Merge branch 'mirror' into vdpau
[FFMpeg-mirror/ffmpeg-vdpau.git] / libavcodec / adpcm.c
blobc4fb3eeb6d81e90d0652dcdc7f3132ac55d72ae2
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "bytestream.h"
25 /**
26 * @file adpcm.c
27 * ADPCM codecs.
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 * Features and limitations:
42 * Reference documents:
43 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45 * http://openquicktime.sourceforge.net/plugins.htm
46 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50 * CD-ROM XA:
51 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53 * readstr http://www.geocities.co.jp/Playtown/2004/
56 #define BLKSIZE 1024
58 /* step_table[] and index_table[] are from the ADPCM reference source */
59 /* This is the index table: */
60 static const int index_table[16] = {
61 -1, -1, -1, -1, 2, 4, 6, 8,
62 -1, -1, -1, -1, 2, 4, 6, 8,
65 /**
66 * This is the step table. Note that many programs use slight deviations from
67 * this table, but such deviations are negligible:
69 static const int step_table[89] = {
70 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
81 /* These are for MS-ADPCM */
82 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83 static const int AdaptationTable[] = {
84 230, 230, 230, 230, 307, 409, 512, 614,
85 768, 614, 512, 409, 307, 230, 230, 230
88 static const uint8_t AdaptCoeff1[] = {
89 64, 128, 0, 48, 60, 115, 98
92 static const int8_t AdaptCoeff2[] = {
93 0, -64, 0, 16, 0, -52, -58
96 /* These are for CD-ROM XA ADPCM */
97 static const int xa_adpcm_table[5][2] = {
98 { 0, 0 },
99 { 60, 0 },
100 { 115, -52 },
101 { 98, -55 },
102 { 122, -60 }
105 static const int ea_adpcm_table[] = {
106 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
110 static const int ct_adpcm_table[8] = {
111 0x00E6, 0x00E6, 0x00E6, 0x00E6,
112 0x0133, 0x0199, 0x0200, 0x0266
115 // padded to zero where table size is less then 16
116 static const int swf_index_tables[4][16] = {
117 /*2*/ { -1, 2 },
118 /*3*/ { -1, -1, 2, 4 },
119 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
123 static const int yamaha_indexscale[] = {
124 230, 230, 230, 230, 307, 409, 512, 614,
125 230, 230, 230, 230, 307, 409, 512, 614
128 static const int yamaha_difflookup[] = {
129 1, 3, 5, 7, 9, 11, 13, 15,
130 -1, -3, -5, -7, -9, -11, -13, -15
133 /* end of tables */
135 typedef struct ADPCMChannelStatus {
136 int predictor;
137 short int step_index;
138 int step;
139 /* for encoding */
140 int prev_sample;
142 /* MS version */
143 short sample1;
144 short sample2;
145 int coeff1;
146 int coeff2;
147 int idelta;
148 } ADPCMChannelStatus;
150 typedef struct ADPCMContext {
151 ADPCMChannelStatus status[6];
152 } ADPCMContext;
154 /* XXX: implement encoding */
156 #ifdef CONFIG_ENCODERS
157 static int adpcm_encode_init(AVCodecContext *avctx)
159 if (avctx->channels > 2)
160 return -1; /* only stereo or mono =) */
162 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
163 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
164 return -1;
167 switch(avctx->codec->id) {
168 case CODEC_ID_ADPCM_IMA_WAV:
169 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
170 /* and we have 4 bytes per channel overhead */
171 avctx->block_align = BLKSIZE;
172 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
173 break;
174 case CODEC_ID_ADPCM_IMA_QT:
175 avctx->frame_size = 64;
176 avctx->block_align = 34 * avctx->channels;
177 break;
178 case CODEC_ID_ADPCM_MS:
179 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180 /* and we have 7 bytes per channel overhead */
181 avctx->block_align = BLKSIZE;
182 break;
183 case CODEC_ID_ADPCM_YAMAHA:
184 avctx->frame_size = BLKSIZE * avctx->channels;
185 avctx->block_align = BLKSIZE;
186 break;
187 case CODEC_ID_ADPCM_SWF:
188 if (avctx->sample_rate != 11025 &&
189 avctx->sample_rate != 22050 &&
190 avctx->sample_rate != 44100) {
191 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
192 return -1;
194 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
195 break;
196 default:
197 return -1;
198 break;
201 avctx->coded_frame= avcodec_alloc_frame();
202 avctx->coded_frame->key_frame= 1;
204 return 0;
207 static int adpcm_encode_close(AVCodecContext *avctx)
209 av_freep(&avctx->coded_frame);
211 return 0;
215 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
217 int delta = sample - c->prev_sample;
218 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
219 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
220 c->prev_sample = av_clip_int16(c->prev_sample);
221 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
222 return nibble;
225 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
227 int predictor, nibble, bias;
229 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
231 nibble= sample - predictor;
232 if(nibble>=0) bias= c->idelta/2;
233 else bias=-c->idelta/2;
235 nibble= (nibble + bias) / c->idelta;
236 nibble= av_clip(nibble, -8, 7)&0x0F;
238 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
240 c->sample2 = c->sample1;
241 c->sample1 = av_clip_int16(predictor);
243 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
244 if (c->idelta < 16) c->idelta = 16;
246 return nibble;
249 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
