Move #defines that are mostly used in h264.c out of h264data.h and into h264.h.
[FFMpeg-mirror/ffmpeg-vdpau.git] / libavcodec / vc1.c
blob3d9a10bd6860ef87b0fd5556cd27880dd219ec22
1 /*
2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2006-2007 Konstantin Shishkov
4 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file vc1.c
25 * VC-1 and WMV3 decoder
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "vc1.h"
32 #include "vc1data.h"
33 #include "vc1acdata.h"
34 #include "msmpeg4data.h"
35 #include "unary.h"
36 #include "simple_idct.h"
38 #undef NDEBUG
39 #include <assert.h>
41 #define MB_INTRA_VLC_BITS 9
42 #define DC_VLC_BITS 9
43 #define AC_VLC_BITS 9
44 static const uint16_t table_mb_intra[64][2];
47 /**
48 * Init VC-1 specific tables and VC1Context members
49 * @param v The VC1Context to initialize
50 * @return Status
52 static int vc1_init_common(VC1Context *v)
54 static int done = 0;
55 int i = 0;
57 v->hrd_rate = v->hrd_buffer = NULL;
59 /* VLC tables */
60 if(!done)
62 done = 1;
63 init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
64 ff_vc1_bfraction_bits, 1, 1,
65 ff_vc1_bfraction_codes, 1, 1, 1);
66 init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
67 ff_vc1_norm2_bits, 1, 1,
68 ff_vc1_norm2_codes, 1, 1, 1);
69 init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
70 ff_vc1_norm6_bits, 1, 1,
71 ff_vc1_norm6_codes, 2, 2, 1);
72 init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
73 ff_vc1_imode_bits, 1, 1,
74 ff_vc1_imode_codes, 1, 1, 1);
75 for (i=0; i<3; i++)
77 init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
78 ff_vc1_ttmb_bits[i], 1, 1,
79 ff_vc1_ttmb_codes[i], 2, 2, 1);
80 init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
81 ff_vc1_ttblk_bits[i], 1, 1,
82 ff_vc1_ttblk_codes[i], 1, 1, 1);
83 init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
84 ff_vc1_subblkpat_bits[i], 1, 1,
85 ff_vc1_subblkpat_codes[i], 1, 1, 1);
87 for(i=0; i<4; i++)
89 init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
90 ff_vc1_4mv_block_pattern_bits[i], 1, 1,
91 ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
92 init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
93 ff_vc1_cbpcy_p_bits[i], 1, 1,
94 ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
95 init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
96 ff_vc1_mv_diff_bits[i], 1, 1,
97 ff_vc1_mv_diff_codes[i], 2, 2, 1);
99 for(i=0; i<8; i++)
100 init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
101 &vc1_ac_tables[i][0][1], 8, 4,
102 &vc1_ac_tables[i][0][0], 8, 4, 1);
103 init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
104 &ff_msmp4_mb_i_table[0][1], 4, 2,
105 &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
108 /* Other defaults */
109 v->pq = -1;
110 v->mvrange = 0; /* 7.1.1.18, p80 */
112 return 0;
115 /***********************************************************************/
117 * @defgroup bitplane VC9 Bitplane decoding
118 * @see 8.7, p56
119 * @{
122 /** @addtogroup bitplane
123 * Imode types
124 * @{
126 enum Imode {
127 IMODE_RAW,
128 IMODE_NORM2,
129 IMODE_DIFF2,
130 IMODE_NORM6,
131 IMODE_DIFF6,
132 IMODE_ROWSKIP,
133 IMODE_COLSKIP
135 /** @} */ //imode defines
137 /** Decode rows by checking if they are skipped
138 * @param plane Buffer to store decoded bits
139 * @param[in] width Width of this buffer
140 * @param[in] height Height of this buffer
141 * @param[in] stride of this buffer
143 static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
144 int x, y;
146 for (y=0; y<height; y++){
147 if (!get_bits1(gb)) //rowskip
148 memset(plane, 0, width);
149 else
150 for (x=0; x<width; x++)
151 plane[x] = get_bits1(gb);
152 plane += stride;
156 /** Decode columns by checking if they are skipped
157 * @param plane Buffer to store decoded bits
158 * @param[in] width Width of this buffer
159 * @param[in] height Height of this buffer
160 * @param[in] stride of this buffer
161 * @todo FIXME: Optimize
163 static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
164 int x, y;
166 for (x=0; x<width; x++){
167 if (!get_bits1(gb)) //colskip
168 for (y=0; y<height; y++)
169 plane[y*stride] = 0;
170 else
171 for (y=0; y<height; y++)
172 plane[y*stride] = get_bits1(gb);
173 plane ++;
177 /** Decode a bitplane's bits
178 * @param bp Bitplane where to store the decode bits
179 * @param v VC-1 context for bit reading and logging
180 * @return Status
181 * @todo FIXME: Optimize
183 static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
185 GetBitContext *gb = &v->s.gb;
187 int imode, x, y, code, offset;
188 uint8_t invert, *planep = data;
189 int width, height, stride;
191 width = v->s.mb_width;
192 height = v->s.mb_height;
193 stride = v->s.mb_stride;
194 invert = get_bits1(gb);
195 imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
197 *raw_flag = 0;
198 switch (imode)
200 case IMODE_RAW:
201 //Data is actually read in the MB layer (same for all tests == "raw")
202 *raw_flag = 1; //invert ignored
203 return invert;
204 case IMODE_DIFF2:
205 case IMODE_NORM2:
206 if ((height * width) & 1)
208 *planep++ = get_bits1(gb);
209 offset = 1;
211 else offset = 0;
212 // decode bitplane as one long line
213 for (y = offset; y < height * width; y += 2) {
214 code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
215 *planep++ = code & 1;
216 offset++;
217 if(offset == width) {
218 offset = 0;
219 planep += stride - width;
221 *planep++ = code >> 1;
222 offset++;
223 if(offset == width) {
224 offset = 0;
225 planep += stride - width;
228 break;
229 case IMODE_DIFF6:
230 case IMODE_NORM6:
231 if(!(height % 3) && (width % 3)) { // use 2x3 decoding
232 for(y = 0; y < height; y+= 3) {
233 for(x = width & 1; x < width; x += 2) {
234 code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
235 if(code < 0){
236 av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
237 return -1;
239 planep[x + 0] = (code >> 0) & 1;
240 planep[x + 1] = (code >> 1) & 1;
241 planep[x + 0 + stride] = (code >> 2) & 1;
242 planep[x + 1 + stride] = (code >> 3) & 1;
243 planep[x + 0 + stride * 2] = (code >> 4) & 1;
244 planep[x + 1 + stride * 2] = (code >> 5) & 1;
246 planep += stride * 3;
248 if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
249 } else { // 3x2
250 planep += (height & 1) * stride;
251 for(y = height & 1; y < height; y += 2) {
252 for(x = width % 3; x < width; x += 3) {
253 code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
254 if(code < 0){
255 av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
256 return -1;
258 planep[x + 0] = (code >> 0) & 1;
259 planep[x + 1] = (code >> 1) & 1;
260 planep[x + 2] = (code >> 2) & 1;
261 planep[x + 0 + stride] = (code >> 3) & 1;
262 planep[x + 1 + stride] = (code >> 4) & 1;
263 planep[x + 2 + stride] = (code >> 5) & 1;
265 planep += stride * 2;
267 x = width % 3;
268 if(x) decode_colskip(data , x, height , stride, &v->s.gb);
269 if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
271 break;
272 case IMODE_ROWSKIP:
273 decode_rowskip(data, width, height, stride, &v->s.gb);
274 break;
275 case IMODE_COLSKIP:
276 decode_colskip(data, width, height, stride, &v->s.gb);
277 break;
278 default: break;
281 /* Applying diff operator */
282 if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
284 planep = data;
285 planep[0] ^= invert;
286 for (x=1; x<width; x++)
287 planep[x] ^= planep[x-1];
288 for (y=1; y<height; y++)
290 planep += stride;
291 planep[0] ^= planep[-stride];
292 for (x=1; x<width; x++)
294 if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
295 else planep[x] ^= planep[x-1];
299 else if (invert)
301 planep = data;
302 for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
304 return (imode<<1) + invert;
307 /** @} */ //Bitplane group
309 #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
311 * VC-1 in-loop deblocking filter for one line
312 * @param src source block type
313 * @param pq block quantizer
314 * @return whether other 3 pairs should be filtered or not
315 * @see 8.6
317 static int vc1_filter_line(uint8_t* src, int stride, int pq){
318 int a0, a1, a2, a3, d, clip, filt3 = 0;
319 uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
321 a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
322 if(FFABS(a0) < pq){
323 a1 = (2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3;
324 a2 = (2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3;
325 a3 = FFMIN(FFABS(a1), FFABS(a2));
326 if(a3 < FFABS(a0)){
327 d = 5 * ((a0 >=0 ? a3 : -a3) - a0) / 8;
328 clip = (src[-1*stride] - src[ 0*stride])/2;
329 if(clip){
330 filt3 = 1;
331 if(clip > 0)
332 d = av_clip(d, 0, clip);
333 else
334 d = av_clip(d, clip, 0);
335 src[-1*stride] = cm[src[-1*stride] - d];
336 src[ 0*stride] = cm[src[ 0*stride] + d];
340 return filt3;
344 * VC-1 in-loop deblocking filter
345 * @param src source block type
346 * @param len edge length to filter (4 or 8 pixels)
347 * @param pq block quantizer
348 * @see 8.6
350 static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
352 int i;
353 int filt3;
355 for(i = 0; i < len; i += 4){
356 filt3 = vc1_filter_line(src + 2*step, stride, pq);
357 if(filt3){
358 vc1_filter_line(src + 0*step, stride, pq);
359 vc1_filter_line(src + 1*step, stride, pq);
360 vc1_filter_line(src + 3*step, stride, pq);
362 src += step * 4;
366 static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
368 int i, j;
369 if(!s->first_slice_line)
370 vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
371 vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
372 for(i = !s->mb_x*8; i < 16; i += 8)
373 vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
374 for(j = 0; j < 2; j++){
375 if(!s->first_slice_line)
376 vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
377 if(s->mb_x)
378 vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
382 /***********************************************************************/
383 /** VOP Dquant decoding
384 * @param v VC-1 Context
386 static int vop_dquant_decoding(VC1Context *v)
388 GetBitContext *gb = &v->s.gb;
389 int pqdiff;
391 //variable size
392 if (v->dquant == 2)
394 pqdiff = get_bits(gb, 3);
395 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
396 else v->altpq = v->pq + pqdiff + 1;
398 else
400 v->dquantfrm = get_bits1(gb);
401 if ( v->dquantfrm )
403 v->dqprofile = get_bits(gb, 2);
404 switch (v->dqprofile)
406 case DQPROFILE_SINGLE_EDGE:
407 case DQPROFILE_DOUBLE_EDGES:
408 v->dqsbedge = get_bits(gb, 2);
409 break;
410 case DQPROFILE_ALL_MBS:
411 v->dqbilevel = get_bits1(gb);
412 if(!v->dqbilevel)
413 v->halfpq = 0;
414 default: break; //Forbidden ?
