Move #defines that are mostly used in h264.c out of h264data.h and into h264.h.
[FFMpeg-mirror/ffmpeg-vdpau.git] / libavcodec / cook.c
blob1affe03e7ce36504b92f420daa7af63eac4c4668
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
45 #include <math.h>
46 #include <stddef.h>
47 #include <stdio.h>
49 #include "libavutil/random.h"
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53 #include "bytestream.h"
55 #include "cookdata.h"
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 //multichannel Cook, not supported
63 #define SUBBAND_SIZE 20
64 //#define COOKDEBUG
66 typedef struct {
67 int *now;
68 int *previous;
69 } cook_gains;
71 typedef struct cook {
73 * The following 5 functions provide the lowlevel arithmetic on
74 * the internal audio buffers.
76 void (* scalar_dequant)(struct cook *q, int index, int quant_index,
77 int* subband_coef_index, int* subband_coef_sign,
78 float* mlt_p);
80 void (* decouple) (struct cook *q,
81 int subband,
82 float f1, float f2,
83 float *decode_buffer,
84 float *mlt_buffer1, float *mlt_buffer2);
86 void (* imlt_window) (struct cook *q, float *buffer1,
87 cook_gains *gains_ptr, float *previous_buffer);
89 void (* interpolate) (struct cook *q, float* buffer,
90 int gain_index, int gain_index_next);
92 void (* saturate_output) (struct cook *q, int chan, int16_t *out);
94 GetBitContext gb;
95 /* stream data */
96 int nb_channels;
97 int joint_stereo;
98 int bit_rate;
99 int sample_rate;
100 int samples_per_channel;
101 int samples_per_frame;
102 int subbands;
103 int log2_numvector_size;
104 int numvector_size; //1 << log2_numvector_size;
105 int js_subband_start;
106 int total_subbands;
107 int num_vectors;
108 int bits_per_subpacket;
109 int cookversion;
110 /* states */
111 AVRandomState random_state;
113 /* transform data */
114 MDCTContext mdct_ctx;
115 float* mlt_window;
117 /* gain buffers */
118 cook_gains gains1;
119 cook_gains gains2;
120 int gain_1[9];
121 int gain_2[9];
122 int gain_3[9];
123 int gain_4[9];
125 /* VLC data */
126 int js_vlc_bits;
127 VLC envelope_quant_index[13];
128 VLC sqvh[7]; //scalar quantization
129 VLC ccpl; //channel coupling
131 /* generatable tables and related variables */
132 int gain_size_factor;
133 float gain_table[23];
135 /* data buffers */
137 uint8_t* decoded_bytes_buffer;
138 DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
139 float mono_previous_buffer1[1024];
140 float mono_previous_buffer2[1024];
141 float decode_buffer_1[1024];
142 float decode_buffer_2[1024];
143 float decode_buffer_0[1060]; /* static allocation for joint decode */
145 const float *cplscales[5];
146 } COOKContext;
148 static float pow2tab[127];
149 static float rootpow2tab[127];
151 /* debug functions */
153 #ifdef COOKDEBUG
154 static void dump_float_table(float* table, int size, int delimiter) {
155 int i=0;
156 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
157 for (i=0 ; i<size ; i++) {
158 av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
159 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
163 static void dump_int_table(int* table, int size, int delimiter) {
164 int i=0;
165 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
166 for (i=0 ; i<size ; i++) {
167 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
168 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
172 static void dump_short_table(short* table, int size, int delimiter) {
173 int i=0;
174 av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
175 for (i=0 ; i<size ; i++) {
176 av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
177 if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
181 #endif
183 /*************** init functions ***************/
185 /* table generator */
186 static void init_pow2table(void){
187 int i;
188 for (i=-63 ; i<64 ; i++){
189 pow2tab[63+i]= pow(2, i);
190 rootpow2tab[63+i]=sqrt(pow(2, i));
194 /* table generator */
195 static void init_gain_table(COOKContext *q) {
196 int i;
197 q->gain_size_factor = q->samples_per_channel/8;
198 for (i=0 ; i<23 ; i++) {
