2 ;;; Copyright (c) 2005--2007, by A.J. Rossini <blindglobe@gmail.com>
3 ;;; See COPYRIGHT file for any additional restrictions (BSD license).
4 ;;; Since 1991, ANSI was finally finished. Edited for ANSI Common Lisp.
5 ;;; File moved from XLISP-STAT to CommonLispStat by Luke, note the following:
7 ;;;; XLISP-STAT 2.1 Copyright (c) 1990, by Luke Tierney
8 ;;;; Additions to Xlisp 2.1, Copyright (c) 1989 by David Michael Betz
9 ;;;; You may give out copies of this software; for conditions see the file
10 ;;;; COPYING included with this distribution.
13 (defpackage :lisp-stat-bayes
15 :lisp-stat-object-system
17 (:shadowing-import-from
:lisp-stat-object-system
18 slot-value call-method call-next-method
)
23 (in-package :lisp-stat-bayes
)
25 ;;; Objects Representing Functions
27 ;; Generic C2 Functions
29 (defproto c2-function-proto
'(f h num-derivs
))
31 (defmeth c2-function-proto
:isnew
(f &optional
(h .001) (num-derivs 0))
32 (setf (slot-value 'f
) f
)
33 (setf (slot-value 'h
) (if (numberp h
) (list h h
) h
))
34 (setf (slot-value 'num-derivs
) num-derivs
))
36 (defmeth c2-function-proto
:f
(&optional f
)
37 (if f
(setf (slot-value 'f
) f
))
40 (defmeth c2-function-proto
:grad-h
() (first (slot-value 'h
)))
41 (defmeth c2-function-proto
:hess-h
() (second (slot-value 'h
)))
42 (defmeth c2-function-proto
:num-derivs
() (slot-value 'num-derivs
))
44 (defmeth c2-function-proto
:value
(x)
45 (let ((f (send self
:f
)))
48 (let ((v (funcall f x
)))
49 (if (consp v
) (first v
) v
)))))
51 (defmeth c2-function-proto
:gradient
(x &optional
(h (send self
:grad-h
)))
52 (let ((f (send self
:f
)))
53 (if (objectp f
) (send f
:gradient x h
) (numgrad f x nil h
))))
55 (defmeth c2-function-proto
:hessian
(x &optional
(h (send self
:hess-h
)))
56 (let ((f (send self
:f
)))
57 (if (objectp f
) (send f
:hessian x h
) (numhess f x nil h
))))
59 (defmeth c2-function-proto
:vals
(x &optional
(h (send self
:hess-h
)))
60 (let ((f (send self
:f
)))
63 (let ((v (funcall f x
)))
67 (list (first v
) (second v
) (send self
:hessian x h
)))
68 (list v
(send self
:gradient x h
) (send self
:hessian x h
)))))))
70 (defmeth c2-function-proto
:vals
(x &optional
(h (send self
:hess-h
)))
71 (let ((f (send self
:f
)))
72 (if (objectp f
) (send f
:vals x h
) (numhess f x nil h t
))))
75 ;; Scaled C2 Functions
77 (defproto scaled-c2-function-proto
'(scaling) () c2-function-proto
)
79 ;;**** allow function objects?
80 (defmeth scaled-c2-function-proto
:isnew
(f &optional
86 (let* ((value (funcall f theta
))
87 (num-derivs (if (consp value
) (- (length value
) 1) -
1))
88 (sigma-t (if (< 0 num-derivs
) (transpose sigma
))))
92 (-1 (/ (- v center
) scale
))
93 (0 (/ (- (first v
) center
) scale
))
94 (1 (list (/ (- (first v
) center
) scale
)
95 (matmult sigma-t
(/ (second v
) scale
))))
96 (2 (list (/ (- (first v
) center
) scale
)
97 (matmult sigma-t
(/ (second v
) scale
))
98 (matmult sigma-t
(/ (third v
) scale
) sigma
))))))
99 (sf (x) (scale (funcall f
(ax+y sigma x theta t
)))))
100 (call-next-method #'sf h num-derivs
))))
102 ;; Tilted C2 Functions
103 ;; **** allow nil values?
