2 * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $");
35 * Fused multiply-add: Compute x * y + z with a single rounding error.
37 * We use scaling to avoid overflow/underflow, along with the
38 * canonical precision-doubling technique adapted from:
40 * Dekker, T. A Floating-Point Technique for Extending the
41 * Available Precision. Numer. Math. 18, 224-242 (1971).
43 * This algorithm is sensitive to the rounding precision. FPUs such
44 * as the i387 must be set in double-precision mode if variables are
45 * to be stored in FP registers in order to avoid incorrect results.
46 * This is the default on FreeBSD, but not on many other systems.
48 * Hardware instructions should be used on architectures that support it,
49 * since this implementation will likely be several times slower.
51 #if LDBL_MANT_DIG != 113
53 fma(double x
, double y
, double z
)
55 static const double split
= 0x1p
27 + 1.0;
57 double c
, cc
, hx
, hy
, p
, q
, tx
, ty
;
65 if (x
== 0.0 || y
== 0.0)
68 /* Results of frexp() are undefined for these cases. */
69 if (!isfinite(x
) || !isfinite(y
) || !isfinite(z
))
75 oround
= fegetround();
76 spread
= ex
+ ey
- ez
;
79 * If x * y and z are many orders of magnitude apart, the scaling
80 * will overflow, so we handle these cases specially. Rounding
81 * modes other than FE_TONEAREST are painful.
83 if (spread
> DBL_MANT_DIG
* 2) {
85 feraiseexcept(FE_INEXACT
);
90 if (x
> 0.0 ^ y
< 0.0 ^ z
< 0.0)
94 if (!fetestexcept(FE_INEXACT
))
103 if (!fetestexcept(FE_INEXACT
))
104 r
= nextafter(r
, -INFINITY
);
107 default: /* FE_UPWARD */
112 if (!fetestexcept(FE_INEXACT
))
113 r
= nextafter(r
, INFINITY
);
118 if (spread
< -DBL_MANT_DIG
) {
119 feraiseexcept(FE_INEXACT
);
121 feraiseexcept(FE_UNDERFLOW
);
126 if (x
> 0.0 ^ y
< 0.0 ^ z
< 0.0)
129 return (nextafter(z
, 0));
131 if (x
> 0.0 ^ y
< 0.0)
134 return (nextafter(z
, -INFINITY
));
135 default: /* FE_UPWARD */
136 if (x
> 0.0 ^ y
< 0.0)
137 return (nextafter(z
, INFINITY
));
144 * Use Dekker's algorithm to perform the multiplication and
145 * subsequent addition in twice the machine precision.
146 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
148 fesetround(FE_TONEAREST
);
161 q
= hx
* ty
+ tx
* hy
;
163 cc
= p
- c
+ q
+ tx
* ty
;
165 zs
= ldexp(zs
, -spread
);
168 rr
= (c
- (r
- s
)) + (zs
- s
) + cc
;
171 if (spread
+ ilogb(r
) > -1023) {
176 * The result is subnormal, so we round before scaling to
177 * avoid double rounding.
179 p
= ldexp(copysign(0x1p
-1022, r
), -spread
);
182 cc
= (r
- (c
- s
)) + (p
- s
) + rr
;
186 return (ldexp(r
, spread
));
188 #else /* LDBL_MANT_DIG == 113 */
190 * 113 bits of precision is more than twice the precision of a double,
191 * so it is enough to represent the intermediate product exactly.
194 fma(double x
, double y
, double z
)
196 return ((long double)x
* y
+ z
);
198 #endif /* LDBL_MANT_DIG != 113 */
200 #if (LDBL_MANT_DIG == 53)
201 __weak_reference(fma
, fmal
);