199 q->gain_table[i] = pow(pow2tab[i+52] ,
200 (1.0/(double)q->gain_size_factor));
205 static int init_cook_vlc_tables(COOKContext *q) {
206 int i, result;
208 result = 0;
209 for (i=0 ; i<13 ; i++) {
210 result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
211 envelope_quant_index_huffbits[i], 1, 1,
212 envelope_quant_index_huffcodes[i], 2, 2, 0);
214 av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
215 for (i=0 ; i<7 ; i++) {
216 result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
217 cvh_huffbits[i], 1, 1,
218 cvh_huffcodes[i], 2, 2, 0);
221 if (q->nb_channels==2 && q->joint_stereo==1){
222 result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
223 ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
224 ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
225 av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
228 av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
229 return result;
232 static int init_cook_mlt(COOKContext *q) {
233 int j;
234 int mlt_size = q->samples_per_channel;
236 if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
237 return -1;
239 /* Initialize the MLT window: simple sine window. */
240 ff_sine_window_init(q->mlt_window, mlt_size);
241 for(j=0 ; j<mlt_size ; j++)
242 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
244 /* Initialize the MDCT. */
245 if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
246 av_free(q->mlt_window);
247 return -1;
249 av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
250 av_log2(mlt_size)+1);
252 return 0;
255 static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
257 if (1)
258 return ptr;
261 static void init_cplscales_table (COOKContext *q) {
262 int i;
263 for (i=0;i<5;i++)
264 q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
267 /*************** init functions end ***********/
270 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
271 * Why? No idea, some checksum/error detection method maybe.
273 * Out buffer size: extra bytes are needed to cope with
274 * padding/misalignment.
275 * Subpackets passed to the decoder can contain two, consecutive
276 * half-subpackets, of identical but arbitrary size.
277 * 1234 1234 1234 1234 extraA extraB
278 * Case 1: AAAA BBBB 0 0
279 * Case 2: AAAA ABBB BB-- 3 3
280 * Case 3: AAAA AABB BBBB 2 2
281 * Case 4: AAAA AAAB BBBB BB-- 1 5
283 * Nice way to waste CPU cycles.
285 * @param inbuffer pointer to byte array of indata
286 * @param out pointer to byte array of outdata
287 * @param bytes number of bytes
289 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
290 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
292 static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
293 int i, off;
294 uint32_t c;
295 const uint32_t* buf;
296 uint32_t* obuf = (uint32_t*) out;
297 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
298 * I'm too lazy though, should be something like
299 * for(i=0 ; i<bitamount/64 ; i++)
300 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
301 * Buffer alignment needs to be checked. */
303 off = (int)((long)inbuffer & 3);
304 buf = (const uint32_t*) (inbuffer - off);
305 c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
306 bytes += 3 + off;
307 for (i = 0; i < bytes/4; i++)
308 obuf[i] = c ^ buf[i];
310 return off;
314 * Cook uninit
317 static int cook_decode_close(AVCodecContext *avctx)
319 int i;
320 COOKContext *q = avctx->priv_data;
321 av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
323 /* Free allocated memory buffers. */
324 av_free(q->mlt_window);
325 av_free(q->decoded_bytes_buffer);
327 /* Free the transform. */
328 ff_mdct_end(&q->mdct_ctx);
330 /* Free the VLC tables. */
331 for (i=0 ; i<13 ; i++) {
332 free_vlc(&q->envelope_quant_index[i]);
334 for (i=0 ; i<7 ; i++) {
335 free_vlc(&q->sqvh[i]);
337 if(q->nb_channels==2 && q->joint_stereo==1 ){
338 free_vlc(&q->ccpl);
341 av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
343 return 0;
347 * Fill the gain array for the timedomain quantization.
