an update to previous patch fixes nearly all remaining constants used in the math...
[AROS.git] / compiler / stdc / math / e_acos.c
blob9891eeab78f74923a0a20658c9c0c8218cc95e26
2 /* @(#)e_acos.c 1.3 95/01/18 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_acos.c,v 1.13 2008/07/31 22:41:26 das Exp $";
16 #endif
18 /* __ieee754_acos(x)
19 * Method :
20 * acos(x) = pi/2 - asin(x)
21 * acos(-x) = pi/2 + asin(x)
22 * For |x|<=0.5
23 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
24 * For x>0.5
25 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
26 * = 2asin(sqrt((1-x)/2))
27 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
28 * = 2f + (2c + 2s*z*R(z))
29 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
30 * for f so that f+c ~ sqrt(z).
31 * For x<-0.5
32 * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
33 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
35 * Special cases:
36 * if x is NaN, return x itself;
37 * if |x|>1, return NaN with invalid signal.
39 * Function needed: sqrt
42 #include <float.h>
43 #include "math.h"
44 #include "math_private.h"
46 static const double
47 one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
48 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
49 pio2_hi = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
50 static const volatile double
51 pio2_lo __attribute__ ((__section__(".rodata"))) = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
52 static const double
53 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
54 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
55 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
56 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
57 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
58 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
59 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
60 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
61 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
62 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
64 double
65 __ieee754_acos(double x)
67 double z,p,q,r,w,s,c,df;
68 int32_t hx,ix;
69 GET_HIGH_WORD(hx,x);
70 ix = hx&0x7fffffff;
71 if(ix>=0x3ff00000) { /* |x| >= 1 */
72 uint32_t lx;
73 GET_LOW_WORD(lx,x);
74 if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
75 if(hx>0) return 0.0; /* acos(1) = 0 */
76 else return pi+2.0*pio2_lo; /* acos(-1)= pi */
78 return (x-x)/(x-x); /* acos(|x|>1) is NaN */
80 if(ix<0x3fe00000) { /* |x| < 0.5 */
81 if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
82 z = x*x;
83 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
84 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
85 r = p/q;
86 return pio2_hi - (x - (pio2_lo-x*r));
87 } else if (hx<0) { /* x < -0.5 */
88 z = (one+x)*0.5;
89 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
90 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
91 s = sqrt(z);
92 r = p/q;
93 w = r*s-pio2_lo;
94 return pi - 2.0*(s+w);
95 } else { /* x > 0.5 */
96 z = (one-x)*0.5;
97 s = sqrt(z);
98 df = s;
99 SET_LOW_WORD(df,0);
100 c = (z-df*df)/(s+df);
101 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
102 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
103 r = p/q;
104 w = r*s+c;
105 return 2.0*(df+w);
109 #if LDBL_MANT_DIG == 53
110 AROS_MAKE_ASM_SYM(typeof(acosl), acosl, AROS_CSYM_FROM_ASM_NAME(acosl), AROS_CSYM_FROM_ASM_NAME(acos));
111 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(acosl));
112 #endif