics->max_sfb > ics->num_swb) {
608 av_log(ac->avccontext, AV_LOG_ERROR,
609 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
610 ics->max_sfb, ics->num_swb);
611 memset(ics, 0, sizeof(IndividualChannelStream));
612 return -1;
615 return 0;
619 * Decode band types (section_data payload); reference: table 4.46.
621 * @param band_type array of the used band type
622 * @param band_type_run_end array of the last scalefactor band of a band type run
624 * @return Returns error status. 0 - OK, !0 - error
626 static int decode_band_types(AACContext * ac, enum BandType band_type[120],
627 int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
628 int g, idx = 0;
629 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
630 for (g = 0; g < ics->num_window_groups; g++) {
631 int k = 0;
632 while (k < ics->max_sfb) {
633 uint8_t sect_len = k;
634 int sect_len_incr;
635 int sect_band_type = get_bits(gb, 4);
636 if (sect_band_type == 12) {
637 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
638 return -1;
640 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
641 sect_len += sect_len_incr;
642 sect_len += sect_len_incr;
643 if (sect_len > ics->max_sfb) {
644 av_log(ac->avccontext, AV_LOG_ERROR,
645 "Number of bands (%d) exceeds limit (%d).\n",
646 sect_len, ics->max_sfb);
647 return -1;
649 for (; k < sect_len; k++) {
650 band_type [idx] = sect_band_type;
651 band_type_run_end[idx++] = sect_len;
655 return 0;
659 * Decode scalefactors; reference: table 4.47.
661 * @param global_gain first scalefactor value as scalefactors are differentially coded
662 * @param band_type array of the used band type
663 * @param band_type_run_end array of the last scalefactor band of a band type run
664 * @param sf array of scalefactors or intensity stereo positions
666 * @return Returns error status. 0 - OK, !0 - error
668 static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
669 unsigned int global_gain, IndividualChannelStream * ics,
670 enum BandType band_type[120], int band_type_run_end[120]) {
671 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
672 int g, i, idx = 0;
673 int offset[3] = { global_gain, global_gain - 90, 100 };
674 int noise_flag = 1;
675 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
676 for (g = 0; g < ics->num_window_groups; g++) {
677 for (i = 0; i < ics->max_sfb;) {
678 int run_end = band_type_run_end[idx];
679 if (band_type[idx] == ZERO_BT) {
680 for(; i < run_end; i++, idx++)
681 sf[idx] = 0.;
682 }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
683 for(; i < run_end; i++, idx++) {
684 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
685 if(offset[2] > 255U) {
686 av_log(ac->avccontext, AV_LOG_ERROR,
687 "%s (%d) out of range.\n", sf_str[2], offset[2]);
688 return -1;
690 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
692 }else if(band_type[idx] == NOISE_BT) {
693 for(; i < run_end; i++, idx++) {
694 if(noise_flag-- > 0)
695 offset[1] += get_bits(gb, 9) - 256;
696 else
697 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
698 if(offset[1] > 255U) {
699 av_log(ac->avccontext, AV_LOG_ERROR,
700 "%s (%d) out of range.\n", sf_str[1], offset[1]);
701 return -1;
703 sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
705 }else {
706 for(; i < run_end; i++, idx++) {
707 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
708 if(offset[0] > 255U) {
709 av_log(ac->avccontext, AV_LOG_ERROR,
710 "%s (%d) out of range.\n", sf_str[0], offset[0]);
711 return -1;
713 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
718 return 0;
722 * Decode pulse data; reference: table 4.7.
724 static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
725 int i, pulse_swb;
726 pulse->num_pulse = get_bits(gb, 2) + 1;
727 pulse_swb = get_bits(gb, 6);
728 if (pulse_swb >= num_swb)
729 return -1;
730 pulse->pos[0] = swb_offset[pulse_swb];
731 pulse->pos[0] += get_bits(gb, 5);
732 if (pulse->pos[0] > 1023)
733 return -1;
734 pulse->amp[0] = get_bits(gb, 4);
735 for (i = 1; i < pulse->num_pulse; i++) {
736 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
737 if (pulse->pos[i] > 1023)
738 return -1;
739 pulse->amp[i] = get_bits(gb, 4);
741 return 0;
745 * Decode Temporal Noise Shaping data; reference: table 4.48.
