an update to previous patch fixes nearly all remaining constants used in the math...
[AROS.git] / compiler / stdc / math / ld80 / e_powl.c
blob5058da0aca3c526141872cd7122d2c1ed2aa222e
1 /* $OpenBSD: e_powl.c,v 1.5 2013/11/12 20:35:19 martynas Exp $ */
3 /*
4 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 /* powl.c
21 * Power function, long double precision
25 * SYNOPSIS:
27 * long double x, y, z, powl();
29 * z = powl( x, y );
33 * DESCRIPTION:
35 * Computes x raised to the yth power. Analytically,
37 * x**y = exp( y log(x) ).
39 * Following Cody and Waite, this program uses a lookup table
40 * of 2**-i/32 and pseudo extended precision arithmetic to
41 * obtain several extra bits of accuracy in both the logarithm
42 * and the exponential.
46 * ACCURACY:
48 * The relative error of pow(x,y) can be estimated
49 * by y dl ln(2), where dl is the absolute error of
50 * the internally computed base 2 logarithm. At the ends
51 * of the approximation interval the logarithm equal 1/32
52 * and its relative error is about 1 lsb = 1.1e-19. Hence
53 * the predicted relative error in the result is 2.3e-21 y .
55 * Relative error:
56 * arithmetic domain # trials peak rms
58 * IEEE +-1000 40000 2.8e-18 3.7e-19
59 * .001 < x < 1000, with log(x) uniformly distributed.
60 * -1000 < y < 1000, y uniformly distributed.
62 * IEEE 0,8700 60000 6.5e-18 1.0e-18
63 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
66 * ERROR MESSAGES:
68 * message condition value returned
69 * pow overflow x**y > MAXNUM INFINITY
70 * pow underflow x**y < 1/MAXNUM 0.0
71 * pow domain x<0 and y noninteger 0.0
75 #include <float.h>
76 #include "math.h"
78 #include "math_private.h"
80 /* Table size */
81 #define NXT 32
82 /* log2(Table size) */
83 #define LNXT 5
85 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
86 * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
88 static const long double P[] = {
89 8.3319510773868690346226E-4L,
90 4.9000050881978028599627E-1L,
91 1.7500123722550302671919E0L,
92 1.4000100839971580279335E0L,
94 static const long double Q[] = {
95 /* 1.0000000000000000000000E0L,*/
96 5.2500282295834889175431E0L,
97 8.4000598057587009834666E0L,
98 4.2000302519914740834728E0L,
100 /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
101 * If i is even, A[i] + B[i/2] gives additional accuracy.
103 static const long double A[33] = {
104 1.0000000000000000000000E0L,
105 9.7857206208770013448287E-1L,
106 9.5760328069857364691013E-1L,
107 9.3708381705514995065011E-1L,
108 9.1700404320467123175367E-1L,
109 8.9735453750155359320742E-1L,
110 8.7812608018664974155474E-1L,
111 8.5930964906123895780165E-1L,
112 8.4089641525371454301892E-1L,
113 8.2287773907698242225554E-1L,
114 8.0524516597462715409607E-1L,
115 7.8799042255394324325455E-1L,
116 7.7110541270397041179298E-1L,
117 7.5458221379671136985669E-1L,
118 7.3841307296974965571198E-1L,
119 7.2259040348852331001267E-1L,
120 7.0710678118654752438189E-1L,
121 6.9195494098191597746178E-1L,
122 6.7712777346844636413344E-1L,
123 6.6261832157987064729696E-1L,
124 6.4841977732550483296079E-1L,
125 6.3452547859586661129850E-1L,
126 6.2092890603674202431705E-1L,
127 6.0762367999023443907803E-1L,
