2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
29 #include "bitstream.h"
34 /*****************************************************************************
36 * in-loop deblocking filter
38 ****************************************************************************/
40 static inline int get_bs(vector_t
*mvP
, vector_t
*mvQ
, int b
) {
41 if((mvP
->ref
== REF_INTRA
) || (mvQ
->ref
== REF_INTRA
))
43 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
48 if( (abs(mvP
->x
- mvQ
->x
) >= 4) || (abs(mvP
->y
- mvQ
->y
) >= 4) )
51 if(mvP
->ref
!= mvQ
->ref
)
58 alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
59 beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
60 tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
63 * in-loop deblocking filter for a single macroblock
65 * boundary strength (bs) mapping:
74 void ff_cavs_filter(AVSContext
*h
, enum mb_t mb_type
) {
75 DECLARE_ALIGNED_8(uint8_t, bs
[8]);
76 int qp_avg
, alpha
, beta
, tc
;
79 /* save un-deblocked lines */
80 h
->topleft_border_y
= h
->top_border_y
[h
->mbx
*16+15];
81 h
->topleft_border_u
= h
->top_border_u
[h
->mbx
*10+8];
82 h
->topleft_border_v
= h
->top_border_v
[h
->mbx
*10+8];
83 memcpy(&h
->top_border_y
[h
->mbx
*16], h
->cy
+ 15* h
->l_stride
,16);
84 memcpy(&h
->top_border_u
[h
->mbx
*10+1], h
->cu
+ 7* h
->c_stride
,8);
85 memcpy(&h
->top_border_v
[h
->mbx
*10+1], h
->cv
+ 7* h
->c_stride
,8);
87 h
->left_border_y
[i
*2+1] = *(h
->cy
+ 15 + (i
*2+0)*h
->l_stride
);
88 h
->left_border_y
[i
*2+2] = *(h
->cy
+ 15 + (i
*2+1)*h
->l_stride
);
89 h
->left_border_u
[i
+1] = *(h
->cu
+ 7 + i
*h
->c_stride
);
90 h
->left_border_v
[i
+1] = *(h
->cv
+ 7 + i
*h
->c_stride
);
92 if(!h
->loop_filter_disable
) {
95 *((uint64_t *)bs
) = 0x0202020202020202ULL
;
97 *((uint64_t *)bs
) = 0;
98 if(ff_cavs_partition_flags
[mb_type
] & SPLITV
){
99 bs
[2] = get_bs(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X1
], mb_type
> P_8X8
);
100 bs
[3] = get_bs(&h
->mv
[MV_FWD_X2
], &h
->mv
[MV_FWD_X3
], mb_type
> P_8X8
);
102 if(ff_cavs_partition_flags
[mb_type
] & SPLITH
){
103 bs
[6] = get_bs(&h
->mv
[MV_FWD_X0
], &h
->mv
[MV_FWD_X2
], mb_type
> P_8X8
);
104 bs
[7] = get_bs(&h
->mv
[MV_FWD_X1
], &h
->mv
[MV_FWD_X3
], mb_type
> P_8X8
);
106 bs
[0] = get_bs(&h
->mv
[MV_FWD_A1
], &h
->mv
[MV_FWD_X0
], mb_type
> P_8X8
);
107 bs
[1] = get_bs(&h
->mv
[MV_FWD_A3
], &h
->mv
[MV_FWD_X2
], mb_type
> P_8X8
);
108 bs
[4] = get_bs(&h
->mv
[MV_FWD_B2
], &h
->mv
[MV_FWD_X0
], mb_type
> P_8X8
);
109 bs
[5] = get_bs(&h
->mv
[MV_FWD_B3
], &h
->mv
[MV_FWD_X1
], mb_type
> P_8X8
);
111 if( *((uint64_t *)bs
) ) {
112 if(h
->flags
& A_AVAIL
) {
113 qp_avg
= (h
->qp
+ h
->left_qp
+ 1) >> 1;
115 h
->s
.dsp
.cavs_filter_lv(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
116 h
->s
.dsp
.cavs_filter_cv(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
117 h
->s
.dsp
.cavs_filter_cv(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[0],bs
[1]);
121 h
->s
.dsp
.cavs_filter_lv(h
->cy
+ 8,h
->l_stride
,alpha
,beta
,tc
,bs
[2],bs
[3]);
122 h
->s
.dsp
.cavs_filter_lh(h
->cy
+ 8*h
->l_stride
,h
->l_stride
,alpha
,beta
,tc
,
125 if(h
->flags
& B_AVAIL
) {
126 qp_avg
= (h
->qp
+ h
->top_qp
[h
->mbx
] + 1) >> 1;
128 h
->s
.dsp
.cavs_filter_lh(h
->cy
,h
->l_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
129 h
->s
.dsp
.cavs_filter_ch(h
->cu
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