104 (defproto tilt-function-proto
'(tilt exptilt
) () c2-function-proto
)
106 (defmeth tilt-function-proto
:isnew
(&optional f
(tilt .1) (h .001))
107 (call-next-method f h
)
108 (setf (slot-value 'exptilt
) t
)
109 (setf (slot-value 'tilt
) tilt
))
111 (defmeth tilt-function-proto
:tilt
(&optional tilt
)
112 (if tilt
(setf (slot-value 'tilt
) tilt
))
115 (defmeth tilt-function-proto
:exptilt
(&optional
(new nil set
))
116 (if set
(setf (slot-value 'exptilt
) new
))
117 (slot-value 'exptilt
))
119 (defmeth tilt-function-proto
:value
(x)
120 (let ((f (send self
:f
))
121 (tilt (send self
:tilt
))
122 (exptilt (send self
:exptilt
)))
124 (let ((v (send f
:value x
)))
125 (if exptilt v
(log v
)))))
126 (* tilt
(if (consp f
) (reduce #'+ (mapcar #'value f
)) (value f
))))))
128 (defmeth tilt-function-proto
:gradient
(x &optional
(h (send self
:grad-h
)))
129 (let ((f (send self
:f
))
130 (tilt (send self
:tilt
))
131 (exptilt (send self
:exptilt
)))
134 (send f
:gradient x h
)
135 (let ((v (send f
:value x
))
136 (grad (send f
:gradient x h
)))
139 (if (consp f
) (reduce #'+ (mapcar #'gradient f
)) (gradient f
))))))
141 (defmeth tilt-function-proto
:hessian
(x &optional
(h (send self
:hess-h
)))
142 (let ((f (send self
:f
))
143 (tilt (send self
:tilt
))
144 (exptilt (send self
:exptilt
)))
146 (let* ((vals (send f
:vals x h
))
148 (grad (if exptilt
(second vals
) (/ (second vals
) v
)))
149 (hess (if exptilt
(third vals
) (/ (third vals
) v
))))
150 (if exptilt hess
(- hess
(outer-product grad grad
))))))
151 (* tilt
(if (consp f
) (reduce #'+ (mapcar #'hessian f
)) (hessian f
))))))
153 (defmeth tilt-function-proto
:vals
(x &optional
(h (send self
:hess-h
)))
154 (let ((f (send self
:f
))
155 (tilt (send self
:tilt
))
156 (exptilt (send self
:exptilt
)))
158 (let ((vals (send f
:vals x h
)))
161 (let* ((v (first vals
))
162 (grad (/ (second vals
) v
))
163 (hess (- (/ (third vals
) v
)
164 (outer-product grad grad
))))
165 (list (log v
) grad hess
))))))
166 (let ((v (if (consp f
) (mapcar #'vals f
) (vals f
))))
167 (* tilt
(if (consp f
) (reduce #'+ v
) v
))))))
169 ;; scaled log posterior prototype
171 (defproto scaled-logpost-proto
172 '(tilt-object init-pars
) () scaled-c2-function-proto
)
174 (defmeth scaled-logpost-proto
:isnew
(f &optional
176 (center 0) (scale 1) (h .001))
177 (let* ((n (length theta
))
179 (m-grad (repeat 0 n
))
180 (m-hess (- (identity-matrix n
)))
181 (pars (list m m-grad m-hess
)))
182 (call-next-method f theta sigma center scale h
)
183 (setf (slot-value 'init-pars
) pars
)
184 (setf (slot-value 'tilt-object
) (send tilt-function-proto
:new
))))
186 (defmeth scaled-logpost-proto
:log-laplace
(g &optional
187 (count-limit 2) det-only
(h .1))
188 (let* ((x (send self
:tilt-newton g count-limit
))
189 (vals (send self
:vals x h
))
190 (gvals (if g
(send g
:vals x h
)))
191 (hess (if g
(+ (third vals
) (third gvals
)) (third vals
)))
192 (det (- (sum (log (diagonal (first (chol-decomp (- hess
)))))))))
195 (if g
(+ (first vals
) (first gvals
) det
) (+ (first vals
) det
)))))
197 (defmeth scaled-logpost-proto
:tilt-newton
(tilt &optional
(count-limit 2))
198 (let* ((pars (slot-value 'init-pars
))
200 (mode-grad (second pars