349 * @param q pointer to the COOKContext
350 * @param gaininfo[9] array of gain indexes
353 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
355 int i, n;
357 while (get_bits1(gb)) {}
358 n = get_bits_count(gb) - 1; //amount of elements*2 to update
360 i = 0;
361 while (n--) {
362 int index = get_bits(gb, 3);
363 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
365 while (i <= index) gaininfo[i++] = gain;
367 while (i <= 8) gaininfo[i++] = 0;
371 * Create the quant index table needed for the envelope.
373 * @param q pointer to the COOKContext
374 * @param quant_index_table pointer to the array
377 static void decode_envelope(COOKContext *q, int* quant_index_table) {
378 int i,j, vlc_index;
380 quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
382 for (i=1 ; i < q->total_subbands ; i++){
383 vlc_index=i;
384 if (i >= q->js_subband_start * 2) {
385 vlc_index-=q->js_subband_start;
386 } else {
387 vlc_index/=2;
388 if(vlc_index < 1) vlc_index = 1;
390 if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
392 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
393 q->envelope_quant_index[vlc_index-1].bits,2);
394 quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
399 * Calculate the category and category_index vector.
401 * @param q pointer to the COOKContext
402 * @param quant_index_table pointer to the array
403 * @param category pointer to the category array
404 * @param category_index pointer to the category_index array
407 static void categorize(COOKContext *q, int* quant_index_table,
408 int* category, int* category_index){
409 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
410 int exp_index2[102];
411 int exp_index1[102];
413 int tmp_categorize_array[128*2];
414 int tmp_categorize_array1_idx=q->numvector_size;
415 int tmp_categorize_array2_idx=q->numvector_size;
417 bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
419 if(bits_left > q->samples_per_channel) {
420 bits_left = q->samples_per_channel +
421 ((bits_left - q->samples_per_channel)*5)/8;
422 //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
425 memset(&exp_index1,0,102*sizeof(int));
426 memset(&exp_index2,0,102*sizeof(int));
427 memset(&tmp_categorize_array,0,128*2*sizeof(int));
429 bias=-32;
431 /* Estimate bias. */
432 for (i=32 ; i>0 ; i=i/2){
433 num_bits = 0;
434 index = 0;
435 for (j=q->total_subbands ; j>0 ; j--){
436 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
437 index++;
438 num_bits+=expbits_tab[exp_idx];
440 if(num_bits >= bits_left - 32){
441 bias+=i;
445 /* Calculate total number of bits. */
446 num_bits=0;
447 for (i=0 ; i<q->total_subbands ; i++) {
448 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
449 num_bits += expbits_tab[exp_idx];
450 exp_index1[i] = exp_idx;
451 exp_index2[i] = exp_idx;
453 tmpbias1 = tmpbias2 = num_bits;
455 for (j = 1 ; j < q->numvector_size ; j++) {
456 if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
457 int max = -999999;
458 index=-1;
459 for (i=0 ; i<q->total_subbands ; i++){
460 if (exp_index1[i] < 7) {
461 v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
462 if ( v >= max) {
463 max = v;
464 index = i;
468 if(index==-1)break;
469 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
470 tmpbias1 -= expbits_tab[exp_index1[index]] -
471 expbits_tab[exp_index1[index]+1];
472 ++exp_index1[index];
473 } else { /* <--- */
474 int min = 999999;
475 index=-1;
476 for (i=0 ; i<q->total_subbands ; i++){
477 if(exp_index2[i] > 0){
478 v = (-2*exp_index2[i])-quant_index_table[i]+bias;
479 if ( v < min) {
480 min = v;
481 index = i;
485 if(index == -1)break;
486 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
487 tmpbias2 -= expbits_tab[exp_index2[index]] -
488 expbits_tab[exp_index2[index]-1];
489 --exp_index2[index];
493 for(i=0 ; i<q->total_subbands ; i++)
494 category[i] = exp_index2[i];
496 for(i=0 ; i<q->numvector_size-1 ; i++)
497 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
503 * Expand the category vector.