416 if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
418 pqdiff = get_bits(gb, 3);
419 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
420 else v->altpq = v->pq + pqdiff + 1;
424 return 0;
427 /** Put block onto picture
429 static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
431 uint8_t *Y;
432 int ys, us, vs;
433 DSPContext *dsp = &v->s.dsp;
435 if(v->rangeredfrm) {
436 int i, j, k;
437 for(k = 0; k < 6; k++)
438 for(j = 0; j < 8; j++)
439 for(i = 0; i < 8; i++)
440 block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
443 ys = v->s.current_picture.linesize[0];
444 us = v->s.current_picture.linesize[1];
445 vs = v->s.current_picture.linesize[2];
446 Y = v->s.dest[0];
448 dsp->put_pixels_clamped(block[0], Y, ys);
449 dsp->put_pixels_clamped(block[1], Y + 8, ys);
450 Y += ys * 8;
451 dsp->put_pixels_clamped(block[2], Y, ys);
452 dsp->put_pixels_clamped(block[3], Y + 8, ys);
454 if(!(v->s.flags & CODEC_FLAG_GRAY)) {
455 dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
456 dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
460 /** Do motion compensation over 1 macroblock
461 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
463 static void vc1_mc_1mv(VC1Context *v, int dir)
465 MpegEncContext *s = &v->s;
466 DSPContext *dsp = &v->s.dsp;
467 uint8_t *srcY, *srcU, *srcV;
468 int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
470 if(!v->s.last_picture.data[0])return;
472 mx = s->mv[dir][0][0];
473 my = s->mv[dir][0][1];
475 // store motion vectors for further use in B frames
476 if(s->pict_type == FF_P_TYPE) {
477 s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
478 s->current_picture.motion_val[1][s->block_index[0]][1] = my;
480 uvmx = (mx + ((mx & 3) == 3)) >> 1;
481 uvmy = (my + ((my & 3) == 3)) >> 1;
482 if(v->fastuvmc) {
483 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
484 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
486 if(!dir) {
487 srcY = s->last_picture.data[0];
488 srcU = s->last_picture.data[1];
489 srcV = s->last_picture.data[2];
490 } else {
491 srcY = s->next_picture.data[0];
492 srcU = s->next_picture.data[1];
493 srcV = s->next_picture.data[2];
496 src_x = s->mb_x * 16 + (mx >> 2);
497 src_y = s->mb_y * 16 + (my >> 2);
498 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
499 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
501 if(v->profile != PROFILE_ADVANCED){
502 src_x = av_clip( src_x, -16, s->mb_width * 16);
503 src_y = av_clip( src_y, -16, s->mb_height * 16);
504 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
505 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
506 }else{
507 src_x = av_clip( src_x, -17, s->avctx->coded_width);
508 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
509 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
510 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
513 srcY += src_y * s->linesize + src_x;
514 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
515 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
517 /* for grayscale we should not try to read from unknown area */
518 if(s->flags & CODEC_FLAG_GRAY) {
519 srcU = s->edge_emu_buffer + 18 * s->linesize;
520 srcV = s->edge_emu_buffer + 18 * s->linesize;
523 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
524 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
525 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
526 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
528 srcY -= s->mspel * (1 + s->linesize);
529 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
530 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
531 srcY = s->edge_emu_buffer;
532 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
533 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
534 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
535 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
536 srcU = uvbuf;
537 srcV = uvbuf + 16;
538 /* if we deal with range reduction we need to scale source blocks */
539 if(v->rangeredfrm) {
540 int i, j;
541 uint8_t *src, *src2;
543 src = srcY;
544 for(j = 0; j < 17 + s->mspel*2; j++) {
545 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
546 src += s->linesize;
548 src = srcU; src2 = srcV;
549 for(j = 0; j < 9; j++) {
550 for(i = 0; i < 9; i++) {
551 src[i] = ((src[i] - 128) >> 1) + 128;
552 src2[i] = ((src2[i] - 128) >> 1) + 128;
554 src += s->uvlinesize;
555 src2 += s->uvlinesize;
558 /* if we deal with intensity compensation we need to scale source blocks */
559 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
560 int i, j;
561 uint8_t *src, *src2;
563 src = srcY;
564 for(j = 0; j < 17 + s->mspel*2; j++) {
565 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
566 src += s->linesize;
568 src = srcU; src2 = srcV;
569 for(j = 0; j < 9; j++) {
570 for(i = 0; i < 9; i++) {
571 src[i] = v->lutuv[src[i]];
572 src2[i] = v->lutuv[src2[i]];
574 src += s->uvlinesize;
575 src2 += s->uvlinesize;
578 srcY += s->mspel * (1 + s->linesize);
581 if(s->mspel) {
582 dxy = ((my & 3) << 2) | (mx & 3);
583 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
584 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
585 srcY += s->linesize * 8;
586 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
587 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
588 } else { // hpel mc - always used for luma
589 dxy = (my & 2) | ((mx & 2) >> 1);
591 if(!v->rnd)
592 dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
593 else
594 dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
597 if(s->flags & CODEC_FLAG_GRAY) return;
598 /* Chroma MC always uses qpel bilinear */
599 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
600 uvmx = (uvmx&3)<<1;
601 uvmy = (uvmy&3)<<1;
602 if(!v->rnd){
603 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
604 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
605 }else{
606 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
607 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
611 /** Do motion compensation for 4-MV macroblock - luminance block
613 static void vc1_mc_4mv_luma(VC1Context *v, int n)
615 MpegEncContext *s = &v->s;
616 DSPContext *dsp = &v->s.dsp;
617 uint8_t *srcY;
618 int dxy, mx, my, src_x, src_y;
619 int off;
621 if(!v->s.last_picture.data[0])return;
622 mx = s->mv[0][n][0];
623 my = s->mv[0][n][1];
624 srcY = s->last_picture.data[0];
626 off = s->linesize * 4 * (n&2) + (n&1) * 8;
628 src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
629 src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
631 if(v->profile != PROFILE_ADVANCED){
632 src_x = av_clip( src_x, -16, s->mb_width * 16);
633 src_y = av_clip( src_y, -16, s->mb_height * 16);
634 }else{
635 src_x = av_clip( src_x, -17, s->avctx->coded_width);
636 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
639 srcY += src_y * s->linesize + src_x;
641 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
642 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
643 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
644 srcY -= s->mspel * (1 + s->linesize);
645 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
646 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
647 srcY = s->edge_emu_buffer;
648 /* if we deal with range reduction we need to scale source blocks */
649 if(v->rangeredfrm) {
650 int i, j;
651 uint8_t *src;
653 src = srcY;
654 for(j = 0; j < 9 + s->mspel*2; j++) {
655 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
656 src += s->linesize;
659 /* if we deal with intensity compensation we need to scale source blocks */
660 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
661 int i, j;
662 uint8_t *src;
664 src = srcY;
665 for(j = 0; j < 9 + s->mspel*2; j++) {
666 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
667 src += s->linesize;
670 srcY += s->mspel * (1 + s->linesize);
673 if(s->mspel) {
674 dxy = ((my & 3) << 2) | (mx & 3);
675 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
676 } else { // hpel mc - always used for luma
677 dxy = (my & 2) | ((mx & 2) >> 1);
678 if(!v->rnd)
679 dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
680 else
681 dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
685 static inline int median4(int a, int b, int c, int d)
687 if(a < b) {
688 if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
689 else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
690 } else {
691 if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
692 else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
697 /** Do motion compensation for 4-MV macroblock - both chroma blocks
699 static void vc1_mc_4mv_chroma(VC1Context *v)
701 MpegEncContext *s = &v->s;
702 DSPContext *dsp = &v->s.dsp;
703 uint8_t *srcU, *srcV;
704 int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
705 int i, idx, tx = 0, ty = 0;
706 int mvx[4], mvy[4], intra[4];
707 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
709 if(!v->s.last_picture.data[0])return;
710 if(s->flags & CODEC_FLAG_GRAY) return;
712 for(i = 0; i < 4; i++) {
713 mvx[i] = s->mv[0][i][0];
714 mvy[i] = s->mv[0][i][1];
715 intra[i] = v->mb_type[0][s->block_index[i]];
718 /* calculate chroma MV vector from four luma MVs */
719 idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
720 if(!idx) { // all blocks are inter
721 tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
722 ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
723 } else if(count[idx] == 1) { // 3 inter blocks
724 switch(idx) {
725 case 0x1:
726 tx = mid_pred(mvx[1], mvx[2], mvx[3]);
727 ty = mid_pred(mvy[1], mvy[2], mvy[3]);
728 break;
729 case 0x2:
730 tx = mid_pred(mvx[0], mvx[2], mvx[3]);
731 ty = mid_pred(mvy[0], mvy[2], mvy[3]);
732 break;
733 case 0x4:
734 tx = mid_pred(mvx[0], mvx[1], mvx[3]);
735 ty = mid_pred(mvy[0], mvy[1], mvy[3]);
736 break;
737 case 0x8:
738 tx = mid_pred(mvx[0], mvx[1], mvx[2]);
739 ty = mid_pred(mvy[0], mvy[1], mvy[2]);
740 break;
742 } else if(count[idx] == 2) {
743 int t1 = 0, t2 = 0;
744 for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
745 for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
746 tx = (mvx[t1] + mvx[t2]) / 2;
747 ty = (mvy[t1] + mvy[t2]) / 2;
748 } else {
749 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
750 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
751 return; //no need to do MC for inter blocks
754 s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
755 s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
756 uvmx = (tx + ((tx&3) == 3)) >> 1;
757 uvmy = (ty + ((ty&3) == 3)) >> 1;
758 if(v->fastuvmc) {
759 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
760 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
763 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
764 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
766 if(v->profile != PROFILE_ADVANCED){
767 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
768 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
769 }else{
770 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
771 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
774 srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
775 srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
776 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
777 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
778 || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
779 ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
780 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
781 ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
782 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
783 srcU = s->edge_emu_buffer;
784 srcV = s->edge_emu_buffer + 16;
786 /* if we deal with range reduction we need to scale source blocks */
787 if(v->rangeredfrm) {
788 int i, j;
789 uint8_t *src, *src2;
791 src = srcU; src2 = srcV;
792 for(j = 0; j < 9; j++) {
793 for(i = 0; i < 9; i++) {
794 src[i] = ((src[i] - 128) >> 1) + 128;
795 src2[i] = ((src2[i] - 128) >> 1) + 128;
797 src += s->uvlinesize;
798 src2 += s->uvlinesize;
801 /* if we deal with intensity compensation we need to scale source blocks */
802 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
803 int i, j;
804 uint8_t *src, *src2;
806 src = srcU; src2 = srcV;
807 for(j = 0; j < 9; j++) {
808 for(i = 0; i < 9; i++) {
809 src[i] = v->lutuv[src[i]];
810 src2[i] = v->lutuv[src2[i]];
812 src += s->uvlinesize;
813 src2 += s->uvlinesize;
818 /* Chroma MC always uses qpel bilinear */
819 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
820 uvmx = (uvmx&3)<<1;
821 uvmy = (uvmy&3)<<1;
822 if(!v->rnd){
823 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
824 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
825 }else{
826 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
827 dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
831 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
834 * Decode Simple/Main Profiles sequence header
835 * @see Figure 7-8, p16-17
836 * @param avctx Codec context
837 * @param gb GetBit context initialized from Codec context extra_data
838 * @return Status
840 static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
842 VC1Context *v = avctx->priv_data;
844 av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
845 v->profile = get_bits(gb, 2);
846 if (v->profile == PROFILE_COMPLEX)
848 av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
851 if (v->profile == PROFILE_ADVANCED)
853 v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
854 v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
855 return decode_sequence_header_adv(v, gb);
857 else
859 v->zz_8x4 = wmv2_scantableA;
860 v->zz_4x8 = wmv2_scantableB;
861 v->res_sm = get_bits(gb, 2); //reserved
862 if (v->res_sm)
864 av_log(avctx, AV_LOG_ERROR,
865 "Reserved RES_SM=%i is forbidden\n", v->res_sm);
866 return -1;
870 // (fps-2)/4 (->30)
871 v->frmrtq_postproc = get_bits(gb, 3); //common
872 // (bitrate-32kbps)/64kbps
873 v->bitrtq_postproc = get_bits(gb, 5); //common
874 v->s.loop_filter = get_bits1(gb); //common
875 if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
877 av_log(avctx, AV_LOG_ERROR,
878 "LOOPFILTER shell not be enabled in simple profile\n");
880 if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
881 v->s.loop_filter = 0;
883 v->res_x8 = get_bits1(gb); //reserved
884 v->multires = get_bits1(gb);
885 v->res_fasttx = get_bits1(gb);
886 if (!v->res_fasttx)
888 v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
889 v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
890 v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
891 v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
894 v->fastuvmc = get_bits1(gb); //common
895 if (!v->profile && !v->fastuvmc)
897 av_log(avctx, AV_LOG_ERROR,
898 "FASTUVMC unavailable in Simple Profile\n");
899 return -1;
901 v->extended_mv = get_bits1(gb); //common
902 if (!v->profile && v->extended_mv)
904 av_log(avctx, AV_LOG_ERROR,
905 "Extended MVs unavailable in Simple Profile\n");
906 return -1;
908 v->dquant = get_bits(gb, 2); //common
909 v->vstransform = get_bits1(gb); //common
911 v->res_transtab = get_bits1(gb);
912 if (v->res_transtab)
914 av_log(avctx, AV_LOG_ERROR,
915 "1 for reserved RES_TRANSTAB is forbidden\n");
916 return -1;
919 v->overlap = get_bits1(gb); //common
921 v->s.resync_marker = get_bits1(gb);
922 v->rangered = get_bits1(gb);
923 if (v->rangered && v->profile == PROFILE_SIMPLE)
925 av_log(avctx, AV_LOG_INFO,
926 "RANGERED should be set to 0 in simple profile\n");
929 v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
930 v->quantizer_mode = get_bits(gb, 2); //common
932 v->finterpflag = get_bits1(gb); //common
933 v->res_rtm_flag = get_bits1(gb); //reserved
934 if (!v->res_rtm_flag)
936 // av_log(avctx, AV_LOG_ERROR,
937 // "0 for reserved RES_RTM_FLAG is forbidden\n");
938 av_log(avctx, AV_LOG_ERROR,
939 "Old WMV3 version detected, only I-frames will be decoded\n");
940 //return -1;
942 //TODO: figure out what they mean (always 0x402F)
943 if(!v->res_fasttx) skip_bits(gb, 16);
944 av_log(avctx, AV_LOG_DEBUG,
945 "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
946 "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
947 "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
948 "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
949 v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
950 v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
951 v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
952 v->dquant, v->quantizer_mode, avctx->max_b_frames