))
201 (mode-hess (third pars
)))
202 (flet ((gradhess (x initial
)
203 (let ((gh (if (and initial mode-grad mode-hess
)
204 (list mode-grad mode-hess
)
205 (rest (send self
:vals x
)))))
206 (if tilt
(+ gh
(rest (send tilt
:vals x
))) gh
)))
207 (newton-step (x gh
) (- x
(solve (second gh
) (first gh
)))))
208 (do* ((count 1 (+ count
1))
209 (gradhess (gradhess mode t
) (gradhess x nil
))
210 (x (newton-step mode gradhess
) (newton-step x gradhess
)))
211 ((>= count count-limit
) x
)))))
213 (defmeth scaled-logpost-proto
:tilt-laplace
(g tilt
&optional
214 (exptilt t
) maxiter det-only h
)
215 (let ((tilt-object (slot-value 'tilt-object
)))
216 (send tilt-object
:exptilt exptilt
)
217 (send tilt-object
:f g
)
218 (send tilt-object
:tilt tilt
)
219 (send self
:log-laplace tilt-object maxiter det-only h
)))
221 (defmeth scaled-logpost-proto
:tilt-mode
(g tilt
&key
(exptilt t
) (maxiter 2))
222 (let ((tilt-object (slot-value 'tilt-object
)))
223 (send tilt-object
:exptilt exptilt
)
224 (send tilt-object
:f g
)
225 (send tilt-object
:tilt tilt
)
226 (send self
:tilt-newton tilt-object maxiter
)))
229 ;;;; Bayes Model Prototype
232 (defproto bayes-model-proto
'(bayes-internals))
234 ;; initialization methods and constructor function
236 (defmeth bayes-model-proto
:isnew
(logpost mode
&key
242 (send self
:set-bayes-internals
243 logpost mode scale derivstep nil nil t domain
)
244 (if maximize
(send self
:maximize verbose
)))
246 (defun bayes-model (logpost mode
&rest args
&key
(quick t
) (print t
))
247 "Args: (logpost mode &key scale derivstep (verbose t)
248 (quick t) (print t)))
249 LOGPOST computes the logposterior density. It should return the
250 function, or a list of the function value and gradient, or a list of
251 the function value, gradient and Hessian. MODE is an initial guess for
252 the mode. SCALE and DERIVSTEP are used for numerical derivatives and
253 scaling. VERBOSE controls printing of iteration information during
254 optimization, PRINT controls printing of summary information. If QUICK
255 is T the summary is based on first order approximations."
256 (let ((m (apply #'send bayes-model-proto
:new logpost mode args
)))
257 (if print
(send m
:display
:quick quick
))
262 (defmeth bayes-model-proto
:display
(&key
(quick t
))
263 (let* ((moments (send self
(if quick
:1stmoments
:moments
)))
264 (means (first moments
))
265 (stdevs (second moments
))
266 (p-names (send self
:parameter-names
)))
268 (format t
"~2%First Order Approximations to Posterior Moments:~2%")
269 (format t
"~2%Approximate Posterior Moments:~2%"))
270 (mapcar #'(lambda (name mu sd
)
271 (format t
"~22a ~10g (~a)~%" name mu sd
))
277 (defmeth bayes-model-proto
:parameter-names
()
278 (let ((n (length (send self
:mode
))))
279 (mapcar #'(lambda (x) (format nil
"Parameter ~d" x
)) (iseq 0 (- n
1)))))
281 ;; implementation-dependent access methods
283 (defmeth bayes-model-proto
:set-bayes-internals
(lp m s h mval ch max dom
)
284 (setf (slot-value 'bayes-internals
)
285 (vector lp m s h mval ch max dom
)))
287 (defmeth bayes-model-proto
:logpost
(&optional new
)
288 (let ((internals (slot-value 'bayes-internals
)))
290 (setf (select internals
0) new
)