505 * @param q pointer to the COOKContext
506 * @param category pointer to the category array
507 * @param category_index pointer to the category_index array
510 static inline void expand_category(COOKContext *q, int* category,
511 int* category_index){
512 int i;
513 for(i=0 ; i<q->num_vectors ; i++){
514 ++category[category_index[i]];
519 * The real requantization of the mltcoefs
521 * @param q pointer to the COOKContext
522 * @param index index
523 * @param quant_index quantisation index
524 * @param subband_coef_index array of indexes to quant_centroid_tab
525 * @param subband_coef_sign signs of coefficients
526 * @param mlt_p pointer into the mlt buffer
529 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
530 int* subband_coef_index, int* subband_coef_sign,
531 float* mlt_p){
532 int i;
533 float f1;
535 for(i=0 ; i<SUBBAND_SIZE ; i++) {
536 if (subband_coef_index[i]) {
537 f1 = quant_centroid_tab[index][subband_coef_index[i]];
538 if (subband_coef_sign[i]) f1 = -f1;
539 } else {
540 /* noise coding if subband_coef_index[i] == 0 */
541 f1 = dither_tab[index];
542 if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
544 mlt_p[i] = f1 * rootpow2tab[quant_index+63];
548 * Unpack the subband_coef_index and subband_coef_sign vectors.
550 * @param q pointer to the COOKContext
551 * @param category pointer to the category array
552 * @param subband_coef_index array of indexes to quant_centroid_tab
553 * @param subband_coef_sign signs of coefficients
556 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
557 int* subband_coef_sign) {
558 int i,j;
559 int vlc, vd ,tmp, result;
561 vd = vd_tab[category];
562 result = 0;
563 for(i=0 ; i<vpr_tab[category] ; i++){
564 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
565 if (q->bits_per_subpacket < get_bits_count(&q->gb)){
566 vlc = 0;
567 result = 1;
569 for(j=vd-1 ; j>=0 ; j--){
570 tmp = (vlc * invradix_tab[category])/0x100000;
571 subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
572 vlc = tmp;
574 for(j=0 ; j<vd ; j++){
575 if (subband_coef_index[i*vd + j]) {
576 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
577 subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
578 } else {
579 result=1;
580 subband_coef_sign[i*vd+j]=0;
582 } else {
583 subband_coef_sign[i*vd+j]=0;
587 return result;
592 * Fill the mlt_buffer with mlt coefficients.
594 * @param q pointer to the COOKContext
595 * @param category pointer to the category array
596 * @param quant_index_table pointer to the array
597 * @param mlt_buffer pointer to mlt coefficients
601 static void decode_vectors(COOKContext* q, int* category,
602 int *quant_index_table, float* mlt_buffer){
603 /* A zero in this table means that the subband coefficient is
604 random noise coded. */
605 int subband_coef_index[SUBBAND_SIZE];
606 /* A zero in this table means that the subband coefficient is a
607 positive multiplicator. */
608 int subband_coef_sign[SUBBAND_SIZE];
609 int band, j;
610 int index=0;
612 for(band=0 ; band<q->total_subbands ; band++){
613 index = category[band];
614 if(category[band] < 7){
615 if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
616 index=7;
617 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
620 if(index==7) {
621 memset(subband_coef_index, 0, sizeof(subband_coef_index));
622 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
624 q->scalar_dequant(q, index, quant_index_table[band],
625 subband_coef_index, subband_coef_sign,
626 &mlt_buffer[band * SUBBAND_SIZE]);
629 if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
630 return;
631 } /* FIXME: should this be removed, or moved into loop above? */
636 * function for decoding mono data
638 * @param q pointer to the COOKContext
639 * @param mlt_buffer pointer to mlt coefficients
642 static void mono_decode(COOKContext *q, float* mlt_buffer) {
644 int category_index[128];
645 int quant_index_table[102];
646 int category[128];
648 memset(&category, 0, 128*sizeof(int));
649 memset(&category_index, 0, 128*sizeof(int));
651 decode_envelope(q, quant_index_table);
652 q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
653 categorize(q, quant_index_table, category, category_index);
654 expand_category(q, category, category_index);
655 decode_vectors(q, category, quant_index_table, mlt_buffer);
660 * the actual requantization of the timedomain samples
662 * @param q pointer to the COOKContext
663 * @param buffer pointer to the timedomain buffer
664 * @param gain_index index for the block multiplier
665 * @param gain_index_next index for the next block multiplier
668 static void interpolate_float(COOKContext *q, float* buffer,
669 int gain_index, int gain_index_next){
670 int i;
671 float fc1, fc2;
672 fc1 = pow2tab[gain_index+63];
674 if(gain_index == gain_index_next){ //static gain
675 for(i=0 ; i<q->gain_size_factor ; i++){
676 buffer[i]*=fc1;
678 return;
679 } else { //smooth gain
680 fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
681 for(i=0 ; i<q->gain_size_factor ; i++){
682 buffer[i]*=fc1;
683 fc1*=fc2;
685 return;
690 * Apply transform window, overlap buffers.
