3 ;;; Copyright (c) 2005--2007, by A.J. Rossini <blindglobe@gmail.com>
4 ;;; See COPYRIGHT file for any additional restrictions (BSD license).
5 ;;; Since 1991, ANSI was finally finished. Modified to match ANSI
9 ;;;; regression.lsp XLISP-STAT regression model proto and methods
10 ;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
11 ;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
12 ;;;; You may give out copies of this software; for conditions see the file
13 ;;;; COPYING included with this distribution.
16 ;;;; Incorporates modifications suggested by Sandy Weisberg.
21 (defpackage :lisp-stat-regression-linear
23 :lisp-stat-object-system
25 :lisp-stat-compound-data
29 :lisp-stat-descriptive-statistics
)
30 (:shadowing-import-from
:lisp-stat-object-system
31 slot-value call-method call-next-method
)
32 (:shadowing-import-from
:lisp-stat-math
33 expt
+ -
* / ** mod rem abs
1+ 1- log exp sqrt sin cos tan
34 asin acos atan sinh cosh tanh asinh acosh atanh float random
35 truncate floor ceiling round minusp zerop plusp evenp oddp
36 < <= = /= >= > ;; complex
37 conjugate realpart imagpart phase
38 min max logand logior logxor lognot ffloor fceiling
39 ftruncate fround signum cis
)
40 (:export regression-model regression-model-proto x y intercept sweep-matrix
41 basis weights included total-sum-of-squares residual-sum-of-squares
42 predictor-names response-name case-labels
))
44 (in-package :lisp-stat-regression-linear
)
46 ;;; Regresion Model Prototype
48 (defvar regression-model-proto
)
49 (defproto regression-model-proto
50 '(x y intercept sweep-matrix basis weights
53 residual-sum-of-squares
59 "Normal Linear Regression Model")
61 (defun regression-model (x y
&key
65 (included (repeat t
(length y
)))
69 "Args: (x y &key (intercept T) (print T) (weights nil)
70 included predictor-names response-name case-labels)
71 X - list of independent variables or X matrix
72 Y - dependent variable.
73 INTERCEPT - T to include (default), NIL for no intercept
74 PRINT - if not NIL print summary information
75 WEIGHTS - if supplied should be the same length as Y; error variances are
76 assumed to be inversely proportional to WEIGHTS
77 PREDICTOR-NAMES, RESPONSE-NAME, CASE-LABELS
78 - sequences of strings or symbols.
79 INCLUDED - if supplied should be the same length as Y, with elements nil
80 to skip a in computing estimates (but not in residual analysis).
81 Returns a regression model object. To examine the model further assign the
82 result to a variable and send it messages.
83 Example (data are in file absorbtion.lsp in the sample data directory/folder):
84 (def m (regression-model (list iron aluminum) absorbtion))
85 (send m :help) (send m :plot-residuals)"
88 ((vectorp x
) (list x
))
89 ((and (consp x
) (numberp (car x
))) (list x
))
91 (m (send regression-model-proto
:new
)))
92 (send m
:x
(if (matrixp x
) x
(apply #'bind-columns x
)))
94 (send m
:intercept intercept
)
95 (send m
:weights weights
)
96 (send m
:included included
)
97 (send m
:predictor-names predictor-names
)
98 (send m
:response-name response-name
)
99 (send m
:case-labels case-labels
)
100 (if print
(send m
:display
))
103 (defmeth regression-model-proto
:isnew
()
104 (send self
:needs-computing t
))
106 (defmeth regression-model-proto
:save
()
108 Returns an expression that will reconstruct the regression model."
109 `(regression-model ',(send self
:x
)
111 :intercept
',(send self
:intercept
)
112 :weights
',(send self
:weights
)
113 :included
',(send self
:included
)
114 :predictor-names
',(send self
:predictor-names
)
115 :response-name
',(send self
:response-name
)
116 :case-labels
',(send self
:case-labels
)))
118 ;;; Computing and Display Methods
120 (defmeth regression-model-proto
:compute
()
122 Recomputes the estimates. For internal use by other messages"
123 (let* ((included (if-else (send self
:included
) 1 0))
126 (intercept (send self
:intercept
))
127 (weights (send self
:weights
))
128 (w (if weights
(* included weights
) included
))
129 (m (make-sweep-matrix x y w
))
130 (n (array-dimension x
1))
131 (p (- (array-dimension m
0) 1))
133 (tol (* 0.001 (reduce #'* (mapcar #'standard-deviation
(column-list x
)))))
134 ;; (tol (* 0.001 (apply #'* (mapcar #'standard-deviation (column-list x)))))
137 (sweep-operator m
(iseq 1 n
) tol
)
138 (sweep-operator m
(iseq 0 n
) (cons 0.0 tol
)))))
139 (setf (slot-value 'sweep-matrix
) (first sweep-result
))
140 (setf (slot-value 'total-sum-of-squares
) tss
)
141 (setf (slot-value 'residual-sum-of-squares
)
142 (aref (first sweep-result
) p p
))
143 (setf (slot-value 'basis
)
144 (let ((b (remove 0 (second sweep-result
))))
145 (if b
(- (reduce #'-
(reverse b
)) 1)
146 (error "no columns could be swept"))))))
148 (defmeth regression-model-proto
:needs-computing
(&optional set
)
149 ;;(declare (ignore self))
150 (if set
(setf (slot-value 'sweep-matrix
) nil
))
151 (null (slot-value 'sweep-matrix
)))
153 (defmeth regression-model-proto
:display
()
155 Prints the least squares regression summary. Variables not used in the fit
156 are marked as aliased."