130 h
->s
.dsp
.cavs_filter_ch(h
->cv
,h
->c_stride
,alpha
,beta
,tc
,bs
[4],bs
[5]);
135 h
->top_qp
[h
->mbx
] = h
->qp
;
140 /*****************************************************************************
142 * spatial intra prediction
144 ****************************************************************************/
146 void ff_cavs_load_intra_pred_luma(AVSContext
*h
, uint8_t *top
,
147 uint8_t **left
, int block
) {
152 *left
= h
->left_border_y
;
153 h
->left_border_y
[0] = h
->left_border_y
[1];
154 memset(&h
->left_border_y
[17],h
->left_border_y
[16],9);
155 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16],16);
158 if((h
->flags
& A_AVAIL
) && (h
->flags
& B_AVAIL
))
159 h
->left_border_y
[0] = top
[0] = h
->topleft_border_y
;
162 *left
= h
->intern_border_y
;
164 h
->intern_border_y
[i
+1] = *(h
->cy
+ 7 + i
*h
->l_stride
);
165 memset(&h
->intern_border_y
[9],h
->intern_border_y
[8],9);
166 h
->intern_border_y
[0] = h
->intern_border_y
[1];
167 memcpy(&top
[1],&h
->top_border_y
[h
->mbx
*16+8],8);
168 if(h
->flags
& C_AVAIL
)
169 memcpy(&top
[9],&h
->top_border_y
[(h
->mbx
+ 1)*16],8);
171 memset(&top
[9],top
[8],9);
174 if(h
->flags
& B_AVAIL
)
175 h
->intern_border_y
[0] = top
[0] = h
->top_border_y
[h
->mbx
*16+7];
178 *left
= &h
->left_border_y
[8];
179 memcpy(&top
[1],h
->cy
+ 7*h
->l_stride
,16);
182 if(h
->flags
& A_AVAIL
)
183 top
[0] = h
->left_border_y
[8];
186 *left
= &h
->intern_border_y
[8];
188 h
->intern_border_y
[i
+9] = *(h
->cy
+ 7 + (i
+8)*h
->l_stride
);
189 memset(&h
->intern_border_y
[17],h
->intern_border_y
[16],9);
190 memcpy(&top
[0],h
->cy
+ 7 + 7*h
->l_stride
,9);
191 memset(&top
[9],top
[8],9);
196 void ff_cavs_load_intra_pred_chroma(AVSContext
*h
) {
197 /* extend borders by one pixel */
198 h
->left_border_u
[9] = h
->left_border_u
[8];
199 h
->left_border_v
[9] = h
->left_border_v
[8];
200 h
->top_border_u
[h
->mbx
*10+9] = h
->top_border_u
[h
->mbx
*10+8];
201 h
->top_border_v
[h
->mbx
*10+9] = h
->top_border_v
[h
->mbx
*10+8];
202 if(h
->mbx
&& h
->mby
) {
203 h
->top_border_u
[h
->mbx
*10] = h
->left_border_u
[0] = h
->topleft_border_u
;
204 h
->top_border_v
[h
->mbx
*10] = h
->left_border_v
[0] = h
->topleft_border_v
;
206 h
->left_border_u
[0] = h
->left_border_u
[1];
207 h
->left_border_v
[0] = h
->left_border_v
[1];
208 h
->top_border_u
[h
->mbx
*10] = h
->top_border_u
[h
->mbx
*10+1];
209 h
->top_border_v
[h
->mbx
*10] = h
->top_border_v
[h
->mbx
*10+1];
213 static void intra_pred_vert(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
215 uint64_t a
= AV_RN64(&top
[1]);
217 *((uint64_t *)(d
+y
*stride
)) = a
;
221 static void intra_pred_horiz(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
225 a
= left
[y
+1] * 0x0101010101010101ULL
;
226 *((uint64_t *)(d
+y
*stride
)) = a
;
230 static void intra_pred_dc_128(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
232 uint64_t a
= 0x8080808080808080ULL
;
234 *((uint64_t *)(d
+y
*stride
)) = a
;
237 static void intra_pred_plane(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
241 uint8_t *cm
= ff_cropTbl
+ MAX_NEG_CROP
;
244 ih
+= (x
+1)*(top
[5+x
]-top
[3-x
]);
245 iv
+= (x
+1)*(left
[5+x
]-left
[3-x
]);
247 ia
= (top
[8]+left
[8])<<4;
252 d
[y
*stride
+x
] = cm
[(ia
+(x
-3)*ih
+(y
-3)*iv
+16)>>5];
255 #define LOWPASS(ARRAY,INDEX) \
256 (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