692 * @param q pointer to the COOKContext
693 * @param inbuffer pointer to the mltcoefficients
694 * @param gains_ptr current and previous gains
695 * @param previous_buffer pointer to the previous buffer to be used for overlapping
698 static void imlt_window_float (COOKContext *q, float *buffer1,
699 cook_gains *gains_ptr, float *previous_buffer)
701 const float fc = pow2tab[gains_ptr->previous[0] + 63];
702 int i;
703 /* The weird thing here, is that the two halves of the time domain
704 * buffer are swapped. Also, the newest data, that we save away for
705 * next frame, has the wrong sign. Hence the subtraction below.
706 * Almost sounds like a complex conjugate/reverse data/FFT effect.
709 /* Apply window and overlap */
710 for(i = 0; i < q->samples_per_channel; i++){
711 buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
712 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
717 * The modulated lapped transform, this takes transform coefficients
718 * and transforms them into timedomain samples.
719 * Apply transform window, overlap buffers, apply gain profile
720 * and buffer management.
722 * @param q pointer to the COOKContext
723 * @param inbuffer pointer to the mltcoefficients
724 * @param gains_ptr current and previous gains
725 * @param previous_buffer pointer to the previous buffer to be used for overlapping
728 static void imlt_gain(COOKContext *q, float *inbuffer,
729 cook_gains *gains_ptr, float* previous_buffer)
731 float *buffer0 = q->mono_mdct_output;
732 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
733 int i;
735 /* Inverse modified discrete cosine transform */
736 ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
738 q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
740 /* Apply gain profile */
741 for (i = 0; i < 8; i++) {
742 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
743 q->interpolate(q, &buffer1[q->gain_size_factor * i],
744 gains_ptr->now[i], gains_ptr->now[i + 1]);
747 /* Save away the current to be previous block. */
748 memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
753 * function for getting the jointstereo coupling information
755 * @param q pointer to the COOKContext
756 * @param decouple_tab decoupling array
760 static void decouple_info(COOKContext *q, int* decouple_tab){
761 int length, i;
763 if(get_bits1(&q->gb)) {
764 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
766 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
767 for (i=0 ; i<length ; i++) {
768 decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
770 return;
773 if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
775 length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
776 for (i=0 ; i<length ; i++) {
777 decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
779 return;
783 * function decouples a pair of signals from a single signal via multiplication.