291 (send self
:needs-maximizing t
))
292 (select internals
0)))
294 (defmeth bayes-model-proto
:domain
(&optional new
)
295 (let ((internals (slot-value 'bayes-internals
)))
296 (if new
(setf (select internals
7) new
))
297 (select internals
7)))
299 (defmeth bayes-model-proto
:mode-values
(&optional mode mval ch
)
300 (let ((internals (slot-value 'bayes-internals
)))
302 (setf (select internals
1) mode
)
303 (setf (select internals
4) mval
)
304 (setf (select internals
5) ch
))
305 (list (select internals
1)
307 (select internals
5))))
309 (defmeth bayes-model-proto
:parameter-scale
(&optional new
)
310 (let ((internals (slot-value 'bayes-internals
)))
311 (if new
(setf (select internals
2) new
))
312 (select internals
2)))
314 (defmeth bayes-model-proto
:parameter-dimension
()
315 (length (select (slot-value 'bayes-internals
) 1)))
317 (defmeth bayes-model-proto
:derivstep
()
318 (select (slot-value 'bayes-internals
) 3))
320 (defmeth bayes-model-proto
:needs-maximizing
(&optional
(new nil set
))
321 (let ((internals (slot-value 'bayes-internals
)))
322 (if set
(setf (select internals
6) new
))
323 (select internals
6)))
325 ;; Transformation-Related Methods
326 ;; (These should be the only ones needing to be changed to handle
327 ;; an internal parameter transformation; perhaps also :logpost)
329 ;; **** fix to be more careful about use of functionp
330 (defun function-list (g &optional n
)
332 ((or (functionp g
) (objectp g
)) (list g
))
335 (list #'(lambda (x) (elt x g
)))
336 (let ((grad (make-array n
:initial-element
0))
337 (hess (make-array (list n n
) :initial-element
0)))
338 (setf (aref grad g
) 1)
339 (list #'(lambda (x) (list (elt x g
) grad hess
))))))
340 (t (mapcar #'(lambda (x) (car (function-list x n
))) g
))))
342 (defmeth bayes-model-proto
:mode
()
343 (if (send self
:needs-maximizing
) (send self
:maximize
))
344 (first (send self
:mode-values
)))
346 (defmeth bayes-model-proto
:new-mode-guess
(new)
347 (send self
:needs-maximizing t
)
348 (send self
:mode-values new
))
350 (defmeth bayes-model-proto
:transformed-logpost
()
351 (if (send self
:needs-maximizing
) (send self
:maximize
))
352 (let* ((m-values (send self
:mode-values
))
353 (mode (first m-values
))
354 (mval (second m-values
))
355 (ch (third m-values
))
356 (h (send self
:derivstep
))
357 (f (send self
:logpost
)))
358 (send scaled-logpost-proto
:new f mode ch mval
1 h
)))
360 ;;**** need transformed domain here
362 (defmeth bayes-model-proto
:transformed-functions
(&optional g
(c 0) (s 1))
363 (if (send self
:needs-maximizing
) (send self
:maximize
))
364 (let* ((m-values (send self
:mode-values
))
365 (mode (first m-values
))
366 (mval (second m-values
))
367 (ch (third m-values
))
368 (h (send self
:derivstep
))
370 (g (function-list (if g g
(iseq n
)) n
))
371 (c (if (numberp c
) (repeat c
(length g
)) c
))
372 (s (if (numberp s
) (repeat s
(length g
)) s
)))
373 (mapcar #'(lambda (g c s
)
374 (send scaled-c2-function-proto
:new g mode ch c s h
))
379 (defmeth bayes-model-proto
:maximize
(&optional
(verbose 0))
380 (let* ((lp (send self
:logpost
))
381 (x (first (send self
:mode-values
)))
382 (scale (send self
:parameter-scale
))
383 (h (send self
