Added two wireless drivers: atheros5000.device and realtek8180.device.
[AROS.git] / workbench / devs / networks / atheros5000 / hal / ar5212 / ar5111.c
blobb209432af16d38228c97fca28395f71e8fb6d85b
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id$
19 #include "opt_ah.h"
21 #ifdef AH_SUPPORT_5111
23 #include "ah.h"
24 #include "ah_internal.h"
26 #include "ah_eeprom_v3.h"
28 #include "ar5212/ar5212.h"
29 #include "ar5212/ar5212reg.h"
30 #include "ar5212/ar5212phy.h"
32 #define AH_5212_5111
33 #include "ar5212/ar5212.ini"
35 #define N(a) (sizeof(a)/sizeof(a[0]))
37 struct ar5111State {
38 RF_HAL_FUNCS base; /* public state, must be first */
39 uint16_t pcdacTable[PWR_TABLE_SIZE];
41 uint32_t Bank0Data[N(ar5212Bank0_5111)];
42 uint32_t Bank1Data[N(ar5212Bank1_5111)];
43 uint32_t Bank2Data[N(ar5212Bank2_5111)];
44 uint32_t Bank3Data[N(ar5212Bank3_5111)];
45 uint32_t Bank6Data[N(ar5212Bank6_5111)];
46 uint32_t Bank7Data[N(ar5212Bank7_5111)];
48 #define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal)
50 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
51 const PCDACS_EEPROM *pSrcStruct);
52 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
53 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
54 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
55 const PCDACS_EEPROM *pSrcStruct,
56 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
58 extern void ar5212GetLowerUpperValues(uint16_t value,
59 const uint16_t *pList, uint16_t listSize,
60 uint16_t *pLowerValue, uint16_t *pUpperValue);
61 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
62 uint32_t numBits, uint32_t firstBit, uint32_t column);
64 static void
65 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
66 int writes)
68 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
69 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
70 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
74 * Take the MHz channel value and set the Channel value
76 * ASSUMES: Writes enabled to analog bus
78 static HAL_BOOL
79 ar5111SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
81 #define CI_2GHZ_INDEX_CORRECTION 19
82 uint32_t refClk, reg32, data2111;
83 int16_t chan5111, chanIEEE;
86 * Structure to hold 11b tuning information for 5111/2111
87 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
89 typedef struct {
90 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
91 uint32_t channelSelect; /* P[7:4]S[3:0] bits */
92 uint16_t channel5111; /* 11a channel for 5111 */
93 } CHAN_INFO_2GHZ;
95 const static CHAN_INFO_2GHZ chan2GHzData[] = {
96 { 1, 0x46, 96 }, /* 2312 -19 */
97 { 1, 0x46, 97 }, /* 2317 -18 */
98 { 1, 0x46, 98 }, /* 2322 -17 */
99 { 1, 0x46, 99 }, /* 2327 -16 */
100 { 1, 0x46, 100 }, /* 2332 -15 */
101 { 1, 0x46, 101 }, /* 2337 -14 */
102 { 1, 0x46, 102 }, /* 2342 -13 */
103 { 1, 0x46, 103 }, /* 2347 -12 */
104 { 1, 0x46, 104 }, /* 2352 -11 */
105 { 1, 0x46, 105 }, /* 2357 -10 */
106 { 1, 0x46, 106 }, /* 2362 -9 */
107 { 1, 0x46, 107 }, /* 2367 -8 */
108 { 1, 0x46, 108 }, /* 2372 -7 */
109 /* index -6 to 0 are pad to make this a nolookup table */
110 { 1, 0x46, 116 }, /* -6 */
111 { 1, 0x46, 116 }, /* -5 */
112 { 1, 0x46, 116 }, /* -4 */
113 { 1, 0x46, 116 }, /* -3 */
114 { 1, 0x46, 116 }, /* -2 */
115 { 1, 0x46, 116 }, /* -1 */
116 { 1, 0x46, 116 }, /* 0 */
117 { 1, 0x46, 116 }, /* 2412 1 */
118 { 1, 0x46, 117 }, /* 2417 2 */
119 { 1, 0x46, 118 }, /* 2422 3 */
120 { 1, 0x46, 119 }, /* 2427 4 */
121 { 1, 0x46, 120 }, /* 2432 5 */
122 { 1, 0x46, 121 }, /* 2437 6 */
123 { 1, 0x46, 122 }, /* 2442 7 */
124 { 1, 0x46, 123 }, /* 2447 8 */
125 { 1, 0x46, 124 }, /* 2452 9 */
