fixed more ref errors
[CommonLispStat.git] / optimize.lisp
blob0ecb8bfec40ec454131d5eb6b72f92423ecd0def
1 ;;; -*- mode: lisp -*-
2 ;;; Copyright (c) 2005--2007, by A.J. Rossini <blindglobe@gmail.com>
3 ;;; See COPYRIGHT file for any additional restrictions (BSD license).
4 ;;; Since 1991, ANSI was finally finished. Edited for ANSI Common Lisp.
6 (in-package :cl-user)
8 (defpackage :lisp-stat-optimize
9 (:use :common-lisp
10 :lisp-stat-ffi-int
11 :lisp-stat-object-system
12 :lisp-stat-types
13 :lisp-stat-sequence
14 :lisp-stat-compound-data
15 :lisp-stat-math
16 :lisp-stat-basics
17 :lisp-stat-matrix
18 :lisp-stat-linalg-data
19 :lisp-stat-linalg)
20 (:shadowing-import-from :lisp-stat-object-system
21 slot-value call-method call-next-method)
22 (:export
23 ;; derivatives
24 numgrad numhess
26 ;; optimization
27 newtonmax nelmeadmax))
31 ;;; FIXME:AJR: There is a need to figure out the proper symbols to
32 ;;; export. more importantly should there be any specialty package
33 z;;; that are exported for maximization?
35 (in-package :lisp-stat-optimize)
37 (defvar *maximize-callback-function* nil
38 "Used in generic optimization to determine function name -- symbol or string?")
40 (defvar *maximize-callback-arg* nil
41 "args to function to maximize")
44 ;;;
45 ;;; CFFI support using library for optimization work.
46 ;;;
48 ;; There is a problem with this particular approach, in terms of
49 ;; circular dependencies. We can not have this out-of-object call
50 ;; into optimize, at least not from here.
51 (cffi:defcallback ccl-maximize-callback :void ((n :int)
52 (px :pointer)
53 (pfval :pointer)
54 (pgrad :pointer)
55 (phess :pointer)
56 (pderivs :pointer))
57 (lisp-stat-optimize::maximize-callback n px pfval pgrad phess pderivs))
59 (cffi:defcfun ("register_maximize_callback" register-maximize-callback)
60 :void (x :pointer))
61 (register-maximize-callback (cffi:callback ccl-maximize-callback))
63 (cffi:defcfun ("ccl_numgrad_front" ccl-numgrad-front)
64 :int (x :int) (y :pointer) (z :pointer) (u :double) (v :pointer))
65 (defun numgrad-front (x y z u v)
66 (ccl-numgrad-front x y z (float u 1d0) v))
68 (cffi:defcfun ("ccl_numhess_front" ccl-numhess-front)
69 :int (x :int) (y :pointer) (z :pointer) (u :pointer) (v :pointer) (w :double) (a :pointer))
70 (defun numhess-front (x y z u v w a)
71 (ccl-numhess-front x y z u v (float w 1d0) a))
73 (cffi:defcfun ("ccl_minfo_maximize" ccl-minfo-maximize)
74 :int (x :pointer) (y :pointer) (z :pointer) (u :pointer) (v :pointer) (w :int))
75 (defun base-minfo-maximize (x y z u v w)
76 (ccl-minfo-maximize x y z u v w))
80 ;;;;
81 ;;;; minfo basics (internal??)
82 ;;;;
84 (defun init-minfo-ipar-values (n ipars &key
85 (TRUE 1)
86 (FALSE 0)
87 (k 0)
88 (m 0)
89 (itnlimit -1)
90 (backtrack TRUE)
91 (verbose 0)
92 (vals_suppl FALSE)
93 (exptilt TRUE)
94 (count 0)
95 (termcode 0))
96 "Initialize ipars (iteration parameters) by destructive modification."