:derivstep
))
384 (minfo (newtonmax lp x
390 (mval (second minfo
))
391 (ch (first (chol-decomp (inverse (- (fourth minfo
)))))))
392 (send self
:mode-values mode mval ch
)
393 (send self
:needs-maximizing nil
)
394 (send self
:check-derivatives verbose
)))
396 (defmeth bayes-model-proto
:check-derivatives
(&optional
399 (let* ((verbose (if (numberp verbose
) (< 0 verbose
) verbose
))
400 (n (send self
:parameter-dimension
))
401 (tlp (send self
:transformed-logpost
))
402 (hess (send tlp
:hessian
(repeat 0 n
)))
403 (needs-max (send self
:needs-maximizing
)))
404 (when (> (max (abs (+ hess
(identity-matrix n
)))) epsilon
)
405 (if verbose
(format t
"Adjusting derivatives...~%"))
406 (let* ((ch (first (chol-decomp (- (inverse hess
)))))
407 (mvals (send self
:mode-values
))
408 (m (matmult (third mvals
) ch
)))
409 (send self
:mode-values
(first mvals
) (second mvals
) m
)
410 (if (not needs-max
) (send self
:needs-maximizing nil
))
412 (let* ((tlp (send self
:transformed-logpost
))
413 (hess (send tlp
:hessian
(repeat 0 n
))))
414 (if (> (max (abs (+ hess
(identity-matrix n
)))) epsilon
)
416 "Derivatives may not be well-behaved.~%"))))))))
420 (defmeth bayes-model-proto
:1stmoments
(&optional gfuns
&key covar
)
421 "Args: (&optional gfuns &key covar)
422 Computes first order approximations to posterior moments. GFUNS can be
423 a parameter index, list of indices, a function of the parameters or a
424 list of such functions. Returns a the list of first order approximate
425 means and standard deviations if COVAR is NIL. If COVAR is T the
426 covaraince is appended to the end of the result as well."
427 (if (send self
:needs-maximizing
) (send self
:maximize
))
428 (let* ((n (send self
:parameter-dimension
))
430 (g (send self
:transformed-functions gfuns
0 1))
431 (grads (apply #'bind-columns
432 (mapcar #'(lambda (g) (send g
:gradient x
)) g
)))
433 (mean (mapcar #'(lambda (g) (send g
:value x
)) g
))
434 (cov (matmult (transpose grads
) grads
)))
436 (list mean
(sqrt (diagonal cov
)) cov
)
437 (list mean
(sqrt (diagonal cov
))))))
439 (defmeth bayes-model-proto
:mgfmoments
(&optional g
&key covar
443 (let* ((moms1 (send self
:1stmoments g
:covar covar
))
444 (mean1 (first moms1
))
445 (stdev1 (second moms1
))
446 (cov1 (if covar
(third moms1
)))
447 (l-object (send self
:transformed-logpost
))
448 (g-objects (send self
:transformed-functions g mean1 stdev1
))
449 (ldet0 (send l-object
:log-laplace nil maxiter t h
)))
450 (labels ((lapdet (g tilt
)
451 (- (send l-object
:tilt-laplace g tilt t maxiter t h
) ldet0
))
453 (let ((ldet1 (lapdet g mgfdel
))
454 (ldet2 (lapdet g
(- mgfdel
))))
455 (list (+ m
(* s
(/ (- ldet1 ldet2
) (* 2 mgfdel
))))
456 (* s
(sqrt (+ 1 (/ (+ ldet1 ldet2
) (^ mgfdel
2))))))))
458 (let* ((mu (first mean-sd
))
459 (sd (second mean-sd
))
460 (cov (diagonal (^ sd
2)))
463 (rvdiff (/ (- var var1
) var
))
465 (2tilt2 (* 2 (^ tilt
2)))
467 (dotimes (i (length g
) cov
)
469 (let* ((g (select g
(list i j
)))
470 (rvdi (select rvdiff i
))
471 (rvdj (select rvdiff j
))
474 (ldt1 (lapdet g tilt
))
475 (ldt2 (lapdet g negtilt
))
476 (del2 (/ (+ ldt1 ldt2
) 2tilt2
))
477 (d (- del2
(* 0.5 rvdi
) (* 0.5 rvdj
)))
478 (c (+ (aref cov1 i j