954 return 0;
957 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
959 v->res_rtm_flag = 1;
960 v->level = get_bits(gb, 3);
961 if(v->level >= 5)
963 av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
965 v->chromaformat = get_bits(gb, 2);
966 if (v->chromaformat != 1)
968 av_log(v->s.avctx, AV_LOG_ERROR,
969 "Only 4:2:0 chroma format supported\n");
970 return -1;
973 // (fps-2)/4 (->30)
974 v->frmrtq_postproc = get_bits(gb, 3); //common
975 // (bitrate-32kbps)/64kbps
976 v->bitrtq_postproc = get_bits(gb, 5); //common
977 v->postprocflag = get_bits1(gb); //common
979 v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
980 v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
981 v->s.avctx->width = v->s.avctx->coded_width;
982 v->s.avctx->height = v->s.avctx->coded_height;
983 v->broadcast = get_bits1(gb);
984 v->interlace = get_bits1(gb);
985 v->tfcntrflag = get_bits1(gb);
986 v->finterpflag = get_bits1(gb);
987 skip_bits1(gb); // reserved
989 v->s.h_edge_pos = v->s.avctx->coded_width;
990 v->s.v_edge_pos = v->s.avctx->coded_height;
992 av_log(v->s.avctx, AV_LOG_DEBUG,
993 "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
994 "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
995 "TFCTRflag=%i, FINTERPflag=%i\n",
996 v->level, v->frmrtq_postproc, v->bitrtq_postproc,
997 v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
998 v->tfcntrflag, v->finterpflag
1001 v->psf = get_bits1(gb);
1002 if(v->psf) { //PsF, 6.1.13
1003 av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
1004 return -1;
1006 v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
1007 if(get_bits1(gb)) { //Display Info - decoding is not affected by it
1008 int w, h, ar = 0;
1009 av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
1010 v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
1011 v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
1012 av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
1013 if(get_bits1(gb))
1014 ar = get_bits(gb, 4);
1015 if(ar && ar < 14){
1016 v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
1017 }else if(ar == 15){
1018 w = get_bits(gb, 8);
1019 h = get_bits(gb, 8);
1020 v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
1023 if(get_bits1(gb)){ //framerate stuff
1024 if(get_bits1(gb)) {
1025 v->s.avctx->time_base.num = 32;
1026 v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
1027 } else {
1028 int nr, dr;
1029 nr = get_bits(gb, 8);
1030 dr = get_bits(gb, 4);
1031 if(nr && nr < 8 && dr && dr < 3){
1032 v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
1033 v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
1038 if(get_bits1(gb)){
1039 v->color_prim = get_bits(gb, 8);
1040 v->transfer_char = get_bits(gb, 8);
1041 v->matrix_coef = get_bits(gb, 8);
1045 v->hrd_param_flag = get_bits1(gb);
1046 if(v->hrd_param_flag) {
1047 int i;
1048 v->hrd_num_leaky_buckets = get_bits(gb, 5);
1049 skip_bits(gb, 4); //bitrate exponent
1050 skip_bits(gb, 4); //buffer size exponent
1051 for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1052 skip_bits(gb, 16); //hrd_rate[n]
1053 skip_bits(gb, 16); //hrd_buffer[n]
1056 return 0;
1059 static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
1061 VC1Context *v = avctx->priv_data;
1062 int i, blink, clentry, refdist;
1064 av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
1065 blink = get_bits1(gb); // broken link
1066 clentry = get_bits1(gb); // closed entry
1067 v->panscanflag = get_bits1(gb);
1068 refdist = get_bits1(gb); // refdist flag
1069 v->s.loop_filter = get_bits1(gb);
1070 v->fastuvmc = get_bits1(gb);
1071 v->extended_mv = get_bits1(gb);
1072 v->dquant = get_bits(gb, 2);
1073 v->vstransform = get_bits1(gb);
1074 v->overlap = get_bits1(gb);
1075 v->quantizer_mode = get_bits(gb, 2);
1077 if(v->hrd_param_flag){
1078 for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1079 skip_bits(gb, 8); //hrd_full[n]
1083 if(get_bits1(gb)){
1084 avctx->coded_width = (get_bits(gb, 12)+1)<<1;
1085 avctx->coded_height = (get_bits(gb, 12)+1)<<1;
1087 if(v->extended_mv)
1088 v->extended_dmv = get_bits1(gb);
1089 if(get_bits1(gb)) {
1090 av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
1091 skip_bits(gb, 3); // Y range, ignored for now
1093 if(get_bits1(gb)) {
1094 av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
1095 skip_bits(gb, 3); // UV range, ignored for now
1098 av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
1099 "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
1100 "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
1101 "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
1102 blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
1103 v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
1105 return 0;
1108 static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
1110 int pqindex, lowquant, status;
1112 if(v->finterpflag) v->interpfrm = get_bits1(gb);
1113 skip_bits(gb, 2); //framecnt unused
1114 v->rangeredfrm = 0;
1115 if (v->rangered) v->rangeredfrm = get_bits1(gb);
1116 v->s.pict_type = get_bits1(gb);
1117 if (v->s.avctx->max_b_frames) {
1118 if (!v->s.pict_type) {
1119 if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
1120 else v->s.pict_type = FF_B_TYPE;
1121 } else v->s.pict_type = FF_P_TYPE;
1122 } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
1124 v->bi_type = 0;
1125 if(v->s.pict_type == FF_B_TYPE) {
1126 v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1127 v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1128 if(v->bfraction == 0) {
1129 v->s.pict_type = FF_BI_TYPE;
1132 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1133 skip_bits(gb, 7); // skip buffer fullness
1135 /* calculate RND */
1136 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1137 v->rnd = 1;
1138 if(v->s.pict_type == FF_P_TYPE)
1139 v->rnd ^= 1;
1141 /* Quantizer stuff */
1142 pqindex = get_bits(gb, 5);
1143 if(!pqindex) return -1;
1144 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1145 v->pq = ff_vc1_pquant_table[0][pqindex];
1146 else
1147 v->pq = ff_vc1_pquant_table[1][pqindex];
1149 v->pquantizer = 1;
1150 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1151 v->pquantizer = pqindex < 9;
1152 if (v->quantizer_mode == QUANT_NON_UNIFORM)
1153 v->pquantizer = 0;
1154 v->pqindex = pqindex;
1155 if (pqindex < 9) v->halfpq = get_bits1(gb);
1156 else v->halfpq = 0;
1157 if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1158 v->pquantizer = get_bits1(gb);
1159 v->dquantfrm = 0;
1160 if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
1161 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1162 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1163 v->range_x = 1 << (v->k_x - 1);
1164 v->range_y = 1 << (v->k_y - 1);
1165 if (v->profile == PROFILE_ADVANCED)
1167 if (v->postprocflag) v->postproc = get_bits1(gb);
1169 else
1170 if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
1172 if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
1173 v->x8_type = get_bits1(gb);
1174 }else v->x8_type = 0;
1175 //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
1176 // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
1178 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
1180 switch(v->s.pict_type) {
1181 case FF_P_TYPE:
1182 if (v->pq < 5) v->tt_index = 0;
1183 else if(v->pq < 13) v->tt_index = 1;
1184 else v->tt_index = 2;
1186 lowquant = (v->pq > 12) ? 0 : 1;
1187 v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
1188 if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1190 int scale, shift, i;
1191 v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
1192 v->lumscale = get_bits(gb, 6);
1193 v->lumshift = get_bits(gb, 6);
1194 v->use_ic = 1;
1195 /* fill lookup tables for intensity compensation */
1196 if(!v->lumscale) {
1197 scale = -64;
1198 shift = (255 - v->lumshift * 2) << 6;
1199 if(v->lumshift > 31)
1200 shift += 128 << 6;
1201 } else {
1202 scale = v->lumscale + 32;
1203 if(v->lumshift > 31)
1204 shift = (v->lumshift - 64) << 6;
1205 else
1206 shift = v->lumshift << 6;
1208 for(i = 0; i < 256; i++) {
1209 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1210 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1213 if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1214 v->s.quarter_sample = 0;
1215 else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1216 if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1217 v->s.quarter_sample = 0;
1218 else
1219 v->s.quarter_sample = 1;
1220 } else
1221 v->s.quarter_sample = 1;
1222 v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1224 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1225 v->mv_mode2 == MV_PMODE_MIXED_MV)
1226 || v->mv_mode == MV_PMODE_MIXED_MV)
1228 status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1229 if (status < 0) return -1;
1230 av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1231 "Imode: %i, Invert: %i\n", status>>1, status&1);
1232 } else {
1233 v->mv_type_is_raw = 0;
1234 memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1236 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1237 if (status < 0) return -1;
1238 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1239 "Imode: %i, Invert: %i\n", status>>1, status&1);
1241 /* Hopefully this is correct for P frames */
1242 v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1243 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1245 if (v->dquant)
1247 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1248 vop_dquant_decoding(v);
1251 v->ttfrm = 0; //FIXME Is that so ?
1252 if (v->vstransform)
1254 v->ttmbf = get_bits1(gb);
1255 if (v->ttmbf)
1257 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1259 } else {
1260 v->ttmbf = 1;
1261 v->ttfrm = TT_8X8;
1263 break;
1264 case FF_B_TYPE:
1265 if (v->pq < 5) v->tt_index = 0;
1266 else if(v->pq < 13) v->tt_index = 1;
1267 else v->tt_index = 2;
1269 lowquant = (v->pq > 12) ? 0 : 1;
1270 v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1271 v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1272 v->s.mspel = v->s.quarter_sample;
1274 status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1275 if (status < 0) return -1;
1276 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1277 "Imode: %i, Invert: %i\n", status>>1, status&1);
1278 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1279 if (status < 0) return -1;
1280 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1281 "Imode: %i, Invert: %i\n", status>>1, status&1);
1283 v->s.mv_table_index = get_bits(gb, 2);
1284 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1286 if (v->dquant)
1288 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1289 vop_dquant_decoding(v);
1292 v->ttfrm = 0;
1293 if (v->vstransform)
1295 v->ttmbf = get_bits1(gb);
1296 if (v->ttmbf)
1298 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1300 } else {
1301 v->ttmbf = 1;
1302 v->ttfrm = TT_8X8;
1304 break;
1307 if(!v->x8_type)
1309 /* AC Syntax */
1310 v->c_ac_table_index = decode012(gb);
1311 if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1313 v->y_ac_table_index = decode012(gb);
1315 /* DC Syntax */
1316 v->s.dc_table_index = get_bits1(gb);
1319 if(v->s.pict_type == FF_BI_TYPE) {
1320 v->s.pict_type = FF_B_TYPE;
1321 v->bi_type = 1;
1323 return 0;
1326 static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
1328 int pqindex, lowquant;
1329 int status;
1331 v->p_frame_skipped = 0;
1333 if(v->interlace){
1334 v->fcm = decode012(gb);
1335 if(v->fcm) return -1; // interlaced frames/fields are not implemented
1337 switch(get_unary(gb, 0, 4)) {
1338 case 0:
1339 v->s.pict_type = FF_P_TYPE;
1340 break;
1341 case 1:
1342 v->s.pict_type = FF_B_TYPE;
1343 break;
1344 case 2:
1345 v->s.pict_type = FF_I_TYPE;
1346 break;
1347 case 3:
1348 v->s.pict_type = FF_BI_TYPE;
1349 break;
1350 case 4:
1351 v->s.pict_type = FF_P_TYPE; // skipped pic
1352 v->p_frame_skipped = 1;
1353 return 0;
1355 if(v->tfcntrflag)
1356 skip_bits(gb, 8);
1357 if(v->broadcast) {
1358 if(!v->interlace || v->psf) {
1359 v->rptfrm = get_bits(gb, 2);
1360 } else {
1361 v->tff = get_bits1(gb);
1362 v->rptfrm = get_bits1(gb);
1365 if(v->panscanflag) {
1366 //...
1368 v->rnd = get_bits1(gb);
1369 if(v->interlace)
1370 v->uvsamp = get_bits1(gb);
1371 if(v->finterpflag) v->interpfrm = get_bits1(gb);
1372 if(v->s.pict_type == FF_B_TYPE) {
1373 v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1374 v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1375 if(v->bfraction == 0) {
1376 v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
1379 pqindex = get_bits(gb, 5);
1380 if(!pqindex) return -1;
1381 v->pqindex = pqindex;
1382 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1383 v->pq = ff_vc1_pquant_table[0][pqindex];
1384 else
1385 v->pq = ff_vc1_pquant_table[1][pqindex];
1387 v->pquantizer = 1;
1388 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1389 v->pquantizer = pqindex < 9;
1390 if (v->quantizer_mode == QUANT_NON_UNIFORM)
1391 v->pquantizer = 0;
1392 v->pqindex = pqindex;
1393 if (pqindex < 9) v->halfpq = get_bits1(gb);
1394 else v->halfpq = 0;
1395 if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1396 v->pquantizer = get_bits1(gb);
1397 if(v->postprocflag)
1398 v->postproc = get_bits1(gb);
1400 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
1402 switch(v->s.pict_type) {
1403 case FF_I_TYPE:
1404 case FF_BI_TYPE:
1405 status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
1406 if (status < 0) return -1;
1407 av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
1408 "Imode: %i, Invert: %i\n", status>>1, status&1);
1409 v->condover = CONDOVER_NONE;
1410 if(v->overlap && v->pq <= 8) {
1411 v->condover = decode012(gb);
1412 if(v->condover == CONDOVER_SELECT) {
1413 status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
1414 if (status < 0) return -1;
1415 av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
1416 "Imode: %i, Invert: %i\n", status>>1, status&1);
1419 break;
1420 case FF_P_TYPE:
1421 if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
1422 else v->mvrange = 0;
1423 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1424 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1425 v->range_x = 1 << (v->k_x - 1);
1426 v->range_y = 1 << (v->k_y - 1);
1428 if (v->pq < 5) v->tt_index = 0;
1429 else if(v->pq < 13) v->tt_index = 1;
1430 else v->tt_index = 2;
1432 lowquant = (v->pq > 12) ? 0 : 1;
1433 v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
1434 if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1436 int scale, shift, i;
1437 v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
1438 v->lumscale = get_bits(gb, 6);
1439 v->lumshift = get_bits(gb, 6);
1440 /* fill lookup tables for intensity compensation */
1441 if(!v->lumscale) {
1442 scale = -64;
1443 shift = (255 - v->lumshift * 2) << 6;
1444 if(v->lumshift > 31)
1445 shift += 128 << 6;
1446 } else {
1447 scale = v->lumscale + 32;
1448 if(v->lumshift > 31)
1449 shift = (v->lumshift - 64) << 6;
1450 else
1451 shift = v->lumshift << 6;
1453 for(i = 0; i < 256; i++) {
1454 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1455 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1457 v->use_ic = 1;
1459 if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1460 v->s.quarter_sample = 0;
1461 else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1462 if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1463 v->s.quarter_sample = 0;
1464 else
1465 v->s.quarter_sample = 1;
1466 } else
1467 v->s.quarter_sample = 1;
1468 v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1470 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1471 v->mv_mode2 == MV_PMODE_MIXED_MV)
1472 || v->mv_mode == MV_PMODE_MIXED_MV)
1474 status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1475 if (status < 0) return -1;
1476 av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1477 "Imode: %i, Invert: %i\n", status>>1, status&1);
1478 } else {
1479 v->mv_type_is_raw = 0;
1480 memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1482 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1483 if (status < 0) return -1;
1484 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1485 "Imode: %i, Invert: %i\n", status>>1, status&1);
1487 /* Hopefully this is correct for P frames */
1488 v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1489 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1490 if (v->dquant)
1492 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1493 vop_dquant_decoding(v);
1496 v->ttfrm = 0; //FIXME Is that so ?