157 (let ((coefs (coerce (send self
:coef-estimates
) 'list
))
158 (se-s (send self
:coef-standard-errors
))
160 (p-names (send self
:predictor-names
)))
161 (if (send self
:weights
)
162 (format t
"~%Weighted Least Squares Estimates:~2%")
163 (format t
"~%Least Squares Estimates:~2%"))
164 (when (send self
:intercept
)
165 (format t
"Constant ~10f ~A~%"
166 (car coefs
) (list (car se-s
)))
167 (setf coefs
(cdr coefs
))
168 (setf se-s
(cdr se-s
)))
169 (dotimes (i (array-dimension x
1))
171 ((member i
(send self
:basis
))
172 (format t
"~22a ~10f ~A~%"
173 (select p-names i
) (car coefs
) (list (car se-s
)))
174 (setf coefs
(cdr coefs
) se-s
(cdr se-s
)))
175 (t (format t
"~22a aliased~%" (select p-names i
)))))
177 (format t
"R Squared: ~10f~%" (send self
:r-squared
))
178 (format t
"Sigma hat: ~10f~%" (send self
:sigma-hat
))
179 (format t
"Number of cases: ~10d~%" (send self
:num-cases
))
180 (if (/= (send self
:num-cases
) (send self
:num-included
))
181 (format t
"Number of cases used: ~10d~%" (send self
:num-included
)))
182 (format t
"Degrees of freedom: ~10d~%" (send self
:df
))
185 ;;; Slot accessors and mutators
187 (defmeth regression-model-proto
:x
(&optional new-x
)
188 "Message args: (&optional new-x)
189 With no argument returns the x matrix as supplied to m. With an argument
190 NEW-X sets the x matrix to NEW-X and recomputes the estimates."
191 (when (and new-x
(matrixp new-x
))
192 (setf (slot-value 'x
) new-x
)
193 (send self
:needs-computing t
))
196 (defmeth regression-model-proto
:y
(&optional new-y
)
197 "Message args: (&optional new-y)
198 With no argument returns the y sequence as supplied to m. With an argument
199 NEW-Y sets the y sequence to NEW-Y and recomputes the estimates."
200 (when (and new-y
(or (matrixp new-y
) (sequencep new-y
)))
201 (setf (slot-value 'y
) new-y
)
202 (send self
:needs-computing t
))
205 (defmeth regression-model-proto
:intercept
(&optional
(val nil set
))
206 "Message args: (&optional new-intercept)
207 With no argument returns T if the model includes an intercept term, nil if
208 not. With an argument NEW-INTERCEPT the model is changed to include or
209 exclude an intercept, according to the value of NEW-INTERCEPT."
211 (setf (slot-value 'intercept
) val
)
212 (send self
:needs-computing t
))
213 (slot-value 'intercept
))
215 (defmeth regression-model-proto
:weights
(&optional
(new-w nil set
))
216 "Message args: (&optional new-w)
217 With no argument returns the weight sequence as supplied to m; NIL means
218 an unweighted model. NEW-W sets the weights sequence to NEW-W and
219 recomputes the estimates."
221 (setf (slot-value 'weights
) new-w
)
222 (send self
:needs-computing t
))
223 (slot-value 'weights
))
225 (defmeth regression-model-proto
:total-sum-of-squares
()
227 Returns the total sum of squares around the mean."
228 (if (send self
:needs-computing
) (send self
:compute
))
229 (slot-value 'total-sum-of-squares
))
231 (defmeth regression-model-proto
:residual-sum-of-squares
()
233 Returns the residual sum of squares for the model."
234 (if (send self
:needs-computing
) (send self
:compute
))
235 (slot-value 'residual-sum-of-squares
))
237 (defmeth regression-model-proto
:basis
()
239 Returns the indices of the variables used in fitting the model."
240 (if (send self
:needs-computing
) (send self
:compute
))
243 (defmeth regression-model-proto
:sweep-matrix
()
245 Returns the swept sweep matrix. For internal use"
246 (if (send self
:needs-computing
) (send self
:compute
))
247 (slot-value 'sweep-matrix
))
249 (defmeth regression-model-proto
:included
(&optional new-included
)
250 "Message args: (&optional new-included)
251 With no argument, NIL means a case is not used in calculating estimates, and non-nil means it is used. NEW-INCLUDED is a sequence of length of y of nil and t to select cases. Estimates are recomputed."
