- Disable single-column listviews when double-clicked, and provide a
[AROS.git] / workbench / libs / lcms2 / src / cmsgmt.c
blob2966f0c68076f004e6eb5bb835b054c774e7eefc
1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2012 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
27 #include "lcms2_internal.h"
30 // Auxiliar: append a Lab identity after the given sequence of profiles
31 // and return the transform. Lab profile is closed, rest of profiles are kept open.
32 cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID,
33 cmsUInt32Number nProfiles,
34 cmsUInt32Number InputFormat,
35 cmsUInt32Number OutputFormat,
36 const cmsUInt32Number Intents[],
37 const cmsHPROFILE hProfiles[],
38 const cmsBool BPC[],
39 const cmsFloat64Number AdaptationStates[],
40 cmsUInt32Number dwFlags)
42 cmsHTRANSFORM xform;
43 cmsHPROFILE hLab;
44 cmsHPROFILE ProfileList[256];
45 cmsBool BPCList[256];
46 cmsFloat64Number AdaptationList[256];
47 cmsUInt32Number IntentList[256];
48 cmsUInt32Number i;
50 // This is a rather big number and there is no need of dynamic memory
51 // since we are adding a profile, 254 + 1 = 255 and this is the limit
52 if (nProfiles > 254) return NULL;
54 // The output space
55 hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
56 if (hLab == NULL) return NULL;
58 // Create a copy of parameters
59 for (i=0; i < nProfiles; i++) {
61 ProfileList[i] = hProfiles[i];
62 BPCList[i] = BPC[i];
63 AdaptationList[i] = AdaptationStates[i];
64 IntentList[i] = Intents[i];
67 // Place Lab identity at chain's end.
68 ProfileList[nProfiles] = hLab;
69 BPCList[nProfiles] = 0;
70 AdaptationList[nProfiles] = 1.0;
71 IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC;
73 // Create the transform
74 xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
75 BPCList,
76 IntentList,
77 AdaptationList,
78 NULL, 0,
79 InputFormat,
80 OutputFormat,
81 dwFlags);
83 cmsCloseProfile(hLab);
85 return xform;
89 // Compute K -> L* relationship. Flags may include black point compensation. In this case,
90 // the relationship is assumed from the profile with BPC to a black point zero.
91 static
92 cmsToneCurve* ComputeKToLstar(cmsContext ContextID,
93 cmsUInt32Number nPoints,
94 cmsUInt32Number nProfiles,
95 const cmsUInt32Number Intents[],
96 const cmsHPROFILE hProfiles[],
97 const cmsBool BPC[],
98 const cmsFloat64Number AdaptationStates[],
99 cmsUInt32Number dwFlags)
101 cmsToneCurve* out = NULL;
102 cmsUInt32Number i;
103 cmsHTRANSFORM xform;
104 cmsCIELab Lab;
105 cmsFloat32Number cmyk[4];
106 cmsFloat32Number* SampledPoints;
108 xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
109 if (xform == NULL) return NULL;
111 SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
112 if (SampledPoints == NULL) goto Error;
114 for (i=0; i < nPoints; i++) {
116 cmyk[0] = 0;
117 cmyk[1] = 0;
118 cmyk[2] = 0;
119 cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
121 cmsDoTransform(xform, cmyk, &Lab, 1);
122 SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
125 out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
127 Error:
129 cmsDeleteTransform(xform);
130 if (SampledPoints) _cmsFree(ContextID, SampledPoints);
132 return out;
136 // Compute Black tone curve on a CMYK -> CMYK transform. This is done by
137 // using the proof direction on both profiles to find K->L* relationship
138 // then joining both curves. dwFlags may include black point compensation.
