cosmetics: Reformat PPC code in libavcodec according to style guidelines.
[FFMpeg-mirror/ffmpeg-vdpau.git] / libavcodec / ra144.c
blob0398b13cedd09f27d8c1c0657a4e45b80d4d2728
1 /*
2 * Real Audio 1.0 (14.4K)
4 * Copyright (c) 2008 Vitor Sessak
5 * Copyright (c) 2003 Nick Kurshev
6 * Based on public domain decoder at http://www.honeypot.net/audio
8 * This file is part of FFmpeg.
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "avcodec.h"
26 #include "bitstream.h"
27 #include "ra144.h"
28 #include "acelp_filters.h"
30 #define NBLOCKS 4 ///< number of subblocks within a block
31 #define BLOCKSIZE 40 ///< subblock size in 16-bit words
32 #define BUFFERSIZE 146 ///< the size of the adaptive codebook
35 typedef struct {
36 unsigned int old_energy; ///< previous frame energy
38 unsigned int lpc_tables[2][10];
40 /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
41 * and lpc_coef[1] of the previous one */
42 unsigned int *lpc_coef[2];
44 unsigned int lpc_refl_rms[2];
46 /** the current subblock padded by the last 10 values of the previous one*/
47 int16_t curr_sblock[50];
49 /** adaptive codebook. Its size is two units bigger to avoid a
50 * buffer overflow */
51 uint16_t adapt_cb[148];
52 } RA144Context;
54 static int ra144_decode_init(AVCodecContext * avctx)
56 RA144Context *ractx = avctx->priv_data;
58 ractx->lpc_coef[0] = ractx->lpc_tables[0];
59 ractx->lpc_coef[1] = ractx->lpc_tables[1];
61 return 0;
64 /**
65 * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
66 * odd way to make the output identical to the binary decoder.
68 static int t_sqrt(unsigned int x)
70 int s = 2;
71 while (x > 0xfff) {
72 s++;
73 x = x >> 2;
76 return ff_sqrt(x << 20) << s;
79 /**
80 * Evaluate the LPC filter coefficients from the reflection coefficients.
81 * Does the inverse of the eval_refl() function.
83 static void eval_coefs(int *coefs, const int *refl)
85 int buffer[10];
86 int *b1 = buffer;
87 int *b2 = coefs;
88 int x, y;
90 for (x=0; x < 10; x++) {
91 b1[x] = refl[x] << 4;
93 for (y=0; y < x; y++)
94 b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y];
96 FFSWAP(int *, b1, b2);
99 for (x=0; x < 10; x++)
100 coefs[x] >>= 4;
104 * Copy the last offset values of *source to *target. If those values are not
105 * enough to fill the target buffer, fill it with another copy of those values.
107 static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
109 source += BUFFERSIZE - offset;
111 if (offset > BLOCKSIZE) {
112 memcpy(target, source, BLOCKSIZE*sizeof(*target));
113 } else {
114 memcpy(target, source, offset*sizeof(*target));
115 memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
119 /** inverse root mean square */
120 static int irms(const int16_t *data)
122 unsigned int i, sum = 0;
124 for (i=0; i < BLOCKSIZE; i++)
125 sum += data[i] * data[i];
127 if (sum == 0)
128 return 0; /* OOPS - division by zero */
130 return 0x20000000 / (t_sqrt(sum) >> 8);
133 static void add_wav(int16_t *dest, int n, int skip_first, int *m,
134 const int16_t *s1, const int8_t *s2, const int8_t *s3)
136 int i;
137 int v[3];
139 v[0] = 0;
140 for (i=!skip_first; i<3; i++)
141 v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1);
143 for (i=0; i < BLOCKSIZE; i++)
144 dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
147 static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
149 return (rms * energy) >> 10;
152 static unsigned int rms(const int *data)
154 int x;
155 unsigned int res = 0x10000;
156 int b = 0;
158 for (x=0; x<10; x++) {
159 res = (((0x1000000 - data[x]*data[x]) >> 12) * res) >> 12;
161 if (res == 0)
162 return 0;
164 while (res <= 0x3fff) {
165 b++;
166 res <<= 2;
170 res = t_sqrt(res);
172 res >>= (b + 10);
173 return res;
176 static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
177 int gval, GetBitContext *gb)
179 uint16_t buffer_a[40];
180 uint16_t *block;
181 int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
182 int gain = get_bits(gb, 8);
183 int cb1_idx = get_bits(gb, 7);
184 int cb2_idx = get_bits(gb, 7);
185 int m[3];
187 if (cba_idx) {
188 cba_idx += BLOCKSIZE/2 - 1;
189 copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
190 m[0] = (irms(buffer_a) * gval) >> 12;
191 } else {
192 m[0] = 0;
195 m[1] = (cb1_base[cb1_idx] * gval) >> 8;
196 m[2] = (cb2_base[cb2_idx] * gval) >> 8;
198 memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
199 (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
201 block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
203 add_wav(block, gain, cba_idx, m, buffer_a,
204 cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
206 memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
207 10*sizeof(*ractx->curr_sblock));
208 memcpy(ractx->curr_sblock + 10, block,
209 BLOCKSIZE*sizeof(*ractx->curr_sblock));
211 if (ff_acelp_lp_synthesis_filter(
212 ractx->curr_sblock + 10, lpc_coefs,
213 ractx->curr_sblock + 10, BLOCKSIZE,
214 10, 1, 0xfff)
216 memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
219 static void int_to_int16(int16_t *out, const int *inp)
221 int i;
223 for (i=0; i<30; i++)
224 *(out++) = *(inp++);
228 * Evaluate the reflection coefficients from the filter coefficients.