1497 if (v->vstransform)
1499 v->ttmbf = get_bits1(gb);
1500 if (v->ttmbf)
1502 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1504 } else {
1505 v->ttmbf = 1;
1506 v->ttfrm = TT_8X8;
1508 break;
1509 case FF_B_TYPE:
1510 if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
1511 else v->mvrange = 0;
1512 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1513 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1514 v->range_x = 1 << (v->k_x - 1);
1515 v->range_y = 1 << (v->k_y - 1);
1517 if (v->pq < 5) v->tt_index = 0;
1518 else if(v->pq < 13) v->tt_index = 1;
1519 else v->tt_index = 2;
1521 lowquant = (v->pq > 12) ? 0 : 1;
1522 v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1523 v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1524 v->s.mspel = v->s.quarter_sample;
1526 status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1527 if (status < 0) return -1;
1528 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1529 "Imode: %i, Invert: %i\n", status>>1, status&1);
1530 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1531 if (status < 0) return -1;
1532 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1533 "Imode: %i, Invert: %i\n", status>>1, status&1);
1535 v->s.mv_table_index = get_bits(gb, 2);
1536 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1538 if (v->dquant)
1540 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1541 vop_dquant_decoding(v);
1544 v->ttfrm = 0;
1545 if (v->vstransform)
1547 v->ttmbf = get_bits1(gb);
1548 if (v->ttmbf)
1550 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1552 } else {
1553 v->ttmbf = 1;
1554 v->ttfrm = TT_8X8;
1556 break;
1559 /* AC Syntax */
1560 v->c_ac_table_index = decode012(gb);
1561 if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1563 v->y_ac_table_index = decode012(gb);
1565 /* DC Syntax */
1566 v->s.dc_table_index = get_bits1(gb);
1567 if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
1568 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1569 vop_dquant_decoding(v);
1572 v->bi_type = 0;
1573 if(v->s.pict_type == FF_BI_TYPE) {
1574 v->s.pict_type = FF_B_TYPE;
1575 v->bi_type = 1;
1577 return 0;
1580 /***********************************************************************/
1582 * @defgroup block VC-1 Block-level functions
1583 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1584 * @{
1588 * @def GET_MQUANT
1589 * @brief Get macroblock-level quantizer scale
1591 #define GET_MQUANT() \
1592 if (v->dquantfrm) \
1594 int edges = 0; \
1595 if (v->dqprofile == DQPROFILE_ALL_MBS) \
1597 if (v->dqbilevel) \
1599 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1601 else \
1603 mqdiff = get_bits(gb, 3); \
1604 if (mqdiff != 7) mquant = v->pq + mqdiff; \
1605 else mquant = get_bits(gb, 5); \
1608 if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1609 edges = 1 << v->dqsbedge; \
1610 else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1611 edges = (3 << v->dqsbedge) % 15; \
1612 else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
1613 edges = 15; \
1614 if((edges&1) && !s->mb_x) \
1615 mquant = v->altpq; \
1616 if((edges&2) && s->first_slice_line) \
1617 mquant = v->altpq; \
1618 if((edges&4) && s->mb_x == (s->mb_width - 1)) \
1619 mquant = v->altpq; \
1620 if((edges&8) && s->mb_y == (s->mb_height - 1)) \
1621 mquant = v->altpq; \
1625 * @def GET_MVDATA(_dmv_x, _dmv_y)
1626 * @brief Get MV differentials
1627 * @see MVDATA decoding from 8.3.5.2, p(1)20
1628 * @param _dmv_x Horizontal differential for decoded MV
1629 * @param _dmv_y Vertical differential for decoded MV
1631 #define GET_MVDATA(_dmv_x, _dmv_y) \
1632 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
1633 VC1_MV_DIFF_VLC_BITS, 2); \
1634 if (index > 36) \
1636 mb_has_coeffs = 1; \
1637 index -= 37; \
1639 else mb_has_coeffs = 0; \
1640 s->mb_intra = 0; \
1641 if (!index) { _dmv_x = _dmv_y = 0; } \
1642 else if (index == 35) \
1644 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1645 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1647 else if (index == 36) \
1649 _dmv_x = 0; \
1650 _dmv_y = 0; \
1651 s->mb_intra = 1; \
1653 else \
1655 index1 = index%6; \
1656 if (!s->quarter_sample && index1 == 5) val = 1; \
1657 else val = 0; \
1658 if(size_table[index1] - val > 0) \
1659 val = get_bits(gb, size_table[index1] - val); \
1660 else val = 0; \
1661 sign = 0 - (val&1); \
1662 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1664 index1 = index/6; \
1665 if (!s->quarter_sample && index1 == 5) val = 1; \
1666 else val = 0; \
1667 if(size_table[index1] - val > 0) \
1668 val = get_bits(gb, size_table[index1] - val); \
1669 else val = 0; \
1670 sign = 0 - (val&1); \
1671 _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1674 /** Predict and set motion vector
1676 static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
1678 int xy, wrap, off = 0;
1679 int16_t *A, *B, *C;
1680 int px, py;
1681 int sum;
1683 /* scale MV difference to be quad-pel */
1684 dmv_x <<= 1 - s->quarter_sample;
1685 dmv_y <<= 1 - s->quarter_sample;
1687 wrap = s->b8_stride;
1688 xy = s->block_index[n];
1690 if(s->mb_intra){
1691 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1692 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1693 s->current_picture.motion_val[1][xy][0] = 0;
1694 s->current_picture.motion_val[1][xy][1] = 0;
1695 if(mv1) { /* duplicate motion data for 1-MV block */
1696 s->current_picture.motion_val[0][xy + 1][0] = 0;
1697 s->current_picture.motion_val[0][xy + 1][1] = 0;
1698 s->current_picture.motion_val[0][xy + wrap][0] = 0;
1699 s->current_picture.motion_val[0][xy + wrap][1] = 0;
1700 s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1701 s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1702 s->current_picture.motion_val[1][xy + 1][0] = 0;
1703 s->current_picture.motion_val[1][xy + 1][1] = 0;
1704 s->current_picture.motion_val[1][xy + wrap][0] = 0;
1705 s->current_picture.motion_val[1][xy + wrap][1] = 0;
1706 s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1707 s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1709 return;
1712 C = s->current_picture.motion_val[0][xy - 1];
1713 A = s->current_picture.motion_val[0][xy - wrap];
1714 if(mv1)
1715 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1716 else {
1717 //in 4-MV mode different blocks have different B predictor position
1718 switch(n){
1719 case 0:
1720 off = (s->mb_x > 0) ? -1 : 1;
1721 break;
1722 case 1:
1723 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1724 break;
1725 case 2:
1726 off = 1;
1727 break;
1728 case 3:
1729 off = -1;
1732 B = s->current_picture.motion_val[0][xy - wrap + off];
1734 if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
1735 if(s->mb_width == 1) {
1736 px = A[0];
1737 py = A[1];
1738 } else {
1739 px = mid_pred(A[0], B[0], C[0]);
1740 py = mid_pred(A[1], B[1], C[1]);
1742 } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
1743 px = C[0];
1744 py = C[1];
1745 } else {
1746 px = py = 0;
1748 /* Pullback MV as specified in 8.3.5.3.4 */
1750 int qx, qy, X, Y;
1751 qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
1752 qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
1753 X = (s->mb_width << 6) - 4;
1754 Y = (s->mb_height << 6) - 4;
1755 if(mv1) {
1756 if(qx + px < -60) px = -60 - qx;
1757 if(qy + py < -60) py = -60 - qy;
1758 } else {
1759 if(qx + px < -28) px = -28 - qx;
1760 if(qy + py < -28) py = -28 - qy;
1762 if(qx + px > X) px = X - qx;
1763 if(qy + py > Y) py = Y - qy;
1765 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1766 if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
1767 if(is_intra[xy - wrap])
1768 sum = FFABS(px) + FFABS(py);
1769 else
1770 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1771 if(sum > 32) {
1772 if(get_bits1(&s->gb)) {
1773 px = A[0];
1774 py = A[1];
1775 } else {
1776 px = C[0];
1777 py = C[1];
1779 } else {
1780 if(is_intra[xy - 1])
1781 sum = FFABS(px) + FFABS(py);
1782 else
1783 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1784 if(sum > 32) {
1785 if(get_bits1(&s->gb)) {
1786 px = A[0];
1787 py = A[1];
1788 } else {
1789 px = C[0];
1790 py = C[1];
1795 /* store MV using signed modulus of MV range defined in 4.11 */
1796 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1797 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1798 if(mv1) { /* duplicate motion data for 1-MV block */
1799 s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
1800 s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
1801 s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
1802 s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
1803 s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
1804 s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
1808 /** Motion compensation for direct or interpolated blocks in B-frames
1810 static void vc1_interp_mc(VC1Context *v)
1812 MpegEncContext *s = &v->s;
1813 DSPContext *dsp = &v->s.dsp;
1814 uint8_t *srcY, *srcU, *srcV;
1815 int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1817 if(!v->s.next_picture.data[0])return;
1819 mx = s->mv[1][0][0];
1820 my = s->mv[1][0][1];
1821 uvmx = (mx + ((mx & 3) == 3)) >> 1;
1822 uvmy = (my + ((my & 3) == 3)) >> 1;
1823 if(v->fastuvmc) {
1824 uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
1825 uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
1827 srcY = s->next_picture.data[0];
1828 srcU = s->next_picture.data[1];
1829 srcV = s->next_picture.data[2];
1831 src_x = s->mb_x * 16 + (mx >> 2);
1832 src_y = s->mb_y * 16 + (my >> 2);
1833 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1834 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1836 if(v->profile != PROFILE_ADVANCED){
1837 src_x = av_clip( src_x, -16, s->mb_width * 16);
1838 src_y = av_clip( src_y, -16, s->mb_height * 16);
1839 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1840 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1841 }else{
1842 src_x = av_clip( src_x, -17, s->avctx->coded_width);
1843 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1844 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1845 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1848 srcY += src_y * s->linesize + src_x;
1849 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1850 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1852 /* for grayscale we should not try to read from unknown area */
1853 if(s->flags & CODEC_FLAG_GRAY) {
1854 srcU = s->edge_emu_buffer + 18 * s->linesize;
1855 srcV = s->edge_emu_buffer + 18 * s->linesize;
1858 if(v->rangeredfrm
1859 || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
1860 || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
1861 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
1863 srcY -= s->mspel * (1 + s->linesize);
1864 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
1865 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
1866 srcY = s->edge_emu_buffer;
1867 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
1868 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1869 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
1870 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1871 srcU = uvbuf;
1872 srcV = uvbuf + 16;
1873 /* if we deal with range reduction we need to scale source blocks */
1874 if(v->rangeredfrm) {
1875 int i, j;
1876 uint8_t *src, *src2;
1878 src = srcY;
1879 for(j = 0; j < 17 + s->mspel*2; j++) {
1880 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
1881 src += s->linesize;
1883 src = srcU; src2 = srcV;
1884 for(j = 0; j < 9; j++) {
1885 for(i = 0; i < 9; i++) {
1886 src[i] = ((src[i] - 128) >> 1) + 128;
1887 src2[i] = ((src2[i] - 128) >> 1) + 128;
1889 src += s->uvlinesize;
1890 src2 += s->uvlinesize;
1893 srcY += s->mspel * (1 + s->linesize);
1896 mx >>= 1;
1897 my >>= 1;
1898 dxy = ((my & 1) << 1) | (mx & 1);
1900 dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1902 if(s->flags & CODEC_FLAG_GRAY) return;
1903 /* Chroma MC always uses qpel blilinear */
1904 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
1905 uvmx = (uvmx&3)<<1;
1906 uvmy = (uvmy&3)<<1;
1907 dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1908 dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1911 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1913 int n = bfrac;
1915 #if B_FRACTION_DEN==256
1916 if(inv)
1917 n -= 256;
1918 if(!qs)
1919 return 2 * ((value * n + 255) >> 9);
1920 return (value * n + 128) >> 8;
1921 #else
1922 if(inv)
1923 n -= B_FRACTION_DEN;
1924 if(!qs)
1925 return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
1926 return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
1927 #endif
1930 /** Reconstruct motion vector for B-frame and do motion compensation
1932 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
1934 if(v->use_ic) {
1935 v->mv_mode2 = v->mv_mode;
1936 v->mv_mode = MV_PMODE_INTENSITY_COMP;
1938 if(direct) {
1939 vc1_mc_1mv(v, 0);
1940 vc1_interp_mc(v);
1941 if(v->use_ic) v->mv_mode = v->mv_mode2;
1942 return;
1944 if(mode == BMV_TYPE_INTERPOLATED) {
1945 vc1_mc_1mv(v, 0);
1946 vc1_interp_mc(v);
1947 if(v->use_ic) v->mv_mode = v->mv_mode2;
1948 return;
1951 if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
1952 vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
1953 if(v->use_ic) v->mv_mode = v->mv_mode2;
1956 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
1958 MpegEncContext *s = &v->s;
1959 int xy, wrap, off = 0;
1960 int16_t *A, *B, *C;
1961 int px, py;
1962 int sum;
1963 int r_x, r_y;
1964 const uint8_t *is_intra = v->mb_type[0];
1966 r_x = v->range_x;
1967 r_y = v->range_y;
1968 /* scale MV difference to be quad-pel */
1969 dmv_x[0] <<= 1 - s->quarter_sample;
1970 dmv_y[0] <<= 1 - s->quarter_sample;
1971 dmv_x[1] <<= 1 - s->quarter_sample;
1972 dmv_y[1] <<= 1 - s->quarter_sample;
1974 wrap = s->b8_stride;
1975 xy = s->block_index[0];
1977 if(s->mb_intra) {
1978 s->current_picture.motion_val[0][xy][0] =
1979 s->current_picture.motion_val[0][xy][1] =
1980 s->current_picture.motion_val[1][xy][0] =
1981 s->current_picture.motion_val[1][xy][1] = 0;
1982 return;
1984 s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1985 s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1986 s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1987 s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1989 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1990 s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
1991 s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1992 s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
1993 s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1994 if(direct) {
1995 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1996 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1997 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1998 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1999 return;
2002 if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2003 C = s->current_picture.motion_val[0][xy - 2];
2004 A = s->current_picture.motion_val[0][xy - wrap*2];
2005 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2006 B = s->current_picture.motion_val[0][xy - wrap*2 + off];
2008 if(!s->mb_x) C[0] = C[1] = 0;
2009 if(!s->first_slice_line) { // predictor A is not out of bounds
2010 if(s->mb_width == 1) {
2011 px = A[0];
2012 py = A[1];
2013 } else {
2014 px = mid_pred(A[0], B[0], C[0]);
2015 py = mid_pred(A[1], B[1], C[1]);
2017 } else if(s->mb_x) { // predictor C is not out of bounds
2018 px = C[0];
2019 py = C[1];
2020 } else {
2021 px = py = 0;
2023 /* Pullback MV as specified in 8.3.5.3.4 */
2025 int qx, qy, X, Y;
2026 if(v->profile < PROFILE_ADVANCED) {
2027 qx = (s->mb_x << 5);
2028 qy = (s->mb_y << 5);
2029 X = (s->mb_width << 5) - 4;
2030 Y = (s->mb_height << 5) - 4;
2031 if(qx + px < -28) px = -28 - qx;
2032 if(qy + py < -28) py = -28 - qy;