785 * @param q pointer to the COOKContext
786 * @param subband index of the current subband
787 * @param f1 multiplier for channel 1 extraction
788 * @param f2 multiplier for channel 2 extraction
789 * @param decode_buffer input buffer
790 * @param mlt_buffer1 pointer to left channel mlt coefficients
791 * @param mlt_buffer2 pointer to right channel mlt coefficients
793 static void decouple_float (COOKContext *q,
794 int subband,
795 float f1, float f2,
796 float *decode_buffer,
797 float *mlt_buffer1, float *mlt_buffer2)
799 int j, tmp_idx;
800 for (j=0 ; j<SUBBAND_SIZE ; j++) {
801 tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
802 mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
803 mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
808 * function for decoding joint stereo data
810 * @param q pointer to the COOKContext
811 * @param mlt_buffer1 pointer to left channel mlt coefficients
812 * @param mlt_buffer2 pointer to right channel mlt coefficients
815 static void joint_decode(COOKContext *q, float* mlt_buffer1,
816 float* mlt_buffer2) {
817 int i,j;
818 int decouple_tab[SUBBAND_SIZE];
819 float *decode_buffer = q->decode_buffer_0;
820 int idx, cpl_tmp;
821 float f1,f2;
822 const float* cplscale;
824 memset(decouple_tab, 0, sizeof(decouple_tab));
825 memset(decode_buffer, 0, sizeof(decode_buffer));
827 /* Make sure the buffers are zeroed out. */
828 memset(mlt_buffer1,0, 1024*sizeof(float));
829 memset(mlt_buffer2,0, 1024*sizeof(float));
830 decouple_info(q, decouple_tab);
831 mono_decode(q, decode_buffer);
833 /* The two channels are stored interleaved in decode_buffer. */
834 for (i=0 ; i<q->js_subband_start ; i++) {
835 for (j=0 ; j<SUBBAND_SIZE ; j++) {
836 mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
837 mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
841 /* When we reach js_subband_start (the higher frequencies)
842 the coefficients are stored in a coupling scheme. */
843 idx = (1 << q->js_vlc_bits) - 1;
844 for (i=q->js_subband_start ; i<q->subbands ; i++) {
845 cpl_tmp = cplband[i];
846 idx -=decouple_tab[cpl_tmp];
847 cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
848 f1 = cplscale[decouple_tab[cpl_tmp]];
849 f2 = cplscale[idx-1];
850 q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
851 idx = (1 << q->js_vlc_bits) - 1;
856 * First part of subpacket decoding:
857 * decode raw stream bytes and read gain info.
859 * @param q pointer to the COOKContext
860 * @param inbuffer pointer to raw stream data
861 * @param gain_ptr array of current/prev gain pointers
864 static inline void
865 decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
866 cook_gains *gains_ptr)
868 int offset;
870 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
871 q->bits_per_subpacket/8);
872 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
873 q->bits_per_subpacket);
874 decode_gain_info(&q->gb, gains_ptr->now);
876 /* Swap current and previous gains */
877 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
881 * Saturate the output signal to signed 16bit integers.
883 * @param q pointer to the COOKContext
884 * @param chan channel to saturate
885 * @param out pointer to the output vector
887 static void
888 saturate_output_float (COOKContext *q, int chan, int16_t *out)
890 int j;
891 float *output = q->mono_mdct_output + q->samples_per_channel;
892 /* Clip and convert floats to 16 bits.
894 for (j = 0; j < q->samples_per_channel; j++) {
895 out[chan + q->nb_channels * j] =
896 av_clip_int16(lrintf(output[j]));
901 * Final part of subpacket decoding:
902 * Apply modulated lapped transform, gain compensation,
903 * clip and convert to integer.
905 * @param q pointer to the COOKContext
906 * @param decode_buffer pointer to the mlt coefficients
907 * @param gain_ptr array of current/prev gain pointers
908 * @param previous_buffer pointer to the previous buffer to be used for overlapping
909 * @param out pointer to the output buffer
910 * @param chan 0: left or single channel, 1: right channel
913 static inline void
914 mlt_compensate_output(COOKContext *q, float *decode_buffer,
915 cook_gains *gains, float *previous_buffer,
916 int16_t *out, int chan)
918 imlt_gain(q, decode_buffer, gains, previous_buffer);
919 q->saturate_output (q, chan, out);
924 * Cook subpacket decoding. This function returns one decoded subpacket,
925 * usually 1024 samples per channel.
