Replace sed trickery in the gcc dependency generation command by use of
[FFMpeg-mirror/ffmpeg-vdpau.git] / libavcodec / ac3dec.c
blob5e568a9ae72f19e468ec7e891190470024d87615
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * Portions of this code are derived from liba52
11 * http://liba52.sourceforge.net
12 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
13 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
15 * This file is part of FFmpeg.
17 * FFmpeg is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public
19 * License as published by the Free Software Foundation; either
20 * version 2 of the License, or (at your option) any later version.
22 * FFmpeg is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 * General Public License for more details.
27 * You should have received a copy of the GNU General Public
28 * License along with FFmpeg; if not, write to the Free Software
29 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
32 #include <stdio.h>
33 #include <stddef.h>
34 #include <math.h>
35 #include <string.h>
37 #include "libavutil/crc.h"
38 #include "ac3_parser.h"
39 #include "ac3dec.h"
40 #include "ac3dec_data.h"
42 /** Large enough for maximum possible frame size when the specification limit is ignored */
43 #define AC3_FRAME_BUFFER_SIZE 32768
45 /**
46 * table for ungrouping 3 values in 7 bits.
47 * used for exponents and bap=2 mantissas
49 static uint8_t ungroup_3_in_7_bits_tab[128][3];
52 /** tables for ungrouping mantissas */
53 static int b1_mantissas[32][3];
54 static int b2_mantissas[128][3];
55 static int b3_mantissas[8];
56 static int b4_mantissas[128][2];
57 static int b5_mantissas[16];
59 /**
60 * Quantization table: levels for symmetric. bits for asymmetric.
61 * reference: Table 7.18 Mapping of bap to Quantizer
63 static const uint8_t quantization_tab[16] = {
64 0, 3, 5, 7, 11, 15,
65 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
68 /** dynamic range table. converts codes to scale factors. */
69 static float dynamic_range_tab[256];
71 /** Adjustments in dB gain */
72 #define LEVEL_PLUS_3DB 1.4142135623730950
73 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
74 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
75 #define LEVEL_MINUS_3DB 0.7071067811865476
76 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
77 #define LEVEL_MINUS_6DB 0.5000000000000000
78 #define LEVEL_MINUS_9DB 0.3535533905932738
79 #define LEVEL_ZERO 0.0000000000000000
80 #define LEVEL_ONE 1.0000000000000000
82 static const float gain_levels[9] = {
83 LEVEL_PLUS_3DB,
84 LEVEL_PLUS_1POINT5DB,
85 LEVEL_ONE,
86 LEVEL_MINUS_1POINT5DB,
87 LEVEL_MINUS_3DB,
88 LEVEL_MINUS_4POINT5DB,
89 LEVEL_MINUS_6DB,
90 LEVEL_ZERO,
91 LEVEL_MINUS_9DB
94 /**
95 * Table for center mix levels
96 * reference: Section 5.4.2.4 cmixlev
98 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
101 * Table for surround mix levels
102 * reference: Section 5.4.2.5 surmixlev
104 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
107 * Table for default stereo downmixing coefficients
108 * reference: Section 7.8.2 Downmixing Into Two Channels
110 static const uint8_t ac3_default_coeffs[8][5][2] = {
111 { { 2, 7 }, { 7, 2 }, },
112 { { 4, 4 }, },
113 { { 2, 7 }, { 7, 2 }, },
114 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
115 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
116 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
117 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
118 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
122 * Symmetrical Dequantization
123 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
124 * Tables 7.19 to 7.23
126 static inline int
127 symmetric_dequant(int code, int levels)
129 return ((code - (levels >> 1)) << 24) / levels;
133 * Initialize tables at runtime.