2033 if(qx + px > X) px = X - qx;
2034 if(qy + py > Y) py = Y - qy;
2035 } else {
2036 qx = (s->mb_x << 6);
2037 qy = (s->mb_y << 6);
2038 X = (s->mb_width << 6) - 4;
2039 Y = (s->mb_height << 6) - 4;
2040 if(qx + px < -60) px = -60 - qx;
2041 if(qy + py < -60) py = -60 - qy;
2042 if(qx + px > X) px = X - qx;
2043 if(qy + py > Y) py = Y - qy;
2046 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2047 if(0 && !s->first_slice_line && s->mb_x) {
2048 if(is_intra[xy - wrap])
2049 sum = FFABS(px) + FFABS(py);
2050 else
2051 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2052 if(sum > 32) {
2053 if(get_bits1(&s->gb)) {
2054 px = A[0];
2055 py = A[1];
2056 } else {
2057 px = C[0];
2058 py = C[1];
2060 } else {
2061 if(is_intra[xy - 2])
2062 sum = FFABS(px) + FFABS(py);
2063 else
2064 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2065 if(sum > 32) {
2066 if(get_bits1(&s->gb)) {
2067 px = A[0];
2068 py = A[1];
2069 } else {
2070 px = C[0];
2071 py = C[1];
2076 /* store MV using signed modulus of MV range defined in 4.11 */
2077 s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2078 s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2080 if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2081 C = s->current_picture.motion_val[1][xy - 2];
2082 A = s->current_picture.motion_val[1][xy - wrap*2];
2083 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2084 B = s->current_picture.motion_val[1][xy - wrap*2 + off];
2086 if(!s->mb_x) C[0] = C[1] = 0;
2087 if(!s->first_slice_line) { // predictor A is not out of bounds
2088 if(s->mb_width == 1) {
2089 px = A[0];
2090 py = A[1];
2091 } else {
2092 px = mid_pred(A[0], B[0], C[0]);
2093 py = mid_pred(A[1], B[1], C[1]);
2095 } else if(s->mb_x) { // predictor C is not out of bounds
2096 px = C[0];
2097 py = C[1];
2098 } else {
2099 px = py = 0;
2101 /* Pullback MV as specified in 8.3.5.3.4 */
2103 int qx, qy, X, Y;
2104 if(v->profile < PROFILE_ADVANCED) {
2105 qx = (s->mb_x << 5);
2106 qy = (s->mb_y << 5);
2107 X = (s->mb_width << 5) - 4;
2108 Y = (s->mb_height << 5) - 4;
2109 if(qx + px < -28) px = -28 - qx;
2110 if(qy + py < -28) py = -28 - qy;
2111 if(qx + px > X) px = X - qx;
2112 if(qy + py > Y) py = Y - qy;
2113 } else {
2114 qx = (s->mb_x << 6);
2115 qy = (s->mb_y << 6);
2116 X = (s->mb_width << 6) - 4;
2117 Y = (s->mb_height << 6) - 4;
2118 if(qx + px < -60) px = -60 - qx;
2119 if(qy + py < -60) py = -60 - qy;
2120 if(qx + px > X) px = X - qx;
2121 if(qy + py > Y) py = Y - qy;
2124 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2125 if(0 && !s->first_slice_line && s->mb_x) {
2126 if(is_intra[xy - wrap])
2127 sum = FFABS(px) + FFABS(py);
2128 else
2129 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2130 if(sum > 32) {
2131 if(get_bits1(&s->gb)) {
2132 px = A[0];
2133 py = A[1];
2134 } else {
2135 px = C[0];
2136 py = C[1];
2138 } else {
2139 if(is_intra[xy - 2])
2140 sum = FFABS(px) + FFABS(py);
2141 else
2142 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2143 if(sum > 32) {
2144 if(get_bits1(&s->gb)) {
2145 px = A[0];
2146 py = A[1];
2147 } else {
2148 px = C[0];
2149 py = C[1];
2154 /* store MV using signed modulus of MV range defined in 4.11 */
2156 s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2157 s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2159 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2160 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2161 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2162 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2165 /** Get predicted DC value for I-frames only
2166 * prediction dir: left=0, top=1
2167 * @param s MpegEncContext
2168 * @param[in] n block index in the current MB
2169 * @param dc_val_ptr Pointer to DC predictor
2170 * @param dir_ptr Prediction direction for use in AC prediction
2172 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2173 int16_t **dc_val_ptr, int *dir_ptr)
2175 int a, b, c, wrap, pred, scale;
2176 int16_t *dc_val;
2177 static const uint16_t dcpred[32] = {
2178 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2179 114, 102, 93, 85, 79, 73, 68, 64,
2180 60, 57, 54, 51, 49, 47, 45, 43,
2181 41, 39, 38, 37, 35, 34, 33
2184 /* find prediction - wmv3_dc_scale always used here in fact */
2185 if (n < 4) scale = s->y_dc_scale;
2186 else scale = s->c_dc_scale;
2188 wrap = s->block_wrap[n];
2189 dc_val= s->dc_val[0] + s->block_index[n];
2191 /* B A
2192 * C X
2194 c = dc_val[ - 1];
2195 b = dc_val[ - 1 - wrap];
2196 a = dc_val[ - wrap];
2198 if (pq < 9 || !overlap)
2200 /* Set outer values */
2201 if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
2202 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
2204 else
2206 /* Set outer values */
2207 if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
2208 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
2211 if (abs(a - b) <= abs(b - c)) {
2212 pred = c;
2213 *dir_ptr = 1;//left
2214 } else {
2215 pred = a;
2216 *dir_ptr = 0;//top
2219 /* update predictor */
2220 *dc_val_ptr = &dc_val[0];
2221 return pred;
2225 /** Get predicted DC value
2226 * prediction dir: left=0, top=1
2227 * @param s MpegEncContext
2228 * @param[in] n block index in the current MB
2229 * @param dc_val_ptr Pointer to DC predictor
2230 * @param dir_ptr Prediction direction for use in AC prediction
2232 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2233 int a_avail, int c_avail,
2234 int16_t **dc_val_ptr, int *dir_ptr)
2236 int a, b, c, wrap, pred, scale;
2237 int16_t *dc_val;
2238 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2239 int q1, q2 = 0;
2241 /* find prediction - wmv3_dc_scale always used here in fact */
2242 if (n < 4) scale = s->y_dc_scale;
2243 else scale = s->c_dc_scale;
2245 wrap = s->block_wrap[n];
2246 dc_val= s->dc_val[0] + s->block_index[n];
2248 /* B A
2249 * C X
2251 c = dc_val[ - 1];
2252 b = dc_val[ - 1 - wrap];
2253 a = dc_val[ - wrap];
2254 /* scale predictors if needed */
2255 q1 = s->current_picture.qscale_table[mb_pos];
2256 if(c_avail && (n!= 1 && n!=3)) {
2257 q2 = s->current_picture.qscale_table[mb_pos - 1];
2258 if(q2 && q2 != q1)
2259 c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2261 if(a_avail && (n!= 2 && n!=3)) {
2262 q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2263 if(q2 && q2 != q1)
2264 a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2266 if(a_avail && c_avail && (n!=3)) {
2267 int off = mb_pos;
2268 if(n != 1) off--;
2269 if(n != 2) off -= s->mb_stride;
2270 q2 = s->current_picture.qscale_table[off];
2271 if(q2 && q2 != q1)
2272 b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2275 if(a_avail && c_avail) {
2276 if(abs(a - b) <= abs(b - c)) {
2277 pred = c;
2278 *dir_ptr = 1;//left
2279 } else {
2280 pred = a;
2281 *dir_ptr = 0;//top
2283 } else if(a_avail) {
2284 pred = a;
2285 *dir_ptr = 0;//top
2286 } else if(c_avail) {
2287 pred = c;
2288 *dir_ptr = 1;//left
2289 } else {
2290 pred = 0;
2291 *dir_ptr = 1;//left
2294 /* update predictor */
2295 *dc_val_ptr = &dc_val[0];
2296 return pred;
2301 * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
2302 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2303 * @{
2306 static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
2308 int xy, wrap, pred, a, b, c;
2310 xy = s->block_index[n];
2311 wrap = s->b8_stride;
2313 /* B C
2314 * A X
2316 a = s->coded_block[xy - 1 ];
2317 b = s->coded_block[xy - 1 - wrap];
2318 c = s->coded_block[xy - wrap];
2320 if (b == c) {
2321 pred = a;
2322 } else {
2323 pred = c;
2326 /* store value */
2327 *coded_block_ptr = &s->coded_block[xy];
2329 return pred;
2333 * Decode one AC coefficient
2334 * @param v The VC1 context
2335 * @param last Last coefficient
2336 * @param skip How much zero coefficients to skip
2337 * @param value Decoded AC coefficient value
2338 * @see 8.1.3.4
2340 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
2342 GetBitContext *gb = &v->s.gb;
2343 int index, escape, run = 0, level = 0, lst = 0;
2345 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2346 if (index != vc1_ac_sizes[codingset] - 1) {
2347 run = vc1_index_decode_table[codingset][index][0];
2348 level = vc1_index_decode_table[codingset][index][1];
2349 lst = index >= vc1_last_decode_table[codingset];
2350 if(get_bits1(gb))
2351 level = -level;
2352 } else {
2353 escape = decode210(gb);
2354 if (escape != 2) {
2355 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2356 run = vc1_index_decode_table[codingset][index][0];
2357 level = vc1_index_decode_table[codingset][index][1];
2358 lst = index >= vc1_last_decode_table[codingset];
2359 if(escape == 0) {
2360 if(lst)
2361 level += vc1_last_delta_level_table[codingset][run];
2362 else
2363 level += vc1_delta_level_table[codingset][run];
2364 } else {
2365 if(lst)
2366 run += vc1_last_delta_run_table[codingset][level] + 1;
2367 else
2368 run += vc1_delta_run_table[codingset][level] + 1;
2370 if(get_bits1(gb))
2371 level = -level;
2372 } else {
2373 int sign;
2374 lst = get_bits1(gb);
2375 if(v->s.esc3_level_length == 0) {
2376 if(v->pq < 8 || v->dquantfrm) { // table 59
2377 v->s.esc3_level_length = get_bits(gb, 3);
2378 if(!v->s.esc3_level_length)
2379 v->s.esc3_level_length = get_bits(gb, 2) + 8;
2380 } else { //table 60
2381 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2383 v->s.esc3_run_length = 3 + get_bits(gb, 2);
2385 run = get_bits(gb, v->s.esc3_run_length);
2386 sign = get_bits1(gb);
2387 level = get_bits(gb, v->s.esc3_level_length);
2388 if(sign)
2389 level = -level;
2393 *last = lst;
2394 *skip = run;
2395 *value = level;
2398 /** Decode intra block in intra frames - should be faster than decode_intra_block
2399 * @param v VC1Context
2400 * @param block block to decode
2401 * @param coded are AC coeffs present or not
2402 * @param codingset set of VLC to decode data
2404 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
2406 GetBitContext *gb = &v->s.gb;
2407 MpegEncContext *s = &v->s;
2408 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2409 int run_diff, i;
2410 int16_t *dc_val;
2411 int16_t *ac_val, *ac_val2;
2412 int dcdiff;
2414 /* Get DC differential */
2415 if (n < 4) {
2416 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2417 } else {
2418 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2420 if (dcdiff < 0){
2421 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2422 return -1;
2424 if (dcdiff)
2426 if (dcdiff == 119 /* ESC index value */)
2428 /* TODO: Optimize */
2429 if (v->pq == 1) dcdiff = get_bits(gb, 10);
2430 else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2431 else dcdiff = get_bits(gb, 8);
2433 else
2435 if (v->pq == 1)
2436 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2437 else if (v->pq == 2)
2438 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2440 if (get_bits1(gb))
2441 dcdiff = -dcdiff;
2444 /* Prediction */
2445 dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2446 *dc_val = dcdiff;
2448 /* Store the quantized DC coeff, used for prediction */
2449 if (n < 4) {
2450 block[0] = dcdiff * s->y_dc_scale;
2451 } else {
2452 block[0] = dcdiff * s->c_dc_scale;
2454 /* Skip ? */
2455 run_diff = 0;
2456 i = 0;
2457 if (!coded) {
2458 goto not_coded;
2461 //AC Decoding
2462 i = 1;
2465 int last = 0, skip, value;
2466 const int8_t *zz_table;
2467 int scale;
2468 int k;
2470 scale = v->pq * 2 + v->halfpq;
2472 if(v->s.ac_pred) {
2473 if(!dc_pred_dir)
2474 zz_table = wmv1_scantable[2];
2475 else
2476 zz_table = wmv1_scantable[3];
2477 } else
2478 zz_table = wmv1_scantable[1];
2480 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2481 ac_val2 = ac_val;
2482 if(dc_pred_dir) //left
2483 ac_val -= 16;
2484 else //top
2485 ac_val -= 16 * s->block_wrap[n];
2487 while (!last) {
2488 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2489 i += skip;
2490 if(i > 63)
2491 break;
2492 block[zz_table[i++]] = value;
2495 /* apply AC prediction if needed */
2496 if(s->ac_pred) {
2497 if(dc_pred_dir) { //left
2498 for(k = 1; k < 8; k++)
2499 block[k << 3] += ac_val[k];
2500 } else { //top
2501 for(k = 1; k < 8; k++)
2502 block[k] += ac_val[k + 8];
2505 /* save AC coeffs for further prediction */
2506 for(k = 1; k < 8; k++) {
2507 ac_val2[k] = block[k << 3];
2508 ac_val2[k + 8] = block[k];
2511 /* scale AC coeffs */
2512 for(k = 1; k < 64; k++)
2513 if(block[k]) {
2514 block[k] *= scale;
2515 if(!v->pquantizer)
2516 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2519 if(s->ac_pred) i = 63;
2522 not_coded:
2523 if(!coded) {
2524 int k, scale;
2525 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2526 ac_val2 = ac_val;
2528 scale = v->pq * 2 + v->halfpq;
2529 memset(ac_val2, 0, 16 * 2);
2530 if(dc_pred_dir) {//left
2531 ac_val -= 16;
2532 if(s->ac_pred)
2533 memcpy(ac_val2, ac_val, 8 * 2);
2534 } else {//top
2535 ac_val -= 16 * s->block_wrap[n];
2536 if(s->ac_pred)
2537 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2540 /* apply AC prediction if needed */
2541 if(s->ac_pred) {
2542 if(dc_pred_dir) { //left
2543 for(k = 1; k < 8; k++) {
2544 block[k << 3] = ac_val[k] * scale;
2545 if(!v->pquantizer && block[k << 3])
2546 block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
2548 } else { //top
2549 for(k = 1; k < 8; k++) {
2550 block[k] = ac_val[k + 8] * scale;
2551 if(!v->pquantizer && block[k])
2552 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2555 i = 63;
2558 s->block_last_index[n] = i;
2560 return 0;
2563 /** Decode intra block in intra frames - should be faster than decode_intra_block
2564 * @param v VC1Context
2565 * @param block block to decode
2566 * @param coded are AC coeffs present or not
2567 * @param codingset set of VLC to decode data
2569 static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
2571 GetBitContext *gb = &v->s.gb;
2572 MpegEncContext *s = &v->s;
2573 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2574 int run_diff, i;
2575 int16_t *dc_val;
2576 int16_t *ac_val, *ac_val2;
2577 int dcdiff;
2578 int a_avail = v->a_avail, c_avail = v->c_avail;
2579 int use_pred = s->ac_pred;
2580 int scale;
2581 int q1, q2 = 0;
2582 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2584 /* Get DC differential */
2585 if (n < 4) {
2586 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2587 } else {
2588 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2590 if (dcdiff < 0){
2591 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2592 return -1;
2594 if (dcdiff)
2596 if (dcdiff == 119 /* ESC index value */)
2598 /* TODO: Optimize */
2599 if (mquant == 1) dcdiff = get_bits(gb, 10);
2600 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2601 else dcdiff = get_bits(gb, 8);
2603 else
2605 if (mquant == 1)
2606 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2607 else if (mquant == 2)
2608 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2610 if (get_bits1(gb))
2611 dcdiff = -dcdiff;
2614 /* Prediction */
2615 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2616 *dc_val = dcdiff;
2618 /* Store the quantized DC coeff, used for prediction */
2619 if (n < 4) {
2620 block[0] = dcdiff * s->y_dc_scale;
2621 } else {
2622 block[0] = dcdiff * s->c_dc_scale;
2624 /* Skip ? */
2625 run_diff = 0;
2626 i = 0;
2628 //AC Decoding
2629 i = 1;
2631 /* check if AC is needed at all */
2632 if(!a_avail && !c_avail) use_pred = 0;
2633 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2634 ac_val2 = ac_val;
2636 scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2638 if(dc_pred_dir) //left
2639 ac_val -= 16;
2640 else //top
2641 ac_val -= 16 * s->block_wrap[n];
2643 q1 = s->current_picture.qscale_table[mb_pos];
2644 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2645 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2646 if(dc_pred_dir && n==1) q2 = q1;
2647 if(!dc_pred_dir && n==2) q2 = q1;
2648 if(n==3) q2 = q1;
2650 if(coded) {