927 * @param q pointer to the COOKContext
928 * @param inbuffer pointer to the inbuffer
929 * @param sub_packet_size subpacket size
930 * @param outbuffer pointer to the outbuffer
934 static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
935 int sub_packet_size, int16_t *outbuffer) {
936 /* packet dump */
937 // for (i=0 ; i<sub_packet_size ; i++) {
938 // av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
939 // }
940 // av_log(NULL, AV_LOG_ERROR, "\n");
942 decode_bytes_and_gain(q, inbuffer, &q->gains1);
944 if (q->joint_stereo) {
945 joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
946 } else {
947 mono_decode(q, q->decode_buffer_1);
949 if (q->nb_channels == 2) {
950 decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
951 mono_decode(q, q->decode_buffer_2);
955 mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
956 q->mono_previous_buffer1, outbuffer, 0);
958 if (q->nb_channels == 2) {
959 if (q->joint_stereo) {
960 mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
961 q->mono_previous_buffer2, outbuffer, 1);
962 } else {
963 mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
964 q->mono_previous_buffer2, outbuffer, 1);
967 return q->samples_per_frame * sizeof(int16_t);
972 * Cook frame decoding
974 * @param avctx pointer to the AVCodecContext
977 static int cook_decode_frame(AVCodecContext *avctx,
978 void *data, int *data_size,
979 const uint8_t *buf, int buf_size) {
980 COOKContext *q = avctx->priv_data;
982 if (buf_size < avctx->block_align)
983 return buf_size;
985 *data_size = decode_subpacket(q, buf, avctx->block_align, data);
987 /* Discard the first two frames: no valid audio. */
988 if (avctx->frame_number < 2) *data_size = 0;
990 return avctx->block_align;
993 #ifdef COOKDEBUG
994 static void dump_cook_context(COOKContext *q)
996 //int i=0;
997 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
998 av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
999 av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
1000 if (q->cookversion > STEREO) {
1001 PRINT("js_subband_start",q->js_subband_start);
1002 PRINT("js_vlc_bits",q->js_vlc_bits);
1004 av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1005 PRINT("nb_channels",q->nb_channels);
1006 PRINT("bit_rate",q->bit_rate);
1007 PRINT("sample_rate",q->sample_rate);
1008 PRINT("samples_per_channel",q->samples_per_channel);
1009 PRINT("samples_per_frame",q->samples_per_frame);
1010 PRINT("subbands",q->subbands);
1011 PRINT("random_state",q->random_state);
1012 PRINT("js_subband_start",q->js_subband_start);
1013 PRINT("log2_numvector_size",q->log2_numvector_size);
1014 PRINT("numvector_size",q->numvector_size);
1015 PRINT("total_subbands",q->total_subbands);
1017 #endif
1020 * Cook initialization
1022 * @param avctx pointer to the AVCodecContext
1025 static int cook_decode_init(AVCodecContext *avctx)
1027 COOKContext *q = avctx->priv_data;
1028 const uint8_t *edata_ptr = avctx->extradata;
1030 /* Take care of the codec specific extradata. */
1031 if (avctx->extradata_size <= 0) {
1032 av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1033 return -1;
1034 } else {
1035 /* 8 for mono, 16 for stereo, ? for multichannel
1036 Swap to right endianness so we don't need to care later on. */
1037 av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1038 if (avctx->extradata_size >= 8){
1039 q->cookversion = bytestream_get_be32(&edata_ptr);
1040 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
1041 q->subbands = bytestream_get_be16(&edata_ptr);
1043 if (avctx->extradata_size >= 16){
1044 bytestream_get_be32(&edata_ptr); //Unknown unused
1045 q->js_subband_start = bytestream_get_be16(&edata_ptr);
1046 q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1050 /* Take data from the AVCodecContext (RM container). */
1051 q->sample_rate = avctx->sample_rate;
1052 q->nb_channels = avctx->channels;
1053 q->bit_rate = avctx->bit_rate;
1055 /* Initialize RNG. */