128 5.9460355750136053334378E-1L,
129 5.8186242938878875689693E-1L,
130 5.6939431737834582684856E-1L,
131 5.5719337129794626814472E-1L,
132 5.4525386633262882960438E-1L,
133 5.3357020033841180906486E-1L,
134 5.2213689121370692017331E-1L,
135 5.1094857432705833910408E-1L,
136 5.0000000000000000000000E-1L,
138 static const long double B[17] = {
139 0.0000000000000000000000E0L,
140 2.6176170809902549338711E-20L,
141 -1.0126791927256478897086E-20L,
142 1.3438228172316276937655E-21L,
143 1.2207982955417546912101E-20L,
144 -6.3084814358060867200133E-21L,
145 1.3164426894366316434230E-20L,
146 -1.8527916071632873716786E-20L,
147 1.8950325588932570796551E-20L,
148 1.5564775779538780478155E-20L,
149 6.0859793637556860974380E-21L,
150 -2.0208749253662532228949E-20L,
151 1.4966292219224761844552E-20L,
152 3.3540909728056476875639E-21L,
153 -8.6987564101742849540743E-22L,
154 -1.2327176863327626135542E-20L,
155 0.0000000000000000000000E0L,
158 /* 2^x = 1 + x P(x),
159 * on the interval -1/32 <= x <= 0
161 static const long double R[] = {
162 1.5089970579127659901157E-5L,
163 1.5402715328927013076125E-4L,
164 1.3333556028915671091390E-3L,
165 9.6181291046036762031786E-3L,
166 5.5504108664798463044015E-2L,
167 2.4022650695910062854352E-1L,
168 6.9314718055994530931447E-1L,
171 #define douba(k) A[k]
172 #define doubb(k) B[k]
173 #define MEXP (NXT*16384.0L)
174 /* The following if denormal numbers are supported, else -MEXP: */
175 #define MNEXP (-NXT*(16384.0L+64.0L))
176 /* log2(e) - 1 */
177 #define LOG2EA 0.44269504088896340735992L
179 #define F W
180 #define Fa Wa
181 #define Fb Wb
182 #define G W
183 #define Ga Wa
184 #define Gb u
185 #define H W
186 #define Ha Wb
187 #define Hb Wb
189 static const long double MAXLOGL = 1.1356523406294143949492E4L;
190 static const long double MINLOGL = -1.13994985314888605586758E4L;
191 static const long double LOGE2L = 6.9314718055994530941723E-1L;
193 static const long double huge = 0x1p10000L;
194 #if 0 /* XXX Prevent gcc from erroneously constant folding this. */
195 static const long double twom10000 = 0x1p-10000L;
196 #else
197 static const volatile long double twom10000 __attribute__ ((__section__(".rodata"))) = 0x1p-10000L;
198 #endif
200 static long double reducl( long double );
201 static long double powil ( long double, int );
203 long double
204 powl(long double x, long double y)
206 volatile long double z;
207 long double w, W, Wa, Wb, ya, yb, u;
208 /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
209 int i, nflg, iyflg, yoddint;
210 long e;
212 if( y == 0.0L )
213 return( 1.0L );
215 if( x == 1.0L )
216 return( 1.0L );
218 if( isnan(x) )
219 return( x );
220 if( isnan(y) )
221 return( y );
223 if( y == 1.0L )
224 return( x );
226 if( !isfinite(y) && x == -1.0L )
227 return( 1.0L );
229 if( y >= LDBL_MAX )
231 if( x > 1.0L )
232 return( INFINITY );
233 if( x > 0.0L && x < 1.0L )
234 return( 0.0L );
235 if( x < -1.0L )
236 return( INFINITY );
237 if( x > -1.0L && x < 0.0L )
238 return( 0.0L );
240 if( y <= -LDBL_MAX )
242 if( x > 1.0L )
243 return( 0.0L );
244 if( x > 0.0L && x < 1.0L )
245 return( INFINITY );
246 if( x < -1.0L )
247 return( 0.0L );