252 (when (and new-included
253 (= (length new-included
) (send self
:num-cases
)))
254 (setf (slot-value 'included
) (copy-seq new-included
))
255 (send self
:needs-computing t
))
256 (if (slot-value 'included
)
257 (slot-value 'included
)
258 (repeat t
(send self
:num-cases
))))
260 (defmeth regression-model-proto
:predictor-names
(&optional
(names nil set
))
261 "Message args: (&optional (names nil set))
262 With no argument returns the predictor names. NAMES sets the names."
263 (if set
(setf (slot-value 'predictor-names
) (mapcar #'string names
)))
264 (let ((p (array-dimension (send self
:x
) 1))
265 (p-names (slot-value 'predictor-names
)))
266 (if (not (and p-names
(= (length p-names
) p
)))
267 (setf (slot-value 'predictor-names
)
268 (mapcar #'(lambda (a) (format nil
"Variable ~a" a
))
270 (slot-value 'predictor-names
))
272 (defmeth regression-model-proto
:response-name
(&optional
(name "Y" set
))
273 "Message args: (&optional name)
274 With no argument returns the response name. NAME sets the name."
275 ;;(declare (ignore self))
276 (if set
(setf (slot-value 'response-name
) (if name
(string name
) "Y")))
277 (slot-value 'response-name
))
279 (defmeth regression-model-proto
:case-labels
(&optional
(labels nil set
))
280 "Message args: (&optional labels)
281 With no argument returns the case-labels. LABELS sets the labels."
282 (if set
(setf (slot-value 'case-labels
)
284 (mapcar #'string labels
)
285 (mapcar #'(lambda (x) (format nil
"~d" x
))
286 (iseq 0 (- (send self
:num-cases
) 1))))))
287 (slot-value 'case-labels
))
291 ;;; None of these methods access any slots directly.
294 (defmeth regression-model-proto
:num-cases
()
296 Returns the number of cases in the model."
297 (length (send self
:y
)))
299 (defmeth regression-model-proto
:num-included
()
301 Returns the number of cases used in the computations."
302 (sum (if-else (send self
:included
) 1 0)))
304 (defmeth regression-model-proto
:num-coefs
()
306 Returns the number of coefficients in the fit model (including the
307 intercept if the model includes one)."
308 (if (send self
:intercept
)
309 (+ 1 (length (send self
:basis
)))
310 (length (send self
:basis
))))
312 (defmeth regression-model-proto
:df
()
314 Returns the number of degrees of freedom in the model."
315 (- (send self
:num-included
) (send self
:num-coefs
)))
317 (defmeth regression-model-proto
:x-matrix
()
319 Returns the X matrix for the model, including a column of 1's, if
320 appropriate. Columns of X matrix correspond to entries in basis."
321 (let ((m (select (send self
:x
)
322 (iseq 0 (- (send self
:num-cases
) 1))
323 (send self
:basis
))))
324 (if (send self
:intercept
)
325 (bind-columns (repeat 1 (send self
:num-cases
)) m
)
328 (defmeth regression-model-proto
:leverages
()
330 Returns the diagonal elements of the hat matrix."
331 (let* ((weights (send self
:weights
))
332 (x (send self
:x-matrix
))
334 (matmult (* (matmult x
(send self
:xtxinv
)) x
)
335 (repeat 1 (send self
:num-coefs
)))))
336 (if weights
(* weights raw-levs
) raw-levs
)))
338 (defmeth regression-model-proto
:fit-values
()
340 Returns the fitted values for the model."
341 (matmult (send self
:x-matrix
) (send self
:coef-estimates
)))
343 (defmeth regression-model-proto
:raw-residuals
()
345 Returns the raw residuals for a model."
346 (- (send self
:y
) (send self
:fit-values
)))
348 (defmeth regression-model-proto
:residuals
()
350 Returns the raw residuals for a model without weights. If the model
351 includes weights the raw residuals times the square roots of the weights
353 (let ((raw-residuals (send self
:raw-residuals
))
354 (weights (send self
:weights
)))
355 (if weights
(* (sqrt weights
) raw-residuals
) raw-residuals
)))
357 (defmeth regression-model-proto
:sum-of-squares
()
359 Returns the error sum of squares for the model."
360 (send self
:residual-sum-of-squares
))
362 (defmeth regression-model-proto
:sigma-hat
()
364 Returns the estimated standard deviation of the deviations about the
366 (let ((ss (send self
:sum-of-squares
))
367 (df (send self
:df
)))
368 (if (/= df
0) (sqrt (/ ss df
)))))
370 ;; for models without an intercept the 'usual' formula for R^2 can give
371 ;; negative results; hence the max.