747 * @return Returns error status. 0 - OK, !0 - error
749 static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
750 GetBitContext * gb, const IndividualChannelStream * ics) {
751 int w, filt, i, coef_len, coef_res, coef_compress;
752 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
753 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
754 for (w = 0; w < ics->num_windows; w++) {
755 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
756 coef_res = get_bits1(gb);
758 for (filt = 0; filt < tns->n_filt[w]; filt++) {
759 int tmp2_idx;
760 tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
762 if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
763 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
764 tns->order[w][filt], tns_max_order);
765 tns->order[w][filt] = 0;
766 return -1;
768 if (tns->order[w][filt]) {
769 tns->direction[w][filt] = get_bits1(gb);
770 coef_compress = get_bits1(gb);
771 coef_len = coef_res + 3 - coef_compress;
772 tmp2_idx = 2*coef_compress + coef_res;
774 for (i = 0; i < tns->order[w][filt]; i++)
775 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
780 return 0;
784 * Decode Mid/Side data; reference: table 4.54.
786 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
787 * [1] mask is decoded from bitstream; [2] mask is all 1s;
788 * [3] reserved for scalable AAC
790 static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
791 int ms_present) {
792 int idx;
793 if (ms_present == 1) {
794 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
795 cpe->ms_mask[idx] = get_bits1(gb);
796 } else if (ms_present == 2) {
797 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
802 * Decode spectral data; reference: table 4.50.
803 * Dequantize and scale spectral data; reference: 4.6.3.3.
805 * @param coef array of dequantized, scaled spectral data
806 * @param sf array of scalefactors or intensity stereo positions
807 * @param pulse_present set if pulses are present
808 * @param pulse pointer to pulse data struct
809 * @param band_type array of the used band type
811 * @return Returns error status. 0 - OK, !0 - error
813 static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
814 int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
815 int i, k, g, idx = 0;
816 const int c = 1024/ics->num_windows;
817 const uint16_t * offsets = ics->swb_offset;
818 float *coef_base = coef;
819 static const float sign_lookup[] = { 1.0f, -1.0f };
821 for (g = 0; g < ics->num_windows; g++)
822 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
824 for (g = 0; g < ics->num_window_groups; g++) {
825 for (i = 0; i < ics->max_sfb; i++, idx++) {
826 const int cur_band_type = band_type[idx];
827 const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
828 const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
829 int group;
830 if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
831 for (group = 0; group < ics->group_len[g]; group++) {
832 memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
834 }else if (cur_band_type == NOISE_BT) {
835 for (group = 0; group < ics->group_len[g]; group++) {
836 float scale;
837 float band_energy = 0;
838 for (k = offsets[i]; k < offsets[i+1]; k++) {
839 ac->random_state = lcg_random(ac->random_state);
840 coef[group*128+k] = ac->random_state;
841 band_energy += coef[group*128+k]*coef[group*128+k];
843 scale = sf[idx] / sqrtf(band_energy);
844 for (k = offsets[i]; k < offsets[i+1]; k++) {
845 coef[group*128+k] *= scale;
848 }else {
849 for (group = 0; group < ics->group_len[g]; group++) {
850 for (k = offsets[i]; k < offsets[i+1]; k += dim) {
851 const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
852 const int coef_tmp_idx = (group << 7) + k;
853 const float *vq_ptr;
854 int j;
855 if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
856 av_log(ac->avccontext, AV_LOG_ERROR,
857 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
858 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
859 return -1;
861 vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
862 if (is_cb_unsigned) {
863 if (vq_ptr[0]) coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)];
864 if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
865 if (dim == 4) {
866 if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