258 static void intra_pred_lp(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
262 d
[y
*stride
+x
] = (LOWPASS(top
,x
+1) + LOWPASS(left
,y
+1)) >> 1;
265 static void intra_pred_down_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
269 d
[y
*stride
+x
] = (LOWPASS(top
,x
+y
+2) + LOWPASS(left
,x
+y
+2)) >> 1;
272 static void intra_pred_down_right(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
277 d
[y
*stride
+x
] = (left
[1]+2*top
[0]+top
[1]+2)>>2;
279 d
[y
*stride
+x
] = LOWPASS(top
,x
-y
);
281 d
[y
*stride
+x
] = LOWPASS(left
,y
-x
);
284 static void intra_pred_lp_left(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
288 d
[y
*stride
+x
] = LOWPASS(left
,y
+1);
291 static void intra_pred_lp_top(uint8_t *d
,uint8_t *top
,uint8_t *left
,int stride
) {
295 d
[y
*stride
+x
] = LOWPASS(top
,x
+1);
300 void ff_cavs_modify_mb_i(AVSContext
*h
, int *pred_mode_uv
) {
301 /* save pred modes before they get modified */
302 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[5];
303 h
->pred_mode_Y
[6] = h
->pred_mode_Y
[8];
304 h
->top_pred_Y
[h
->mbx
*2+0] = h
->pred_mode_Y
[7];
305 h
->top_pred_Y
[h
->mbx
*2+1] = h
->pred_mode_Y
[8];
307 /* modify pred modes according to availability of neighbour samples */
308 if(!(h
->flags
& A_AVAIL
)) {
309 modify_pred(ff_left_modifier_l
, &h
->pred_mode_Y
[4] );
310 modify_pred(ff_left_modifier_l
, &h
->pred_mode_Y
[7] );
311 modify_pred(ff_left_modifier_c
, pred_mode_uv
);
313 if(!(h
->flags
& B_AVAIL
)) {
314 modify_pred(ff_top_modifier_l
, &h
->pred_mode_Y
[4] );
315 modify_pred(ff_top_modifier_l
, &h
->pred_mode_Y
[5] );
316 modify_pred(ff_top_modifier_c
, pred_mode_uv
);
320 /*****************************************************************************
322 * motion compensation
324 ****************************************************************************/
326 static inline void mc_dir_part(AVSContext
*h
,Picture
*pic
,int square
,
327 int chroma_height
,int delta
,int list
,uint8_t *dest_y
,
328 uint8_t *dest_cb
,uint8_t *dest_cr
,int src_x_offset
,
329 int src_y_offset
,qpel_mc_func
*qpix_op
,
330 h264_chroma_mc_func chroma_op
,vector_t
*mv
){
331 MpegEncContext
* const s
= &h
->s
;
332 const int mx
= mv
->x
+ src_x_offset
*8;
333 const int my
= mv
->y
+ src_y_offset
*8;
334 const int luma_xy
= (mx
&3) + ((my
&3)<<2);
335 uint8_t * src_y
= pic
->data
[0] + (mx
>>2) + (my
>>2)*h
->l_stride
;
336 uint8_t * src_cb
= pic
->data
[1] + (mx
>>3) + (my
>>3)*h
->c_stride
;
337 uint8_t * src_cr
= pic
->data
[2] + (mx
>>3) + (my
>>3)*h
->c_stride
;
338 int extra_width
= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
339 int extra_height
= extra_width
;
341 const int full_mx
= mx
>>2;
342 const int full_my
= my
>>2;
343 const int pic_width
= 16*h
->mb_width
;
344 const int pic_height
= 16*h
->mb_height
;
348 if(mx
&7) extra_width
-= 3;
349 if(my
&7) extra_height
-= 3;
351 if( full_mx
< 0-extra_width
352 || full_my
< 0-extra_height
353 || full_mx
+ 16/*FIXME*/ > pic_width
+ extra_width
354 || full_my
+ 16/*FIXME*/ > pic_height
+ extra_height
){
355 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_y
- 2 - 2*h
->l_stride
, h
->l_stride
,
356 16+5, 16+5/*FIXME*/, full_mx
-2, full_my
-2, pic_width
, pic_height
);
357 src_y
= s
->edge_emu_buffer
+ 2 + 2*h
->l_stride
;
361 qpix_op
[luma_xy
](dest_y
, src_y
, h
->l_stride
); //FIXME try variable height perhaps?