126 { 1, 0x46, 125 }, /* 2457 10 */
127 { 1, 0x46, 126 }, /* 2462 11 */
128 { 1, 0x46, 127 }, /* 2467 12 */
129 { 1, 0x46, 128 }, /* 2472 13 */
130 { 1, 0x44, 124 }, /* 2484 14 */
131 { 1, 0x46, 136 }, /* 2512 15 */
132 { 1, 0x46, 140 }, /* 2532 16 */
133 { 1, 0x46, 144 }, /* 2552 17 */
134 { 1, 0x46, 148 }, /* 2572 18 */
135 { 1, 0x46, 152 }, /* 2592 19 */
136 { 1, 0x46, 156 }, /* 2612 20 */
137 { 1, 0x46, 160 }, /* 2632 21 */
138 { 1, 0x46, 164 }, /* 2652 22 */
139 { 1, 0x46, 168 }, /* 2672 23 */
140 { 1, 0x46, 172 }, /* 2692 24 */
141 { 1, 0x46, 176 }, /* 2712 25 */
142 { 1, 0x46, 180 } /* 2732 26 */
145 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
147 chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
148 if (IS_CHAN_2GHZ(chan)) {
149 const CHAN_INFO_2GHZ* ci =
150 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
151 uint32_t txctl;
153 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
154 << 5)
155 | (ci->refClkSel << 4);
156 chan5111 = ci->channel5111;
157 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
158 if (chan->channel == 2484) {
159 /* Enable channel spreading for channel 14 */
160 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
161 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
162 } else {
163 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
164 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
166 } else {
167 chan5111 = chanIEEE; /* no conversion needed */
168 data2111 = 0;
171 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
172 if (chan5111 >= 145 || (chan5111 & 0x1)) {
173 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
174 refClk = 1;
175 } else {
176 reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
177 refClk = 0;
180 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
181 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
182 reg32 >>= 8;
183 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
185 AH_PRIVATE(ah)->ah_curchan = chan;
186 return AH_TRUE;
187 #undef CI_2GHZ_INDEX_CORRECTION
191 * Return a reference to the requested RF Bank.
193 static uint32_t *
194 ar5111GetRfBank(struct ath_hal *ah, int bank)
196 struct ar5111State *priv = AR5111(ah);
198 HALASSERT(priv != AH_NULL);
199 switch (bank) {
200 case 0: return priv->Bank0Data;
201 case 1: return priv->Bank1Data;
202 case 2: return priv->Bank2Data;
203 case 3: return priv->Bank3Data;
204 case 6: return priv->Bank6Data;
205 case 7: return priv->Bank7Data;
207 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
208 __func__, bank);
209 return AH_NULL;
213 * Reads EEPROM header info from device structure and programs
214 * all rf registers
216 * REQUIRES: Access to the analog rf device
218 static HAL_BOOL
219 ar5111SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
220 uint16_t modesIndex, uint16_t *rfXpdGain)
222 struct ath_hal_5212 *ahp = AH5212(ah);
223 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
224 uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
225 uint16_t tempOB, tempDB;
226 uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
227 int i, regWrites = 0;
229 /* Setup rf parameters */
230 switch (chan->channelFlags & CHANNEL_ALL) {
231 case CHANNEL_A:
232 case CHANNEL_T:
233 if (4000 < chan->channel && chan->channel < 5260) {
234 tempOB = ee->ee_ob1;
235 tempDB = ee->ee_db1;
236 } else if (5260 <= chan->channel && chan->channel < 5500) {
237 tempOB = ee->ee_ob2;
238 tempDB = ee->ee_db2;
239 } else if (5500 <= chan->channel && chan->channel < 5725) {
240 tempOB = ee->ee_ob3;
241 tempDB = ee->ee_db3;
242 } else if (chan->channel >= 5725) {
243 tempOB = ee->ee_ob4;
244 tempDB = ee->ee_db4;