251 int nibble, delta;
253 if(!c->step) {
254 c->predictor = 0;
255 c->step = 127;
258 delta = sample - c->predictor;
260 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
262 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
263 c->predictor = av_clip_int16(c->predictor);
264 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
265 c->step = av_clip(c->step, 127, 24567);
267 return nibble;
270 typedef struct TrellisPath {
271 int nibble;
272 int prev;
273 } TrellisPath;
275 typedef struct TrellisNode {
276 uint32_t ssd;
277 int path;
278 int sample1;
279 int sample2;
280 int step;
281 } TrellisNode;
283 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
284 uint8_t *dst, ADPCMChannelStatus *c, int n)
286 #define FREEZE_INTERVAL 128
287 //FIXME 6% faster if frontier is a compile-time constant
288 const int frontier = 1 << avctx->trellis;
289 const int stride = avctx->channels;
290 const int version = avctx->codec->id;
291 const int max_paths = frontier*FREEZE_INTERVAL;
292 TrellisPath paths[max_paths], *p;
293 TrellisNode node_buf[2][frontier];
294 TrellisNode *nodep_buf[2][frontier];
295 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
296 TrellisNode **nodes_next = nodep_buf[1];
297 int pathn = 0, froze = -1, i, j, k;
299 assert(!(max_paths&(max_paths-1)));
301 memset(nodep_buf, 0, sizeof(nodep_buf));
302 nodes[0] = &node_buf[1][0];
303 nodes[0]->ssd = 0;
304 nodes[0]->path = 0;
305 nodes[0]->step = c->step_index;
306 nodes[0]->sample1 = c->sample1;
307 nodes[0]->sample2 = c->sample2;
308 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
309 nodes[0]->sample1 = c->prev_sample;
310 if(version == CODEC_ID_ADPCM_MS)
311 nodes[0]->step = c->idelta;
312 if(version == CODEC_ID_ADPCM_YAMAHA) {
313 if(c->step == 0) {
314 nodes[0]->step = 127;
315 nodes[0]->sample1 = 0;
316 } else {
317 nodes[0]->step = c->step;
318 nodes[0]->sample1 = c->predictor;
322 for(i=0; i<n; i++) {
323 TrellisNode *t = node_buf[i&1];
324 TrellisNode **u;
325 int sample = samples[i*stride];
326 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
327 for(j=0; j<frontier && nodes[j]; j++) {
328 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
329 const int range = (j < frontier/2) ? 1 : 0;
330 const int step = nodes[j]->step;
331 int nidx;
332 if(version == CODEC_ID_ADPCM_MS) {
333 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
334 const int div = (sample - predictor) / step;
335 const int nmin = av_clip(div-range, -8, 6);
336 const int nmax = av_clip(div+range, -7, 7);
337 for(nidx=nmin; nidx<=nmax; nidx++) {
338 const int nibble = nidx & 0xf;
339 int dec_sample = predictor + nidx * step;
340 #define STORE_NODE(NAME, STEP_INDEX)\
341 int d;\
342 uint32_t ssd;\
343 dec_sample = av_clip_int16(dec_sample);\
344 d = sample - dec_sample;\
345 ssd = nodes[j]->ssd + d*d;\
346 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
347 continue;\
348 /* Collapse any two states with the same previous sample value. \
349 * One could also distinguish states by step and by 2nd to last
350 * sample, but the effects of that are negligible. */\
351 for(k=0; k<frontier && nodes_next[k]; k++) {\
352 if(dec_sample == nodes_next[k]->sample1) {\
353 assert(ssd >= nodes_next[k]->ssd);\
354 goto next_##NAME;\
357 for(k=0; k<frontier; k++) {\
358 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
359 TrellisNode *u = nodes_next[frontier-1];\
360 if(!u) {\
361 assert(pathn < max_paths);\
362 u = t++;\
363 u->path = pathn++;\
365 u->ssd = ssd;\
366 u->step = STEP_INDEX;\
367 u->sample2 = nodes[j]->sample1;\
368 u->sample1 = dec_sample;\
369 paths[u->path].nibble = nibble;\
370 paths[u->path].prev = nodes[j]->path;\
371 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
372 nodes_next[k] = u;\
373 break;\
376 next_##NAME:;
377 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
379 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
380 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
381 const int predictor = nodes[j]->sample1;\
382 const int div = (sample - predictor) * 4 / STEP_TABLE;\
383 int nmin = av_clip(div-range, -7, 6);\
384 int nmax = av_clip(div+range, -6, 7);\
385 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
386 if(nmax<0) nmax--;\
387 for(nidx=nmin; nidx<=nmax; nidx++) {\
388 const int nibble = nidx<0 ? 7-nidx : nidx;\
389 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
390 STORE_NODE(NAME, STEP_INDEX);\
392 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
393 } else { //CODEC_ID_ADPCM_YAMAHA
394 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
395 #undef LOOP_NODES
396 #undef STORE_NODE
400 u = nodes;
401 nodes = nodes_next;
402 nodes_next = u;
404 // prevent overflow
405 if(nodes[0]->ssd > (1<<28)) {
406 for(j=1; j<frontier && nodes[j]; j++)
407 nodes[j]->ssd -= nodes[0]->ssd;
408 nodes[0]->ssd = 0;
411 // merge old paths to save memory
412 if(i == froze + FREEZE_INTERVAL) {
413 p = &paths[nodes[0]->path];
414 for(k=i; k>froze; k--) {
415 dst[k] = p->nibble;
416 p = &paths[p->prev];
418 froze = i;
419 pathn = 0;
420 // other nodes might use paths that don't coincide with the frozen one.
421 // checking which nodes do so is too slow, so just kill them all.
422 // this also slightly improves quality, but I don't know why.
