get the ASDF file in before continuing. Needed for compile checking, this is ancien...
[CommonLispStat.git] / matrices.lsp
blob8a22a8be53bef7648e1926b06d1b9e49b982c3c6
1 ;;;; matrices -- Basic matrix operations
2 ;;;;
3 ;;;; Copyright (c) 1991, by Luke Tierney. Permission is granted for
4 ;;;; unrestricted use.
6 (provide "matrices")
8 ;;;;
9 ;;;; Package Setup
10 ;;;;
12 #+:CLtL2
13 (in-package lisp-stat-basics)
14 #-:CLtL2
15 (in-package 'lisp-stat-basics)
17 (export '(matrixp num-rows num-cols matmult identity-matrix diagonal
18 row-list column-list inner-product outer-product cross-product
19 transpose bind-columns bind-rows))
21 (defun matrixp (x)
22 "Args: (x)
23 Returns T if X is a matrix, NIL otherwise."
24 (and (arrayp x) (= (array-rank x) 2)))
26 (defun num-rows (x)
27 "Args: (x)
28 Returns number of rows in X."
29 (array-dimension x 0))
31 (defun num-cols (x)
32 "Args: (x)
33 Returns number of columns in X."
34 (array-dimension x 1))
36 (defun matmult (a b &rest args)
37 "Args: (a b &rest args)
38 Returns the matrix product of matrices a, b, etc. If a is a vector it is
39 treated as a row vector; if b is a vector it is treated as a column vector."
40 (let ((rtype (cond ((and (matrixp a) (matrixp b)) 'matrix)
41 ((and (sequencep a) (sequencep b)) 'number)
42 ((sequencep a) (if (consp a) 'list 'vector))
43 ((sequencep b) (if (consp b) 'list 'vector)))))
45 (if (sequencep a)
46 (setf a (vector-to-array (coerce a 'vector) (list 1 (length a)))))
47 (if (sequencep b)
48 (setf b (vector-to-array (coerce b 'vector) (list (length b) 1))))
49 (if (not (= (array-dimension a 1) (array-dimension b 0)))
50 (error "dimensions do not match"))
51 (if args
52 (reduce #'matmult args :initial-value (matmult a b))
53 (let* ((n (array-dimension a 0))
54 (m (array-dimension b 1))
55 (p (array-dimension a 1))
56 (c (make-array (list n m)))
58 (declare (fixnum n m p))
59 (dotimes (i n)
60 (declare (fixnum i))
61 (dotimes (j m)
62 (declare (fixnum j))
63 (setq x 0)
64 (dotimes (k p)
65 (declare (fixnum k))
66 (setq x (+ x
67 (* (aref a i k) (aref b k j)))))
68 (setf (aref c i j) x)))
69 (case rtype
70 (matrix c)
71 (number (aref c 0 0))
72 (t (coerce (compound-data-seq c) rtype)))))))
74 (defun identity-matrix (n)
75 "Args: (n)
76 Returns the identity matrix of rank N."
77 (let ((result (make-array (list n n) :initial-element 0)))
78 (dotimes (i n result)
79 (declare (fixnum i))
80 (setf (aref result i i) 1))))
82 ;; this thing is not very efficient at this point - too much coercing
83 (defun diagonal (x)
84 "Args: (x)
85 If X is a matrix, returns the diagonal of X. If X is a sequence, returns a
86 diagonal matrix of rank (length X) with diagonal elements eq to the elements
87 of X."
88 (cond ((matrixp x)
89 (let* ((n (min (num-rows x) (num-cols x)))
90 (result (make-array n)))
91 (dotimes (i n (coerce result 'list))
92 (setf (aref result i) (aref x i i)))))
93 ((sequencep x)
94 (let* ((x (coerce x 'vector))
95 (n (length x))
96 (result (make-array (list n n) :initial-element 0)))
97 (dotimes (i n result)
98 (setf (aref result i i) (aref x i)))))
99 (t (error "argument must be a matrix or a sequence"))))
101 (defun row-list (x)
102 "Args: (m)
103 Returns a list of the rows of M as vectors"
104 (check-matrix x)
105 (let ((m (num-rows x))
106 (n (num-cols x))
107 (result nil))
108 (declare (fixnum m n))
109 (flet ((get-row (k)
110 (declare (fixnum k))
111 (let ((row (make-array n)))
112 (dotimes (i n row)
113 (declare (fixnum i))
114 (setf (aref row i) (aref x k i))))))
115 (dotimes (i m result)
116 (declare (fixnum i))
117 (setf result (cons (get-row (- m i 1)) result))))))
119 (defun column-list (x)
120 "Args: (m)
121 Returns a list of the columns of M as vectors"
122 (check-matrix x)
123 (let ((m (num-rows x))
124 (n (num-cols x))
125 (result nil))
126 (declare (fixnum m n))
127 (flet ((get-col (k)
128 (declare (fixnum k))
129 (let ((col (make-array m)))
130 (dotimes (i m col)
131 (declare (fixnum i))
132 (setf (aref col i) (aref x i k))))))
133 (dotimes (i n result)
134 (declare (fixnum i))
135 (setf result (cons (get-col (- n i 1)) result))))))
137 (defun inner-product (x y)
138 "Args: (x y)
139 Returns inner product of sequences X and Y."
140 (check-sequence x)
141 (check-sequence y)
142 (let ((n (length x))
143 (cx (make-next-element x))
144 (cy (make-next-element y))
145 (result 0))
146 (declare (fixnum n))
147 (if (/= n (length y)) (error "sequence lengths do not match"))
148 (dotimes (i n result)
149 (declare (fixnum i))
150 (setf result
151 (+ result (* (get-next-element cx i) (get-next-element cy i)))))))
153 (defun outer-product (x y &optional (f #'*))
154 "Args: (x y &optional (fcn #'*))
155 Returns the generalized outer product of x and y, using fcn. Tat is, the result
156 is a matrix of dimension ((length x) (length y)) and the (i j) element of the
157 result is computed as (apply fcn (aref x i) (aref y j))."