867 if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
869 if (cur_band_type == ESC_BT) {
870 for (j = 0; j < 2; j++) {
871 if (vq_ptr[j] == 64.0f) {
872 int n = 4;
873 /* The total length of escape_sequence must be < 22 bits according
874 to the specification (i.e. max is 11111111110xxxxxxxxxx). */
875 while (get_bits1(gb) && n < 15) n++;
876 if(n == 15) {
877 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
878 return -1;
880 n = (1<<n) + get_bits(gb, n);
881 coef[coef_tmp_idx + j] *= cbrtf(n) * n;
882 }else
883 coef[coef_tmp_idx + j] *= vq_ptr[j];
885 }else
887 coef[coef_tmp_idx ] *= vq_ptr[0];
888 coef[coef_tmp_idx + 1] *= vq_ptr[1];
889 if (dim == 4) {
890 coef[coef_tmp_idx + 2] *= vq_ptr[2];
891 coef[coef_tmp_idx + 3] *= vq_ptr[3];
894 }else {
895 coef[coef_tmp_idx ] = vq_ptr[0];
896 coef[coef_tmp_idx + 1] = vq_ptr[1];
897 if (dim == 4) {
898 coef[coef_tmp_idx + 2] = vq_ptr[2];
899 coef[coef_tmp_idx + 3] = vq_ptr[3];
902 coef[coef_tmp_idx ] *= sf[idx];
903 coef[coef_tmp_idx + 1] *= sf[idx];
904 if (dim == 4) {
905 coef[coef_tmp_idx + 2] *= sf[idx];
906 coef[coef_tmp_idx + 3] *= sf[idx];
912 coef += ics->group_len[g]<<7;
915 if (pulse_present) {
916 idx = 0;
917 for(i = 0; i < pulse->num_pulse; i++){
918 float co = coef_base[ pulse->pos[i] ];
919 while(offsets[idx + 1] <= pulse->pos[i])
920 idx++;
921 if (band_type[idx] != NOISE_BT && sf[idx]) {
922 float ico = -pulse->amp[i];
923 if (co) {
924 co /= sf[idx];
925 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
927 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
931 return 0;
934 static av_always_inline float flt16_round(float pf) {
935 union float754 tmp;
936 tmp.f = pf;
937 tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
938 return tmp.f;
941 static av_always_inline float flt16_even(float pf) {
942 union float754 tmp;
943 tmp.f = pf;
944 tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U>>16)) & 0xFFFF0000U;
945 return tmp.f;
948 static av_always_inline float flt16_trunc(float pf) {
949 union float754 pun;
950 pun.f = pf;
951 pun.i &= 0xFFFF0000U;
952 return pun.f;
955 static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
956 const float a = 0.953125; // 61.0/64
957 const float alpha = 0.90625; // 29.0/32
958 float e0, e1;
959 float pv;
960 float k1, k2;
962 k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
963 k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
965 pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
966 if (output_enable)
967 *coef += pv * ac->sf_scale;
969 e0 = *coef / ac->sf_scale;
970 e1 = e0 - k1 * ps->r0;
972 ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
973 ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
974 ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
975 ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
977 ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
978 ps->r0 = flt16_trunc(a * e0);
982 * Apply AAC-Main style frequency domain prediction.
984 static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
985 int sfb, k;
987 if (!sce->ics.predictor_initialized) {
988 reset_all_predictors(sce->predictor_state);
989 sce->ics.predictor_initialized = 1;
992 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
993 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
994 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
995 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
996 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
999 if (sce->ics.predictor_reset_group)
1000 reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
1001 } else
1002 reset_all_predictors(sce->predictor_state);
1006 * Decode an individual_channel_stream payload; reference: table 4.44.
1008 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1009 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1011 * @return Returns error status. 0 - OK, !0 - error
1013 static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
1014 Pulse pulse;
1015 TemporalNoiseShaping * tns = &sce->tns;
1016 IndividualChannelStream * ics = &sce->ics;
1017 float * out = sce->coeffs;
1018 int global_gain, pulse_present = 0;
1020 /* This assignment is to silence a GCC warning about the variable being used
1021 * uninitialized when in fact it always is.