135 static av_cold void ac3_tables_init(void)
137 int i;
139 /* generate table for ungrouping 3 values in 7 bits
140 reference: Section 7.1.3 Exponent Decoding */
141 for(i=0; i<128; i++) {
142 ungroup_3_in_7_bits_tab[i][0] = i / 25;
143 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
144 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
147 /* generate grouped mantissa tables
148 reference: Section 7.3.5 Ungrouping of Mantissas */
149 for(i=0; i<32; i++) {
150 /* bap=1 mantissas */
151 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
152 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
153 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
155 for(i=0; i<128; i++) {
156 /* bap=2 mantissas */
157 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
158 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
159 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
161 /* bap=4 mantissas */
162 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
163 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
165 /* generate ungrouped mantissa tables
166 reference: Tables 7.21 and 7.23 */
167 for(i=0; i<7; i++) {
168 /* bap=3 mantissas */
169 b3_mantissas[i] = symmetric_dequant(i, 7);
171 for(i=0; i<15; i++) {
172 /* bap=5 mantissas */
173 b5_mantissas[i] = symmetric_dequant(i, 15);
176 /* generate dynamic range table
177 reference: Section 7.7.1 Dynamic Range Control */
178 for(i=0; i<256; i++) {
179 int v = (i >> 5) - ((i >> 7) << 3) - 5;
180 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
186 * AVCodec initialization
188 static av_cold int ac3_decode_init(AVCodecContext *avctx)
190 AC3DecodeContext *s = avctx->priv_data;
191 s->avctx = avctx;
193 ac3_common_init();
194 ac3_tables_init();
195 ff_mdct_init(&s->imdct_256, 8, 1);
196 ff_mdct_init(&s->imdct_512, 9, 1);
197 ff_kbd_window_init(s->window, 5.0, 256);
198 dsputil_init(&s->dsp, avctx);
199 av_lfg_init(&s->dith_state, 0);
201 /* set bias values for float to int16 conversion */
202 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
203 s->add_bias = 385.0f;
204 s->mul_bias = 1.0f;
205 } else {
206 s->add_bias = 0.0f;
207 s->mul_bias = 32767.0f;
210 /* allow downmixing to stereo or mono */
211 if (avctx->channels > 0 && avctx->request_channels > 0 &&
212 avctx->request_channels < avctx->channels &&
213 avctx->request_channels <= 2) {
214 avctx->channels = avctx->request_channels;
216 s->downmixed = 1;
218 /* allocate context input buffer */
219 if (avctx->error_recognition >= FF_ER_CAREFUL) {
220 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
221 if (!s->input_buffer)
222 return AVERROR_NOMEM;
225 avctx->sample_fmt = SAMPLE_FMT_S16;
226 return 0;
230 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
231 * GetBitContext within AC3DecodeContext must point to
232 * the start of the synchronized AC-3 bitstream.
234 static int ac3_parse_header(AC3DecodeContext *s)
236 GetBitContext *gbc = &s->gbc;
237 int i;
239 /* read the rest of the bsi. read twice for dual mono mode. */
240 i = !(s->channel_mode);
241 do {
242 skip_bits(gbc, 5); // skip dialog normalization
243 if (get_bits1(gbc))
244 skip_bits(gbc, 8); //skip compression
245 if (get_bits1(gbc))
246 skip_bits(gbc, 8); //skip language code
247 if (get_bits1(gbc))
248 skip_bits(gbc, 7); //skip audio production information
249 } while (i--);
251 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
253 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
254 TODO: read & use the xbsi1 downmix levels */
255 if (get_bits1(gbc))
256 skip_bits(gbc, 14); //skip timecode1 / xbsi1
257 if (get_bits1(gbc))
258 skip_bits(gbc, 14); //skip timecode2 / xbsi2
260 /* skip additional bitstream info */
261 if (get_bits1(gbc)) {
262 i = get_bits(gbc, 6);
263 do {
264 skip_bits(gbc, 8);
265 } while(i--);
268 return 0;
272 * Common function to parse AC-3 or E-AC-3 frame header
274 static int parse_frame_header(AC3DecodeContext *s)
276 AC3HeaderInfo hdr;
277 int err;
279 err = ff_ac3_parse_header(&s->gbc, &hdr);
280 if(err)
281 return err;
283 /* get decoding parameters from header info */
284 s->bit_alloc_params.sr_code = hdr.sr_code;
285 s->channel_mode = hdr.channel_mode;
286 s->lfe_on = hdr.lfe_on;
287 s->bit_alloc_params.sr_shift = hdr.sr_shift;
288 s->sample_rate = hdr.sample_rate;
289 s->bit_rate = hdr.bit_rate;
290 s->channels = hdr.channels;
291 s->fbw_channels = s->channels - s->lfe_on;
292 s->lfe_ch = s->fbw_channels + 1;
293 s->frame_size = hdr.frame_size;
294 s->center_mix_level = hdr.center_mix_level;
295 s->surround_mix_level = hdr.surround_mix_level;
296 s->num_blocks = hdr.num_blocks;
297 s->frame_type = hdr.frame_type;
298 s->substreamid = hdr.substreamid;
300 if(s->lfe_on) {
301 s->start_freq[s->lfe_ch] = 0;
302 s->end_freq[s->lfe_ch] = 7;
303 s->num_exp_groups[s->lfe_ch] = 2;
304 s->channel_in_cpl[s->lfe_ch] = 0;
307 if (hdr.bitstream_id <= 10) {
308 s->eac3 = 0;
309 s->snr_offset_strategy = 2;
310 s->block_switch_syntax = 1;
311 s->dither_flag_syntax = 1;
312 s->bit_allocation_syntax = 1;
313 s->fast_gain_syntax = 0;
314 s->first_cpl_leak = 0;
315 s->dba_syntax = 1;
316 s->skip_syntax = 1;
317 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
318 return ac3_parse_header(s);
319 } else {
320 s->eac3 = 1;
321 return ff_eac3_parse_header(s);
326 * Set stereo downmixing coefficients based on frame header info.