423 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
427 p = &paths[nodes[0]->path];
428 for(i=n-1; i>froze; i--) {
429 dst[i] = p->nibble;
430 p = &paths[p->prev];
433 c->predictor = nodes[0]->sample1;
434 c->sample1 = nodes[0]->sample1;
435 c->sample2 = nodes[0]->sample2;
436 c->step_index = nodes[0]->step;
437 c->step = nodes[0]->step;
438 c->idelta = nodes[0]->step;
441 static int adpcm_encode_frame(AVCodecContext *avctx,
442 unsigned char *frame, int buf_size, void *data)
444 int n, i, st;
445 short *samples;
446 unsigned char *dst;
447 ADPCMContext *c = avctx->priv_data;
449 dst = frame;
450 samples = (short *)data;
451 st= avctx->channels == 2;
452 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
454 switch(avctx->codec->id) {
455 case CODEC_ID_ADPCM_IMA_WAV:
456 n = avctx->frame_size / 8;
457 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
458 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
459 bytestream_put_le16(&dst, c->status[0].prev_sample);
460 *dst++ = (unsigned char)c->status[0].step_index;
461 *dst++ = 0; /* unknown */
462 samples++;
463 if (avctx->channels == 2) {
464 c->status[1].prev_sample = (signed short)samples[0];
465 /* c->status[1].step_index = 0; */
466 bytestream_put_le16(&dst, c->status[1].prev_sample);
467 *dst++ = (unsigned char)c->status[1].step_index;
468 *dst++ = 0;
469 samples++;
472 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
473 if(avctx->trellis > 0) {
474 uint8_t buf[2][n*8];
475 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
476 if(avctx->channels == 2)
477 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
478 for(i=0; i<n; i++) {
479 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
480 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
481 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
482 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
483 if (avctx->channels == 2) {
484 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
485 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
486 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
487 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
490 } else
491 for (; n>0; n--) {
492 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
493 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
494 dst++;
495 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
496 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
497 dst++;
498 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
499 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
500 dst++;
501 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
502 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
503 dst++;
504 /* right channel */
505 if (avctx->channels == 2) {
506 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
507 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
508 dst++;
509 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
510 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
511 dst++;
512 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
513 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
514 dst++;
515 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
516 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
517 dst++;
519 samples += 8 * avctx->channels;
521 break;
522 case CODEC_ID_ADPCM_IMA_QT:
524 int ch, i;
525 PutBitContext pb;
526 init_put_bits(&pb, dst, buf_size*8);
528 for(ch=0; ch<avctx->channels; ch++){
529 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
530 put_bits(&pb, 7, c->status[ch].step_index);
531 if(avctx->trellis > 0) {
532 uint8_t buf[64];
533 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
534 for(i=0; i<64; i++)
535 put_bits(&pb, 4, buf[i^1]);
536 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
537 } else {
538 for (i=0; i<64; i+=2){
539 int t1, t2;
540 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
541 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
542 put_bits(&pb, 4, t2);
543 put_bits(&pb, 4, t1);
545 c->status[ch].prev_sample &= ~0x7F;
549 dst += put_bits_count(&pb)>>3;
550 break;
552 case CODEC_ID_ADPCM_SWF:
554 int i;
555 PutBitContext pb;
556 init_put_bits(&pb, dst, buf_size*8);
558 n = avctx->frame_size-1;
560 //Store AdpcmCodeSize
561 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
563 //Init the encoder state
564 for(i=0; i<avctx->channels; i++){
565 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
566 put_sbits(&pb, 16, samples[i]);
567 put_bits(&pb, 6, c->status[i].step_index);
568 c->status[i].prev_sample = (signed short)samples[i];
571 if(avctx->trellis > 0) {
572 uint8_t buf[2][n];
573 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
574 if (avctx->channels == 2)
575 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
576 for(i=0; i<n; i++) {
577 put_bits(&pb, 4, buf[0][i]);
578 if (avctx->channels == 2)
579 put_bits(&pb, 4, buf[1][i]);
581 } else {
582 for (i=1; i<avctx->frame_size; i++) {
583 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
584 if (avctx->channels == 2)
585 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
588 flush_put_bits(&pb);
589 dst += put_bits_count(&pb)>>3;
590 break;
592 case CODEC_ID_ADPCM_MS:
593 for(i=0; i<avctx->channels; i++){
594 int predictor=0;
596 *dst++ = predictor;
597 c->status[i].coeff1 = AdaptCoeff1[predictor];
598 c->status[i].coeff2 = AdaptCoeff2[predictor];
600 for(i=0; i<avctx->channels; i++){
601 if (c->status[i].idelta < 16)
602 c->status[i].idelta = 16;
604 bytestream_put_le16(&dst, c->status[i].idelta);
606 for(i=0; i<avctx->channels; i++){
607 c->status[i].sample2= *samples++;
609 for(i=0; i<avctx->channels; i++){
610 c->status[i].sample1= *samples++;
612 bytestream_put_le16(&dst, c->status[i].sample1);
614 for(i=0; i<avctx->channels; i++)
615 bytestream_put_le16(&dst, c->status[i].sample2);
617 if(avctx->trellis > 0) {
618 int n = avctx->block_align - 7*avctx->channels;
619 uint8_t buf[2][n];
620 if(avctx->channels == 1) {
621 n *= 2;
622 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
623 for(i=0; i<n; i+=2)
624 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
625 } else {
626 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