1023 pulse.num_pulse = 0;
1025 global_gain = get_bits(gb, 8);
1027 if (!common_window && !scale_flag) {
1028 if (decode_ics_info(ac, ics, gb, 0) < 0)
1029 return -1;
1032 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1033 return -1;
1034 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1035 return -1;
1037 pulse_present = 0;
1038 if (!scale_flag) {
1039 if ((pulse_present = get_bits1(gb))) {
1040 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1041 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1042 return -1;
1044 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1045 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1046 return -1;
1049 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1050 return -1;
1051 if (get_bits1(gb)) {
1052 ff_log_missing_feature(ac->avccontext, "SSR", 1);
1053 return -1;
1057 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1058 return -1;
1060 if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1061 apply_prediction(ac, sce);
1063 return 0;
1067 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1069 static void apply_mid_side_stereo(ChannelElement * cpe) {
1070 const IndividualChannelStream * ics = &cpe->ch[0].ics;
1071 float *ch0 = cpe->ch[0].coeffs;
1072 float *ch1 = cpe->ch[1].coeffs;
1073 int g, i, k, group, idx = 0;
1074 const uint16_t * offsets = ics->swb_offset;
1075 for (g = 0; g < ics->num_window_groups; g++) {
1076 for (i = 0; i < ics->max_sfb; i++, idx++) {
1077 if (cpe->ms_mask[idx] &&
1078 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1079 for (group = 0; group < ics->group_len[g]; group++) {
1080 for (k = offsets[i]; k < offsets[i+1]; k++) {
1081 float tmp = ch0[group*128 + k] - ch1[group*128 + k];
1082 ch0[group*128 + k] += ch1[group*128 + k];
1083 ch1[group*128 + k] = tmp;
1088 ch0 += ics->group_len[g]*128;
1089 ch1 += ics->group_len[g]*128;
1094 * intensity stereo decoding; reference: 4.6.8.2.3
1096 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1097 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1098 * [3] reserved for scalable AAC
1100 static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
1101 const IndividualChannelStream * ics = &cpe->ch[1].ics;
1102 SingleChannelElement * sce1 = &cpe->ch[1];
1103 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1104 const uint16_t * offsets = ics->swb_offset;
1105 int g, group, i, k, idx = 0;
1106 int c;
1107 float scale;
1108 for (g = 0; g < ics->num_window_groups; g++) {
1109 for (i = 0; i < ics->max_sfb;) {
1110 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1111 const int bt_run_end = sce1->band_type_run_end[idx];
1112 for (; i < bt_run_end; i++, idx++) {
1113 c = -1 + 2 * (sce1->band_type[idx] - 14);
1114 if (ms_present)
1115 c *= 1 - 2 * cpe->ms_mask[idx];
1116 scale = c * sce1->sf[idx];
1117 for (group = 0; group < ics->group_len[g]; group++)
1118 for (k = offsets[i]; k < offsets[i+1]; k++)
1119 coef1[group*128 + k] = scale * coef0[group*128 + k];
1121 } else {
1122 int bt_run_end = sce1->band_type_run_end[idx];
1123 idx += bt_run_end - i;
1124 i = bt_run_end;
1127 coef0 += ics->group_len[g]*128;
1128 coef1 += ics->group_len[g]*128;
1133 * Decode a channel_pair_element; reference: table 4.4.
1135 * @param elem_id Identifies the instance of a syntax element.