327 * reference: Section 7.8.2 Downmixing Into Two Channels
329 static void set_downmix_coeffs(AC3DecodeContext *s)
331 int i;
332 float cmix = gain_levels[center_levels[s->center_mix_level]];
333 float smix = gain_levels[surround_levels[s->surround_mix_level]];
334 float norm0, norm1;
336 for(i=0; i<s->fbw_channels; i++) {
337 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
338 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
340 if(s->channel_mode > 1 && s->channel_mode & 1) {
341 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
343 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
344 int nf = s->channel_mode - 2;
345 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
347 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
348 int nf = s->channel_mode - 4;
349 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
352 /* renormalize */
353 norm0 = norm1 = 0.0;
354 for(i=0; i<s->fbw_channels; i++) {
355 norm0 += s->downmix_coeffs[i][0];
356 norm1 += s->downmix_coeffs[i][1];
358 norm0 = 1.0f / norm0;
359 norm1 = 1.0f / norm1;
360 for(i=0; i<s->fbw_channels; i++) {
361 s->downmix_coeffs[i][0] *= norm0;
362 s->downmix_coeffs[i][1] *= norm1;
365 if(s->output_mode == AC3_CHMODE_MONO) {
366 for(i=0; i<s->fbw_channels; i++)
367 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
372 * Decode the grouped exponents according to exponent strategy.
373 * reference: Section 7.1.3 Exponent Decoding
375 static void decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
376 uint8_t absexp, int8_t *dexps)
378 int i, j, grp, group_size;
379 int dexp[256];
380 int expacc, prevexp;
382 /* unpack groups */
383 group_size = exp_strategy + (exp_strategy == EXP_D45);
384 for(grp=0,i=0; grp<ngrps; grp++) {
385 expacc = get_bits(gbc, 7);
386 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
387 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
388 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
391 /* convert to absolute exps and expand groups */
392 prevexp = absexp;
393 for(i=0; i<ngrps*3; i++) {
394 prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
395 for(j=0; j<group_size; j++) {
396 dexps[(i*group_size)+j] = prevexp;
402 * Generate transform coefficients for each coupled channel in the coupling
403 * range using the coupling coefficients and coupling coordinates.
404 * reference: Section 7.4.3 Coupling Coordinate Format
406 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
408 int i, j, ch, bnd, subbnd;
410 subbnd = -1;
411 i = s->start_freq[CPL_CH];
412 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
413 do {
414 subbnd++;
415 for(j=0; j<12; j++) {
416 for(ch=1; ch<=s->fbw_channels; ch++) {
417 if(s->channel_in_cpl[ch]) {
418 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
419 if (ch == 2 && s->phase_flags[bnd])
420 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
423 i++;
425 } while(s->cpl_band_struct[subbnd]);
430 * Grouped mantissas for 3-level 5-level and 11-level quantization
432 typedef struct {
433 int b1_mant[3];
434 int b2_mant[3];
435 int b4_mant[2];
436 int b1ptr;
437 int b2ptr;
438 int b4ptr;
439 } mant_groups;
442 * Decode the transform coefficients for a particular channel
443 * reference: Section 7.3 Quantization and Decoding of Mantissas
445 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
447 GetBitContext *gbc = &s->gbc;
448 int i, gcode, tbap, start, end;
449 uint8_t *exps;
450 uint8_t *bap;
451 int *coeffs;
453 exps = s->dexps[ch_index];
454 bap = s->bap[ch_index];
455 coeffs = s->fixed_coeffs[ch_index];
456 start = s->start_freq[ch_index];
457 end = s->end_freq[ch_index];
459 for (i = start; i < end; i++) {
460 tbap = bap[i];
461 switch (tbap) {
462 case 0:
463 coeffs[i] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
464 break;
466 case 1:
467 if(m->b1ptr > 2) {
468 gcode = get_bits(gbc, 5);
469 m->b1_mant[0] = b1_mantissas[gcode][0];
470 m->b1_mant[1] = b1_mantissas[gcode][1];
471 m->b1_mant[2] = b1_mantissas[gcode][2];
472 m->b1ptr = 0;
474 coeffs[i] = m->b1_mant[m->b1ptr++];
475 break;
477 case 2:
478 if(m->b2ptr > 2) {
479 gcode = get_bits(gbc, 7);
480 m->b2_mant[0] = b2_mantissas[gcode][0];
481 m->b2_mant[1] = b2_mantissas[gcode][1];
482 m->b2_mant[2] = b2_mantissas[gcode][2];
483 m->b2ptr = 0;