363 qpix_op
[luma_xy
](dest_y
+ delta
, src_y
+ delta
, h
->l_stride
);
367 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cb
, h
->c_stride
,
368 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
369 src_cb
= s
->edge_emu_buffer
;
371 chroma_op(dest_cb
, src_cb
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
374 ff_emulated_edge_mc(s
->edge_emu_buffer
, src_cr
, h
->c_stride
,
375 9, 9/*FIXME*/, (mx
>>3), (my
>>3), pic_width
>>1, pic_height
>>1);
376 src_cr
= s
->edge_emu_buffer
;
378 chroma_op(dest_cr
, src_cr
, h
->c_stride
, chroma_height
, mx
&7, my
&7);
381 static inline void mc_part_std(AVSContext
*h
,int square
,int chroma_height
,int delta
,
382 uint8_t *dest_y
,uint8_t *dest_cb
,uint8_t *dest_cr
,
383 int x_offset
, int y_offset
,qpel_mc_func
*qpix_put
,
384 h264_chroma_mc_func chroma_put
,qpel_mc_func
*qpix_avg
,
385 h264_chroma_mc_func chroma_avg
, vector_t
*mv
){
386 qpel_mc_func
*qpix_op
= qpix_put
;
387 h264_chroma_mc_func chroma_op
= chroma_put
;
389 dest_y
+= 2*x_offset
+ 2*y_offset
*h
->l_stride
;
390 dest_cb
+= x_offset
+ y_offset
*h
->c_stride
;
391 dest_cr
+= x_offset
+ y_offset
*h
->c_stride
;
392 x_offset
+= 8*h
->mbx
;
393 y_offset
+= 8*h
->mby
;
396 Picture
*ref
= &h
->DPB
[mv
->ref
];
397 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 0,
398 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
399 qpix_op
, chroma_op
, mv
);
402 chroma_op
= chroma_avg
;
405 if((mv
+MV_BWD_OFFS
)->ref
>= 0){
406 Picture
*ref
= &h
->DPB
[0];
407 mc_dir_part(h
, ref
, square
, chroma_height
, delta
, 1,
408 dest_y
, dest_cb
, dest_cr
, x_offset
, y_offset
,
409 qpix_op
, chroma_op
, mv
+MV_BWD_OFFS
);
413 void ff_cavs_inter(AVSContext
*h
, enum mb_t mb_type
) {
414 if(ff_cavs_partition_flags
[mb_type
] == 0){ // 16x16
415 mc_part_std(h
, 1, 8, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
416 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[0],
417 h
->s
.dsp
.put_h264_chroma_pixels_tab
[0],
418 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[0],
419 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[0],&h
->mv
[MV_FWD_X0
]);
421 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 0,
422 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
423 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
424 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
425 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X0
]);
426 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 0,
427 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
428 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
429 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
430 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X1
]);
431 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 0, 4,
432 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
433 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
434 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
435 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X2
]);
436 mc_part_std(h
, 1, 4, 0, h
->cy
, h
->cu
, h
->cv
, 4, 4,
437 h
->s
.dsp
.put_cavs_qpel_pixels_tab
[1],
438 h