1137 * @return Returns error status. 0 - OK, !0 - error
1139 static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
1140 int i, ret, common_window, ms_present = 0;
1142 common_window = get_bits1(gb);
1143 if (common_window) {
1144 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1145 return -1;
1146 i = cpe->ch[1].ics.use_kb_window[0];
1147 cpe->ch[1].ics = cpe->ch[0].ics;
1148 cpe->ch[1].ics.use_kb_window[1] = i;
1149 ms_present = get_bits(gb, 2);
1150 if(ms_present == 3) {
1151 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1152 return -1;
1153 } else if(ms_present)
1154 decode_mid_side_stereo(cpe, gb, ms_present);
1156 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1157 return ret;
1158 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1159 return ret;
1161 if (common_window) {
1162 if (ms_present)
1163 apply_mid_side_stereo(cpe);
1164 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1165 apply_prediction(ac, &cpe->ch[0]);
1166 apply_prediction(ac, &cpe->ch[1]);
1170 apply_intensity_stereo(cpe, ms_present);
1171 return 0;
1175 * Decode coupling_channel_element; reference: table 4.8.
1177 * @param elem_id Identifies the instance of a syntax element.
1179 * @return Returns error status. 0 - OK, !0 - error
1181 static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
1182 int num_gain = 0;
1183 int c, g, sfb, ret;
1184 int sign;
1185 float scale;
1186 SingleChannelElement * sce = &che->ch[0];
1187 ChannelCoupling * coup = &che->coup;
1189 coup->coupling_point = 2*get_bits1(gb);
1190 coup->num_coupled = get_bits(gb, 3);
1191 for (c = 0; c <= coup->num_coupled; c++) {
1192 num_gain++;
1193 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1194 coup->id_select[c] = get_bits(gb, 4);
1195 if (coup->type[c] == TYPE_CPE) {
1196 coup->ch_select[c] = get_bits(gb, 2);
1197 if (coup->ch_select[c] == 3)
1198 num_gain++;
1199 } else
1200 coup->ch_select[c] = 2;
1202 coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1);
1204 sign = get_bits(gb, 1);
1205 scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1207 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1208 return ret;
1210 for (c = 0; c < num_gain; c++) {
1211 int idx = 0;
1212 int cge = 1;
1213 int gain = 0;
1214 float gain_cache = 1.;
1215 if (c) {
1216 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1217 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1218 gain_cache = pow(scale, -gain);
1220 if (coup->coupling_point == AFTER_IMDCT) {
1221 coup->gain[c][0] = gain_cache;
1222 } else {
1223 for (g = 0; g < sce->ics.num_window_groups; g++) {
1224 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1225 if (sce->band_type[idx] != ZERO_BT) {
1226 if (!cge) {
1227 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1228 if (t) {
1229 int s = 1;
1230 t = gain += t;
1231 if (sign) {
1232 s -= 2 * (t & 0x1);
1233 t >>= 1;
1235 gain_cache = pow(scale, -t) * s;
1238 coup->gain[c][idx] = gain_cache;
1244 return 0;
1248 * Decode Spectral Band Replication extension data; reference: table 4.55.
1250 * @param crc flag indicating the presence of CRC checksum
1251 * @param cnt length of TYPE_FIL syntactic element in bytes
1253 * @return Returns number of bytes consumed from the TYPE_FIL element.
1255 static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
1256 // TODO : sbr_extension implementation
1257 ff_log_missing_feature(ac->avccontext, "SBR", 0);
1258 skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
1259 return cnt;
1263 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1265 * @return Returns number of bytes consumed.
1267 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
1268 int i;
1269 int num_excl_chan = 0;
1271 do {
1272 for (i = 0; i < 7; i++)
1273 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1274 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1276 return num_excl_chan / 7;
1280 * Decode dynamic range information; reference: table 4.52.
1282 * @param cnt length of TYPE_FIL syntactic element in bytes
1284 * @return Returns number of bytes consumed.