485 coeffs[i] = m->b2_mant[m->b2ptr++];
486 break;
488 case 3:
489 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
490 break;
492 case 4:
493 if(m->b4ptr > 1) {
494 gcode = get_bits(gbc, 7);
495 m->b4_mant[0] = b4_mantissas[gcode][0];
496 m->b4_mant[1] = b4_mantissas[gcode][1];
497 m->b4ptr = 0;
499 coeffs[i] = m->b4_mant[m->b4ptr++];
500 break;
502 case 5:
503 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
504 break;
506 default: {
507 /* asymmetric dequantization */
508 int qlevel = quantization_tab[tbap];
509 coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
510 break;
513 coeffs[i] >>= exps[i];
518 * Remove random dithering from coefficients with zero-bit mantissas
519 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
521 static void remove_dithering(AC3DecodeContext *s) {
522 int ch, i;
523 int end=0;
524 int *coeffs;
525 uint8_t *bap;
527 for(ch=1; ch<=s->fbw_channels; ch++) {
528 if(!s->dither_flag[ch]) {
529 coeffs = s->fixed_coeffs[ch];
530 bap = s->bap[ch];
531 if(s->channel_in_cpl[ch])
532 end = s->start_freq[CPL_CH];
533 else
534 end = s->end_freq[ch];
535 for(i=0; i<end; i++) {
536 if(!bap[i])
537 coeffs[i] = 0;
539 if(s->channel_in_cpl[ch]) {
540 bap = s->bap[CPL_CH];
541 for(; i<s->end_freq[CPL_CH]; i++) {
542 if(!bap[i])
543 coeffs[i] = 0;
550 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
551 mant_groups *m)
553 if (!s->channel_uses_aht[ch]) {
554 ac3_decode_transform_coeffs_ch(s, ch, m);
555 } else {
556 /* if AHT is used, mantissas for all blocks are encoded in the first
557 block of the frame. */
558 int bin;
559 if (!blk)
560 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
561 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
562 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
568 * Decode the transform coefficients.
570 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
572 int ch, end;
573 int got_cplchan = 0;
574 mant_groups m;
576 m.b1ptr = m.b2ptr = m.b4ptr = 3;
578 for (ch = 1; ch <= s->channels; ch++) {
579 /* transform coefficients for full-bandwidth channel */
580 decode_transform_coeffs_ch(s, blk, ch, &m);
581 /* tranform coefficients for coupling channel come right after the
582 coefficients for the first coupled channel*/
583 if (s->channel_in_cpl[ch]) {
584 if (!got_cplchan) {
585 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
586 calc_transform_coeffs_cpl(s);
587 got_cplchan = 1;
589 end = s->end_freq[CPL_CH];
590 } else {
591 end = s->end_freq[ch];
594 s->fixed_coeffs[ch][end] = 0;
595 while(++end < 256);
598 /* zero the dithered coefficients for appropriate channels */
599 remove_dithering(s);
603 * Stereo rematrixing.
604 * reference: Section 7.5.4 Rematrixing : Decoding Technique
606 static void do_rematrixing(AC3DecodeContext *s)
608 int bnd, i;
609 int end, bndend;
610 int tmp0, tmp1;
612 end = FFMIN(s->end_freq[1], s->end_freq[2]);
614 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
615 if(s->rematrixing_flags[bnd]) {
616 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
617 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
618 tmp0 = s->fixed_coeffs[1][i];
619 tmp1 = s->fixed_coeffs[2][i];
620 s->fixed_coeffs[1][i] = tmp0 + tmp1;
621 s->fixed_coeffs[2][i] = tmp0 - tmp1;
628 * Inverse MDCT Transform.
629 * Convert frequency domain coefficients to time-domain audio samples.
630 * reference: Section 7.9.4 Transformation Equations
632 static inline void do_imdct(AC3DecodeContext *s, int channels)
634 int ch;
635 float add_bias = s->add_bias;
636 if(s->out_channels==1 && channels>1)
637 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
639 for (ch=1; ch<=channels; ch++) {
640 if (s->block_switch[ch]) {
641 int i;
642 float *x = s->tmp_output+128;
643 for(i=0; i<128; i++)
644 x[i] = s->transform_coeffs[ch][2*i];
645 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
646 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
647 for(i=0; i<128; i++)
648 x[i] = s->transform_coeffs[ch][2*i+1];
649 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
650 } else {
651 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
652 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
653 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
659 * Downmix the output to mono or stereo.