97 (setf (aref ipars 0) n)
98 (setf (aref ipars 1) m)
99 (setf (aref ipars 2) k)
100 (setf (aref ipars 3) itnlimit)
101 (setf (aref ipars 4) backtrack)
102 (setf (aref ipars 5) verbose)
103 (setf (aref ipars 6) vals_suppl)
104 (setf (aref ipars 7) exptilt)
105 (setf (aref ipars 8) count)
106 (setf (aref ipars 9) termcode))
108 (defun init-minfo-dpar-values (h dpars &key
109 (typf 1.0)
110 (gradtol -1.0)
111 (steptol -1.0)
112 (maxstep -1.0)
113 (dflt 0.0)
114 (tilt 0.0)
115 (newtilt 0.0)
116 (hessadd 0.0))
117 "Initialize dpars (derivative parameters) by destructive modification."
118 (setf (aref dpars 0) typf)
119 (setf (aref dpars 1) h)
120 (setf (aref dpars 2) gradtol)
121 (setf (aref dpars 3) steptol)
122 (setf (aref dpars 4) maxstep)
123 (setf (aref dpars 5) dflt)
124 (setf (aref dpars 6) tilt)
125 (setf (aref dpars 7) newtilt)
126 (setf (aref dpars 8) hessadd))
128 (defun init-minfo-internals (n h internals)
129 (let ((ipars (aref internals 8))
130 (dpars (aref internals 9)))
131 (init-minfo-ipar-values n ipars)
132 (init-minfo-dpar-values h dpars)))
134 (defun new-minfo-internals (f x &key scale ((:derivstep h) -1.0))
135 (check-sequence x)
136 (check-real x)
137 (check-one-real h)
138 (let ((n (length x)))
139 (when scale
140 (check-sequence scale)
141 (check-real scale)
142 (if (/= n (length scale)) (error "scale and x not the same length")))
143 (let ((internals (make-array 12)))
144 (setf (aref internals 0) f)
145 (setf (aref internals 3) (if (consp x) (copy-list x) (coerce x 'list)))
146 (setf (aref internals 4)
147 (if scale (copy-seq scale) (make-array n :initial-element 1.0)))
148 (setf (aref internals 5) (make-list (+ 1 n (* n n))))
149 (setf (aref internals 8) (make-array 10))
150 (setf (aref internals 9) (make-array 9))
151 (init-minfo-internals n h internals)
152 internals)))
154 (defun minfo-maximize (internals &optional verbose)
155 "This function does what?"
156 (let* ((f (aref internals 0))
157 (x (aref internals 3))
158 (fvals (aref internals 5))
159 (n (length x))
160 (v (if verbose (if (integerp verbose) verbose 1) -1)))
161 (setf (aref internals 3) (copy-list x))
162 (setf (aref internals 5) (copy-list fvals))
163 (let ((*maximize-callback-function* f)
164 (*maximize-callback-arg* (make-list n)))
165 (let* ((x (aref internals 3))
166 (scale (aref internals 4))
167 (fvals (aref internals 5))
168 (ip (aref internals 8))
169 (dp (aref internals 9))
170 (px (la-data-to-vector x mode-re))
171 (pscale (la-data-to-vector scale mode-re))
172 (pfvals (la-vector (length fvals) mode-re))
173 (pip (la-data-to-vector ip mode-in))
174 (pdp (la-data-to-vector dp mode-re)))
175 (unwind-protect
176 (progn
177 (base-minfo-maximize px pfvals pscale pip pdp v)) ;; access to C
178 (la-vector-to-data px n mode-re x)
179 (la-vector-to-data pfvals (+ 1 n (* n n)) mode-re fvals)
180 (la-vector-to-data pip (length ip) mode-in ip)
181 (la-vector-to-data pdp (length dp) mode-re dp))
182 (get-buf)))))
186 ;;;;
187 ;;;; Mode Info Prototype
188 ;;;;
190 (defproto minfo-proto '(internals))
192 #+xlisp (send minfo-proto :add-method :isnew #'|minfo-isnew|)
193 #+xlisp (send minfo-proto :add-method :maximize #'|minfo-maximize|)
194 #+xlisp (send minfo-proto :add-method :loglaplace #'|minfo-loglap|)