245 } else {
246 /* XXX when does this happen??? */
247 tempOB = tempDB = 0;
249 ob2GHz = db2GHz = 0;
251 rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
252 rfPloSel = ee->ee_xpd[headerInfo11A];
253 rfPwdXpd = !ee->ee_xpd[headerInfo11A];
254 gainI = ee->ee_gainI[headerInfo11A];
255 break;
256 case CHANNEL_B:
257 tempOB = ee->ee_obFor24;
258 tempDB = ee->ee_dbFor24;
259 ob2GHz = ee->ee_ob2GHz[0];
260 db2GHz = ee->ee_db2GHz[0];
262 rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
263 rfPloSel = ee->ee_xpd[headerInfo11B];
264 rfPwdXpd = !ee->ee_xpd[headerInfo11B];
265 gainI = ee->ee_gainI[headerInfo11B];
266 break;
267 case CHANNEL_G:
268 tempOB = ee->ee_obFor24g;
269 tempDB = ee->ee_dbFor24g;
270 ob2GHz = ee->ee_ob2GHz[1];
271 db2GHz = ee->ee_db2GHz[1];
273 rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
274 rfPloSel = ee->ee_xpd[headerInfo11G];
275 rfPwdXpd = !ee->ee_xpd[headerInfo11G];
276 gainI = ee->ee_gainI[headerInfo11G];
277 break;
278 default:
279 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
280 __func__, chan->channelFlags);
281 return AH_FALSE;
284 HALASSERT(1 <= tempOB && tempOB <= 5);
285 HALASSERT(1 <= tempDB && tempDB <= 5);
287 /* Bank 0 Write */
288 for (i = 0; i < N(ar5212Bank0_5111); i++)
289 rfReg[i] = ar5212Bank0_5111[i][modesIndex];
290 if (IS_CHAN_2GHZ(chan)) {
291 ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
292 ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
294 HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
296 /* Bank 1 Write */
297 HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
299 /* Bank 2 Write */
300 HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
302 /* Bank 3 Write */
303 HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
305 /* Bank 6 Write */
306 for (i = 0; i < N(ar5212Bank6_5111); i++)
307 rfReg[i] = ar5212Bank6_5111[i][modesIndex];
308 if (IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */
309 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
310 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
312 ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
313 ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
314 /* Set 5212 OB & DB */
315 ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
316 ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
317 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
319 /* Bank 7 Write */
320 for (i = 0; i < N(ar5212Bank7_5111); i++)
321 rfReg[i] = ar5212Bank7_5111[i][modesIndex];
322 ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
323 ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
325 if (IS_CHAN_QUARTER_RATE(chan) || IS_CHAN_HALF_RATE(chan)) {
326 uint32_t rfWaitI, rfWaitS, rfMaxTime;
328 rfWaitS = 0x1f;
329 rfWaitI = (IS_CHAN_HALF_RATE(chan)) ? 0x10 : 0x1f;
330 rfMaxTime = 3;
331 ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
332 ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
333 ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
337 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
339 /* Now that we have reprogrammed rfgain value, clear the flag. */
340 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
342 return AH_TRUE;
346 * Returns interpolated or the scaled up interpolated value
348 static uint16_t
349 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
350 uint16_t targetLeft, uint16_t targetRight)
352 uint16_t rv;
353 int16_t lRatio;
355 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
356 if ((targetLeft * targetRight) == 0)
357 return 0;
359 if (srcRight != srcLeft) {
361 * Note the ratio always need to be scaled,
362 * since it will be a fraction.