2651 int last = 0, skip, value;
2652 const int8_t *zz_table;
2653 int k;
2655 if(v->s.ac_pred) {
2656 if(!dc_pred_dir)
2657 zz_table = wmv1_scantable[2];
2658 else
2659 zz_table = wmv1_scantable[3];
2660 } else
2661 zz_table = wmv1_scantable[1];
2663 while (!last) {
2664 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2665 i += skip;
2666 if(i > 63)
2667 break;
2668 block[zz_table[i++]] = value;
2671 /* apply AC prediction if needed */
2672 if(use_pred) {
2673 /* scale predictors if needed*/
2674 if(q2 && q1!=q2) {
2675 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2676 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2678 if(dc_pred_dir) { //left
2679 for(k = 1; k < 8; k++)
2680 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2681 } else { //top
2682 for(k = 1; k < 8; k++)
2683 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2685 } else {
2686 if(dc_pred_dir) { //left
2687 for(k = 1; k < 8; k++)
2688 block[k << 3] += ac_val[k];
2689 } else { //top
2690 for(k = 1; k < 8; k++)
2691 block[k] += ac_val[k + 8];
2695 /* save AC coeffs for further prediction */
2696 for(k = 1; k < 8; k++) {
2697 ac_val2[k] = block[k << 3];
2698 ac_val2[k + 8] = block[k];
2701 /* scale AC coeffs */
2702 for(k = 1; k < 64; k++)
2703 if(block[k]) {
2704 block[k] *= scale;
2705 if(!v->pquantizer)
2706 block[k] += (block[k] < 0) ? -mquant : mquant;
2709 if(use_pred) i = 63;
2710 } else { // no AC coeffs
2711 int k;
2713 memset(ac_val2, 0, 16 * 2);
2714 if(dc_pred_dir) {//left
2715 if(use_pred) {
2716 memcpy(ac_val2, ac_val, 8 * 2);
2717 if(q2 && q1!=q2) {
2718 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2719 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2720 for(k = 1; k < 8; k++)
2721 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2724 } else {//top
2725 if(use_pred) {
2726 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2727 if(q2 && q1!=q2) {
2728 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2729 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2730 for(k = 1; k < 8; k++)
2731 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2736 /* apply AC prediction if needed */
2737 if(use_pred) {
2738 if(dc_pred_dir) { //left
2739 for(k = 1; k < 8; k++) {
2740 block[k << 3] = ac_val2[k] * scale;
2741 if(!v->pquantizer && block[k << 3])
2742 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2744 } else { //top
2745 for(k = 1; k < 8; k++) {
2746 block[k] = ac_val2[k + 8] * scale;
2747 if(!v->pquantizer && block[k])
2748 block[k] += (block[k] < 0) ? -mquant : mquant;
2751 i = 63;
2754 s->block_last_index[n] = i;
2756 return 0;
2759 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2760 * @param v VC1Context
2761 * @param block block to decode
2762 * @param coded are AC coeffs present or not
2763 * @param mquant block quantizer
2764 * @param codingset set of VLC to decode data
2766 static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
2768 GetBitContext *gb = &v->s.gb;
2769 MpegEncContext *s = &v->s;
2770 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2771 int run_diff, i;
2772 int16_t *dc_val;
2773 int16_t *ac_val, *ac_val2;
2774 int dcdiff;
2775 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2776 int a_avail = v->a_avail, c_avail = v->c_avail;
2777 int use_pred = s->ac_pred;
2778 int scale;
2779 int q1, q2 = 0;
2781 /* XXX: Guard against dumb values of mquant */
2782 mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
2784 /* Set DC scale - y and c use the same */
2785 s->y_dc_scale = s->y_dc_scale_table[mquant];
2786 s->c_dc_scale = s->c_dc_scale_table[mquant];
2788 /* Get DC differential */
2789 if (n < 4) {
2790 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2791 } else {
2792 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2794 if (dcdiff < 0){
2795 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2796 return -1;
2798 if (dcdiff)
2800 if (dcdiff == 119 /* ESC index value */)
2802 /* TODO: Optimize */
2803 if (mquant == 1) dcdiff = get_bits(gb, 10);
2804 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2805 else dcdiff = get_bits(gb, 8);
2807 else
2809 if (mquant == 1)
2810 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2811 else if (mquant == 2)
2812 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2814 if (get_bits1(gb))
2815 dcdiff = -dcdiff;
2818 /* Prediction */
2819 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2820 *dc_val = dcdiff;
2822 /* Store the quantized DC coeff, used for prediction */
2824 if (n < 4) {
2825 block[0] = dcdiff * s->y_dc_scale;
2826 } else {
2827 block[0] = dcdiff * s->c_dc_scale;
2829 /* Skip ? */
2830 run_diff = 0;
2831 i = 0;
2833 //AC Decoding
2834 i = 1;
2836 /* check if AC is needed at all and adjust direction if needed */
2837 if(!a_avail) dc_pred_dir = 1;
2838 if(!c_avail) dc_pred_dir = 0;
2839 if(!a_avail && !c_avail) use_pred = 0;
2840 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2841 ac_val2 = ac_val;
2843 scale = mquant * 2 + v->halfpq;
2845 if(dc_pred_dir) //left
2846 ac_val -= 16;
2847 else //top
2848 ac_val -= 16 * s->block_wrap[n];
2850 q1 = s->current_picture.qscale_table[mb_pos];
2851 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2852 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2853 if(dc_pred_dir && n==1) q2 = q1;
2854 if(!dc_pred_dir && n==2) q2 = q1;
2855 if(n==3) q2 = q1;
2857 if(coded) {
2858 int last = 0, skip, value;
2859 const int8_t *zz_table;
2860 int k;
2862 zz_table = wmv1_scantable[0];
2864 while (!last) {
2865 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2866 i += skip;
2867 if(i > 63)
2868 break;
2869 block[zz_table[i++]] = value;
2872 /* apply AC prediction if needed */
2873 if(use_pred) {
2874 /* scale predictors if needed*/
2875 if(q2 && q1!=q2) {
2876 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2877 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2879 if(dc_pred_dir) { //left
2880 for(k = 1; k < 8; k++)
2881 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2882 } else { //top
2883 for(k = 1; k < 8; k++)
2884 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2886 } else {
2887 if(dc_pred_dir) { //left
2888 for(k = 1; k < 8; k++)
2889 block[k << 3] += ac_val[k];
2890 } else { //top
2891 for(k = 1; k < 8; k++)
2892 block[k] += ac_val[k + 8];
2896 /* save AC coeffs for further prediction */
2897 for(k = 1; k < 8; k++) {
2898 ac_val2[k] = block[k << 3];
2899 ac_val2[k + 8] = block[k];
2902 /* scale AC coeffs */
2903 for(k = 1; k < 64; k++)
2904 if(block[k]) {
2905 block[k] *= scale;
2906 if(!v->pquantizer)
2907 block[k] += (block[k] < 0) ? -mquant : mquant;
2910 if(use_pred) i = 63;
2911 } else { // no AC coeffs
2912 int k;
2914 memset(ac_val2, 0, 16 * 2);
2915 if(dc_pred_dir) {//left
2916 if(use_pred) {
2917 memcpy(ac_val2, ac_val, 8 * 2);
2918 if(q2 && q1!=q2) {
2919 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2920 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2921 for(k = 1; k < 8; k++)
2922 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2925 } else {//top
2926 if(use_pred) {
2927 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2928 if(q2 && q1!=q2) {
2929 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2930 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2931 for(k = 1; k < 8; k++)
2932 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2937 /* apply AC prediction if needed */
2938 if(use_pred) {
2939 if(dc_pred_dir) { //left
2940 for(k = 1; k < 8; k++) {
2941 block[k << 3] = ac_val2[k] * scale;
2942 if(!v->pquantizer && block[k << 3])
2943 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2945 } else { //top
2946 for(k = 1; k < 8; k++) {
2947 block[k] = ac_val2[k + 8] * scale;
2948 if(!v->pquantizer && block[k])
2949 block[k] += (block[k] < 0) ? -mquant : mquant;
2952 i = 63;
2955 s->block_last_index[n] = i;
2957 return 0;
2960 /** Decode P block
2962 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
2963 uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
2965 MpegEncContext *s = &v->s;
2966 GetBitContext *gb = &s->gb;
2967 int i, j;
2968 int subblkpat = 0;
2969 int scale, off, idx, last, skip, value;
2970 int ttblk = ttmb & 7;
2971 int pat = 0;
2973 if(ttmb == -1) {
2974 ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
2976 if(ttblk == TT_4X4) {
2977 subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
2979 if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
2980 subblkpat = decode012(gb);
2981 if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2982 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2983 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2985 scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2987 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2988 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2989 subblkpat = 2 - (ttblk == TT_8X4_TOP);
2990 ttblk = TT_8X4;
2992 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2993 subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2994 ttblk = TT_4X8;
2996 switch(ttblk) {
2997 case TT_8X8:
2998 pat = 0xF;
2999 i = 0;
3000 last = 0;
3001 while (!last) {
3002 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3003 i += skip;
3004 if(i > 63)
3005 break;
3006 idx = wmv1_scantable[0][i++];
3007 block[idx] = value * scale;
3008 if(!v->pquantizer)
3009 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3011 if(!skip_block){
3012 s->dsp.vc1_inv_trans_8x8(block);
3013 s->dsp.add_pixels_clamped(block, dst, linesize);
3014 if(apply_filter && cbp_top & 0xC)
3015 vc1_loop_filter(dst, 1, linesize, 8, mquant);
3016 if(apply_filter && cbp_left & 0xA)
3017 vc1_loop_filter(dst, linesize, 1, 8, mquant);
3019 break;
3020 case TT_4X4:
3021 pat = ~subblkpat & 0xF;
3022 for(j = 0; j < 4; j++) {
3023 last = subblkpat & (1 << (3 - j));
3024 i = 0;
3025 off = (j & 1) * 4 + (j & 2) * 16;
3026 while (!last) {
3027 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3028 i += skip;
3029 if(i > 15)
3030 break;
3031 idx = ff_vc1_simple_progressive_4x4_zz[i++];
3032 block[idx + off] = value * scale;
3033 if(!v->pquantizer)
3034 block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3036 if(!(subblkpat & (1 << (3 - j))) && !skip_block){
3037 s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
3038 if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
3039 vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
3040 if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
3041 vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
3044 break;
3045 case TT_8X4:
3046 pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
3047 for(j = 0; j < 2; j++) {
3048 last = subblkpat & (1 << (1 - j));
3049 i = 0;
3050 off = j * 32;
3051 while (!last) {
3052 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3053 i += skip;
3054 if(i > 31)
3055 break;
3056 idx = v->zz_8x4[i++]+off;
3057 block[idx] = value * scale;
3058 if(!v->pquantizer)
3059 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3061 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
3062 s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
3063 if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
3064 vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
3065 if(apply_filter && cbp_left & (2 << j))
3066 vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
3069 break;
3070 case TT_4X8:
3071 pat = ~(subblkpat*5) & 0xF;
3072 for(j = 0; j < 2; j++) {
3073 last = subblkpat & (1 << (1 - j));
3074 i = 0;
3075 off = j * 4;
3076 while (!last) {
3077 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3078 i += skip;
3079 if(i > 31)
3080 break;
3081 idx = v->zz_4x8[i++]+off;
3082 block[idx] = value * scale;
3083 if(!v->pquantizer)
3084 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3086 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
3087 s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3088 if(apply_filter && cbp_top & (2 << j))
3089 vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
3090 if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
3091 vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
3094 break;
3096 return pat;
3100 /** Decode one P-frame MB (in Simple/Main profile)
3102 static int vc1_decode_p_mb(VC1Context *v)
3104 MpegEncContext *s = &v->s;
3105 GetBitContext *gb = &s->gb;
3106 int i, j;
3107 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3108 int cbp; /* cbp decoding stuff */
3109 int mqdiff, mquant; /* MB quantization */
3110 int ttmb = v->ttfrm; /* MB Transform type */
3112 static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3113 offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3114 int mb_has_coeffs = 1; /* last_flag */
3115 int dmv_x, dmv_y; /* Differential MV components */
3116 int index, index1; /* LUT indexes */
3117 int val, sign; /* temp values */
3118 int first_block = 1;
3119 int dst_idx, off;
3120 int skipped, fourmv;
3121 int block_cbp = 0, pat;
3122 int apply_loop_filter;
3124 mquant = v->pq; /* Loosy initialization */
3126 if (v->mv_type_is_raw)
3127 fourmv = get_bits1(gb);
3128 else
3129 fourmv = v->mv_type_mb_plane[mb_pos];
3130 if (v->skip_is_raw)
3131 skipped = get_bits1(gb);
3132 else
3133 skipped = v->s.mbskip_table[mb_pos];
3135 s->dsp.clear_blocks(s->block[0]);
3137 apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
3138 if (!fourmv) /* 1MV mode */
3140 if (!skipped)
3142 GET_MVDATA(dmv_x, dmv_y);
3144 if (s->mb_intra) {
3145 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3146 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3148 s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3149 vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3151 /* FIXME Set DC val for inter block ? */
3152 if (s->mb_intra && !mb_has_coeffs)
3154 GET_MQUANT();
3155 s->ac_pred = get_bits1(gb);
3156 cbp = 0;
3158 else if (mb_has_coeffs)
3160 if (s->mb_intra) s->ac_pred = get_bits1(gb);
3161 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3162 GET_MQUANT();
3164 else
3166 mquant = v->pq;
3167 cbp = 0;
3169 s->current_picture.qscale_table[mb_pos] = mquant;
3171 if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3172 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3173 VC1_TTMB_VLC_BITS, 2);
3174 if(!s->mb_intra) vc1_mc_1mv(v, 0);
3175 dst_idx = 0;
3176 for (i=0; i<6; i++)
3178 s->dc_val[0][s->block_index[i]] = 0;
3179 dst_idx += i >> 2;
3180 val = ((cbp >> (5 - i)) & 1);
3181 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3182 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3183 if(s->mb_intra) {
3184 /* check if prediction blocks A and C are available */
3185 v->a_avail = v->c_avail = 0;
3186 if(i == 2 || i == 3 || !s->first_slice_line)
3187 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3188 if(i == 1 || i == 3 || s->mb_x)
3189 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3191 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3192 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3193 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3194 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3195 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3196 if(v->pq >= 9 && v->overlap) {
3197 if(v->c_avail)
3198 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3199 if(v->a_avail)
3200 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3202 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3203 int left_cbp, top_cbp;
3204 if(i & 4){
3205 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3206 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3207 }else{
3208 left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3209 top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3211 if(left_cbp & 0xC)
3212 vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
3213 if(top_cbp & 0xA)
3214 vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
3216 block_cbp |= 0xF << (i << 2);