195 #-xlisp
196 (defmeth minfo-proto :isnew (&rest args)
197 (setf (slot-value 'internals) (apply #'new-minfo-internals args)))
198 #-xlisp
199 (defmeth minfo-proto :maximize (&rest args)
200 (apply #'minfo-maximize (slot-value 'internals) args))
202 (defmeth minfo-proto :x () (aref (slot-value 'internals) 3))
203 (defmeth minfo-proto :scale () (aref (slot-value 'internals) 4))
204 (defmeth minfo-proto :derivstep () (aref (aref (slot-value 'internals) 9) 1))
205 (defmeth minfo-proto :tilt () (aref (aref (slot-value 'internals) 9) 6))
207 (defmeth minfo-proto :f (&optional (val nil set))
208 (when set
209 (send self :set-no-vals-supplied)
210 (setf (aref (slot-value 'internals) 0) val))
211 (aref (slot-value 'internals) 0))
213 (defmeth minfo-proto :set-no-vals-supplied ()
214 (setf (aref (aref (slot-value 'internals) 8) 6) 0))
216 (defmeth minfo-proto :exptilt (&optional (val nil set))
217 (if set
218 (let ((old (send self :exptilt)))
219 (setf (aref (aref (slot-value 'internals) 8) 7) (if val 1 0))
220 (if (and (not (or (and old val) (and (not old) (not val))))
221 (/= (send self :tilt) 0.0))
222 (send self :set-no-vals-supplied))))
223 (= 1 (aref (aref (slot-value 'internals) 8) 7)))
225 (defmeth minfo-proto :newtilt (&optional (val nil set))
226 (when set
227 (setf (aref (aref (slot-value 'internals) 9) 7) (float val))
228 (if (/= (send self :tilt) 0.0) (send self :set-no-vals-supplied)))
229 (aref (aref (slot-value 'internals) 9) 7))
231 (defmeth minfo-proto :gfuns (&optional (val nil set))
232 (when set
233 (if (or (not (consp val))
234 (not (every #'functionp val)))
235 (error "not all functions"))
236 (setf (aref (slot-value 'internals) 1) val)
237 (setf (aref (aref (slot-value 'internals) 8) 1) (length val))
238 (setf (aref (slot-value 'internals) 10) (repeat 1.0 (length val)))
239 (if (/= (send self :tilt) 0.0) (send self :set-no-vals-supplied)))
240 (aref (slot-value 'internals) 1))
242 (defmeth minfo-proto :cfuns (&optional (val nil set))
243 (when set
244 (if (or (not (consp val))
245 (not (every #'functionp val)))
246 (error "not all functions"))
247 (setf (aref (slot-value 'internals) 2) val)
248 (setf (aref (aref (slot-value 'internals) 8) 2) (length val))
249 (setf (aref (slot-value 'internals) 7) (repeat 0.0 (length val)))
250 (setf (aref (slot-value 'internals) 11) (repeat 0.0 (length val)))
251 (send self :set-no-vals-supplied))
252 (aref (slot-value 'internals) 2))
254 (defmeth minfo-proto :ctarget (&optional (val nil set))
255 (when set
256 (if (/= (length val) (length (send self :ctarget)))
257 (error "bad target length"))
258 (setf (aref (slot-value 'internals) 7) val))
259 (aref (slot-value 'internals) 7))
261 (defmeth minfo-proto :fvals ()
262 (let* ((fv (aref (slot-value 'internals) 5))
263 (n (length (send self :x)))
264 (val (select fv 0))
265 (grad (select fv (iseq 1 n)))
266 (hess (matrix (list n n) (select fv (iseq (+ 1 n) (+ n (* n n)))))))
267 (list val grad hess)))
269 (defmeth minfo-proto :copy ()
270 (let ((obj (make-object minfo-proto))
271 (internals (copy-seq (slot-value 'internals))))
272 (dotimes (i (length internals))
273 (let ((x (aref internals i)))
274 (if (sequencep x)
275 (setf (aref internals i) (copy-seq x)))))
276 (send obj :add-slot 'internals internals)