364 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
365 if (lRatio < 0) {
366 /* Return as Left target if value would be negative */
367 rv = targetLeft;
368 } else if (lRatio > EEP_SCALE) {
369 /* Return as Right target if Ratio is greater than 100% (SCALE) */
370 rv = targetRight;
371 } else {
372 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
373 targetLeft) / EEP_SCALE;
375 } else {
376 rv = targetLeft;
378 return rv;
382 * Read the transmit power levels from the structures taken from EEPROM
383 * Interpolate read transmit power values for this channel
384 * Organize the transmit power values into a table for writing into the hardware
386 static HAL_BOOL
387 ar5111SetPowerTable(struct ath_hal *ah,
388 int16_t *pMinPower, int16_t *pMaxPower, HAL_CHANNEL_INTERNAL *chan,
389 uint16_t *rfXpdGain)
391 struct ath_hal_5212 *ahp = AH5212(ah);
392 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
393 FULL_PCDAC_STRUCT pcdacStruct;
394 int i, j;
396 uint16_t *pPcdacValues;
397 int16_t *pScaledUpDbm;
398 int16_t minScaledPwr;
399 int16_t maxScaledPwr;
400 int16_t pwr;
401 uint16_t pcdacMin = 0;
402 uint16_t pcdacMax = PCDAC_STOP;
403 uint16_t pcdacTableIndex;
404 uint16_t scaledPcdac;
405 PCDACS_EEPROM *pSrcStruct;
406 PCDACS_EEPROM eepromPcdacs;
408 /* setup the pcdac struct to point to the correct info, based on mode */
409 switch (chan->channelFlags & CHANNEL_ALL) {
410 case CHANNEL_A:
411 case CHANNEL_T:
412 eepromPcdacs.numChannels = ee->ee_numChannels11a;
413 eepromPcdacs.pChannelList = ee->ee_channels11a;
414 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
415 break;
416 case CHANNEL_B:
417 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
418 eepromPcdacs.pChannelList = ee->ee_channels11b;
419 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
420 break;
421 case CHANNEL_G:
422 case CHANNEL_108G:
423 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
424 eepromPcdacs.pChannelList = ee->ee_channels11g;
425 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
426 break;
427 default:
428 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
429 __func__, chan->channelFlags);
430 return AH_FALSE;
433 pSrcStruct = &eepromPcdacs;
435 OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
436 pPcdacValues = pcdacStruct.PcdacValues;
437 pScaledUpDbm = pcdacStruct.PwrValues;
439 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
440 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
441 pPcdacValues[j] = i;
443 pcdacStruct.numPcdacValues = j;
444 pcdacStruct.pcdacMin = PCDAC_START;
445 pcdacStruct.pcdacMax = PCDAC_STOP;
447 /* Fill out the power values for this channel */
448 for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
449 pScaledUpDbm[j] = ar5212GetScaledPower(chan->channel,
450 pPcdacValues[j], pSrcStruct);
452 /* Now scale the pcdac values to fit in the 64 entry power table */
453 minScaledPwr = pScaledUpDbm[0];
454 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
456 /* find minimum and make monotonic */
457 for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
458 if (minScaledPwr >= pScaledUpDbm[j]) {
459 minScaledPwr = pScaledUpDbm[j];
460 pcdacMin = j;
463 * Make the full_hsh monotonically increasing otherwise
464 * interpolation algorithm will get fooled gotta start
465 * working from the top, hence i = 63 - j.
467 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
468 if (i == 0)
469 break;
470 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
472 * It could be a glitch, so make the power for
473 * this pcdac the same as the power from the
474 * next highest pcdac.
476 pScaledUpDbm[i - 1] = pScaledUpDbm[i];
480 for (j = 0; j < pcdacStruct.numPcdacValues; j++)
481 if (maxScaledPwr < pScaledUpDbm[j]) {
482 maxScaledPwr = pScaledUpDbm[j];
483 pcdacMax = j;
486 /* Find the first power level with a pcdac */
487 pwr = (uint16_t)(PWR_STEP *
488 ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
490 /* Write all the first pcdac entries based off the pcdacMin */
491 pcdacTableIndex = 0;
492 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
493 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
494 ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
497 i = 0;
498 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
499 pcdacTableIndex < PWR_TABLE_SIZE) {
500 pwr += PWR_STEP;
501 /* stop if dbM > max_power_possible */
502 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
503 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
504 i++;
505 /* scale by 2 and add 1 to enable round up or down as needed */
506 scaledPcdac = (uint16_t)(interpolate(pwr,
507 pScaledUpDbm[i], pScaledUpDbm[i + 1],
508 (uint16_t)(pPcdacValues[i] * 2),
509 (uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
511 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
512 ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
513 if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
514 ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
515 pcdacTableIndex++;
518 /* Write all the last pcdac entries based off the last valid pcdac */
519 while (pcdacTableIndex < PWR_TABLE_SIZE) {
520 ahp->ah_pcdacTable[pcdacTableIndex] =
521 ahp->ah_pcdacTable[pcdacTableIndex - 1];
522 pcdacTableIndex++;
525 /* No power table adjustment for 5111 */
526 ahp->ah_txPowerIndexOffset = 0;
528 return AH_TRUE;
532 * Get or interpolate the pcdac value from the calibrated data.