3217 } else if(val) {
3218 int left_cbp = 0, top_cbp = 0, filter = 0;
3219 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3220 filter = 1;
3221 if(i & 4){
3222 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3223 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3224 }else{
3225 left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3226 top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3229 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
3230 block_cbp |= pat << (i << 2);
3231 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3232 first_block = 0;
3236 else //Skipped
3238 s->mb_intra = 0;
3239 for(i = 0; i < 6; i++) {
3240 v->mb_type[0][s->block_index[i]] = 0;
3241 s->dc_val[0][s->block_index[i]] = 0;
3243 s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3244 s->current_picture.qscale_table[mb_pos] = 0;
3245 vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3246 vc1_mc_1mv(v, 0);
3247 return 0;
3249 } //1MV mode
3250 else //4MV mode
3252 if (!skipped /* unskipped MB */)
3254 int intra_count = 0, coded_inter = 0;
3255 int is_intra[6], is_coded[6];
3256 /* Get CBPCY */
3257 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3258 for (i=0; i<6; i++)
3260 val = ((cbp >> (5 - i)) & 1);
3261 s->dc_val[0][s->block_index[i]] = 0;
3262 s->mb_intra = 0;
3263 if(i < 4) {
3264 dmv_x = dmv_y = 0;
3265 s->mb_intra = 0;
3266 mb_has_coeffs = 0;
3267 if(val) {
3268 GET_MVDATA(dmv_x, dmv_y);
3270 vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3271 if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
3272 intra_count += s->mb_intra;
3273 is_intra[i] = s->mb_intra;
3274 is_coded[i] = mb_has_coeffs;
3276 if(i&4){
3277 is_intra[i] = (intra_count >= 3);
3278 is_coded[i] = val;
3280 if(i == 4) vc1_mc_4mv_chroma(v);
3281 v->mb_type[0][s->block_index[i]] = is_intra[i];
3282 if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
3284 // if there are no coded blocks then don't do anything more
3285 if(!intra_count && !coded_inter) return 0;
3286 dst_idx = 0;
3287 GET_MQUANT();
3288 s->current_picture.qscale_table[mb_pos] = mquant;
3289 /* test if block is intra and has pred */
3291 int intrapred = 0;
3292 for(i=0; i<6; i++)
3293 if(is_intra[i]) {
3294 if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3295 || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
3296 intrapred = 1;
3297 break;
3300 if(intrapred)s->ac_pred = get_bits1(gb);
3301 else s->ac_pred = 0;
3303 if (!v->ttmbf && coded_inter)
3304 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3305 for (i=0; i<6; i++)
3307 dst_idx += i >> 2;
3308 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3309 s->mb_intra = is_intra[i];
3310 if (is_intra[i]) {
3311 /* check if prediction blocks A and C are available */
3312 v->a_avail = v->c_avail = 0;
3313 if(i == 2 || i == 3 || !s->first_slice_line)
3314 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3315 if(i == 1 || i == 3 || s->mb_x)
3316 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3318 vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
3319 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3320 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3321 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3322 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3323 if(v->pq >= 9 && v->overlap) {
3324 if(v->c_avail)
3325 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3326 if(v->a_avail)
3327 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3329 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3330 int left_cbp, top_cbp;
3331 if(i & 4){
3332 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3333 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3334 }else{
3335 left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3336 top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3338 if(left_cbp & 0xC)
3339 vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
3340 if(top_cbp & 0xA)
3341 vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
3343 block_cbp |= 0xF << (i << 2);
3344 } else if(is_coded[i]) {
3345 int left_cbp = 0, top_cbp = 0, filter = 0;
3346 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3347 filter = 1;
3348 if(i & 4){
3349 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3350 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3351 }else{
3352 left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3353 top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3356 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
3357 block_cbp |= pat << (i << 2);
3358 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3359 first_block = 0;
3362 return 0;
3364 else //Skipped MB
3366 s->mb_intra = 0;
3367 s->current_picture.qscale_table[mb_pos] = 0;
3368 for (i=0; i<6; i++) {
3369 v->mb_type[0][s->block_index[i]] = 0;
3370 s->dc_val[0][s->block_index[i]] = 0;
3372 for (i=0; i<4; i++)
3374 vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
3375 vc1_mc_4mv_luma(v, i);
3377 vc1_mc_4mv_chroma(v);
3378 s->current_picture.qscale_table[mb_pos] = 0;
3379 return 0;
3382 v->cbp[s->mb_x] = block_cbp;
3384 /* Should never happen */
3385 return -1;
3388 /** Decode one B-frame MB (in Main profile)
3390 static void vc1_decode_b_mb(VC1Context *v)
3392 MpegEncContext *s = &v->s;
3393 GetBitContext *gb = &s->gb;
3394 int i, j;
3395 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3396 int cbp = 0; /* cbp decoding stuff */
3397 int mqdiff, mquant; /* MB quantization */
3398 int ttmb = v->ttfrm; /* MB Transform type */
3400 static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3401 offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3402 int mb_has_coeffs = 0; /* last_flag */
3403 int index, index1; /* LUT indexes */
3404 int val, sign; /* temp values */
3405 int first_block = 1;
3406 int dst_idx, off;
3407 int skipped, direct;
3408 int dmv_x[2], dmv_y[2];
3409 int bmvtype = BMV_TYPE_BACKWARD;
3411 mquant = v->pq; /* Loosy initialization */
3412 s->mb_intra = 0;
3414 if (v->dmb_is_raw)
3415 direct = get_bits1(gb);
3416 else
3417 direct = v->direct_mb_plane[mb_pos];
3418 if (v->skip_is_raw)
3419 skipped = get_bits1(gb);
3420 else
3421 skipped = v->s.mbskip_table[mb_pos];
3423 s->dsp.clear_blocks(s->block[0]);
3424 dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
3425 for(i = 0; i < 6; i++) {
3426 v->mb_type[0][s->block_index[i]] = 0;
3427 s->dc_val[0][s->block_index[i]] = 0;
3429 s->current_picture.qscale_table[mb_pos] = 0;
3431 if (!direct) {
3432 if (!skipped) {
3433 GET_MVDATA(dmv_x[0], dmv_y[0]);
3434 dmv_x[1] = dmv_x[0];
3435 dmv_y[1] = dmv_y[0];
3437 if(skipped || !s->mb_intra) {
3438 bmvtype = decode012(gb);
3439 switch(bmvtype) {
3440 case 0:
3441 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
3442 break;
3443 case 1:
3444 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
3445 break;
3446 case 2:
3447 bmvtype = BMV_TYPE_INTERPOLATED;
3448 dmv_x[0] = dmv_y[0] = 0;
3452 for(i = 0; i < 6; i++)
3453 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3455 if (skipped) {
3456 if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
3457 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3458 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3459 return;
3461 if (direct) {
3462 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3463 GET_MQUANT();
3464 s->mb_intra = 0;
3465 mb_has_coeffs = 0;
3466 s->current_picture.qscale_table[mb_pos] = mquant;
3467 if(!v->ttmbf)
3468 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3469 dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
3470 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3471 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3472 } else {
3473 if(!mb_has_coeffs && !s->mb_intra) {
3474 /* no coded blocks - effectively skipped */
3475 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3476 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3477 return;
3479 if(s->mb_intra && !mb_has_coeffs) {
3480 GET_MQUANT();
3481 s->current_picture.qscale_table[mb_pos] = mquant;
3482 s->ac_pred = get_bits1(gb);
3483 cbp = 0;
3484 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3485 } else {
3486 if(bmvtype == BMV_TYPE_INTERPOLATED) {
3487 GET_MVDATA(dmv_x[0], dmv_y[0]);
3488 if(!mb_has_coeffs) {
3489 /* interpolated skipped block */
3490 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3491 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3492 return;
3495 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3496 if(!s->mb_intra) {
3497 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3499 if(s->mb_intra)
3500 s->ac_pred = get_bits1(gb);
3501 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3502 GET_MQUANT();
3503 s->current_picture.qscale_table[mb_pos] = mquant;
3504 if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3505 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3508 dst_idx = 0;
3509 for (i=0; i<6; i++)
3511 s->dc_val[0][s->block_index[i]] = 0;
3512 dst_idx += i >> 2;
3513 val = ((cbp >> (5 - i)) & 1);
3514 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3515 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3516 if(s->mb_intra) {
3517 /* check if prediction blocks A and C are available */
3518 v->a_avail = v->c_avail = 0;
3519 if(i == 2 || i == 3 || !s->first_slice_line)
3520 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3521 if(i == 1 || i == 3 || s->mb_x)
3522 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3524 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3525 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3526 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3527 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3528 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3529 } else if(val) {
3530 vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
3531 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3532 first_block = 0;
3537 /** Decode blocks of I-frame
3539 static void vc1_decode_i_blocks(VC1Context *v)
3541 int k, j;
3542 MpegEncContext *s = &v->s;
3543 int cbp, val;
3544 uint8_t *coded_val;
3545 int mb_pos;
3547 /* select codingmode used for VLC tables selection */
3548 switch(v->y_ac_table_index){
3549 case 0:
3550 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3551 break;
3552 case 1:
3553 v->codingset = CS_HIGH_MOT_INTRA;
3554 break;
3555 case 2:
3556 v->codingset = CS_MID_RATE_INTRA;
3557 break;
3560 switch(v->c_ac_table_index){
3561 case 0:
3562 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3563 break;
3564 case 1:
3565 v->codingset2 = CS_HIGH_MOT_INTER;
3566 break;
3567 case 2:
3568 v->codingset2 = CS_MID_RATE_INTER;
3569 break;
3572 /* Set DC scale - y and c use the same */
3573 s->y_dc_scale = s->y_dc_scale_table[v->pq];
3574 s->c_dc_scale = s->c_dc_scale_table[v->pq];
3576 //do frame decode
3577 s->mb_x = s->mb_y = 0;
3578 s->mb_intra = 1;
3579 s->first_slice_line = 1;
3580 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3581 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3582 ff_init_block_index(s);
3583 ff_update_block_index(s);
3584 s->dsp.clear_blocks(s->block[0]);
3585 mb_pos = s->mb_x + s->mb_y * s->mb_width;
3586 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3587 s->current_picture.qscale_table[mb_pos] = v->pq;
3588 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3589 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3591 // do actual MB decoding and displaying
3592 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3593 v->s.ac_pred = get_bits1(&v->s.gb);
3595 for(k = 0; k < 6; k++) {
3596 val = ((cbp >> (5 - k)) & 1);
3598 if (k < 4) {
3599 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3600 val = val ^ pred;
3601 *coded_val = val;
3603 cbp |= val << (5 - k);
3605 vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
3607 s->dsp.vc1_inv_trans_8x8(s->block[k]);
3608 if(v->pq >= 9 && v->overlap) {
3609 for(j = 0; j < 64; j++) s->block[k][j] += 128;
3613 vc1_put_block(v, s->block);
3614 if(v->pq >= 9 && v->overlap) {
3615 if(s->mb_x) {
3616 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3617 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3618 if(!(s->flags & CODEC_FLAG_GRAY)) {
3619 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3620 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3623 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3624 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3625 if(!s->first_slice_line) {
3626 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3627 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3628 if(!(s->flags & CODEC_FLAG_GRAY)) {
3629 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3630 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3633 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3634 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3636 if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
3638 if(get_bits_count(&s->gb) > v->bits) {
3639 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3640 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3641 return;
3644 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3645 s->first_slice_line = 0;
3647 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3650 /** Decode blocks of I-frame for advanced profile
3652 static void vc1_decode_i_blocks_adv(VC1Context *v)
3654 int k, j;
3655 MpegEncContext *s = &v->s;
3656 int cbp, val;
3657 uint8_t *coded_val;
3658 int mb_pos;
3659 int mquant = v->pq;
3660 int mqdiff;
3661 int overlap;
3662 GetBitContext *gb = &s->gb;
3664 /* select codingmode used for VLC tables selection */
3665 switch(v->y_ac_table_index){
3666 case 0:
3667 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3668 break;
3669 case 1:
3670 v->codingset = CS_HIGH_MOT_INTRA;
3671 break;
3672 case 2:
3673 v->codingset = CS_MID_RATE_INTRA;
3674 break;
3677 switch(v->c_ac_table_index){
3678 case 0:
3679 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3680 break;
3681 case 1:
3682 v->codingset2 = CS_HIGH_MOT_INTER;
3683 break;
3684 case 2:
3685 v->codingset2 = CS_MID_RATE_INTER;
3686 break;
3689 //do frame decode
3690 s->mb_x = s->mb_y = 0;
3691 s->mb_intra = 1;
3692 s->first_slice_line = 1;
3693 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3694 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3695 ff_init_block_index(s);
3696 ff_update_block_index(s);
3697 s->dsp.clear_blocks(s->block[0]);
3698 mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3699 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3700 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3701 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3703 // do actual MB decoding and displaying
3704 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3705 if(v->acpred_is_raw)
3706 v->s.ac_pred = get_bits1(&v->s.gb);
3707 else
3708 v->s.ac_pred = v->acpred_plane[mb_pos];
3710 if(v->condover == CONDOVER_SELECT) {
3711 if(v->overflg_is_raw)
3712 overlap = get_bits1(&v->s.gb);
3713 else
3714 overlap = v->over_flags_plane[mb_pos];
3715 } else
3716 overlap = (v->condover == CONDOVER_ALL);
3718 GET_MQUANT();
3720 s->current_picture.qscale_table[mb_pos] = mquant;
3721 /* Set DC scale - y and c use the same */
3722 s->y_dc_scale = s->y_dc_scale_table[mquant];
3723 s->c_dc_scale = s->c_dc_scale_table[mquant];
3725 for(k = 0; k < 6; k++) {
3726 val = ((cbp >> (5 - k)) & 1);
3728 if (k < 4) {
3729 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3730 val = val ^ pred;
3731 *coded_val = val;
3733 cbp |= val << (5 - k);
3735 v->a_avail = !s->first_slice_line || (k==2 || k==3);
3736 v->c_avail = !!s->mb_x || (k==1 || k==3);
3738 vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
3740 s->dsp.vc1_inv_trans_8x8(s->block[k]);
3741 for(j = 0; j < 64; j++) s->block[k][j] += 128;
3744 vc1_put_block(v, s->block);
3745 if(overlap) {
3746 if(s->mb_x) {