661 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
663 int i, j;
664 float v0, v1;
665 if(out_ch == 2) {
666 for(i=0; i<len; i++) {
667 v0 = v1 = 0.0f;
668 for(j=0; j<in_ch; j++) {
669 v0 += samples[j][i] * matrix[j][0];
670 v1 += samples[j][i] * matrix[j][1];
672 samples[0][i] = v0;
673 samples[1][i] = v1;
675 } else if(out_ch == 1) {
676 for(i=0; i<len; i++) {
677 v0 = 0.0f;
678 for(j=0; j<in_ch; j++)
679 v0 += samples[j][i] * matrix[j][0];
680 samples[0][i] = v0;
686 * Upmix delay samples from stereo to original channel layout.
688 static void ac3_upmix_delay(AC3DecodeContext *s)
690 int channel_data_size = sizeof(s->delay[0]);
691 switch(s->channel_mode) {
692 case AC3_CHMODE_DUALMONO:
693 case AC3_CHMODE_STEREO:
694 /* upmix mono to stereo */
695 memcpy(s->delay[1], s->delay[0], channel_data_size);
696 break;
697 case AC3_CHMODE_2F2R:
698 memset(s->delay[3], 0, channel_data_size);
699 case AC3_CHMODE_2F1R:
700 memset(s->delay[2], 0, channel_data_size);
701 break;
702 case AC3_CHMODE_3F2R:
703 memset(s->delay[4], 0, channel_data_size);
704 case AC3_CHMODE_3F1R:
705 memset(s->delay[3], 0, channel_data_size);
706 case AC3_CHMODE_3F:
707 memcpy(s->delay[2], s->delay[1], channel_data_size);
708 memset(s->delay[1], 0, channel_data_size);
709 break;
714 * Decode a single audio block from the AC-3 bitstream.
716 static int decode_audio_block(AC3DecodeContext *s, int blk)
718 int fbw_channels = s->fbw_channels;
719 int channel_mode = s->channel_mode;
720 int i, bnd, seg, ch;
721 int different_transforms;
722 int downmix_output;
723 int cpl_in_use;
724 GetBitContext *gbc = &s->gbc;
725 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
727 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
729 /* block switch flags */
730 different_transforms = 0;
731 if (s->block_switch_syntax) {
732 for (ch = 1; ch <= fbw_channels; ch++) {
733 s->block_switch[ch] = get_bits1(gbc);
734 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
735 different_transforms = 1;
739 /* dithering flags */
740 if (s->dither_flag_syntax) {
741 for (ch = 1; ch <= fbw_channels; ch++) {
742 s->dither_flag[ch] = get_bits1(gbc);
746 /* dynamic range */
747 i = !(s->channel_mode);
748 do {
749 if(get_bits1(gbc)) {
750 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
751 s->avctx->drc_scale)+1.0;
752 } else if(blk == 0) {
753 s->dynamic_range[i] = 1.0f;
755 } while(i--);
757 /* spectral extension strategy */
758 if (s->eac3 && (!blk || get_bits1(gbc))) {
759 if (get_bits1(gbc)) {
760 av_log_missing_feature(s->avctx, "Spectral extension", 1);
761 return -1;
763 /* TODO: parse spectral extension strategy info */
766 /* TODO: spectral extension coordinates */
768 /* coupling strategy */
769 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
770 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
771 if (!s->eac3)
772 s->cpl_in_use[blk] = get_bits1(gbc);
773 if (s->cpl_in_use[blk]) {
774 /* coupling in use */
775 int cpl_begin_freq, cpl_end_freq;
777 if (channel_mode < AC3_CHMODE_STEREO) {
778 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
779 return -1;
782 /* check for enhanced coupling */
783 if (s->eac3 && get_bits1(gbc)) {
784 /* TODO: parse enhanced coupling strategy info */
785 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
786 return -1;
789 /* determine which channels are coupled */
790 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
791 s->channel_in_cpl[1] = 1;
792 s->channel_in_cpl[2] = 1;
793 } else {
794 for (ch = 1; ch <= fbw_channels; ch++)
795 s->channel_in_cpl[ch] = get_bits1(gbc);
798 /* phase flags in use */
799 if (channel_mode == AC3_CHMODE_STEREO)
800 s->phase_flags_in_use = get_bits1(gbc);
802 /* coupling frequency range */
803 /* TODO: modify coupling end freq if spectral extension is used */
804 cpl_begin_freq = get_bits(gbc, 4);
805 cpl_end_freq = get_bits(gbc, 4);
806 if (3 + cpl_end_freq - cpl_begin_freq < 0) {
807 av_log(s->avctx, AV_LOG_ERROR, "3+cplendf = %d < cplbegf = %d\n", 3+cpl_end_freq, cpl_begin_freq);
808 return -1;
810 s->num_cpl_bands = s->num_cpl_subbands = 3 + cpl_end_freq - cpl_begin_freq;
811 s->start_freq[CPL_CH] = cpl_begin_freq * 12 + 37;
812 s->end_freq[CPL_CH] = cpl_end_freq * 12 + 73;
814 /* coupling band structure */
815 if (!s->eac3 || get_bits1(gbc)) {
816 for (bnd = 0; bnd < s->num_cpl_subbands - 1; bnd++) {
817 s->cpl_band_struct[bnd] = get_bits1(gbc);
819 } else if (!blk) {
820 memcpy(s->cpl_band_struct,
821 &ff_eac3_default_cpl_band_struct[cpl_begin_freq+1],
822 s->num_cpl_subbands-1);
824 s->cpl_band_struct[s->num_cpl_subbands-1] = 0;
826 /* calculate number of coupling bands based on band structure */
827 for (bnd = 0; bnd < s->num_cpl_subbands-1; bnd++) {
828 s->num_cpl_bands -= s->cpl_band_struct[bnd];
830 } else {
831 /* coupling not in use */
832 for (ch = 1; ch <= fbw_channels; ch++) {
833 s->channel_in_cpl[ch] = 0;
834 s->first_cpl_coords[ch] = 1;
836 s->first_cpl_leak = s->eac3;
837 s->phase_flags_in_use = 0;
839 } else if (!s->eac3) {
840 if(!blk) {
841 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
842 return -1;
843 } else {
844 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