->s
.dsp
.put_h264_chroma_pixels_tab
[1],
439 h
->s
.dsp
.avg_cavs_qpel_pixels_tab
[1],
440 h
->s
.dsp
.avg_h264_chroma_pixels_tab
[1],&h
->mv
[MV_FWD_X3
]);
444 /*****************************************************************************
446 * motion vector prediction
448 ****************************************************************************/
450 static inline void scale_mv(AVSContext
*h
, int *d_x
, int *d_y
, vector_t
*src
, int distp
) {
451 int den
= h
->scale_den
[src
->ref
];
453 *d_x
= (src
->x
*distp
*den
+ 256 + (src
->x
>>31)) >> 9;
454 *d_y
= (src
->y
*distp
*den
+ 256 + (src
->y
>>31)) >> 9;
457 static inline void mv_pred_median(AVSContext
*h
, vector_t
*mvP
, vector_t
*mvA
, vector_t
*mvB
, vector_t
*mvC
) {
458 int ax
, ay
, bx
, by
, cx
, cy
;
459 int len_ab
, len_bc
, len_ca
, len_mid
;
461 /* scale candidates according to their temporal span */
462 scale_mv(h
, &ax
, &ay
, mvA
, mvP
->dist
);
463 scale_mv(h
, &bx
, &by
, mvB
, mvP
->dist
);
464 scale_mv(h
, &cx
, &cy
, mvC
, mvP
->dist
);
465 /* find the geometrical median of the three candidates */
466 len_ab
= abs(ax
- bx
) + abs(ay
- by
);
467 len_bc
= abs(bx
- cx
) + abs(by
- cy
);
468 len_ca
= abs(cx
- ax
) + abs(cy
- ay
);
469 len_mid
= mid_pred(len_ab
, len_bc
, len_ca
);
470 if(len_mid
== len_ab
) {
473 } else if(len_mid
== len_bc
) {
482 void ff_cavs_mv(AVSContext
*h
, enum mv_loc_t nP
, enum mv_loc_t nC
,
483 enum mv_pred_t mode
, enum block_t size
, int ref
) {
484 vector_t
*mvP
= &h
->mv
[nP
];
485 vector_t
*mvA
= &h
->mv
[nP
-1];
486 vector_t
*mvB
= &h
->mv
[nP
-4];
487 vector_t
*mvC
= &h
->mv
[nC
];
488 const vector_t
*mvP2
= NULL
;
491 mvP
->dist
= h
->dist
[mvP
->ref
];
492 if(mvC
->ref
== NOT_AVAIL
)
493 mvC
= &h
->mv
[nP
-5]; // set to top-left (mvD)
494 if((mode
== MV_PRED_PSKIP
) &&
495 ((mvA
->ref
== NOT_AVAIL
) || (mvB
->ref
== NOT_AVAIL
) ||
496 ((mvA
->x
| mvA
->y
| mvA
->ref
) == 0) ||
497 ((mvB
->x
| mvB
->y
| mvB
->ref
) == 0) )) {
498 mvP2
= &ff_cavs_un_mv
;
499 /* if there is only one suitable candidate, take it */
500 } else if((mvA
->ref
>= 0) && (mvB
->ref
< 0) && (mvC
->ref
< 0)) {
502 } else if((mvA
->ref
< 0) && (mvB
->ref
>= 0) && (mvC
->ref
< 0)) {
504 } else if((mvA
->ref
< 0) && (mvB
->ref
< 0) && (mvC
->ref
>= 0)) {
506 } else if(mode
== MV_PRED_LEFT
&& mvA
->ref
== ref
){
508 } else if(mode
== MV_PRED_TOP
&& mvB
->ref
== ref
){
510 } else if(mode
== MV_PRED_TOPRIGHT
&& mvC
->ref
== ref
){
517 mv_pred_median(h
, mvP
, mvA
, mvB
, mvC
);
519 if(mode
< MV_PRED_PSKIP
) {
520 mvP
->x
+= get_se_golomb(&h
->s
.gb
);
521 mvP
->y
+= get_se_golomb(&h
->s
.gb
);
526 /*****************************************************************************
530 ****************************************************************************/
533 * initialise predictors for motion vectors and intra prediction
535 void ff_cavs_init_mb(AVSContext
*h
) {
538 /* copy predictors from top line (MB B and C) into cache */
540 h
->mv
[MV_FWD_B2
+i
] = h
->top_mv
[0][h
->mbx
*2+i
];
541 h
->mv
[MV_BWD_B2
+i
] = h
->top_mv
[1][h
->mbx
*2+i
];
543 h
->pred_mode_Y
[1] = h
->top_pred_Y
[h
->mbx
*2+0];