627 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
628 for(i=0; i<n; i++)
629 *dst++ = (buf[0][i] << 4) | buf[1][i];
631 } else
632 for(i=7*avctx->channels; i<avctx->block_align; i++) {
633 int nibble;
634 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
635 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
636 *dst++ = nibble;
638 break;
639 case CODEC_ID_ADPCM_YAMAHA:
640 n = avctx->frame_size / 2;
641 if(avctx->trellis > 0) {
642 uint8_t buf[2][n*2];
643 n *= 2;
644 if(avctx->channels == 1) {
645 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
646 for(i=0; i<n; i+=2)
647 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
648 } else {
649 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
650 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
651 for(i=0; i<n; i++)
652 *dst++ = buf[0][i] | (buf[1][i] << 4);
654 } else
655 for (; n>0; n--) {
656 for(i = 0; i < avctx->channels; i++) {
657 int nibble;
658 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
659 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
660 *dst++ = nibble;
662 samples += 2 * avctx->channels;
664 break;
665 default:
666 return -1;
668 return dst - frame;
670 #endif //CONFIG_ENCODERS
672 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
674 ADPCMContext *c = avctx->priv_data;
675 unsigned int max_channels = 2;
677 switch(avctx->codec->id) {
678 case CODEC_ID_ADPCM_EA_R1:
679 case CODEC_ID_ADPCM_EA_R2:
680 case CODEC_ID_ADPCM_EA_R3:
681 max_channels = 6;
682 break;
684 if(avctx->channels > max_channels){
685 return -1;
688 switch(avctx->codec->id) {
689 case CODEC_ID_ADPCM_CT:
690 c->status[0].step = c->status[1].step = 511;
691 break;
692 case CODEC_ID_ADPCM_IMA_WS:
693 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
694 c->status[0].predictor = AV_RL32(avctx->extradata);
695 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
697 break;
698 default:
699 break;
701 avctx->sample_fmt = SAMPLE_FMT_S16;
702 return 0;
705 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
707 int step_index;
708 int predictor;
709 int sign, delta, diff, step;
711 step = step_table[c->step_index];
712 step_index = c->step_index + index_table[(unsigned)nibble];
713 if (step_index < 0) step_index = 0;
714 else if (step_index > 88) step_index = 88;
716 sign = nibble & 8;
717 delta = nibble & 7;
718 /* perform direct multiplication instead of series of jumps proposed by
719 * the reference ADPCM implementation since modern CPUs can do the mults
720 * quickly enough */
721 diff = ((2 * delta + 1) * step) >> shift;
722 predictor = c->predictor;
723 if (sign) predictor -= diff;
724 else predictor += diff;
726 c->predictor = av_clip_int16(predictor);
727 c->step_index = step_index;
729 return (short)c->predictor;
732 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
734 int predictor;
736 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
737 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
739 c->sample2 = c->sample1;
740 c->sample1 = av_clip_int16(predictor);
741 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
742 if (c->idelta < 16) c->idelta = 16;
744 return c->sample1;
747 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
749 int sign, delta, diff;
750 int new_step;
752 sign = nibble & 8;
753 delta = nibble & 7;
754 /* perform direct multiplication instead of series of jumps proposed by
755 * the reference ADPCM implementation since modern CPUs can do the mults
756 * quickly enough */
757 diff = ((2 * delta + 1) * c->step) >> 3;
758 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
759 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
760 c->predictor = av_clip_int16(c->predictor);
761 /* calculate new step and clamp it to range 511..32767 */
762 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
763 c->step = av_clip(new_step, 511, 32767);
765 return (short)c->predictor;
768 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
770 int sign, delta, diff;
772 sign = nibble & (1<<(size-1));
773 delta = nibble & ((1<<(size-1))-1);
774 diff = delta << (7 + c->step + shift);
776 /* clamp result */
777 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
779 /* calculate new step */
780 if (delta >= (2*size - 3) && c->step < 3)
781 c->step++;
782 else if (delta == 0 && c->step > 0)
783 c->step--;
785 return (short) c->predictor;
788 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
790 if(!c->step) {
791 c->predictor = 0;
792 c->step = 127;
795 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
796 c->predictor = av_clip_int16(c->predictor);
797 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
798 c->step = av_clip(c->step, 127, 24567);
799 return c->predictor;
802 static void xa_decode(short *out, const unsigned char *in,
803 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
805 int i, j;
806 int shift,filter,f0,f1;
807 int s_1,s_2;
808 int d,s,t;
810 for(i=0;i<4;i++) {
812 shift = 12 - (in[4+i*2] & 15);
813 filter = in[4+i*2] >> 4;
814 f0 = xa_adpcm_table[filter][0];
815 f1 = xa_adpcm_table[filter][1];
817 s_1 = left->sample1;
818 s_2 = left->sample2;
820 for(j=0;j<28;j++) {
821 d = in[16+i+j*4];
823 t = (signed char)(d<<4)>>4;
824 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
825 s_2 = s_1;
826 s_1 = av_clip_int16(s);
827 *out = s_1;
828 out += inc;
831 if (inc==2) { /* stereo */
832 left->sample1 = s_1;
833 left->sample2 = s_2;
834 s_1 = right->sample1;
835 s_2 = right->sample2;
836 out = out + 1 - 28*2;
839 shift = 12 - (in[5+i*2] & 15);
840 filter = in[5+i*2] >> 4;
842 f0 = xa_adpcm_table[filter][0];
843 f1 = xa_adpcm_table[filter][1];
845 for(j=0;j<28;j++) {
846 d = in[16+i+j*4];
848 t = (signed char)d >> 4;
849 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
850 s_2 = s_1;
851 s_1 = av_clip_int16(s);
852 *out = s_1;
853 out += inc;
856 if (inc==2) { /* stereo */
857 right->sample1 = s_1;
858 right->sample2 = s_2;
859 out -= 1;
860 } else {
861 left->sample1 = s_1;
862 left->sample2 = s_2;
868 /* DK3 ADPCM support macro */
869 #define DK3_GET_NEXT_NIBBLE() \
870 if (decode_top_nibble_next) \
872 nibble = last_byte >> 4; \
873 decode_top_nibble_next = 0; \