) (* d sdi sdj
))))
479 (setf (aref cov i j
) c
)
480 (setf (aref cov j i
) c
)))))))
481 (let ((mean-sd (transpose (mapcar #'moms2 mean1 stdev1 g-objects
))))
483 (append mean-sd
(list (covar g-objects mean-sd
)))
486 (defmeth bayes-model-proto
:fullmoments
(&optional g
&key covar
489 (let* ((moms1 (send self
:1stmoments g
))
490 (mean1 (first moms1
))
491 (stdev1 (second moms1
))
492 (l-object (send self
:transformed-logpost
))
493 (g-objects (send self
:transformed-functions g
0 mean1
))
494 (loglap0 (send l-object
:log-laplace nil maxiter nil h
)))
495 (labels ((loglap (g tilt
)
496 (- (send l-object
:tilt-laplace g tilt nil maxiter nil h
)
499 (let ((mu1 (exp (loglap g
1.0)))
500 (mu2 (exp (loglap g
2.0))))
501 (* mu
(values-list (list mu1
(sqrt (- mu2
(^ mu1
2))))))))
503 (let* ((mu (/ (first mean-sd
) mean1
))
504 (sd (second mean-sd
))
505 (cov (diagonal (^ sd
2))))
506 (dotimes (i (length g
) cov
)
508 (let* ((g (select g
(list i j
)))
509 (muij (exp (loglap g
1.0)))
512 (mu1i (select mean1 i
))
513 (mu1j (select mean1 j
))
514 (c (* (- muij
(* mui muj
)) mu1i mu1j
)))
515 (setf (aref cov i j
) c
)
516 (setf (aref cov j i
) c
)))))))
517 (let ((mean-sd (transpose (mapcar #'moms2 g-objects mean1
))))
519 (append mean-sd
(list (covar g-objects mean-sd
)))
522 (defmeth bayes-model-proto
:2ndmoments
(&rest args
)
523 (apply #'send self
:mgfmoments args
))
525 (defmeth bayes-model-proto
:moments
(&rest args
)
526 "Args: (&optional gfuns &key covar)
527 Computes second order approximations to posterior moments. GFUNS can be
528 a parameter index, list of indices, a function of the parameters or a
529 list of such functions. Returns a the list of second order approximate
530 means and standard deviations if COVAR is NIL. If COVAR is T the
531 covaraince is appended to the end of the result as well."
532 (apply #'send self
:2ndmoments args
))
536 (defproto laplace-margin-proto
'(logpost g x val i j a grad gval lu h
))
538 (defmeth laplace-margin-proto
:isnew
(logpost g n k h
)
539 (setf (slot-value 'logpost
) logpost
)
540 (setf (slot-value 'g
) g
)
541 (setf (slot-value 'x
) (repeat 0 (+ n k
)))
542 (setf (slot-value 'i
) (iseq n
))
543 (setf (slot-value 'j
) (+ n
(iseq k
)))
544 (setf (slot-value 'a
)
545 (make-array (list (+ n k
) (+ n k
)) :initial-element
0))
546 (setf (slot-value 'h
) h
)
547 (send self
:adjust-internals t
))
549 (defmeth laplace-margin-proto
:adjust-internals
(&optional initial
)
550 (let* ((logpost (slot-value 'logpost
))
558 (lambda (select x j
))
561 (list 0 (repeat 0 n
) (- (identity-matrix n
)))
562 (send logpost
:vals y h
)))
566 (gvals (mapcar #'(lambda (x) (send x
:vals y h
)) g
))
567 (gval (mapcar #'first gvals
))
568 (ggrad (mapcar #'second gvals
))
569 (ghess (mapcar #'third gvals
))
570 (ggradmat (apply #' bind-columns ggrad
)))
571 (setf (slot-value 'val
) val
)
572 (setf (slot-value 'grad
) (reduce #'+ grad
(* lambda ggrad
)))
573 (setf (slot-value 'gval
) gval
)
574 (setf (select a i i
) (reduce #'+ hess
(* lambda ghess
)))
575 (setf (select a i j
) ggradmat
)
576 (setf (select a j i
) (transpose ggradmat
))
577 (setf (slot-value 'lu
) (lu-decomp a
))))
579 ;; **** test for nonsingularity?