544 h
->pred_mode_Y
[2] = h
->top_pred_Y
[h
->mbx
*2+1];
545 /* clear top predictors if MB B is not available */
546 if(!(h
->flags
& B_AVAIL
)) {
547 h
->mv
[MV_FWD_B2
] = ff_cavs_un_mv
;
548 h
->mv
[MV_FWD_B3
] = ff_cavs_un_mv
;
549 h
->mv
[MV_BWD_B2
] = ff_cavs_un_mv
;
550 h
->mv
[MV_BWD_B3
] = ff_cavs_un_mv
;
551 h
->pred_mode_Y
[1] = h
->pred_mode_Y
[2] = NOT_AVAIL
;
552 h
->flags
&= ~(C_AVAIL
|D_AVAIL
);
556 if(h
->mbx
== h
->mb_width
-1) //MB C not available
557 h
->flags
&= ~C_AVAIL
;
558 /* clear top-right predictors if MB C is not available */
559 if(!(h
->flags
& C_AVAIL
)) {
560 h
->mv
[MV_FWD_C2
] = ff_cavs_un_mv
;
561 h
->mv
[MV_BWD_C2
] = ff_cavs_un_mv
;
563 /* clear top-left predictors if MB D is not available */
564 if(!(h
->flags
& D_AVAIL
)) {
565 h
->mv
[MV_FWD_D3
] = ff_cavs_un_mv
;
566 h
->mv
[MV_BWD_D3
] = ff_cavs_un_mv
;
568 /* set pointer for co-located macroblock type */
569 h
->col_type
= &h
->col_type_base
[h
->mby
*h
->mb_width
+ h
->mbx
];
573 * save predictors for later macroblocks and increase
575 * @returns 0 if end of frame is reached, 1 otherwise
577 int ff_cavs_next_mb(AVSContext
*h
) {
584 /* copy mvs as predictors to the left */
586 h
->mv
[i
] = h
->mv
[i
+2];
587 /* copy bottom mvs from cache to top line */
588 h
->top_mv
[0][h
->mbx
*2+0] = h
->mv
[MV_FWD_X2
];
589 h
->top_mv
[0][h
->mbx
*2+1] = h
->mv
[MV_FWD_X3
];
590 h
->top_mv
[1][h
->mbx
*2+0] = h
->mv
[MV_BWD_X2
];
591 h
->top_mv
[1][h
->mbx
*2+1] = h
->mv
[MV_BWD_X3
];
592 /* next MB address */
594 if(h
->mbx
== h
->mb_width
) { //new mb line
595 h
->flags
= B_AVAIL
|C_AVAIL
;
596 /* clear left pred_modes */
597 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
598 /* clear left mv predictors */
600 h
->mv
[i
] = ff_cavs_un_mv
;
603 /* re-calculate sample pointers */
604 h
->cy
= h
->picture
.data
[0] + h
->mby
*16*h
->l_stride
;
605 h
->cu
= h
->picture
.data
[1] + h
->mby
*8*h
->c_stride
;
606 h
->cv
= h
->picture
.data
[2] + h
->mby
*8*h
->c_stride
;
607 if(h
->mby
== h
->mb_height
) { //frame end
610 //check_for_slice(h);
616 /*****************************************************************************
620 ****************************************************************************/
622 void ff_cavs_init_pic(AVSContext
*h
) {
625 /* clear some predictors */
627 h
->mv
[i
] = ff_cavs_un_mv
;
628 h
->mv
[MV_BWD_X0
] = ff_cavs_dir_mv
;
629 set_mvs(&h
->mv
[MV_BWD_X0
], BLK_16X16
);
630 h
->mv
[MV_FWD_X0
] = ff_cavs_dir_mv
;
631 set_mvs(&h
->mv
[MV_FWD_X0
], BLK_16X16
);
632 h
->pred_mode_Y
[3] = h
->pred_mode_Y
[6] = NOT_AVAIL
;
633 h
->cy
= h
->picture
.data
[0];
634 h
->cu
= h
->picture
.data
[1];
635 h
->cv
= h
->picture
.data
[2];
636 h
->l_stride
= h
->picture
.linesize
[0];
637 h
->c_stride
= h
->picture
.linesize
[1];
638 h
->luma_scan
[2] = 8*h
->l_stride
;
639 h
->luma_scan
[3] = 8*h
->l_stride
+8;
644 /*****************************************************************************
646 * headers and interface
648 ****************************************************************************/
651 * some predictions require data from the top-neighbouring macroblock.