847 cpl_in_use = s->cpl_in_use[blk];
849 /* coupling coordinates */
850 if (cpl_in_use) {
851 int cpl_coords_exist = 0;
853 for (ch = 1; ch <= fbw_channels; ch++) {
854 if (s->channel_in_cpl[ch]) {
855 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
856 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
857 s->first_cpl_coords[ch] = 0;
858 cpl_coords_exist = 1;
859 master_cpl_coord = 3 * get_bits(gbc, 2);
860 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
861 cpl_coord_exp = get_bits(gbc, 4);
862 cpl_coord_mant = get_bits(gbc, 4);
863 if (cpl_coord_exp == 15)
864 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
865 else
866 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
867 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
869 } else if (!blk) {
870 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
871 return -1;
873 } else {
874 /* channel not in coupling */
875 s->first_cpl_coords[ch] = 1;
878 /* phase flags */
879 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
880 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
881 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
886 /* stereo rematrixing strategy and band structure */
887 if (channel_mode == AC3_CHMODE_STEREO) {
888 if ((s->eac3 && !blk) || get_bits1(gbc)) {
889 s->num_rematrixing_bands = 4;
890 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
891 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
892 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
893 s->rematrixing_flags[bnd] = get_bits1(gbc);
894 } else if (!blk) {
895 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
896 return -1;
900 /* exponent strategies for each channel */
901 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
902 if (!s->eac3)
903 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
904 if(s->exp_strategy[blk][ch] != EXP_REUSE)
905 bit_alloc_stages[ch] = 3;
908 /* channel bandwidth */
909 for (ch = 1; ch <= fbw_channels; ch++) {
910 s->start_freq[ch] = 0;
911 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
912 int group_size;
913 int prev = s->end_freq[ch];
914 if (s->channel_in_cpl[ch])
915 s->end_freq[ch] = s->start_freq[CPL_CH];
916 else {
917 int bandwidth_code = get_bits(gbc, 6);
918 if (bandwidth_code > 60) {
919 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60", bandwidth_code);
920 return -1;
922 s->end_freq[ch] = bandwidth_code * 3 + 73;
924 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
925 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
926 if(blk > 0 && s->end_freq[ch] != prev)
927 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
930 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
931 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
932 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
935 /* decode exponents for each channel */
936 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
937 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
938 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
939 decode_exponents(gbc, s->exp_strategy[blk][ch],
940 s->num_exp_groups[ch], s->dexps[ch][0],
941 &s->dexps[ch][s->start_freq[ch]+!!ch]);
942 if(ch != CPL_CH && ch != s->lfe_ch)
943 skip_bits(gbc, 2); /* skip gainrng */
947 /* bit allocation information */
948 if (s->bit_allocation_syntax) {
949 if (get_bits1(gbc)) {
950 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
951 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
952 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
953 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
954 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
955 for(ch=!cpl_in_use; ch<=s->channels; ch++)
956 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
957 } else if (!blk) {
958 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
959 return -1;
963 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
964 if(!s->eac3 || !blk){
965 if(s->snr_offset_strategy && get_bits1(gbc)) {
966 int snr = 0;
967 int csnr;
968 csnr = (get_bits(gbc, 6) - 15) << 4;
969 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
970 /* snr offset */
971 if (ch == i || s->snr_offset_strategy == 2)
972 snr = (csnr + get_bits(gbc, 4)) << 2;
973 /* run at least last bit allocation stage if snr offset changes */
974 if(blk && s->snr_offset[ch] != snr) {
975 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
977 s->snr_offset[ch] = snr;
979 /* fast gain (normal AC-3 only) */
980 if (!s->eac3) {
981 int prev = s->fast_gain[ch];
982 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
983 /* run last 2 bit allocation stages if fast gain changes */
984 if(blk && prev != s->fast_gain[ch])
985 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
988 } else if (!s->eac3 && !blk) {
989 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
990 return -1;
994 /* fast gain (E-AC-3 only) */
995 if (s->fast_gain_syntax && get_bits1(gbc)) {
996 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
997 int prev = s->fast_gain[ch];
998 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
999 /* run last 2 bit allocation stages if fast gain changes */
