1 // Copyright 2003 David Hilvert <dhilvert@auricle.dyndns.org>,
2 // <dhilvert@ugcs.caltech.edu>
4 /* This file is part of the Anti-Lamenessing Engine.
6 The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with the Anti-Lamenessing Engine; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #ifndef __psf_rasterize_h__
22 #define __psf_rasterize_h__
24 #include "../../point.h"
29 * Point-spread function rasterizer.
31 * These operations rasterize a PSF to a multiple of the resolution of the
32 * rendering grid for a given frame.
35 class rasterizer
: public raster
{
39 unsigned int varieties() const {
40 return input
->varieties();
43 unsigned int select(unsigned int i
, unsigned int j
) const {
44 return input
->select(i
, j
);
47 rasterizer (psf
*input
, transformation t
) {
50 _height
= -input
->min_i();
52 if (input
->max_i() > _height
)
53 _height
= input
->max_i();
55 _width
= -input
->min_j();
57 if (input
->max_j() > _width
)
58 _width
= input
->max_j();
61 * Approximate the desired resolution.
63 * Assume that maximum resolution is reached at (at least) one
64 * of the corners of the image. (This should be true for
65 * projective, Euclidean, and translational transformations,
66 * but it would be worthwhile to check/prove this for the
67 * projective case at some point, since it's a bit less
74 * XXX: this loop breaks when height <= 1 or width <= 1.
77 for (unsigned int i
= 0; i
< t
.unscaled_height(); i
+= (t
.unscaled_height() - 1))
78 for (unsigned int j
= 0; j
< t
.unscaled_width(); j
+= (t
.unscaled_width() - 1)) {
79 point corner
= point(i
, j
);
80 point delta1
= corner
- t
.scaled_inverse_transform(t
.transform_scaled(corner
) + point(1, 0));
81 point delta2
= corner
- t
.scaled_inverse_transform(t
.transform_scaled(corner
) + point(0, 1));
83 for (int index
= 0; index
< 2; index
++) {
84 ale_real d1
= fabs(delta1
[index
]);
85 ale_real d2
= fabs(delta2
[index
]);
88 * Take the largest change in each direction.
91 ale_real delta
= (d1
> d2
) ? d1
: d2
;
93 if ((i
== 0 && j
== 0) || delta
< min_diff
[index
])
94 min_diff
[index
] = delta
;
98 ale_real resolution_multiplier
= 3; /* Arbitrary */
100 _filter_dim_i
= (int) ceil(2 * _height
* resolution_multiplier
/ min_diff
[0]);
101 _filter_dim_j
= (int) ceil(2 * _width
* resolution_multiplier
/ min_diff
[1]);
104 * Ensure that the array has an odd number of elements in each
105 * direction. This allows us to move the center to the right
106 * place when using FFTW.
109 if (_filter_dim_i
% 2 == 0)
111 if (_filter_dim_j
% 2 == 0)
115 * Determine the number of arrays to create.
118 num_arrays
= input
->varieties();
124 response_arrays
= (ale_real
**)malloc(num_arrays
* sizeof(ale_real
*));
126 if (!response_arrays
) {
127 fprintf(stderr
, "Could not allocate in rasterizer.\n");
131 ale_real stepsize_i
= (2 * _height
) / _filter_dim_i
;
132 ale_real stepsize_j
= (2 * _width
) / _filter_dim_j
;
133 ale_real divisor
= stepsize_i
* stepsize_j
;
135 for (unsigned int n
= 0; n
< num_arrays
; n
++) {
136 response_arrays
[n
] = (ale_real
*)malloc(_filter_dim_i
* _filter_dim_j
* 3
139 if (!response_arrays
[n
]) {
140 fprintf(stderr
, "Could not allocate in rasterizer.\n");
144 for (unsigned int i
= 0; i
< _filter_dim_i
; i
++)
145 for (unsigned int j
= 0; j
< _filter_dim_j
; j
++) {
147 = (*input
)(-_height
+ stepsize_i
* i
,
148 -_height
+ stepsize_i
* (i
+ 1),
149 -_width
+ stepsize_j
* j
,
150 -_width
+ stepsize_j
* (j
+ 1), n
);
152 for (unsigned int k
= 0; k
< 3; k
++) {
153 response_arrays
[n
][i
* _filter_dim_j
* 3 + j
* 3 + k
]
154 = r
.matrix(k
, k
) / divisor
;
160 avg_response
= (ale_real
*)malloc(_filter_dim_i
* _filter_dim_j
* 3
164 fprintf(stderr
, "Could not allocate in rasterizer.\n");
168 for (unsigned int i
= 0; i
< _filter_dim_i
; i
++)
169 for (unsigned int j
= 0; j
< _filter_dim_j
; j
++) {
171 = (*input
)(-_height
+ stepsize_i
* i
,
172 -_height
+ stepsize_i
* (i
+ 1),
173 -_width
+ stepsize_j
* j
,
174 -_width
+ stepsize_j
* (j
+ 1));
176 for (unsigned int k
= 0; k
< 3; k
++)
177 avg_response
[i
* _filter_dim_j
* 3 + j
* 3 + k
]
178 = r
.matrix(k
, k
) / divisor
;
184 // fprintf(stderr, "(w=%f h=%f we=%d he=%d [", _width, _height, _filter_dim_j, _filter_dim_i);
185 // for (unsigned int i = 0; i < _filter_dim_i; i++)
186 // for (unsigned int j = 0; j < _filter_dim_j; j++)
187 // fprintf(stderr, "%f ", response_arrays[0][i * _filter_dim_j * 3 + j * 3 + 0]);
188 // fprintf(stderr, "])");