1056 av_init_random(1, &q->random_state);
1058 /* Initialize extradata related variables. */
1059 q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1060 q->bits_per_subpacket = avctx->block_align * 8;
1062 /* Initialize default data states. */
1063 q->log2_numvector_size = 5;
1064 q->total_subbands = q->subbands;
1066 /* Initialize version-dependent variables */
1067 av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1068 q->joint_stereo = 0;
1069 switch (q->cookversion) {
1070 case MONO:
1071 if (q->nb_channels != 1) {
1072 av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1073 return -1;
1075 av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1076 break;
1077 case STEREO:
1078 if (q->nb_channels != 1) {
1079 q->bits_per_subpacket = q->bits_per_subpacket/2;
1081 av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1082 break;
1083 case JOINT_STEREO:
1084 if (q->nb_channels != 2) {
1085 av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1086 return -1;
1088 av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1089 if (avctx->extradata_size >= 16){
1090 q->total_subbands = q->subbands + q->js_subband_start;
1091 q->joint_stereo = 1;
1093 if (q->samples_per_channel > 256) {
1094 q->log2_numvector_size = 6;
1096 if (q->samples_per_channel > 512) {
1097 q->log2_numvector_size = 7;
1099 break;
1100 case MC_COOK:
1101 av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1102 return -1;
1103 break;
1104 default:
1105 av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1106 return -1;
1107 break;
1110 /* Initialize variable relations */
1111 q->numvector_size = (1 << q->log2_numvector_size);
1113 /* Generate tables */
1114 init_pow2table();
1115 init_gain_table(q);
1116 init_cplscales_table(q);
1118 if (init_cook_vlc_tables(q) != 0)
1119 return -1;
1122 if(avctx->block_align >= UINT_MAX/2)
1123 return -1;
1125 /* Pad the databuffer with:
1126 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1127 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1128 if (q->nb_channels==2 && q->joint_stereo==0) {
1129 q->decoded_bytes_buffer =
1130 av_mallocz(avctx->block_align/2
1131 + DECODE_BYTES_PAD2(avctx->block_align/2)
1132 + FF_INPUT_BUFFER_PADDING_SIZE);
1133 } else {
1134 q->decoded_bytes_buffer =
1135 av_mallocz(avctx->block_align
1136 + DECODE_BYTES_PAD1(avctx->block_align)
1137 + FF_INPUT_BUFFER_PADDING_SIZE);
1139 if (q->decoded_bytes_buffer == NULL)
1140 return -1;
1142 q->gains1.now = q->gain_1;
1143 q->gains1.previous = q->gain_2;
1144 q->gains2.now = q->gain_3;
1145 q->gains2.previous = q->gain_4;
1147 /* Initialize transform. */
1148 if ( init_cook_mlt(q) != 0 )
1149 return -1;
1151 /* Initialize COOK signal arithmetic handling */
1152 if (1) {
1153 q->scalar_dequant = scalar_dequant_float;
1154 q->decouple = decouple_float;
1155 q->imlt_window = imlt_window_float;
1156 q->interpolate = interpolate_float;
1157 q->saturate_output = saturate_output_float;
1160 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1161 if (q->total_subbands > 53) {
1162 av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1163 return -1;
1165 if (q->subbands > 50) {
1166 av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1167 return -1;
1169 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1170 } else {
1171 av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1172 return -1;
1174 if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1175 av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1176 return -1;
1179 avctx->sample_fmt = SAMPLE_FMT_S16;
1180 avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1182 #ifdef COOKDEBUG
1183 dump_cook_context(q);
1184 #endif
1185 return 0;
1189 AVCodec cook_decoder =
1191 .name = "cook",
1192 .type = CODEC_TYPE_AUDIO,
1193 .id = CODEC_ID_COOK,
1194 .priv_data_size = sizeof(COOKContext),
1195 .init = cook_decode_init,
1196 .close = cook_decode_close,
1197 .decode = cook_decode_frame,
1198 .long_name = NULL_IF_CONFIG_SMALL("COOK"),