an update to previous patch fixes nearly all remaining constants used in the math...
[AROS.git] / compiler / stdc / math / e_log.c
blobe03d9867df99eeef4cafbde6fa7d0ac1c1259c0e
2 /* @(#)e_log.c 1.3 95/01/18 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_log.c,v 1.15 2008/03/29 16:37:59 das Exp $";
16 #endif
18 /* __ieee754_log(x)
19 * Return the logrithm of x
21 * Method :
22 * 1. Argument Reduction: find k and f such that
23 * x = 2^k * (1+f),
24 * where sqrt(2)/2 < 1+f < sqrt(2) .
26 * 2. Approximation of log(1+f).
27 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29 * = 2s + s*R
30 * We use a special Reme algorithm on [0,0.1716] to generate
31 * a polynomial of degree 14 to approximate R The maximum error
32 * of this polynomial approximation is bounded by 2**-58.45. In
33 * other words,
34 * 2 4 6 8 10 12 14
35 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
36 * (the values of Lg1 to Lg7 are listed in the program)
37 * and
38 * | 2 14 | -58.45
39 * | Lg1*s +...+Lg7*s - R(z) | <= 2
40 * | |
41 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42 * In order to guarantee error in log below 1ulp, we compute log
43 * by
44 * log(1+f) = f - s*(f - R) (if f is not too large)
45 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
47 * 3. Finally, log(x) = k*ln2 + log(1+f).
48 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
49 * Here ln2 is split into two floating point number:
50 * ln2_hi + ln2_lo,
51 * where n*ln2_hi is always exact for |n| < 2000.
53 * Special cases:
54 * log(x) is NaN with signal if x < 0 (including -INF) ;
55 * log(+INF) is +INF; log(0) is -INF with signal;
56 * log(NaN) is that NaN with no signal.
58 * Accuracy:
59 * according to an error analysis, the error is always less than
60 * 1 ulp (unit in the last place).
62 * Constants:
63 * The hexadecimal values are the intended ones for the following
64 * constants. The decimal values may be used, provided that the
65 * compiler will convert from decimal to binary accurately enough
66 * to produce the hexadecimal values shown.
69 #include <float.h>
70 #include "math.h"
71 #include "math_private.h"
73 static const double
74 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
75 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
76 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
77 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
78 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
79 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
80 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
81 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
82 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
83 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
85 static const double zero = 0.0;
86 static const volatile double vzero __attribute__ ((__section__(".rodata"))) = 0.0;
88 double
89 __ieee754_log(double x)
91 double hfsq,f,s,z,R,w,t1,t2,dk;
92 int32_t k,hx,i,j;
93 uint32_t lx;
95 EXTRACT_WORDS(hx,lx,x);
97 k=0;
98 if (hx < 0x00100000) { /* x < 2**-1022 */
99 if (((hx&0x7fffffff)|lx)==0)
100 return -two54/vzero; /* log(+-0)=-inf */
101 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
102 k -= 54; x *= two54; /* subnormal number, scale up x */
103 GET_HIGH_WORD(hx,x);
105 if (hx >= 0x7ff00000) return x+x;
106 k += (hx>>20)-1023;
107 hx &= 0x000fffff;
108 i = (hx+0x95f64)&0x100000;
109 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
110 k += (i>>20);
111 f = x-1.0;
112 if((0x000fffff&(2+hx))<3) { /* -2**-20 <= f < 2**-20 */
113 if(f==zero) {
114 if(k==0) {
115 return zero;
116 } else {
117 dk=(double)k;
118 return dk*ln2_hi+dk*ln2_lo;
121 R = f*f*(0.5-0.33333333333333333*f);
122 if(k==0) return f-R; else {dk=(double)k;
123 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
125 s = f/(2.0+f);
126 dk = (double)k;
127 z = s*s;
128 i = hx-0x6147a;
129 w = z*z;
130 j = 0x6b851-hx;
131 t1= w*(Lg2+w*(Lg4+w*Lg6));
132 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
133 i |= j;
134 R = t2+t1;
135 if(i>0) {
136 hfsq=0.5*f*f;
137 if(k==0) return f-(hfsq-s*(hfsq+R)); else
138 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
139 } else {
140 if(k==0) return f-s*(f-R); else
141 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
145 #if LDBL_MANT_DIG == DBL_MANT_DIG
146 AROS_MAKE_ASM_SYM(typeof(logl), logl, AROS_CSYM_FROM_ASM_NAME(logl), AROS_CSYM_FROM_ASM_NAME(log));
147 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(logl));
148 #endif