139 cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID,
140 cmsUInt32Number nPoints,
141 cmsUInt32Number nProfiles,
142 const cmsUInt32Number Intents[],
143 const cmsHPROFILE hProfiles[],
144 const cmsBool BPC[],
145 const cmsFloat64Number AdaptationStates[],
146 cmsUInt32Number dwFlags)
148 cmsToneCurve *in, *out, *KTone;
150 // Make sure CMYK -> CMYK
151 if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData ||
152 cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
155 // Make sure last is an output profile
156 if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
158 // Create individual curves. BPC works also as each K to L* is
159 // computed as a BPC to zero black point in case of L*
160 in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
161 if (in == NULL) return NULL;
163 out = ComputeKToLstar(ContextID, nPoints, 1,
164 Intents + (nProfiles - 1),
165 hProfiles + (nProfiles - 1),
166 BPC + (nProfiles - 1),
167 AdaptationStates + (nProfiles - 1),
168 dwFlags);
169 if (out == NULL) {
170 cmsFreeToneCurve(in);
171 return NULL;
174 // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
175 // since this is used on black-preserving LUTs, we are not loosing accuracy in any case
176 KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
178 // Get rid of components
179 cmsFreeToneCurve(in); cmsFreeToneCurve(out);
181 // Something went wrong...
182 if (KTone == NULL) return NULL;
184 // Make sure it is monotonic
185 if (!cmsIsToneCurveMonotonic(KTone)) {
186 cmsFreeToneCurve(KTone);
187 return NULL;
190 return KTone;
194 // Gamut LUT Creation -----------------------------------------------------------------------------------------
196 // Used by gamut & softproofing
198 typedef struct {
200 cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL
201 cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
202 cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut
204 } GAMUTCHAIN;
206 // This sampler does compute gamut boundaries by comparing original
207 // values with a transform going back and forth. Values above ERR_THERESHOLD
208 // of maximum are considered out of gamut.
210 #define ERR_THERESHOLD 5
213 static
214 int GamutSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
216 GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo;
217 cmsCIELab LabIn1, LabOut1;
218 cmsCIELab LabIn2, LabOut2;
219 cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
220 cmsFloat64Number dE1, dE2, ErrorRatio;
222 // Assume in-gamut by default.
223 ErrorRatio = 1.0;
225 // Convert input to Lab
226 cmsDoTransform(t -> hInput, In, &LabIn1, 1);
228 // converts from PCS to colorant. This always
229 // does return in-gamut values,
230 cmsDoTransform(t -> hForward, &LabIn1, Proof, 1);
232 // Now, do the inverse, from colorant to PCS.
233 cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1);
235 memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
237 // Try again, but this time taking Check as input
238 cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1);
239 cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1);
241 // Take difference of direct value
242 dE1 = cmsDeltaE(&LabIn1, &LabOut1);
244 // Take difference of converted value
245 dE2 = cmsDeltaE(&LabIn2, &LabOut2);
248 // if dE1 is small and dE2 is small, value is likely to be in gamut
249 if (dE1 < t->Thereshold && dE2 < t->Thereshold)
250 Out[0] = 0;
251 else {
253 // if dE1 is small and dE2 is big, undefined. Assume in gamut
254 if (dE1 < t->Thereshold && dE2 > t->Thereshold)
255 Out[0] = 0;
256 else
257 // dE1 is big and dE2 is small, clearly out of gamut
258 if (dE1 > t->Thereshold && dE2 < t->Thereshold)
259 Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
260 else {
262 // dE1 is big and dE2 is also big, could be due to perceptual mapping
263 // so take error ratio
264 if (dE2 == 0.0)
265 ErrorRatio = dE1;
266 else
267 ErrorRatio = dE1 / dE2;
269 if (ErrorRatio > t->Thereshold)
270 Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
271 else
272 Out[0] = 0;
277 return TRUE;
280 // Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
281 // the dE obtained is then annotated on the LUT. Values truely out of gamut are clipped to dE = 0xFFFE
282 // and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
284 // **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
285 // of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
287 cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
288 cmsHPROFILE hProfiles[],
289 cmsBool BPC[],
290 cmsUInt32Number Intents[],
291 cmsFloat64Number AdaptationStates[],
292 cmsUInt32Number nGamutPCSposition,
293 cmsHPROFILE hGamut)
295 cmsHPROFILE hLab;
296 cmsPipeline* Gamut;
297 cmsStage* CLUT;
298 cmsUInt32Number dwFormat;
299 GAMUTCHAIN Chain;
300 int nChannels, nGridpoints;
301 cmsColorSpaceSignature ColorSpace;
302 cmsUInt32Number i;
303 cmsHPROFILE ProfileList[256];
304 cmsBool BPCList[256];
305 cmsFloat64Number AdaptationList[256];
306 cmsUInt32Number IntentList[256];
308 memset(&Chain, 0, sizeof(GAMUTCHAIN));
311 if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
312 cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition);
313 return NULL;
316 hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
317 if (hLab == NULL) return NULL;
320 // The figure of merit. On matrix-shaper profiles, should be almost zero as
321 // the conversion is pretty exact. On LUT based profiles, different resolutions
322 // of input and output CLUT may result in differences.