3747 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3748 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3749 if(!(s->flags & CODEC_FLAG_GRAY)) {
3750 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3751 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3754 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3755 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3756 if(!s->first_slice_line) {
3757 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3758 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3759 if(!(s->flags & CODEC_FLAG_GRAY)) {
3760 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3761 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3764 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3765 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3767 if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
3769 if(get_bits_count(&s->gb) > v->bits) {
3770 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3771 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3772 return;
3775 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3776 s->first_slice_line = 0;
3778 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3781 static void vc1_decode_p_blocks(VC1Context *v)
3783 MpegEncContext *s = &v->s;
3785 /* select codingmode used for VLC tables selection */
3786 switch(v->c_ac_table_index){
3787 case 0:
3788 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3789 break;
3790 case 1:
3791 v->codingset = CS_HIGH_MOT_INTRA;
3792 break;
3793 case 2:
3794 v->codingset = CS_MID_RATE_INTRA;
3795 break;
3798 switch(v->c_ac_table_index){
3799 case 0:
3800 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3801 break;
3802 case 1:
3803 v->codingset2 = CS_HIGH_MOT_INTER;
3804 break;
3805 case 2:
3806 v->codingset2 = CS_MID_RATE_INTER;
3807 break;
3810 s->first_slice_line = 1;
3811 memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
3812 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3813 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3814 ff_init_block_index(s);
3815 ff_update_block_index(s);
3816 s->dsp.clear_blocks(s->block[0]);
3818 vc1_decode_p_mb(v);
3819 if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3820 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3821 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3822 return;
3825 memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
3826 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3827 s->first_slice_line = 0;
3829 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3832 static void vc1_decode_b_blocks(VC1Context *v)
3834 MpegEncContext *s = &v->s;
3836 /* select codingmode used for VLC tables selection */
3837 switch(v->c_ac_table_index){
3838 case 0:
3839 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3840 break;
3841 case 1:
3842 v->codingset = CS_HIGH_MOT_INTRA;
3843 break;
3844 case 2:
3845 v->codingset = CS_MID_RATE_INTRA;
3846 break;
3849 switch(v->c_ac_table_index){
3850 case 0:
3851 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3852 break;
3853 case 1:
3854 v->codingset2 = CS_HIGH_MOT_INTER;
3855 break;
3856 case 2:
3857 v->codingset2 = CS_MID_RATE_INTER;
3858 break;
3861 s->first_slice_line = 1;
3862 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3863 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3864 ff_init_block_index(s);
3865 ff_update_block_index(s);
3866 s->dsp.clear_blocks(s->block[0]);
3868 vc1_decode_b_mb(v);
3869 if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3870 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3871 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3872 return;
3874 if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
3876 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3877 s->first_slice_line = 0;
3879 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3882 static void vc1_decode_skip_blocks(VC1Context *v)
3884 MpegEncContext *s = &v->s;
3886 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3887 s->first_slice_line = 1;
3888 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3889 s->mb_x = 0;
3890 ff_init_block_index(s);
3891 ff_update_block_index(s);
3892 memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
3893 memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3894 memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3895 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3896 s->first_slice_line = 0;
3898 s->pict_type = FF_P_TYPE;
3901 static void vc1_decode_blocks(VC1Context *v)
3904 v->s.esc3_level_length = 0;
3905 if(v->x8_type){
3906 ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
3907 }else{
3909 switch(v->s.pict_type) {
3910 case FF_I_TYPE:
3911 if(v->profile == PROFILE_ADVANCED)
3912 vc1_decode_i_blocks_adv(v);
3913 else
3914 vc1_decode_i_blocks(v);
3915 break;
3916 case FF_P_TYPE:
3917 if(v->p_frame_skipped)
3918 vc1_decode_skip_blocks(v);
3919 else
3920 vc1_decode_p_blocks(v);
3921 break;
3922 case FF_B_TYPE:
3923 if(v->bi_type){
3924 if(v->profile == PROFILE_ADVANCED)
3925 vc1_decode_i_blocks_adv(v);
3926 else
3927 vc1_decode_i_blocks(v);
3928 }else
3929 vc1_decode_b_blocks(v);
3930 break;
3935 /** Find VC-1 marker in buffer
3936 * @return position where next marker starts or end of buffer if no marker found
3938 static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
3940 uint32_t mrk = 0xFFFFFFFF;
3942 if(end-src < 4) return end;
3943 while(src < end){
3944 mrk = (mrk << 8) | *src++;
3945 if(IS_MARKER(mrk))
3946 return src-4;
3948 return end;
3951 static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
3953 int dsize = 0, i;
3955 if(size < 4){
3956 for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
3957 return size;
3959 for(i = 0; i < size; i++, src++) {
3960 if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
3961 dst[dsize++] = src[1];
3962 src++;
3963 i++;
3964 } else
3965 dst[dsize++] = *src;
3967 return dsize;
3970 /** Initialize a VC1/WMV3 decoder
3971 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3972 * @todo TODO: Decypher remaining bits in extra_data
3974 static av_cold int vc1_decode_init(AVCodecContext *avctx)
3976 VC1Context *v = avctx->priv_data;
3977 MpegEncContext *s = &v->s;
3978 GetBitContext gb;
3980 if (!avctx->extradata_size || !avctx->extradata) return -1;
3981 if (!(avctx->flags & CODEC_FLAG_GRAY))
3982 avctx->pix_fmt = PIX_FMT_YUV420P;
3983 else
3984 avctx->pix_fmt = PIX_FMT_GRAY8;
3985 v->s.avctx = avctx;
3986 avctx->flags |= CODEC_FLAG_EMU_EDGE;
3987 v->s.flags |= CODEC_FLAG_EMU_EDGE;
3989 if(avctx->idct_algo==FF_IDCT_AUTO){
3990 avctx->idct_algo=FF_IDCT_WMV2;
3993 if(ff_h263_decode_init(avctx) < 0)
3994 return -1;
3995 if (vc1_init_common(v) < 0) return -1;
3997 avctx->coded_width = avctx->width;
3998 avctx->coded_height = avctx->height;
3999 if (avctx->codec_id == CODEC_ID_WMV3)
4001 int count = 0;
4003 // looks like WMV3 has a sequence header stored in the extradata
4004 // advanced sequence header may be before the first frame
4005 // the last byte of the extradata is a version number, 1 for the
4006 // samples we can decode
4008 init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
4010 if (decode_sequence_header(avctx, &gb) < 0)
4011 return -1;
4013 count = avctx->extradata_size*8 - get_bits_count(&gb);
4014 if (count>0)
4016 av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
4017 count, get_bits(&gb, count));
4019 else if (count < 0)
4021 av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
4023 } else { // VC1/WVC1
4024 const uint8_t *start = avctx->extradata;
4025 uint8_t *end = avctx->extradata + avctx->extradata_size;
4026 const uint8_t *next;
4027 int size, buf2_size;
4028 uint8_t *buf2 = NULL;
4029 int seq_initialized = 0, ep_initialized = 0;
4031 if(avctx->extradata_size < 16) {
4032 av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
4033 return -1;
4036 buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
4037 if(start[0]) start++; // in WVC1 extradata first byte is its size
4038 next = start;
4039 for(; next < end; start = next){
4040 next = find_next_marker(start + 4, end);
4041 size = next - start - 4;
4042 if(size <= 0) continue;
4043 buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
4044 init_get_bits(&gb, buf2, buf2_size * 8);
4045 switch(AV_RB32(start)){
4046 case VC1_CODE_SEQHDR:
4047 if(decode_sequence_header(avctx, &gb) < 0){
4048 av_free(buf2);
4049 return -1;
4051 seq_initialized = 1;
4052 break;
4053 case VC1_CODE_ENTRYPOINT:
4054 if(decode_entry_point(avctx, &gb) < 0){
4055 av_free(buf2);
4056 return -1;
4058 ep_initialized = 1;
4059 break;
4062 av_free(buf2);
4063 if(!seq_initialized || !ep_initialized){
4064 av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
4065 return -1;
4068 avctx->has_b_frames= !!(avctx->max_b_frames);
4069 s->low_delay = !avctx->has_b_frames;
4071 s->mb_width = (avctx->coded_width+15)>>4;
4072 s->mb_height = (avctx->coded_height+15)>>4;
4074 /* Allocate mb bitplanes */
4075 v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
4076 v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
4077 v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
4078 v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
4080 v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
4081 v->cbp = v->cbp_base + s->mb_stride;
4083 /* allocate block type info in that way so it could be used with s->block_index[] */
4084 v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
4085 v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
4086 v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
4087 v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
4089 /* Init coded blocks info */
4090 if (v->profile == PROFILE_ADVANCED)
4092 // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
4093 // return -1;
4094 // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
4095 // return -1;
4098 ff_intrax8_common_init(&v->x8,s);
4099 return 0;
4103 /** Decode a VC1/WMV3 frame
4104 * @todo TODO: Handle VC-1 IDUs (Transport level?)
4106 static int vc1_decode_frame(AVCodecContext *avctx,
4107 void *data, int *data_size,
4108 const uint8_t *buf, int buf_size)
4110 VC1Context *v = avctx->priv_data;
4111 MpegEncContext *s = &v->s;
4112 AVFrame *pict = data;
4113 uint8_t *buf2 = NULL;
4115 /* no supplementary picture */
4116 if (buf_size == 0) {
4117 /* special case for last picture */
4118 if (s->low_delay==0 && s->next_picture_ptr) {
4119 *pict= *(AVFrame*)s->next_picture_ptr;
4120 s->next_picture_ptr= NULL;
4122 *data_size = sizeof(AVFrame);
4125 return 0;
4128 /* We need to set current_picture_ptr before reading the header,
4129 * otherwise we cannot store anything in there. */
4130 if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
4131 int i= ff_find_unused_picture(s, 0);
4132 s->current_picture_ptr= &s->picture[i];
4135 //for advanced profile we may need to parse and unescape data
4136 if (avctx->codec_id == CODEC_ID_VC1) {
4137 int buf_size2 = 0;
4138 buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
4140 if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
4141 const uint8_t *start, *end, *next;
4142 int size;
4144 next = buf;
4145 for(start = buf, end = buf + buf_size; next < end; start = next){
4146 next = find_next_marker(start + 4, end);
4147 size = next - start - 4;
4148 if(size <= 0) continue;
4149 switch(AV_RB32(start)){
4150 case VC1_CODE_FRAME:
4151 buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4152 break;
4153 case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
4154 buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4155 init_get_bits(&s->gb, buf2, buf_size2*8);
4156 decode_entry_point(avctx, &s->gb);
4157 break;
4158 case VC1_CODE_SLICE:
4159 av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
4160 av_free(buf2);
4161 return -1;
4164 }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
4165 const uint8_t *divider;
4167 divider = find_next_marker(buf, buf + buf_size);
4168 if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
4169 av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
4170 av_free(buf2);
4171 return -1;
4174 buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
4175 // TODO
4176 av_free(buf2);return -1;
4177 }else{
4178 buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
4180 init_get_bits(&s->gb, buf2, buf_size2*8);
4181 } else
4182 init_get_bits(&s->gb, buf, buf_size*8);
4183 // do parse frame header
4184 if(v->profile < PROFILE_ADVANCED) {
4185 if(vc1_parse_frame_header(v, &s->gb) == -1) {
4186 av_free(buf2);
4187 return -1;
4189 } else {
4190 if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
4191 av_free(buf2);
4192 return -1;
4196 if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
4197 av_free(buf2);
4198 return -1;
4201 // for hurry_up==5
4202 s->current_picture.pict_type= s->pict_type;
4203 s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
4205 /* skip B-frames if we don't have reference frames */
4206 if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
4207 av_free(buf2);
4208 return -1;//buf_size;
4210 /* skip b frames if we are in a hurry */
4211 if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
4212 if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
4213 || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
4214 || avctx->skip_frame >= AVDISCARD_ALL) {
4215 av_free(buf2);
4216 return buf_size;
4218 /* skip everything if we are in a hurry>=5 */
4219 if(avctx->hurry_up>=5) {
4220 av_free(buf2);
4221 return -1;//buf_size;
4224 if(s->next_p_frame_damaged){
4225 if(s->pict_type==FF_B_TYPE)
4226 return buf_size;
4227 else
4228 s->next_p_frame_damaged=0;
4231 if(MPV_frame_start(s, avctx) < 0) {
4232 av_free(buf2);
4233 return -1;
4236 s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
4237 s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
4239 ff_er_frame_start(s);
4241 v->bits = buf_size * 8;
4242 vc1_decode_blocks(v);
4243 //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
4244 // if(get_bits_count(&s->gb) > buf_size * 8)
4245 // return -1;
4246 ff_er_frame_end(s);
4248 MPV_frame_end(s);
4250 assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
4251 assert(s->current_picture.pict_type == s->pict_type);
4252 if (s->pict_type == FF_B_TYPE || s->low_delay) {
4253 *pict= *(AVFrame*)s->current_picture_ptr;
4254 } else if (s->last_picture_ptr != NULL) {
4255 *pict= *(AVFrame*)s->last_picture_ptr;
4258 if(s->last_picture_ptr || s->low_delay){
4259 *data_size = sizeof(AVFrame);
4260 ff_print_debug_info(s, pict);
4263 /* Return the Picture timestamp as the frame number */
4264 /* we subtract 1 because it is added on utils.c */
4265 avctx->frame_number = s->picture_number - 1;
4267 av_free(buf2);
4268 return buf_size;
4272 /** Close a VC1/WMV3 decoder
4273 * @warning Initial try at using MpegEncContext stuff
4275 static av_cold int vc1_decode_end(AVCodecContext *avctx)
4277 VC1Context *v = avctx->priv_data;
4279 av_freep(&v->hrd_rate);
4280 av_freep(&v->hrd_buffer);
4281 MPV_common_end(&v->s);
4282 av_freep(&v->mv_type_mb_plane);
4283 av_freep(&v->direct_mb_plane);
4284 av_freep(&v->acpred_plane);
4285 av_freep(&v->over_flags_plane);
4286 av_freep(&v->mb_type_base);
4287 av_freep(&v->cbp_base);
4288 ff_intrax8_common_end(&v->x8);
4289 return 0;
4293 AVCodec vc1_decoder = {
4294 "vc1",
4295 CODEC_TYPE_VIDEO,
4296 CODEC_ID_VC1,
4297 sizeof(VC1Context),
4298 vc1_decode_init,
4299 NULL,
4300 vc1_decode_end,
4301 vc1_decode_frame,
4302 CODEC_CAP_DELAY,
4303 NULL,
4304 .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
4307 AVCodec wmv3_decoder = {
4308 "wmv3",
4309 CODEC_TYPE_VIDEO,
4310 CODEC_ID_WMV3,
4311 sizeof(VC1Context),
4312 vc1_decode_init,
4313 NULL,
4314 vc1_decode_end,
4315 vc1_decode_frame,
4316 CODEC_CAP_DELAY,
4317 NULL,
4318 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),