277 obj))
279 (defmeth minfo-proto :derivscale ()
280 (let* ((step (^ machine-epsilon (/ 1 6)))
281 (hess (numhess (send self :f) (send self :x) (send self :scale) step))
282 (scale (pmax (abs (send self :x)) (sqrt (abs (/ (diagonal hess)))))))
283 (setf hess (numhess (send self :f) (send self :x) scale step))
284 (setf scale (pmax (abs (send self :x)) (sqrt (abs (/ (diagonal hess))))))
285 (setf (aref (slot-value 'internals) 4) scale)
286 (setf (aref (aref (slot-value 'internals) 9) 1) step)))
288 (defmeth minfo-proto :verbose (&optional (val nil set))
289 (when set
290 (setf (aref (aref (slot-value 'internals) 8) 5)
291 (cond ((integerp val) val)
292 ((null val) 0)
293 (t 1))))
294 (aref (aref (slot-value 'internals) 8) 5))
296 (defmeth minfo-proto :backtrack (&optional (val nil set))
297 (if set (setf (aref (aref (slot-value 'internals) 8) 4) (if val 1 0)))
298 (aref (aref (slot-value 'internals) 8) 4))
300 (defmeth minfo-proto :maxiter (&optional (val nil set))
301 (if set (setf (aref (aref (slot-value 'internals) 8) 3)
302 (if (integerp val) val -1)))
303 (aref (aref (slot-value 'internals) 8) 3))
305 (defmeth minfo-proto :tiltscale (&optional (val nil set))
306 (when set
307 (if (/= (length val) (length (send self :gfuns)))
308 (error "wrong size tilt scale sequence"))
309 (setf (aref (slot-value 'internals) 10) val))
310 (aref (slot-value 'internals) 10))
312 ;;;;
313 ;;;;
314 ;;;; Newton's Method with Backtracking
315 ;;;;
316 ;;;;
318 (defun newtonmax (f start &key
319 scale
320 (derivstep -1.0)
321 (count-limit -1)
322 (verbose 1)
323 return-derivs)
324 "Args:(f start &key scale derivstep (verbose 1) return-derivs)
325 Maximizes F starting from START using Newton's method with backtracking.
326 If RETURN-DERIVS is NIL returns location of maximum; otherwise returns
327 list of location, unction value, gradient and hessian at maximum.
328 SCALE should be a list of the typical magnitudes of the parameters.
329 DERIVSTEP is used in numerical derivatives and VERBOSE controls printing
330 of iteration information. COUNT-LIMIT limits the number of iterations"
331 (let ((verbose (if verbose (if (integerp verbose) verbose 1) 0))
332 (minfo (send minfo-proto :new f start
333 :scale scale :derivstep derivstep)))
334 (send minfo :maxiter count-limit)
335 (send minfo :derivscale)
336 (send minfo :maximize verbose)
337 (if return-derivs
338 (cons (send minfo :x) (- (send minfo :fvals)))
339 (send minfo :x))))
341 ;;;;
342 ;;;;
343 ;;;; Nelder-Mead Simplex Method
344 ;;;;
345 ;;;;
347 (defun nelmeadmax (f start &key
348 (size 1)
349 (epsilon (sqrt machine-epsilon))
350 (count-limit 500)
351 (verbose t)
352 (alpha 1.0)
353 (beta 0.5)
354 (gamma 2.0)
355 (delta 0.5))
356 "Args: (f start &key (size 1) (epsilon (sqrt machine-epsilon))
357 (count-limit 500) (verbose t) alpha beta gamma delta)
358 Maximizes F using the Nelder-Mead simplex method. START can be a
359 starting simplex - a list of N+1 points, with N=dimension of problem,
360 or a single point. If start is a single point you should give the
361 size of the initial simplex as SIZE, a sequence of length N. Default is
362 all 1's. EPSILON is the convergence tolerance. ALPHA-DELTA can be used to
363 control the behavior of simplex algorithm."