652 * this data has to be stored for one complete row of macroblocks
653 * and this storage space is allocated here
655 void ff_cavs_init_top_lines(AVSContext
*h
) {
656 /* alloc top line of predictors */
657 h
->top_qp
= av_malloc( h
->mb_width
);
658 h
->top_mv
[0] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
659 h
->top_mv
[1] = av_malloc((h
->mb_width
*2+1)*sizeof(vector_t
));
660 h
->top_pred_Y
= av_malloc( h
->mb_width
*2*sizeof(*h
->top_pred_Y
));
661 h
->top_border_y
= av_malloc((h
->mb_width
+1)*16);
662 h
->top_border_u
= av_malloc((h
->mb_width
)*10);
663 h
->top_border_v
= av_malloc((h
->mb_width
)*10);
665 /* alloc space for co-located MVs and types */
666 h
->col_mv
= av_malloc( h
->mb_width
*h
->mb_height
*4*sizeof(vector_t
));
667 h
->col_type_base
= av_malloc(h
->mb_width
*h
->mb_height
);
668 h
->block
= av_mallocz(64*sizeof(DCTELEM
));
671 av_cold
int ff_cavs_init(AVCodecContext
*avctx
) {
672 AVSContext
*h
= avctx
->priv_data
;
673 MpegEncContext
* const s
= &h
->s
;
675 MPV_decode_defaults(s
);
678 avctx
->pix_fmt
= PIX_FMT_YUV420P
;
682 h
->intra_pred_l
[ INTRA_L_VERT
] = intra_pred_vert
;
683 h
->intra_pred_l
[ INTRA_L_HORIZ
] = intra_pred_horiz
;
684 h
->intra_pred_l
[ INTRA_L_LP
] = intra_pred_lp
;
685 h
->intra_pred_l
[ INTRA_L_DOWN_LEFT
] = intra_pred_down_left
;
686 h
->intra_pred_l
[INTRA_L_DOWN_RIGHT
] = intra_pred_down_right
;
687 h
->intra_pred_l
[ INTRA_L_LP_LEFT
] = intra_pred_lp_left
;
688 h
->intra_pred_l
[ INTRA_L_LP_TOP
] = intra_pred_lp_top
;
689 h
->intra_pred_l
[ INTRA_L_DC_128
] = intra_pred_dc_128
;
690 h
->intra_pred_c
[ INTRA_C_LP
] = intra_pred_lp
;
691 h
->intra_pred_c
[ INTRA_C_HORIZ
] = intra_pred_horiz
;
692 h
->intra_pred_c
[ INTRA_C_VERT
] = intra_pred_vert
;
693 h
->intra_pred_c
[ INTRA_C_PLANE
] = intra_pred_plane
;
694 h
->intra_pred_c
[ INTRA_C_LP_LEFT
] = intra_pred_lp_left
;
695 h
->intra_pred_c
[ INTRA_C_LP_TOP
] = intra_pred_lp_top
;
696 h
->intra_pred_c
[ INTRA_C_DC_128
] = intra_pred_dc_128
;
697 h
->mv
[ 7] = ff_cavs_un_mv
;
698 h
->mv
[19] = ff_cavs_un_mv
;
702 av_cold
int ff_cavs_end(AVCodecContext
*avctx
) {
703 AVSContext
*h
= avctx
->priv_data
;
706 av_free(h
->top_mv
[0]);
707 av_free(h
->top_mv
[1]);
708 av_free(h
->top_pred_Y
);
709 av_free(h
->top_border_y
);
710 av_free(h
->top_border_u
);
711 av_free(h
->top_border_v
);
713 av_free(h
->col_type_base
);