324 if (cmsIsMatrixShaper(hGamut)) {
326 Chain.Thereshold = 1.0;
328 else {
329 Chain.Thereshold = ERR_THERESHOLD;
333 // Create a copy of parameters
334 for (i=0; i < nGamutPCSposition; i++) {
335 ProfileList[i] = hProfiles[i];
336 BPCList[i] = BPC[i];
337 AdaptationList[i] = AdaptationStates[i];
338 IntentList[i] = Intents[i];
341 // Fill Lab identity
342 ProfileList[nGamutPCSposition] = hLab;
343 BPCList[nGamutPCSposition] = 0;
344 AdaptationList[nGamutPCSposition] = 1.0;
345 IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
348 ColorSpace = cmsGetColorSpace(hGamut);
350 nChannels = cmsChannelsOf(ColorSpace);
351 nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
352 dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
354 // 16 bits to Lab double
355 Chain.hInput = cmsCreateExtendedTransform(ContextID,
356 nGamutPCSposition + 1,
357 ProfileList,
358 BPCList,
359 IntentList,
360 AdaptationList,
361 NULL, 0,
362 dwFormat, TYPE_Lab_DBL,
363 cmsFLAGS_NOCACHE);
366 // Does create the forward step. Lab double to device
367 dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
368 Chain.hForward = cmsCreateTransformTHR(ContextID,
369 hLab, TYPE_Lab_DBL,
370 hGamut, dwFormat,
371 INTENT_RELATIVE_COLORIMETRIC,
372 cmsFLAGS_NOCACHE);
374 // Does create the backwards step
375 Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat,
376 hLab, TYPE_Lab_DBL,
377 INTENT_RELATIVE_COLORIMETRIC,
378 cmsFLAGS_NOCACHE);
381 // All ok?
382 if (Chain.hInput && Chain.hForward && Chain.hReverse) {
384 // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
385 // dE when doing a transform back and forth on the colorimetric intent.
387 Gamut = cmsPipelineAlloc(ContextID, 3, 1);
388 if (Gamut != NULL) {
390 CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
391 if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) {
392 cmsPipelineFree(Gamut);
393 Gamut = NULL;
395 else {
396 cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0);
400 else
401 Gamut = NULL; // Didn't work...
403 // Free all needed stuff.
404 if (Chain.hInput) cmsDeleteTransform(Chain.hInput);
405 if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
406 if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
407 if (hLab) cmsCloseProfile(hLab);
409 // And return computed hull
410 return Gamut;
413 // Total Area Coverage estimation ----------------------------------------------------------------
415 typedef struct {
416 cmsUInt32Number nOutputChans;
417 cmsHTRANSFORM hRoundTrip;
418 cmsFloat32Number MaxTAC;
419 cmsFloat32Number MaxInput[cmsMAXCHANNELS];
421 } cmsTACestimator;
424 // This callback just accounts the maximum ink dropped in the given node. It does not populate any
425 // memory, as the destination table is NULL. Its only purpose it to know the global maximum.