1000 if(blk && prev != s->fast_gain[ch])
1001 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1003 } else if (s->eac3 && !blk) {
1004 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1005 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1008 /* E-AC-3 to AC-3 converter SNR offset */
1009 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1010 skip_bits(gbc, 10); // skip converter snr offset
1013 /* coupling leak information */
1014 if (cpl_in_use) {
1015 if (s->first_cpl_leak || get_bits1(gbc)) {
1016 int fl = get_bits(gbc, 3);
1017 int sl = get_bits(gbc, 3);
1018 /* run last 2 bit allocation stages for coupling channel if
1019 coupling leak changes */
1020 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1021 sl != s->bit_alloc_params.cpl_slow_leak)) {
1022 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1024 s->bit_alloc_params.cpl_fast_leak = fl;
1025 s->bit_alloc_params.cpl_slow_leak = sl;
1026 } else if (!s->eac3 && !blk) {
1027 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1028 return -1;
1030 s->first_cpl_leak = 0;
1033 /* delta bit allocation information */
1034 if (s->dba_syntax && get_bits1(gbc)) {
1035 /* delta bit allocation exists (strategy) */
1036 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1037 s->dba_mode[ch] = get_bits(gbc, 2);
1038 if (s->dba_mode[ch] == DBA_RESERVED) {
1039 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1040 return -1;
1042 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1044 /* channel delta offset, len and bit allocation */
1045 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1046 if (s->dba_mode[ch] == DBA_NEW) {
1047 s->dba_nsegs[ch] = get_bits(gbc, 3);
1048 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1049 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1050 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1051 s->dba_values[ch][seg] = get_bits(gbc, 3);
1053 /* run last 2 bit allocation stages if new dba values */
1054 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1057 } else if(blk == 0) {
1058 for(ch=0; ch<=s->channels; ch++) {
1059 s->dba_mode[ch] = DBA_NONE;
1063 /* Bit allocation */
1064 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1065 if(bit_alloc_stages[ch] > 2) {
1066 /* Exponent mapping into PSD and PSD integration */
1067 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1068 s->start_freq[ch], s->end_freq[ch],
1069 s->psd[ch], s->band_psd[ch]);
1071 if(bit_alloc_stages[ch] > 1) {
1072 /* Compute excitation function, Compute masking curve, and
1073 Apply delta bit allocation */
1074 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1075 s->start_freq[ch], s->end_freq[ch],
1076 s->fast_gain[ch], (ch == s->lfe_ch),
1077 s->dba_mode[ch], s->dba_nsegs[ch],
1078 s->dba_offsets[ch], s->dba_lengths[ch],
1079 s->dba_values[ch], s->mask[ch]);
1081 if(bit_alloc_stages[ch] > 0) {
1082 /* Compute bit allocation */
1083 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1084 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1085 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1086 s->start_freq[ch], s->end_freq[ch],
1087 s->snr_offset[ch],
1088 s->bit_alloc_params.floor,
1089 bap_tab, s->bap[ch]);
1093 /* unused dummy data */
1094 if (s->skip_syntax && get_bits1(gbc)) {
1095 int skipl = get_bits(gbc, 9);
1096 while(skipl--)
1097 skip_bits(gbc, 8);
1100 /* unpack the transform coefficients
1101 this also uncouples channels if coupling is in use. */
1102 decode_transform_coeffs(s, blk);
1104 /* TODO: generate enhanced coupling coordinates and uncouple */
1106 /* TODO: apply spectral extension */
1108 /* recover coefficients if rematrixing is in use */
1109 if(s->channel_mode == AC3_CHMODE_STEREO)
1110 do_rematrixing(s);
1112 /* apply scaling to coefficients (headroom, dynrng) */
1113 for(ch=1; ch<=s->channels; ch++) {
1114 float gain = s->mul_bias / 4194304.0f;
1115 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1116 gain *= s->dynamic_range[ch-1];
1117 } else {
1118 gain *= s->dynamic_range[0];
1120 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1123 /* downmix and MDCT. order depends on whether block switching is used for
1124 any channel in this block. this is because coefficients for the long
1125 and short transforms cannot be mixed. */
1126 downmix_output = s->channels != s->out_channels &&
1127 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1128 s->fbw_channels == s->out_channels);
1129 if(different_transforms) {
1130 /* the delay samples have already been downmixed, so we upmix the delay
1131 samples in order to reconstruct all channels before downmixing. */
1132 if(s->downmixed) {
1133 s->downmixed = 0;
1134 ac3_upmix_delay(s);
1137 do_imdct(s, s->channels);
1139 if(downmix_output) {
1140 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1142 } else {
1143 if(downmix_output) {
1144 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1147 if(downmix_output && !s->downmixed) {
1148 s->downmixed = 1;
1149 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1152 do_imdct(s, s->out_channels);
1155 return 0;
1159 * Decode a single AC-3 frame.