580 (defmeth laplace-margin-proto
:move-to
(target)
581 (let* ((x (slot-value 'x
))
582 (grad (slot-value 'grad
))
583 (gval (slot-value 'gval
))
584 (lu (slot-value 'lu
))
585 (next-x (- x
(lu-solve lu
(combine grad
(- gval target
))))))
586 (setf (slot-value 'x
) next-x
)
587 (send self
:adjust-internals
)))
589 (defmeth laplace-margin-proto
:log-density
(&optional profile
)
590 (let ((val (slot-value 'val
)))
593 (let* ((lu (slot-value 'lu
))
594 (nonsing (null (fourth lu
))))
596 (+ (* -
0.5 (sum (log (abs (diagonal (first lu
))))))
599 ;; ***** fix step choice
600 ;; ***** Cut off at first nil?
601 (defmeth bayes-model-proto
:log-margin1
(g x
&key
605 (let* ((moms1 (send self
:1stmoments g
))
606 (mean1 (select (first moms1
) 0))
607 (stdev1 (select (second moms1
) 0))
608 (n (send self
:parameter-dimension
))
609 (l-ob (send self
:transformed-logpost
))
610 (g-obs (send self
:transformed-functions g mean1 stdev1
))
611 (xs (/ (- x mean1
) stdev1
))
612 (xlow (coerce (sort-data (select xs
(which (<= xs
0)))) 'list
))
613 (xhigh (coerce (sort-data (select xs
(which (> xs
0)))) 'list
)))
615 (let ((margin (send laplace-margin-proto
:new l-ob g-obs n
1 h
)))
616 (flet ((nextmargin (x)
617 (send margin
:move-to x
)
618 (send margin
:log-density profile
)))
619 (mapcar #'nextmargin x
)))))
620 (let* ((ylow (reverse (margin (reverse xlow
))))
621 (yhigh (margin xhigh
))
622 (x (append xlow xhigh
))
623 (y (append ylow yhigh
))
624 (i (which (mapcar #'numberp y
)))
627 (xy (if spline
(spline xi yi
) (list xi yi
))))
628 (list (+ mean1
(* stdev1
(first xy
)))
629 (- (second xy
) (log stdev1
) (* 0.5 (log (* 2 pi
)))))))))
631 (defmeth bayes-model-proto
:margin1
(g x
&key
635 "Args: (g x &key (:derivstep .05) (spline t) profile)
636 Computes Laplace approximation to marginal posterior density of G at
637 points X. G can be an index or a function of the parameter vector. X
638 is a sequence that should include the modal value of G. If SPLINE is
639 true the log density is splined. If PROFILE is true, a profile of the
640 posterior is returned."
641 (let* ((logmar (send self
:log-margin1 g x
645 (list (first logmar
) (exp (second logmar
)))))
647 ;;**** allow domain test function
648 (defmeth bayes-model-proto
:impsample
(&optional g
&key
(n 100) (df 2))
649 (let* ((l-ob (send self
:transformed-logpost
))
650 (g-obs (send self
:transformed-functions g
))
651 (k (send self
:parameter-dimension
))
652 (v (chisq-rand n df
))
653 (z (* (normal-rand (repeat k n
)) (sqrt (/ df v
))))
654 (c (- (log-gamma (/ (+ k df
) 2))
656 (* (/ k
2) (log (/ df
2))))))
658 (let ((lp (send l-ob
:value z
))
659 (lt (* -
0.5 (+ k df
) (log (+ 1 (/ (sum (* z z
)) df
))))))
660 (if (realp lp
) (exp (- lp lt c
)) 0)))
661 (gvals (z) (mapcar #'(lambda (g) (send g
:value z
)) g-obs
)))
662 (list (mapcar #'gvals z
) (mapcar #'w z
)))))
664 (defmeth bayes-model-proto
:impmoments
(&optional g
&key
(n 100) (df 2))
665 (let* ((impsample (send self
:impsample g
:n n
:df df
))
666 (means (/ (reduce #'+ (* (first impsample
) (second impsample
)))
667 (reduce #'+ (second impsample
))))
668 (x (mapcar #'(lambda (z) (^
(- z means
) 2)) (first impsample
)))
669 (vars (/ (reduce #'+ (* x
(second impsample
)))
670 (reduce #'+ (second impsample
)))))
671 (list means
(sqrt vars
))))