875 else \
877 last_byte = *src++; \
878 if (src >= buf + buf_size) break; \
879 nibble = last_byte & 0x0F; \
880 decode_top_nibble_next = 1; \
883 static int adpcm_decode_frame(AVCodecContext *avctx,
884 void *data, int *data_size,
885 const uint8_t *buf, int buf_size)
887 ADPCMContext *c = avctx->priv_data;
888 ADPCMChannelStatus *cs;
889 int n, m, channel, i;
890 int block_predictor[2];
891 short *samples;
892 short *samples_end;
893 const uint8_t *src;
894 int st; /* stereo */
896 /* DK3 ADPCM accounting variables */
897 unsigned char last_byte = 0;
898 unsigned char nibble;
899 int decode_top_nibble_next = 0;
900 int diff_channel;
902 /* EA ADPCM state variables */
903 uint32_t samples_in_chunk;
904 int32_t previous_left_sample, previous_right_sample;
905 int32_t current_left_sample, current_right_sample;
906 int32_t next_left_sample, next_right_sample;
907 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
908 uint8_t shift_left, shift_right;
909 int count1, count2;
910 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
912 if (!buf_size)
913 return 0;
915 //should protect all 4bit ADPCM variants
916 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
918 if(*data_size/4 < buf_size + 8)
919 return -1;
921 samples = data;
922 samples_end= samples + *data_size/2;
923 *data_size= 0;
924 src = buf;
926 st = avctx->channels == 2 ? 1 : 0;
928 switch(avctx->codec->id) {
929 case CODEC_ID_ADPCM_IMA_QT:
930 n = buf_size - 2*avctx->channels;
931 for (channel = 0; channel < avctx->channels; channel++) {
932 cs = &(c->status[channel]);
933 /* (pppppp) (piiiiiii) */
935 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
936 cs->predictor = (*src++) << 8;
937 cs->predictor |= (*src & 0x80);
938 cs->predictor &= 0xFF80;
940 /* sign extension */
941 if(cs->predictor & 0x8000)
942 cs->predictor -= 0x10000;
944 cs->predictor = av_clip_int16(cs->predictor);
946 cs->step_index = (*src++) & 0x7F;
948 if (cs->step_index > 88){
949 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
950 cs->step_index = 88;
953 cs->step = step_table[cs->step_index];
955 samples = (short*)data + channel;
957 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
958 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
959 samples += avctx->channels;
960 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
961 samples += avctx->channels;
962 src ++;
965 if (st)
966 samples--;
967 break;
968 case CODEC_ID_ADPCM_IMA_WAV:
969 if (avctx->block_align != 0 && buf_size > avctx->block_align)
970 buf_size = avctx->block_align;
972 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
974 for(i=0; i<avctx->channels; i++){
975 cs = &(c->status[i]);
976 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
978 cs->step_index = *src++;
979 if (cs->step_index > 88){
980 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
981 cs->step_index = 88;
983 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
986 while(src < buf + buf_size){
987 for(m=0; m<4; m++){
988 for(i=0; i<=st; i++)
989 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
990 for(i=0; i<=st; i++)
991 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
992 src++;
994 src += 4*st;
996 break;
997 case CODEC_ID_ADPCM_4XM:
998 cs = &(c->status[0]);
999 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1000 if(st){
1001 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1003 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1004 if(st){
1005 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1007 if (cs->step_index < 0) cs->step_index = 0;
1008 if (cs->step_index > 88) cs->step_index = 88;
1010 m= (buf_size - (src - buf))>>st;
1011 for(i=0; i<m; i++) {
1012 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1013 if (st)
1014 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1015 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1016 if (st)
1017 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1020 src += m<<st;
1022 break;
1023 case CODEC_ID_ADPCM_MS:
1024 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1025 buf_size = avctx->block_align;
1026 n = buf_size - 7 * avctx->channels;
1027 if (n < 0)
1028 return -1;
1029 block_predictor[0] = av_clip(*src++, 0, 6);
1030 block_predictor[1] = 0;
1031 if (st)
1032 block_predictor[1] = av_clip(*src++, 0, 6);
1033 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1034 if (st){
1035 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1037 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1038 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1039 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1040 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1042 c->status[0].sample1 = bytestream_get_le16(&src);
1043 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1044 c->status[0].sample2 = bytestream_get_le16(&src);
1045 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1047 *samples++ = c->status[0].sample2;
1048 if (st) *samples++ = c->status[1].sample2;
1049 *samples++ = c->status[0].sample1;
1050 if (st) *samples++ = c->status[1].sample1;
1051 for(;n>0;n--) {
1052 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1053 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1054 src ++;
1056 break;
1057 case CODEC_ID_ADPCM_IMA_DK4:
1058 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1059 buf_size = avctx->block_align;
1061 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1062 c->status[0].step_index = *src++;
1063 src++;
1064 *samples++ = c->status[0].predictor;
1065 if (st) {
1066 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1067 c->status[1].step_index = *src++;
1068 src++;
1069 *samples++ = c->status[1].predictor;
1071 while (src < buf + buf_size) {
1073 /* take care of the top nibble (always left or mono channel) */
1074 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1075 src[0] >> 4, 3);
1077 /* take care of the bottom nibble, which is right sample for
1078 * stereo, or another mono sample */
1079 if (st)
1080 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1081 src[0] & 0x0F, 3);
1082 else
1083 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1084 src[0] & 0x0F, 3);
1086 src++;
1088 break;