229 * Does the inverse of the eval_coefs() function.
231 * @return 1 if one of the reflection coefficients is of magnitude greater than
232 * 4095, 0 if not.
234 static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
236 int retval = 0;
237 int b, c, i;
238 unsigned int u;
239 int buffer1[10];
240 int buffer2[10];
241 int *bp1 = buffer1;
242 int *bp2 = buffer2;
244 for (i=0; i < 10; i++)
245 buffer2[i] = coefs[i];
247 u = refl[9] = bp2[9];
249 if (u + 0x1000 > 0x1fff) {
250 av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
251 return 1;
254 for (c=8; c >= 0; c--) {
255 if (u == 0x1000)
256 u++;
258 if (u == 0xfffff000)
259 u--;
261 b = 0x1000-((u * u) >> 12);
263 if (b == 0)
264 b++;
266 for (u=0; u<=c; u++)
267 bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12;
269 refl[c] = u = bp1[c];
271 if ((u + 0x1000) > 0x1fff)
272 retval = 1;
274 FFSWAP(int *, bp1, bp2);
276 return retval;
279 static int interp(RA144Context *ractx, int16_t *out, int block_num,
280 int copyold, int energy)
282 int work[10];
283 int a = block_num + 1;
284 int b = NBLOCKS - a;
285 int x;
287 // Interpolate block coefficients from the this frame forth block and
288 // last frame forth block
289 for (x=0; x<30; x++)
290 out[x] = (a * ractx->lpc_coef[0][x] + b * ractx->lpc_coef[1][x])>> 2;
292 if (eval_refl(work, out, ractx)) {
293 // The interpolated coefficients are unstable, copy either new or old
294 // coefficients
295 int_to_int16(out, ractx->lpc_coef[copyold]);
296 return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
297 } else {
298 return rescale_rms(rms(work), energy);
302 /** Uncompress one block (20 bytes -> 160*2 bytes) */
303 static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
304 int *data_size, const uint8_t *buf, int buf_size)
306 static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
307 unsigned int refl_rms[4]; // RMS of the reflection coefficients
308 uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
309 unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
310 int i, c;
311 int16_t *data = vdata;
312 unsigned int energy;
314 RA144Context *ractx = avctx->priv_data;
315 GetBitContext gb;
317 if(buf_size < 20) {
318 av_log(avctx, AV_LOG_ERROR,
319 "Frame too small (%d bytes). Truncated file?\n", buf_size);
320 *data_size = 0;
321 return buf_size;
323 init_get_bits(&gb, buf, 20 * 8);
325 for (i=0; i<10; i++)
326 lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
328 eval_coefs(ractx->lpc_coef[0], lpc_refl);
329 ractx->lpc_refl_rms[0] = rms(lpc_refl);
331 energy = energy_tab[get_bits(&gb, 5)];
333 refl_rms[0] = interp(ractx, block_coefs[0], 0, 1, ractx->old_energy);
334 refl_rms[1] = interp(ractx, block_coefs[1], 1, energy <= ractx->old_energy,
335 t_sqrt(energy*ractx->old_energy) >> 12);
336 refl_rms[2] = interp(ractx, block_coefs[2], 2, 0, energy);
337 refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
339 int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
341 for (c=0; c<4; c++) {
342 do_output_subblock(ractx, block_coefs[c], refl_rms[c], &gb);
344 for (i=0; i<BLOCKSIZE; i++)
345 *data++ = av_clip_int16(ractx->curr_sblock[i + 10] << 2);
348 ractx->old_energy = energy;
349 ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
351 FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
353 *data_size = 2*160;
354 return 20;
357 AVCodec ra_144_decoder =
359 "real_144",
360 CODEC_TYPE_AUDIO,
361 CODEC_ID_RA_144,
362 sizeof(RA144Context),
363 ra144_decode_init,
364 NULL,
365 NULL,
366 ra144_decode_frame,
367 .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),