248 if( x > -1.0L && x < 0.0L )
249 return( INFINITY );
251 if( x >= LDBL_MAX )
253 if( y > 0.0L )
254 return( INFINITY );
255 return( 0.0L );
258 w = floorl(y);
259 /* Set iyflg to 1 if y is an integer. */
260 iyflg = 0;
261 if( w == y )
262 iyflg = 1;
264 /* Test for odd integer y. */
265 yoddint = 0;
266 if( iyflg )
268 ya = fabsl(y);
269 ya = floorl(0.5L * ya);
270 yb = 0.5L * fabsl(w);
271 if( ya != yb )
272 yoddint = 1;
275 if( x <= -LDBL_MAX )
277 if( y > 0.0L )
279 if( yoddint )
280 return( -INFINITY );
281 return( INFINITY );
283 if( y < 0.0L )
285 if( yoddint )
286 return( -0.0L );
287 return( 0.0 );
292 nflg = 0; /* flag = 1 if x<0 raised to integer power */
293 if( x <= 0.0L )
295 if( x == 0.0L )
297 if( y < 0.0 )
299 if( signbit(x) && yoddint )
300 return( -INFINITY );
301 return( INFINITY );
303 if( y > 0.0 )
305 if( signbit(x) && yoddint )
306 return( -0.0L );
307 return( 0.0 );
309 if( y == 0.0L )
310 return( 1.0L ); /* 0**0 */
311 else
312 return( 0.0L ); /* 0**y */
314 else
316 if( iyflg == 0 )
317 return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
318 nflg = 1;
322 /* Integer power of an integer. */
324 if( iyflg )
326 i = w;
327 w = floorl(x);
328 if( (w == x) && (fabsl(y) < 32768.0) )
330 w = powil( x, (int) y );
331 return( w );
336 if( nflg )
337 x = fabsl(x);
339 /* separate significand from exponent */
340 x = frexpl( x, &i );
341 e = i;
343 /* find significand in antilog table A[] */
344 i = 1;
345 if( x <= douba(17) )
346 i = 17;
347 if( x <= douba(i+8) )
348 i += 8;
349 if( x <= douba(i+4) )
350 i += 4;
351 if( x <= douba(i+2) )
352 i += 2;
353 if( x >= douba(1) )
354 i = -1;
355 i += 1;
358 /* Find (x - A[i])/A[i]
359 * in order to compute log(x/A[i]):
361 * log(x) = log( a x/a ) = log(a) + log(x/a)
363 * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
365 x -= douba(i);
366 x -= doubb(i/2);
367 x /= douba(i);
370 /* rational approximation for log(1+v):
372 * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
374 z = x*x;
375 w = x * ( z * __polevll( x, (void *)P, 3 ) / __p1evll( x, (void *)Q, 3 ) );
376 w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
378 /* Convert to base 2 logarithm:
379 * multiply by log2(e) = 1 + LOG2EA
381 z = LOG2EA * w;
382 z += w;
383 z += LOG2EA * x;
384 z += x;
386 /* Compute exponent term of the base 2 logarithm. */
387 w = -i;
388 w = ldexpl( w, -LNXT ); /* divide by NXT */
389 w += e;
390 /* Now base 2 log of x is w + z. */
392 /* Multiply base 2 log by y, in extended precision. */
394 /* separate y into large part ya
395 * and small part yb less than 1/NXT
397 ya = reducl(y);
398 yb = y - ya;
400 /* (w+z)(ya+yb)
401 * = w*ya + w*yb + z*y
403 F = z * y + w * yb;
404 Fa = reducl(F);
405 Fb = F - Fa;
407 G = Fa + w * ya;
408 Ga = reducl(G);
409 Gb = G - Ga;
411 H = Fb + Gb;
412 Ha = reducl(H);
413 w = ldexpl( Ga+Ha, LNXT );
415 /* Test the power of 2 for overflow */
416 if( w > MEXP )
417 return (huge * huge); /* overflow */
419 if( w < MNEXP )
420 return (twom10000 * twom10000); /* underflow */
422 e = w;
423 Hb = H - Ha;
425 if( Hb > 0.0L )
427 e += 1;
428 Hb -= (1.0L/NXT); /*0.0625L;*/
431 /* Now the product y * log2(x) = Hb + e/NXT.