1089 case CODEC_ID_ADPCM_IMA_DK3:
1090 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1091 buf_size = avctx->block_align;
1093 if(buf_size + 16 > (samples_end - samples)*3/8)
1094 return -1;
1096 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1097 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1098 c->status[0].step_index = src[14];
1099 c->status[1].step_index = src[15];
1100 /* sign extend the predictors */
1101 src += 16;
1102 diff_channel = c->status[1].predictor;
1104 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1105 * the buffer is consumed */
1106 while (1) {
1108 /* for this algorithm, c->status[0] is the sum channel and
1109 * c->status[1] is the diff channel */
1111 /* process the first predictor of the sum channel */
1112 DK3_GET_NEXT_NIBBLE();
1113 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1115 /* process the diff channel predictor */
1116 DK3_GET_NEXT_NIBBLE();
1117 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1119 /* process the first pair of stereo PCM samples */
1120 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1121 *samples++ = c->status[0].predictor + c->status[1].predictor;
1122 *samples++ = c->status[0].predictor - c->status[1].predictor;
1124 /* process the second predictor of the sum channel */
1125 DK3_GET_NEXT_NIBBLE();
1126 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1128 /* process the second pair of stereo PCM samples */
1129 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1130 *samples++ = c->status[0].predictor + c->status[1].predictor;
1131 *samples++ = c->status[0].predictor - c->status[1].predictor;
1133 break;
1134 case CODEC_ID_ADPCM_IMA_WS:
1135 /* no per-block initialization; just start decoding the data */
1136 while (src < buf + buf_size) {
1138 if (st) {
1139 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1140 src[0] >> 4 , 3);
1141 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1142 src[0] & 0x0F, 3);
1143 } else {
1144 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1145 src[0] >> 4 , 3);
1146 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1147 src[0] & 0x0F, 3);
1150 src++;
1152 break;
1153 case CODEC_ID_ADPCM_XA:
1154 while (buf_size >= 128) {
1155 xa_decode(samples, src, &c->status[0], &c->status[1],
1156 avctx->channels);
1157 src += 128;
1158 samples += 28 * 8;
1159 buf_size -= 128;
1161 break;
1162 case CODEC_ID_ADPCM_IMA_EA_EACS:
1163 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1165 if (samples_in_chunk > buf_size-4-(8<<st)) {
1166 src += buf_size - 4;
1167 break;
1170 for (i=0; i<=st; i++)
1171 c->status[i].step_index = bytestream_get_le32(&src);
1172 for (i=0; i<=st; i++)
1173 c->status[i].predictor = bytestream_get_le32(&src);
1175 for (; samples_in_chunk; samples_in_chunk--, src++) {
1176 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1177 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1179 break;
1180 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1181 for (; src < buf+buf_size; src++) {
1182 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1183 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1185 break;
1186 case CODEC_ID_ADPCM_EA:
1187 samples_in_chunk = AV_RL32(src);
1188 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1189 src += buf_size;
1190 break;
1192 src += 4;
1193 current_left_sample = (int16_t)bytestream_get_le16(&src);
1194 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1195 current_right_sample = (int16_t)bytestream_get_le16(&src);
1196 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1198 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1199 coeff1l = ea_adpcm_table[ *src >> 4 ];
1200 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1201 coeff1r = ea_adpcm_table[*src & 0x0F];
1202 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1203 src++;
1205 shift_left = (*src >> 4 ) + 8;
1206 shift_right = (*src & 0x0F) + 8;
1207 src++;
1209 for (count2 = 0; count2 < 28; count2++) {
1210 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1211 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1212 src++;
1214 next_left_sample = (next_left_sample +
1215 (current_left_sample * coeff1l) +
1216 (previous_left_sample * coeff2l) + 0x80) >> 8;
1217 next_right_sample = (next_right_sample +
1218 (current_right_sample * coeff1r) +
1219 (previous_right_sample * coeff2r) + 0x80) >> 8;
1221 previous_left_sample = current_left_sample;
1222 current_left_sample = av_clip_int16(next_left_sample);
1223 previous_right_sample = current_right_sample;
1224 current_right_sample = av_clip_int16(next_right_sample);
1225 *samples++ = (unsigned short)current_left_sample;
1226 *samples++ = (unsigned short)current_right_sample;
1229 break;
1230 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1231 for(channel = 0; channel < avctx->channels; channel++) {
1232 for (i=0; i<2; i++)
1233 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1234 shift[channel] = (*src & 0x0F) + 8;
1235 src++;
1237 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1238 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1239 for(channel = 0; channel < avctx->channels; channel++) {
1240 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1241 sample = (sample +
1242 c->status[channel].sample1 * coeff[channel][0] +
1243 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1244 c->status[channel].sample2 = c->status[channel].sample1;
1245 c->status[channel].sample1 = av_clip_int16(sample);
1246 *samples++ = c->status[channel].sample1;
1249 src+=avctx->channels;
1251 break;
1252 case CODEC_ID_ADPCM_EA_R1:
1253 case CODEC_ID_ADPCM_EA_R2:
1254 case CODEC_ID_ADPCM_EA_R3: {
1255 /* channel numbering
1256 2chan: 0=fl, 1=fr
1257 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1258 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1259 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1260 int32_t previous_sample, current_sample, next_sample;
1261 int32_t coeff1, coeff2;
1262 uint8_t shift;
1263 unsigned int channel;
1264 uint16_t *samplesC;
1265 const uint8_t *srcC;
1267 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1268 : bytestream_get_le32(&src)) / 28;