1286 static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
1287 int n = 1;
1288 int drc_num_bands = 1;
1289 int i;
1291 /* pce_tag_present? */
1292 if(get_bits1(gb)) {
1293 che_drc->pce_instance_tag = get_bits(gb, 4);
1294 skip_bits(gb, 4); // tag_reserved_bits
1295 n++;
1298 /* excluded_chns_present? */
1299 if(get_bits1(gb)) {
1300 n += decode_drc_channel_exclusions(che_drc, gb);
1303 /* drc_bands_present? */
1304 if (get_bits1(gb)) {
1305 che_drc->band_incr = get_bits(gb, 4);
1306 che_drc->interpolation_scheme = get_bits(gb, 4);
1307 n++;
1308 drc_num_bands += che_drc->band_incr;
1309 for (i = 0; i < drc_num_bands; i++) {
1310 che_drc->band_top[i] = get_bits(gb, 8);
1311 n++;
1315 /* prog_ref_level_present? */
1316 if (get_bits1(gb)) {
1317 che_drc->prog_ref_level = get_bits(gb, 7);
1318 skip_bits1(gb); // prog_ref_level_reserved_bits
1319 n++;
1322 for (i = 0; i < drc_num_bands; i++) {
1323 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1324 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1325 n++;
1328 return n;
1332 * Decode extension data (incomplete); reference: table 4.51.
1334 * @param cnt length of TYPE_FIL syntactic element in bytes
1336 * @return Returns number of bytes consumed
1338 static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1339 int crc_flag = 0;
1340 int res = cnt;
1341 switch (get_bits(gb, 4)) { // extension type
1342 case EXT_SBR_DATA_CRC:
1343 crc_flag++;
1344 case EXT_SBR_DATA:
1345 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1346 break;
1347 case EXT_DYNAMIC_RANGE:
1348 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1349 break;
1350 case EXT_FILL:
1351 case EXT_FILL_DATA:
1352 case EXT_DATA_ELEMENT:
1353 default:
1354 skip_bits_long(gb, 8*cnt - 4);
1355 break;
1357 return res;
1361 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1363 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1364 * @param coef spectral coefficients
1366 static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
1367 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1368 int w, filt, m, i;
1369 int bottom, top, order, start, end, size, inc;
1370 float lpc[TNS_MAX_ORDER];
1372 for (w = 0; w < ics->num_windows; w++) {
1373 bottom = ics->num_swb;
1374 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1375 top = bottom;
1376 bottom = FFMAX(0, top - tns->length[w][filt]);
1377 order = tns->order[w][filt];
1378 if (order == 0)
1379 continue;
1381 // tns_decode_coef
1382 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1384 start = ics->swb_offset[FFMIN(bottom, mmm)];
1385 end = ics->swb_offset[FFMIN( top, mmm)];
1386 if ((size = end - start) <= 0)
1387 continue;
1388 if (tns->direction[w][filt]) {
1389 inc = -1; start = end - 1;
1390 } else {
1391 inc = 1;
1393 start += w * 128;
1395 // ar filter
1396 for (m = 0; m < size; m++, start += inc)
1397 for (i = 1; i <= FFMIN(m, order); i++)
1398 coef[start] -= coef[start - i*inc] * lpc[i-1];
1404 * Conduct IMDCT and windowing.
1406 static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
1407 IndividualChannelStream * ics = &sce->ics;
1408 float * in = sce->coeffs;
1409 float * out = sce->ret;
1410 float * saved = sce->saved;
1411 const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1412 const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1413 const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1414 float * buf = ac->buf_mdct;
1415 float * temp = ac->temp;
1416 int i;
1418 // imdct
1419 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1420 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1421 av_log(ac->avccontext, AV_LOG_WARNING,
1422 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1423 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1424 for (i = 0; i < 1024; i += 128)
1425 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1426 } else
1427 ff_imdct_half(&ac->mdct, buf, in);
1429 /* window overlapping
1430 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1431 * and long to short transitions are considered to be short to short
1432 * transitions. This leaves just two cases (long to long and short to short)
1433 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1435 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1436 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1437 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
1438 } else {
1439 for (i = 0; i < 448; i++)
1440 out[i] = saved[i] + ac->add_bias;
1442 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1443 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1444 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1445 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1446 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1447 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1448 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
1449 } else {
1450 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
1451 for (i = 576; i < 1024; i++)
1452 out[i] = buf[i-512] + ac->add_bias;
1456 // buffer update
1457 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1458 for (i = 0; i < 64; i++)
1459 saved[i] = temp[64 + i] - ac->add_bias;
1460 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1461 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1462 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1463 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1464 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1465 memcpy( saved, buf + 512, 448 * sizeof(float));
1466 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1467 } else { // LONG_STOP or ONLY_LONG
1468 memcpy( saved, buf + 512, 512 * sizeof(float));
1473 * Apply dependent channel coupling (applied before IMDCT).