372 (defmeth regression-model-proto
:r-squared
()
374 Returns the sample squared multiple correlation coefficient, R squared, for
376 (max (- 1 (/ (send self
:sum-of-squares
) (send self
:total-sum-of-squares
)))
379 (defmeth regression-model-proto
:coef-estimates
()
381 Returns the OLS (ordinary least squares) estimates of the regression
382 coefficients. Entries beyond the intercept correspond to entries in basis."
383 (let ((n (array-dimension (send self
:x
) 1))
384 (indices (if (send self
:intercept
)
385 (cons 0 (+ 1 (send self
:basis
)))
386 (+ 1 (send self
:basis
))))
387 (m (send self
:sweep-matrix
)))
388 (coerce (compound-data-seq (select m
(+ 1 n
) indices
)) 'list
)))
390 (defmeth regression-model-proto
:xtxinv
()
392 Returns ((X^T) X)^(-1) or ((X^T) W X)^(-1)."
393 (let ((indices (if (send self
:intercept
)
394 (cons 0 (1+ (send self
:basis
)))
395 (1+ (send self
:basis
)))))
396 (select (send self
:sweep-matrix
) indices indices
)))
398 (defmeth regression-model-proto
:coef-standard-errors
()
400 Returns estimated standard errors of coefficients. Entries beyond the
401 intercept correspond to entries in basis."
402 (let ((s (send self
:sigma-hat
)))
403 (if s
(* (send self
:sigma-hat
) (sqrt (diagonal (send self
:xtxinv
)))))))
405 (defmeth regression-model-proto
:studentized-residuals
()
407 Computes the internally studentized residuals for included cases and externally studentized residuals for excluded cases."
408 (let ((res (send self
:residuals
))
409 (lev (send self
:leverages
))
410 (sig (send self
:sigma-hat
))
411 (inc (send self
:included
)))
413 (/ res
(* sig
(sqrt (pmax .00001 (- 1 lev
)))))
414 (/ res
(* sig
(sqrt (+ 1 lev
)))))))
416 (defmeth regression-model-proto
:externally-studentized-residuals
()
418 Computes the externally studentized residuals."
419 (let* ((res (send self
:studentized-residuals
))
420 (df (send self
:df
)))
421 (if-else (send self
:included
)
422 (* res
(sqrt (/ (- df
1) (- df
(^ res
2)))))
425 (defmeth regression-model-proto
:cooks-distances
()
427 Computes Cook's distances."
428 (let ((lev (send self
:leverages
))
429 (res (/ (^
(send self
:studentized-residuals
) 2)
430 (send self
:num-coefs
))))
431 (if-else (send self
:included
) (* res
(/ lev
(- 1 lev
) )) (* res lev
))))
434 (defun plot-points (x y
&rest args
)
436 (declare (ignore x y args
))
437 (error "Graphics not implemented yet."))
439 ;; Can not plot points yet!!
440 (defmeth regression-model-proto
:plot-residuals
(&optional x-values
)
441 "Message args: (&optional x-values)
442 Opens a window with a plot of the residuals. If X-VALUES are not supplied
443 the fitted values are used. The plot can be linked to other plots with the
444 link-views function. Returns a plot object."
445 (plot-points (if x-values x-values
(send self
:fit-values
))
446 (send self
:residuals
)
447 :title
"Residual Plot"
448 :point-labels
(send self
:case-labels
)))
450 (defmeth regression-model-proto
:plot-bayes-residuals
452 "Message args: (&optional x-values)
453 Opens a window with a plot of the standardized residuals and two standard
454 error bars for the posterior distribution of the actual deviations from the
455 line. See Chaloner and Brant. If X-VALUES are not supplied the fitted values
456 are used. The plot can be linked to other plots with the link-views function.
457 Returns a plot object."
458 (let* ((r (/ (send self
:residuals
) (send self
:sigma-hat
)))
459 (d (* 2 (sqrt (send self
:leverages
))))
462 (x-values (if x-values x-values
(send self
:fit-values
)))
463 (p (plot-points x-values r
464 :title
"Bayes Residual Plot"
465 :point-labels
(send self
:case-labels
))))
466 (map 'list
#'(lambda (a b c d
) (send p
:plotline a b c d nil
))
467 x-values low x-values high
)
468 (send p
:adjust-to-data
)