1269 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1270 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1271 src += buf_size - 4;
1272 break;
1275 for (channel=0; channel<avctx->channels; channel++) {
1276 srcC = src + (big_endian ? bytestream_get_be32(&src)
1277 : bytestream_get_le32(&src))
1278 + (avctx->channels-channel-1) * 4;
1279 samplesC = samples + channel;
1281 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1282 current_sample = (int16_t)bytestream_get_le16(&srcC);
1283 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1284 } else {
1285 current_sample = c->status[channel].predictor;
1286 previous_sample = c->status[channel].prev_sample;
1289 for (count1=0; count1<samples_in_chunk; count1++) {
1290 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1291 srcC++;
1292 current_sample = (int16_t)bytestream_get_be16(&srcC);
1293 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1295 for (count2=0; count2<28; count2++) {
1296 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1297 samplesC += avctx->channels;
1299 } else {
1300 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1301 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1302 shift = (*srcC++ & 0x0F) + 8;
1304 for (count2=0; count2<28; count2++) {
1305 if (count2 & 1)
1306 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1307 else
1308 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1310 next_sample += (current_sample * coeff1) +
1311 (previous_sample * coeff2);
1312 next_sample = av_clip_int16(next_sample >> 8);
1314 previous_sample = current_sample;
1315 current_sample = next_sample;
1316 *samplesC = current_sample;
1317 samplesC += avctx->channels;
1322 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1323 c->status[channel].predictor = current_sample;
1324 c->status[channel].prev_sample = previous_sample;
1328 src = src + buf_size - (4 + 4*avctx->channels);
1329 samples += 28 * samples_in_chunk * avctx->channels;
1330 break;
1332 case CODEC_ID_ADPCM_EA_XAS:
1333 if (samples_end-samples < 32*4*avctx->channels
1334 || buf_size < (4+15)*4*avctx->channels) {
1335 src += buf_size;
1336 break;
1338 for (channel=0; channel<avctx->channels; channel++) {
1339 int coeff[2][4], shift[4];
1340 short *s2, *s = &samples[channel];
1341 for (n=0; n<4; n++, s+=32*avctx->channels) {
1342 for (i=0; i<2; i++)
1343 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1344 shift[n] = (src[2]&0x0F) + 8;
1345 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1346 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1349 for (m=2; m<32; m+=2) {
1350 s = &samples[m*avctx->channels + channel];
1351 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1352 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1353 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1354 int pred = s2[-1*avctx->channels] * coeff[0][n]
1355 + s2[-2*avctx->channels] * coeff[1][n];
1356 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1361 samples += 32*4*avctx->channels;
1362 break;
1363 case CODEC_ID_ADPCM_IMA_AMV:
1364 case CODEC_ID_ADPCM_IMA_SMJPEG:
1365 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1366 c->status[0].step_index = bytestream_get_le16(&src);
1368 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1369 src+=4;
1371 while (src < buf + buf_size) {
1372 char hi, lo;
1373 lo = *src & 0x0F;
1374 hi = *src >> 4;
1376 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1377 FFSWAP(char, hi, lo);
1379 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1380 lo, 3);
1381 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1382 hi, 3);
1383 src++;
1385 break;
1386 case CODEC_ID_ADPCM_CT:
1387 while (src < buf + buf_size) {
1388 if (st) {
1389 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1390 src[0] >> 4);
1391 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1392 src[0] & 0x0F);
1393 } else {
1394 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1395 src[0] >> 4);
1396 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1397 src[0] & 0x0F);
1399 src++;
1401 break;
1402 case CODEC_ID_ADPCM_SBPRO_4:
1403 case CODEC_ID_ADPCM_SBPRO_3:
1404 case CODEC_ID_ADPCM_SBPRO_2:
1405 if (!c->status[0].step_index) {
1406 /* the first byte is a raw sample */
1407 *samples++ = 128 * (*src++ - 0x80);
1408 if (st)
1409 *samples++ = 128 * (*src++ - 0x80);
1410 c->status[0].step_index = 1;
1412 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1413 while (src < buf + buf_size) {
1414 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1415 src[0] >> 4, 4, 0);
1416 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1417 src[0] & 0x0F, 4, 0);
1418 src++;
1420 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1421 while (src < buf + buf_size && samples + 2 < samples_end) {
1422 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1423 src[0] >> 5 , 3, 0);
1424 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1425 (src[0] >> 2) & 0x07, 3, 0);
1426 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1427 src[0] & 0x03, 2, 0);
1428 src++;
1430 } else {
1431 while (src < buf + buf_size && samples + 3 < samples_end) {
1432 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1433 src[0] >> 6 , 2, 2);
1434 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1435 (src[0] >> 4) & 0x03, 2, 2);
1436 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1437 (src[0] >> 2) & 0x03, 2, 2);
1438 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1439 src[0] & 0x03, 2, 2);
1440 src++;
1443 break;
1444 case CODEC_ID_ADPCM_SWF:
1446 GetBitContext gb;
1447 const int *table;
1448 int k0, signmask, nb_bits, count;
1449 int size = buf_size*8;
1451 init_get_bits(&gb, buf, size);
1453 //read bits & initial values
1454 nb_bits = get_bits(&gb, 2)+2;
1455 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1456 table = swf_index_tables[nb_bits-2];
1457 k0 = 1 << (nb_bits-2);
1458 signmask = 1 << (nb_bits-1);
1460 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1461 for (i = 0; i < avctx->channels; i++) {
1462 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1463 c->status[i].step_index = get_bits(&gb, 6);
1466 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1467 int i;