1161 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1162 const uint8_t *buf, int buf_size)
1164 AC3DecodeContext *s = avctx->priv_data;
1165 int16_t *out_samples = (int16_t *)data;
1166 int blk, ch, err;
1168 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1169 if (s->input_buffer) {
1170 /* copy input buffer to decoder context to avoid reading past the end
1171 of the buffer, which can be caused by a damaged input stream. */
1172 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1173 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1174 } else {
1175 init_get_bits(&s->gbc, buf, buf_size * 8);
1178 /* parse the syncinfo */
1179 *data_size = 0;
1180 err = parse_frame_header(s);
1182 /* check that reported frame size fits in input buffer */
1183 if(s->frame_size > buf_size) {
1184 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1185 err = AC3_PARSE_ERROR_FRAME_SIZE;
1188 /* check for crc mismatch */
1189 if(err != AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1190 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1191 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1192 err = AC3_PARSE_ERROR_CRC;
1196 if(err && err != AC3_PARSE_ERROR_CRC) {
1197 switch(err) {
1198 case AC3_PARSE_ERROR_SYNC:
1199 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1200 return -1;
1201 case AC3_PARSE_ERROR_BSID:
1202 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1203 break;
1204 case AC3_PARSE_ERROR_SAMPLE_RATE:
1205 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1206 break;
1207 case AC3_PARSE_ERROR_FRAME_SIZE:
1208 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1209 break;
1210 case AC3_PARSE_ERROR_FRAME_TYPE:
1211 /* skip frame if CRC is ok. otherwise use error concealment. */
1212 /* TODO: add support for substreams and dependent frames */
1213 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1214 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1215 return s->frame_size;
1216 } else {
1217 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1219 break;
1220 default:
1221 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1222 break;
1226 /* if frame is ok, set audio parameters */
1227 if (!err) {
1228 avctx->sample_rate = s->sample_rate;
1229 avctx->bit_rate = s->bit_rate;
1231 /* channel config */
1232 s->out_channels = s->channels;
1233 s->output_mode = s->channel_mode;
1234 if(s->lfe_on)
1235 s->output_mode |= AC3_OUTPUT_LFEON;
1236 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1237 avctx->request_channels < s->channels) {
1238 s->out_channels = avctx->request_channels;
1239 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1241 avctx->channels = s->out_channels;
1243 /* set downmixing coefficients if needed */
1244 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1245 s->fbw_channels == s->out_channels)) {
1246 set_downmix_coeffs(s);
1248 } else if (!s->out_channels) {
1249 s->out_channels = avctx->channels;
1250 if(s->out_channels < s->channels)
1251 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1254 /* decode the audio blocks */
1255 for (blk = 0; blk < s->num_blocks; blk++) {
1256 const float *output[s->out_channels];
1257 if (!err && decode_audio_block(s, blk)) {
1258 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1260 for (ch = 0; ch < s->out_channels; ch++)
1261 output[ch] = s->output[ch];
1262 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1263 out_samples += 256 * s->out_channels;
1265 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1266 return s->frame_size;
1270 * Uninitialize the AC-3 decoder.
1272 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1274 AC3DecodeContext *s = avctx->priv_data;
1275 ff_mdct_end(&s->imdct_512);
1276 ff_mdct_end(&s->imdct_256);
1278 av_freep(&s->input_buffer);
1280 return 0;
1283 AVCodec ac3_decoder = {
1284 .name = "ac3",
1285 .type = CODEC_TYPE_AUDIO,
1286 .id = CODEC_ID_AC3,
1287 .priv_data_size = sizeof (AC3DecodeContext),
1288 .init = ac3_decode_init,
1289 .close = ac3_decode_end,
1290 .decode = ac3_decode_frame,
1291 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1294 AVCodec eac3_decoder = {
1295 .name = "eac3",
1296 .type = CODEC_TYPE_AUDIO,
1297 .id = CODEC_ID_EAC3,
1298 .priv_data_size = sizeof (AC3DecodeContext),
1299 .init = ac3_decode_init,
1300 .close = ac3_decode_end,
1301 .decode = ac3_decode_frame,
1302 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),