1475 * @param index index into coupling gain array
1477 static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1478 IndividualChannelStream * ics = &cce->ch[0].ics;
1479 const uint16_t * offsets = ics->swb_offset;
1480 float * dest = target->coeffs;
1481 const float * src = cce->ch[0].coeffs;
1482 int g, i, group, k, idx = 0;
1483 if(ac->m4ac.object_type == AOT_AAC_LTP) {
1484 av_log(ac->avccontext, AV_LOG_ERROR,
1485 "Dependent coupling is not supported together with LTP\n");
1486 return;
1488 for (g = 0; g < ics->num_window_groups; g++) {
1489 for (i = 0; i < ics->max_sfb; i++, idx++) {
1490 if (cce->ch[0].band_type[idx] != ZERO_BT) {
1491 const float gain = cce->coup.gain[index][idx];
1492 for (group = 0; group < ics->group_len[g]; group++) {
1493 for (k = offsets[i]; k < offsets[i+1]; k++) {
1494 // XXX dsputil-ize
1495 dest[group*128+k] += gain * src[group*128+k];
1500 dest += ics->group_len[g]*128;
1501 src += ics->group_len[g]*128;
1506 * Apply independent channel coupling (applied after IMDCT).
1508 * @param index index into coupling gain array
1510 static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1511 int i;
1512 const float gain = cce->coup.gain[index][0];
1513 const float bias = ac->add_bias;
1514 const float* src = cce->ch[0].ret;
1515 float* dest = target->ret;
1517 for (i = 0; i < 1024; i++)
1518 dest[i] += gain * (src[i] - bias);
1522 * channel coupling transformation interface
1524 * @param index index into coupling gain array
1525 * @param apply_coupling_method pointer to (in)dependent coupling function
1527 static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
1528 enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
1529 void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
1531 int i, c;
1533 for (i = 0; i < MAX_ELEM_ID; i++) {
1534 ChannelElement *cce = ac->che[TYPE_CCE][i];
1535 int index = 0;
1537 if (cce && cce->coup.coupling_point == coupling_point) {
1538 ChannelCoupling * coup = &cce->coup;
1540 for (c = 0; c <= coup->num_coupled; c++) {
1541 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1542 if (coup->ch_select[c] != 1) {
1543 apply_coupling_method(ac, &cc->ch[0], cce, index);
1544 if (coup->ch_select[c] != 0)
1545 index++;
1547 if (coup->ch_select[c] != 2)
1548 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1549 } else
1550 index += 1 + (coup->ch_select[c] == 3);
1557 * Convert spectral data to float samples, applying all supported tools as appropriate.