1469 for (i = 0; i < avctx->channels; i++) {
1470 // similar to IMA adpcm
1471 int delta = get_bits(&gb, nb_bits);
1472 int step = step_table[c->status[i].step_index];
1473 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1474 int k = k0;
1476 do {
1477 if (delta & k)
1478 vpdiff += step;
1479 step >>= 1;
1480 k >>= 1;
1481 } while(k);
1482 vpdiff += step;
1484 if (delta & signmask)
1485 c->status[i].predictor -= vpdiff;
1486 else
1487 c->status[i].predictor += vpdiff;
1489 c->status[i].step_index += table[delta & (~signmask)];
1491 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1492 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1494 *samples++ = c->status[i].predictor;
1495 if (samples >= samples_end) {
1496 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1497 return -1;
1502 src += buf_size;
1503 break;
1505 case CODEC_ID_ADPCM_YAMAHA:
1506 while (src < buf + buf_size) {
1507 if (st) {
1508 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1509 src[0] & 0x0F);
1510 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1511 src[0] >> 4 );
1512 } else {
1513 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1514 src[0] & 0x0F);
1515 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1516 src[0] >> 4 );
1518 src++;
1520 break;
1521 case CODEC_ID_ADPCM_THP:
1523 int table[2][16];
1524 unsigned int samplecnt;
1525 int prev[2][2];
1526 int ch;
1528 if (buf_size < 80) {
1529 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1530 return -1;
1533 src+=4;
1534 samplecnt = bytestream_get_be32(&src);
1536 for (i = 0; i < 32; i++)
1537 table[0][i] = (int16_t)bytestream_get_be16(&src);
1539 /* Initialize the previous sample. */
1540 for (i = 0; i < 4; i++)
1541 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1543 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1544 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1545 return -1;
1548 for (ch = 0; ch <= st; ch++) {
1549 samples = (unsigned short *) data + ch;
1551 /* Read in every sample for this channel. */
1552 for (i = 0; i < samplecnt / 14; i++) {
1553 int index = (*src >> 4) & 7;
1554 unsigned int exp = 28 - (*src++ & 15);
1555 int factor1 = table[ch][index * 2];
1556 int factor2 = table[ch][index * 2 + 1];
1558 /* Decode 14 samples. */
1559 for (n = 0; n < 14; n++) {
1560 int32_t sampledat;
1561 if(n&1) sampledat= *src++ <<28;
1562 else sampledat= (*src&0xF0)<<24;
1564 sampledat = ((prev[ch][0]*factor1
1565 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1566 *samples = av_clip_int16(sampledat);
1567 prev[ch][1] = prev[ch][0];
1568 prev[ch][0] = *samples++;
1570 /* In case of stereo, skip one sample, this sample
1571 is for the other channel. */
1572 samples += st;
1577 /* In the previous loop, in case stereo is used, samples is
1578 increased exactly one time too often. */
1579 samples -= st;
1580 break;
1583 default:
1584 return -1;
1586 *data_size = (uint8_t *)samples - (uint8_t *)data;
1587 return src - buf;
1592 #ifdef CONFIG_ENCODERS
1593 #define ADPCM_ENCODER(id,name,long_name_) \
1594 AVCodec name ## _encoder = { \
1595 #name, \
1596 CODEC_TYPE_AUDIO, \
1597 id, \
1598 sizeof(ADPCMContext), \
1599 adpcm_encode_init, \
1600 adpcm_encode_frame, \
1601 adpcm_encode_close, \
1602 NULL, \
1603 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1604 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1606 #else
1607 #define ADPCM_ENCODER(id,name,long_name_)
1608 #endif
1610 #ifdef CONFIG_DECODERS
1611 #define ADPCM_DECODER(id,name,long_name_) \
1612 AVCodec name ## _decoder = { \
1613 #name, \
1614 CODEC_TYPE_AUDIO, \
1615 id, \
1616 sizeof(ADPCMContext), \
1617 adpcm_decode_init, \
1618 NULL, \
1619 NULL, \
1620 adpcm_decode_frame, \
1621 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1623 #else
1624 #define ADPCM_DECODER(id,name,long_name_)
1625 #endif
1627 #define ADPCM_CODEC(id,name,long_name_) \
1628 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1630 /* Note: Do not forget to add new entries to the Makefile as well. */
1631 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "4X Movie ADPCM");
1632 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "Creative Technology ADPCM");
1633 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "Electronic Arts ADPCM");
1634 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "Electronic Arts Maxis CDROM XA ADPCM");
1635 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "Electronic Arts R1 ADPCM");
1636 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "Electronic Arts R2 ADPCM");
1637 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "Electronic Arts R3 ADPCM");
1638 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "Electronic Arts XAS ADPCM");
1639 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "IMA AMV ADPCM");
1640 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "IMA Duck DK3 ADPCM");
1641 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "IMA Duck DK4 ADPCM");
1642 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "IMA Electronic Arts EACS ADPCM");
1643 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "IMA Electronic Arts SEAD ADPCM");
1644 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "IMA QuickTime ADPCM");
1645 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "IMA Loki SDL MJPEG ADPCM");
1646 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "IMA Wav ADPCM");
1647 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "IMA Westwood ADPCM");
1648 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "Microsoft ADPCM");
1649 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "Sound Blaster Pro 2-bit ADPCM");
1650 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "Sound Blaster Pro 2.6-bit ADPCM");
1651 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "Sound Blaster Pro 4-bit ADPCM");
1652 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "Shockwave Flash ADPCM");
1653 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "Nintendo Gamecube THP ADPCM");
1654 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "CDROM XA ADPCM");
1655 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "Yamaha ADPCM");