426 static
427 int EstimateTAC(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
429 cmsTACestimator* bp = (cmsTACestimator*) Cargo;
430 cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
431 cmsUInt32Number i;
432 cmsFloat32Number Sum;
435 // Evaluate the xform
436 cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1);
438 // All all amounts of ink
439 for (Sum=0, i=0; i < bp ->nOutputChans; i++)
440 Sum += RoundTrip[i];
442 // If above maximum, keep track of input values
443 if (Sum > bp ->MaxTAC) {
445 bp ->MaxTAC = Sum;
447 for (i=0; i < bp ->nOutputChans; i++) {
448 bp ->MaxInput[i] = In[i];
452 return TRUE;
454 cmsUNUSED_PARAMETER(Out);
458 // Detect Total area coverage of the profile
459 cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile)
461 cmsTACestimator bp;
462 cmsUInt32Number dwFormatter;
463 cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
464 cmsHPROFILE hLab;
465 cmsContext ContextID = cmsGetProfileContextID(hProfile);
467 // TAC only works on output profiles
468 if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) {
469 return 0;
472 // Create a fake formatter for result
473 dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE);
475 bp.nOutputChans = T_CHANNELS(dwFormatter);
476 bp.MaxTAC = 0; // Initial TAC is 0
478 // for safety
479 if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
481 hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
482 if (hLab == NULL) return 0;
483 // Setup a roundtrip on perceptual intent in output profile for TAC estimation
484 bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16,
485 hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
487 cmsCloseProfile(hLab);
488 if (bp.hRoundTrip == NULL) return 0;
490 // For L* we only need black and white. For C* we need many points
491 GridPoints[0] = 6;
492 GridPoints[1] = 74;
493 GridPoints[2] = 74;
496 if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) {
497 bp.MaxTAC = 0;
500 cmsDeleteTransform(bp.hRoundTrip);
502 // Results in %
503 return bp.MaxTAC;
507 // Carefully, clamp on CIELab space.
509 cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab,
510 double amax, double amin,
511 double bmax, double bmin)
514 // Whole Luma surface to zero
516 if (Lab -> L < 0) {
518 Lab-> L = Lab->a = Lab-> b = 0.0;
519 return FALSE;
522 // Clamp white, DISCARD HIGHLIGHTS. This is done
523 // in such way because icc spec doesn't allow the
524 // use of L>100 as a highlight means.
526 if (Lab->L > 100)
527 Lab -> L = 100;
529 // Check out gamut prism, on a, b faces
531 if (Lab -> a < amin || Lab->a > amax||
532 Lab -> b < bmin || Lab->b > bmax) {
534 cmsCIELCh LCh;
535 double h, slope;
537 // Falls outside a, b limits. Transports to LCh space,
538 // and then do the clipping
541 if (Lab -> a == 0.0) { // Is hue exactly 90?
543 // atan will not work, so clamp here
544 Lab -> b = Lab->b < 0 ? bmin : bmax;
545 return TRUE;
548 cmsLab2LCh(&LCh, Lab);
550 slope = Lab -> b / Lab -> a;
551 h = LCh.h;
553 // There are 4 zones
555 if ((h >= 0. && h < 45.) ||
556 (h >= 315 && h <= 360.)) {
558 // clip by amax
559 Lab -> a = amax;
560 Lab -> b = amax * slope;
562 else
563 if (h >= 45. && h < 135.)
565 // clip by bmax
566 Lab -> b = bmax;
567 Lab -> a = bmax / slope;
569 else
570 if (h >= 135. && h < 225.) {
571 // clip by amin
572 Lab -> a = amin;
573 Lab -> b = amin * slope;
576 else
577 if (h >= 225. && h < 315.) {
578 // clip by bmin
579 Lab -> b = bmin;
580 Lab -> a = bmin / slope;
582 else {
583 cmsSignalError(0, cmsERROR_RANGE, "Invalid angle");
584 return FALSE;
589 return TRUE;