1559 static void spectral_to_sample(AACContext * ac) {
1560 int i, type;
1561 for(type = 3; type >= 0; type--) {
1562 for (i = 0; i < MAX_ELEM_ID; i++) {
1563 ChannelElement *che = ac->che[type][i];
1564 if(che) {
1565 if(type <= TYPE_CPE)
1566 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1567 if(che->ch[0].tns.present)
1568 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1569 if(che->ch[1].tns.present)
1570 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1571 if(type <= TYPE_CPE)
1572 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1573 if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
1574 imdct_and_windowing(ac, &che->ch[0]);
1575 if(type == TYPE_CPE)
1576 imdct_and_windowing(ac, &che->ch[1]);
1577 if(type <= TYPE_CCE)
1578 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1584 static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {
1586 int size;
1587 AACADTSHeaderInfo hdr_info;
1589 size = ff_aac_parse_header(gb, &hdr_info);
1590 if (size > 0) {
1591 if (hdr_info.chan_config)
1592 ac->m4ac.chan_config = hdr_info.chan_config;
1593 ac->m4ac.sample_rate = hdr_info.sample_rate;
1594 ac->m4ac.sampling_index = hdr_info.sampling_index;
1595 ac->m4ac.object_type = hdr_info.object_type;
1596 if (hdr_info.num_aac_frames == 1) {
1597 if (!hdr_info.crc_absent)
1598 skip_bits(gb, 16);
1599 } else {
1600 ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
1601 return -1;
1604 return size;
1607 static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) {
1608 const uint8_t *buf = avpkt->data;
1609 int buf_size = avpkt->size;
1610 AACContext * ac = avccontext->priv_data;
1611 ChannelElement * che = NULL;
1612 GetBitContext gb;
1613 enum RawDataBlockType elem_type;
1614 int err, elem_id, data_size_tmp;
1616 init_get_bits(&gb, buf, buf_size*8);
1618 if (show_bits(&gb, 12) == 0xfff) {
1619 if (parse_adts_frame_header(ac, &gb) < 0) {
1620 av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1621 return -1;
1623 if (ac->m4ac.sampling_index > 12) {
1624 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1625 return -1;
1629 // parse
1630 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1631 elem_id = get_bits(&gb, 4);
1632 err = -1;
1634 if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
1635 av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1636 return -1;
1639 switch (elem_type) {
1641 case TYPE_SCE:
1642 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1643 break;
1645 case TYPE_CPE:
1646 err = decode_cpe(ac, &gb, che);
1647 break;
1649 case TYPE_CCE:
1650 err = decode_cce(ac, &gb, che);
1651 break;
1653 case TYPE_LFE:
1654 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1655 break;
1657 case TYPE_DSE:
1658 skip_data_stream_element(&gb);
1659 err = 0;
1660 break;
1662 case TYPE_PCE:
1664 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1665 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1666 if((err = decode_pce(ac, new_che_pos, &gb)))
1667 break;
1668 err = output_configure(ac, ac->che_pos, new_che_pos, 0);
1669 break;
1672 case TYPE_FIL:
1673 if (elem_id == 15)
1674 elem_id += get_bits(&gb, 8) - 1;
1675 while (elem_id > 0)
1676 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1677 err = 0; /* FIXME */
1678 break;
1680 default:
1681 err = -1; /* should not happen, but keeps compiler happy */
1682 break;
1685 if(err)
1686 return err;
1689 spectral_to_sample(ac);
1691 if (!ac->is_saved) {
1692 ac->is_saved = 1;
1693 *data_size = 0;
1694 return buf_size;
1697 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1698 if(*data_size < data_size_tmp) {
1699 av_log(avccontext, AV_LOG_ERROR,
1700 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1701 *data_size, data_size_tmp);
1702 return -1;
1704 *data_size = data_size_tmp;
1706 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1708 return buf_size;
1711 static av_cold int aac_decode_close(AVCodecContext * avccontext) {
1712 AACContext * ac = avccontext->priv_data;
1713 int i, type;
1715 for (i = 0; i < MAX_ELEM_ID; i++) {
1716 for(type = 0; type < 4; type++)
1717 av_freep(&ac->che[type][i]);
1720 ff_mdct_end(&ac->mdct);
1721 ff_mdct_end(&ac->mdct_small);
1722 return 0 ;
1725 AVCodec aac_decoder = {
1726 "aac",
1727 CODEC_TYPE_AUDIO,
1728 CODEC_ID_AAC,
1729 sizeof(AACContext),
1730 aac_decode_init,
1731 NULL,
1732 aac_decode_close,
1733 aac_decode_frame,
1734 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1735 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},