364 (let ((s (send simplex-proto :new f start size)))
365 (do ((best (send s :best-point) (send s :best-point))
366 (count 0 (+ count 1))
367 next)
368 ((or (< (send s :relative-range) epsilon) (>= count count-limit))
369 (if (and verbose (>= count count-limit))
370 (format t "Iteration limit exceeded.~%"))
371 (send s :point-location (send s :best-point)))
372 (setf next (send s :extrapolate-from-worst (- alpha)))
373 (if (send s :is-worse best next)
374 (setf next (send s :extrapolate-from-worst gamma))
375 (when (send s :is-worse next (send s :second-worst-point))
376 (setf next (send s :extrapolate-from-worst beta))
377 (if (send s :is-worse next (send s :worst-point))
378 (send s :shrink-to-best delta))))
379 (if verbose
380 (format t "Value = ~10g~%"
381 (send s :point-value (send s :best-point)))))))
385 ;;; Simplex Prototype
388 (defproto simplex-proto '(f simplex))
391 ;;; Simplex Points
394 (defmeth simplex-proto :make-point (x)
395 (let ((f (send self :f)))
396 (if f
397 (let ((val (funcall f x)))
398 (cons (if (consp val) (car val) val) x))
399 (cons nil x))))
401 (defmeth simplex-proto :point-value (x) (car x))
403 (defmeth simplex-proto :point-location (x) (cdr x))
405 (defmeth simplex-proto :is-worse (x y)
406 (< (send self :point-value x) (send self :point-value y)))
409 ;;; Making New Simplices
412 (defmeth simplex-proto :isnew (f start &optional size)
413 (send self :simplex start size)
414 (send self :f f))
417 ;;; Slot Accessors and Mutators
420 (defmeth simplex-proto :simplex (&optional new size)
421 (if new
422 (let ((simplex
423 (if (and (consp new) (sequencep (car new)))
424 (if (/= (length new) (+ 1 (length (car new))))
425 (error "bad simplex data")
426 (copy-list new))
427 (let* ((n (length new))
428 (size (if size size (repeat 1 n)))
429 ; (pts (- (* 2 (uniform-rand (repeat n (+ n 1)))) 1)))
430 (diag (* 2 size (- (random (repeat 2 n)) .5)))
431 (pts (cons (repeat 0 n)
432 (mapcar #'(lambda (x) (coerce x 'list))
433 (column-list (diagonal diag))))))
434 (mapcar #'(lambda (x) (reduce #'+ (list (* size x) new))) pts)))))
435 (setf (slot-value 'simplex)
436 (mapcar #'(lambda (x) (send self :make-point x)) simplex))
437 (send self :sort-simplex)))
438 (slot-value 'simplex))
440 (defmeth simplex-proto :f (&optional f)
441 (when f
442 (setf (slot-value 'f) f)
443 (let ((simplex
444 (mapcar #'(lambda (x) (send self :point-location x))
445 (send self :simplex))))
446 (send self :simplex simplex)))
447 (slot-value 'f))
449 (defmeth simplex-proto :sort-simplex ()
450 (if (send self :f)
451 (setf (slot-value 'simplex)
452 (sort (slot-value 'simplex)
453 #'(lambda (x y) (send self :is-worse x y))))))
456 ;;; Other Methods Using List Representation of SImplex
459 (defmeth simplex-proto :best-point () (car (last (send self :simplex))))
460 (defmeth simplex-proto :worst-point () (first (send self :simplex)))
461 (defmeth simplex-proto :second-worst-point () (second (send self :simplex)))
462 (defmeth simplex-proto :replace-point (new old)
463 (let* ((simplex (send self :simplex))
464 (n (position old simplex)))
465 (when n
466 (setf (nth n simplex) new)
467 (send self :sort-simplex))))
468 (defmeth simplex-proto :mean-opposite-face (x)
469 (let ((face (mapcar #'(lambda (x) (send self :point-location x))
470 (remove x (send self :simplex)))))
471 (/ (reduce #'+ face) (length face))))
474 ;;; Iteration Step Methods
477 (defmeth simplex-proto :extrapolate-from-worst (fac)
478 (let* ((worst (send self :worst-point))
479 (wloc (send self :point-location worst))
480 (delta (- (send self :mean-opposite-face worst) wloc))
481 (new (send self :make-point (+ wloc (* (- 1 fac) delta)))))