534 static uint16_t
535 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
536 const PCDACS_EEPROM *pSrcStruct)
538 uint16_t powerValue;
539 uint16_t lFreq, rFreq; /* left and right frequency values */
540 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
541 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
542 uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
543 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
545 if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
546 /* value was copied from srcStruct */
547 return powerValue;
550 ar5212GetLowerUpperValues(channel,
551 pSrcStruct->pChannelList, pSrcStruct->numChannels,
552 &lFreq, &rFreq);
553 ar5212GetLowerUpperPcdacs(pcdacValue,
554 lFreq, pSrcStruct, &llPcdac, &ulPcdac);
555 ar5212GetLowerUpperPcdacs(pcdacValue,
556 rFreq, pSrcStruct, &lrPcdac, &urPcdac);
558 /* get the power index for the pcdac value */
559 ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
560 ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
561 lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
563 ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
564 ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
565 rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
567 return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
571 * Find the value from the calibrated source data struct
573 static HAL_BOOL
574 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
575 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
577 const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
578 int i;
580 for (i = 0; i < pSrcStruct->numChannels; i++ ) {
581 if (pChannelData->channelValue == channel) {
582 const uint16_t* pPcdac = pChannelData->PcdacValues;
583 int j;
585 for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
586 if (*pPcdac == pcdacValue) {
587 *powerValue = pChannelData->PwrValues[j];
588 return AH_TRUE;
590 pPcdac++;
593 pChannelData++;
595 return AH_FALSE;
599 * Get the upper and lower pcdac given the channel and the pcdac
600 * used in the search
602 static void
603 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
604 const PCDACS_EEPROM *pSrcStruct,
605 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
607 const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
608 int i;
610 /* Find the channel information */
611 for (i = 0; i < pSrcStruct->numChannels; i++) {
612 if (pChannelData->channelValue == channel)
613 break;
614 pChannelData++;
616 ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
617 pChannelData->numPcdacValues,
618 pLowerPcdac, pUpperPcdac);
621 static HAL_BOOL
622 ar5111GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
623 int16_t *maxPow, int16_t *minPow)
625 /* XXX - Get 5111 power limits! */
626 /* NB: caller will cope */
627 return AH_FALSE;
631 * Adjust NF based on statistical values for 5GHz frequencies.
633 static int16_t
634 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
636 static const struct {
637 uint16_t freqLow;
638 int16_t adjust;
639 } adjust5111[] = {
640 { 5790, 6 }, /* NB: ordered high -> low */
641 { 5730, 4 },
642 { 5690, 3 },
643 { 5660, 2 },
644 { 5610, 1 },
645 { 5530, 0 },
646 { 5450, 0 },
647 { 5379, 1 },
648 { 5209, 3 },
649 { 3000, 5 },
650 { 0, 0 },
652 int i;
654 for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
656 return adjust5111[i].adjust;
660 * Free memory for analog bank scratch buffers
662 static void
663 ar5111RfDetach(struct ath_hal *ah)
665 struct ath_hal_5212 *ahp = AH5212(ah);
667 HALASSERT(ahp->ah_rfHal != AH_NULL);
668 ath_hal_free(ahp->ah_rfHal);
669 ahp->ah_rfHal = AH_NULL;
673 * Allocate memory for analog bank scratch buffers
674 * Scratch Buffer will be reinitialized every reset so no need to zero now
676 HAL_BOOL
677 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
679 struct ath_hal_5212 *ahp = AH5212(ah);
680 struct ar5111State *priv;
682 HALASSERT(ah->ah_magic == AR5212_MAGIC);
684 HALASSERT(ahp->ah_rfHal == AH_NULL);
685 priv = ath_hal_malloc(sizeof(struct ar5111State));
686 if (priv == AH_NULL) {
687 HALDEBUG(ah, HAL_DEBUG_ANY,
688 "%s: cannot allocate private state\n", __func__);
689 *status = HAL_ENOMEM; /* XXX */
690 return AH_FALSE;
692 priv->base.rfDetach = ar5111RfDetach;
693 priv->base.writeRegs = ar5111WriteRegs;
694 priv->base.getRfBank = ar5111GetRfBank;
695 priv->base.setChannel = ar5111SetChannel;
696 priv->base.setRfRegs = ar5111SetRfRegs;
697 priv->base.setPowerTable = ar5111SetPowerTable;
698 priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
699 priv->base.getNfAdjust = ar5111GetNfAdjust;
701 ahp->ah_pcdacTable = priv->pcdacTable;
702 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
703 ahp->ah_rfHal = &priv->base;
705 return AH_TRUE;
707 #endif /* AH_SUPPORT_5111 */