433 * Compute base 2 exponential of Hb,
434 * where -0.0625 <= Hb <= 0.
436 z = Hb * __polevll( Hb, (void *)R, 6 ); /* z = 2**Hb - 1 */
438 /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
439 * Find lookup table entry for the fractional power of 2.
441 if( e < 0 )
442 i = 0;
443 else
444 i = 1;
445 i = e/NXT + i;
446 e = NXT*i - e;
447 w = douba( e );
448 z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
449 z = z + w;
450 z = ldexpl( z, i ); /* multiply by integer power of 2 */
452 if( nflg )
454 /* For negative x,
455 * find out if the integer exponent
456 * is odd or even.
458 w = ldexpl( y, -1 );
459 w = floorl(w);
460 w = ldexpl( w, 1 );
461 if( w != y )
462 z = -z; /* odd exponent */
465 return( z );
469 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
470 static long double
471 reducl(long double x)
473 long double t;
475 t = ldexpl( x, LNXT );
476 t = floorl( t );
477 t = ldexpl( t, -LNXT );
478 return(t);
481 /* powil.c
483 * Real raised to integer power, long double precision
487 * SYNOPSIS:
489 * long double x, y, powil();
490 * int n;
492 * y = powil( x, n );
496 * DESCRIPTION:
498 * Returns argument x raised to the nth power.
499 * The routine efficiently decomposes n as a sum of powers of
500 * two. The desired power is a product of two-to-the-kth
501 * powers of x. Thus to compute the 32767 power of x requires
502 * 28 multiplications instead of 32767 multiplications.
506 * ACCURACY:
509 * Relative error:
510 * arithmetic x domain n domain # trials peak rms
511 * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
512 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
513 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
515 * Returns MAXNUM on overflow, zero on underflow.
519 static long double
520 powil(long double x, int nn)
522 long double ww, y;
523 long double s;
524 int n, e, sign, asign, lx;
526 if( x == 0.0L )
528 if( nn == 0 )
529 return( 1.0L );
530 else if( nn < 0 )
531 return( LDBL_MAX );
532 else
533 return( 0.0L );
536 if( nn == 0 )
537 return( 1.0L );
540 if( x < 0.0L )
542 asign = -1;
543 x = -x;
545 else
546 asign = 0;
549 if( nn < 0 )
551 sign = -1;
552 n = -nn;
554 else
556 sign = 1;
557 n = nn;
560 /* Overflow detection */
562 /* Calculate approximate logarithm of answer */
563 s = x;
564 s = frexpl( s, &lx );
565 e = (lx - 1)*n;
566 if( (e == 0) || (e > 64) || (e < -64) )
568 s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
569 s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
571 else
573 s = LOGE2L * e;
576 if( s > MAXLOGL )
577 return (huge * huge); /* overflow */
579 if( s < MINLOGL )
580 return (twom10000 * twom10000); /* underflow */
581 /* Handle tiny denormal answer, but with less accuracy
582 * since roundoff error in 1.0/x will be amplified.
583 * The precise demarcation should be the gradual underflow threshold.
585 if( s < (-MAXLOGL+2.0L) )
587 x = 1.0L/x;
588 sign = -sign;
591 /* First bit of the power */
592 if( n & 1 )
593 y = x;
595 else
597 y = 1.0L;
598 asign = 0;
601 ww = x;
602 n >>= 1;
603 while( n )
605 ww = ww * ww; /* arg to the 2-to-the-kth power */
606 if( n & 1 ) /* if that bit is set, then include in product */
607 y *= ww;
608 n >>= 1;
611 if( asign )
612 y = -y; /* odd power of negative number */
613 if( sign < 0 )
614 y = 1.0L/y;
615 return(y);