482 (if (send self :is-worse worst new) (send self :replace-point new worst))
483 new))
485 (defmeth simplex-proto :shrink-to-best (fac)
486 (let* ((best (send self :best-point))
487 (bloc (send self :point-location best)))
488 (dolist (x (copy-list (send self :simplex)))
489 (if (not (eq x best))
490 (send self :replace-point
491 (send self :make-point
492 (+ bloc
493 (* fac
494 (- (send self :point-location x) bloc))))
495 x)))))
497 (defmeth simplex-proto :relative-range ()
498 (let ((best (send self :point-value (send self :best-point)))
499 (worst (send self :point-value (send self :worst-point))))
500 (* 2 (/ (abs (- best worst)) (+ 1 (abs best) (abs worst))))))
505 ;;;;
506 ;;;; Maximization and Numerical Derivatives
507 ;;;;
510 (defun data2double (n data ptr)
511 (declare (fixnum n))
512 (let* ((seq (compound-data-seq data))
513 (elem (make-next-element seq)))
514 (if (/= (length seq) n) (error "bad data size"))
515 (dotimes (i n)
516 (declare (fixnum i))
517 (la-put-double ptr i (get-next-element elem i)))))
519 (defun maximize-callback (n px pfval pgrad phess pderivs)
520 (la-vector-to-data px n mode-re *maximize-callback-arg*)
521 (let* ((val (funcall *maximize-callback-function* *maximize-callback-arg*))
522 (derivs (if (consp val) (- (length val) 1) 0)))
523 (la-put-integer pderivs 0 derivs)
524 (la-put-double pfval 0 (if (consp val) (first val) val))
525 (if (<= 1 derivs) (data2double n (second val) pgrad))
526 (if (<= 2 derivs) (data2double (* n n) (third val) phess))))
528 (defun numgrad (f x &optional scale (h -1.0))
529 "Args: (f x &optional scale derivstep)
530 Computes the numerical gradient of F at X."
531 (check-sequence x)
532 (check-real x)
533 (when scale
534 (check-sequence scale)
535 (check-real scale))
536 (check-one-real h)
537 (let* ((n (length x))
538 (result (make-list n)))
539 (if (and scale (/= n (length scale)))
540 (error "scale not the same length as x"))
541 (let ((*maximize-callback-function* f)
542 (*maximize-callback-arg* (make-list n)))
543 (let ((px (la-data-to-vector x mode-re))
544 (pgrad (la-vector n mode-re))
545 (pscale (la-data-to-vector
546 (if scale scale (make-list n :initial-element 1.0))
547 mode-re)))
548 (unwind-protect
549 (progn
550 (numgrad-front n px pgrad h pscale)
551 (la-vector-to-data pgrad n mode-re result))
552 (la-free-vector px)
553 (la-free-vector pgrad)
554 (la-free-vector pscale))))
555 result))
557 (defun numhess (f x &optional scale (h -1.0) all)
558 "Args: (f x &optional scale derivstep)
559 Computes the numerical Hessian matrix of F at X."
560 (check-sequence x)
561 (check-real x)
562 (when scale
563 (check-sequence scale)
564 (check-real scale))
565 (check-one-real h)
566 (let* ((n (length x))
567 (result (if all
568 (list nil (make-list n) (make-array (list n n)))
569 (make-array (list n n)))))
570 (if (and scale (/= n (length scale)))
571 (error "scale not the same length as x"))
572 (let ((*maximize-callback-function* f)
573 (*maximize-callback-arg* (make-list n)))
574 (let ((hess-data (compound-data-seq (if all (third result) result)))
575 (px (la-data-to-vector x mode-re))
576 (pf (la-vector 1 mode-re))
577 (pgrad (la-vector n mode-re))
578 (phess (la-vector (* n n) mode-re))
579 (pscale (la-data-to-vector
580 (if scale scale (make-list n :initial-element 1.0))
581 mode-re)))
582 (unwind-protect
583 (progn
584 (numhess-front n px pf pgrad phess h pscale)
585 (when all
586 (setf (first result) (la-get-double pf 0))
587 (la-vector-to-data pgrad n mode-re (second result)))
588 (la-vector-to-data phess (* n n) mode-re hess-data))
589 (la-free-vector pf)
590 (la-free-vector px)
591 (la-free-vector pgrad)
592 (la-free-vector phess)
593 (la-free-vector pscale))))
594 result))