158 (let* ((x (coerce x 'vector))
159 (y (coerce y 'vector))
160 (m (length x))
161 (n (length y))
162 (a (make-array (list m n))))
163 (declare (fixnum m n))
164 (dotimes (i m a)
165 (declare (fixnum i))
166 (dotimes (j n)
167 (declare (fixnum j))
168 (setf (aref a i j) (funcall f (aref x i) (aref y j)))))))
170 (defun cross-product (x)
171 "Args: (x)
172 If X is a matrix returns (matmult (transpose X) X). If X is a vector returns
173 (inner-product X X)."
174 (check-matrix x)
175 (let* ((n (num-rows x))
176 (p (num-cols x))
177 (c (make-array (list p p))))
178 (declare (fixnum n p))
179 (dotimes (i p c)
180 (declare (fixnum i))
181 (dotimes (j (+ i 1))
182 (declare (fixnum j))
183 (let ((val 0))
184 (dotimes (k n)
185 (declare (fixnum k))
186 (incf val (* (aref x k i) (aref x k j))))
187 (setf (aref c i j) val)
188 (setf (aref c j i) val))))))
190 (defun transpose-list (x)
191 (let ((m (length (first x))))
192 (dolist (next x)
193 (if (not (consp next)) (error "not a list - ~a" x))
194 (if (/= m (length next)) (error "sublists not the same length")))
195 (do* ((cx (copy-list x))
196 (result (make-list m))
197 (next result (cdr next)))
198 ((null next) result)
199 (setf (first next) (mapcar #'first cx))
200 (do ((next cx (cdr next)))
201 ((null next))
202 (setf (first next) (rest (first next)))))))
204 (defun transpose (x)
205 "Args: (m)
206 Returns the transpose of the matrix M."
207 (cond
208 ((consp x) (transpose-list x))
210 (check-matrix x)
211 (let* ((m (num-rows x))
212 (n (num-cols x))
213 (tx (make-array (list n m))))
214 (declare (fixnum m n))
215 (dotimes (i m tx)
216 (declare (fixnum i))
217 (dotimes (j n)
218 (declare (fixnum j))
219 (setf (aref tx j i) (aref x i j))))))))
221 (defun bind-columns (&rest args)
222 "Args (&rest args)
223 The ARGS can be matrices, vectors, or lists. Arguments are bound into a matrix
224 along their columns.
225 Example: (bind-columns #2a((1 2)(3 4)) #(5 6)) returns #2a((1 2 5)(3 4 6))"
226 (flet ((check-arg (x)
227 (if (not (or (sequencep x) (matrixp x)))
228 (error "bad argument type")))
229 (arg-cols (x) (if (sequencep x) 1 (num-cols x)))
230 (arg-rows (x) (if (sequencep x) (length x) (num-rows x))))
231 (dolist (x args) (check-arg x))
232 (let ((m (arg-rows (first args)))
233 (n (arg-cols (first args))))
234 (declare (fixnum m n))
235 (dolist (x (rest args))
236 (if (/= m (arg-rows x)) (error "column lengths do not match"))
237 (incf n (arg-cols x)))
238 (do* ((result (make-array (list m n)))
239 (args args (rest args))
240 (firstcol 0)
241 (x (first args) (first args)))
242 ((null args) result)
243 (cond
244 ((sequencep x)
245 (let ((cx (make-next-element x)))
246 (dotimes (i m)
247 (setf (aref result i firstcol) (get-next-element cx i)))))
249 (let ((k (arg-cols x)))
250 (dotimes (i m)
251 (dotimes (j k)
252 (setf (aref result i (+ firstcol j)) (aref x i j)))))))
253 (incf firstcol (arg-cols x))))))
255 (defun bind-rows (&rest args)
256 "Args (&rest args)
257 The ARGS can be matrices, vectors, or lists. Arguments are bound into a matrix
258 along their rows.
259 Example: (bind-rows #2a((1 2)(3 4)) #(5 6)) returns #2a((1 2)(3 4)(5 6))"
260 (flet ((check-arg (x)
261 (if (not (or (sequencep x) (matrixp x)))
262 (error "bad argument type")))
263 (arg-cols (x) (if (sequencep x) (length x) (num-cols x)))
264 (arg-rows (x) (if (sequencep x) 1 (num-rows x))))
265 (dolist (x args) (check-arg x))
266 (let ((m (arg-rows (first args)))
267 (n (arg-cols (first args))))
268 (declare (fixnum m n))
269 (dolist (x (rest args))
270 (if (/= n (arg-cols x)) (error "row lengths do not match"))
271 (incf m (arg-rows x)))
272 (do* ((result (make-array (list m n)))
273 (args args (rest args))
274 (firstrow 0)
275 (x (first args) (first args)))
276 ((null args) result)
277 (cond
278 ((sequencep x)
279 (let ((cx (make-next-element x)))
280 (dotimes (i n)
281 (setf (aref result firstrow i) (get-next-element cx i)))))
283 (let ((k (arg-rows x)))
284 (dotimes (i n)
285 (dotimes (j k)
286 (setf (aref result (+ firstrow j) i) (aref x j i)))))))
287 (incf firstrow (arg-rows x))))))