2 * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $");
29 #include <aros/system.h>
36 * Fused multiply-add: Compute x * y + z with a single rounding error.
38 * We use scaling to avoid overflow/underflow, along with the
39 * canonical precision-doubling technique adapted from:
41 * Dekker, T. A Floating-Point Technique for Extending the
42 * Available Precision. Numer. Math. 18, 224-242 (1971).
44 * This algorithm is sensitive to the rounding precision. FPUs such
45 * as the i387 must be set in double-precision mode if variables are
46 * to be stored in FP registers in order to avoid incorrect results.
47 * This is the default on FreeBSD, but not on many other systems.
49 * Hardware instructions should be used on architectures that support it,
50 * since this implementation will likely be several times slower.
52 #if LDBL_MANT_DIG != 113
54 fma(double x
, double y
, double z
)
56 static const double split
= 0x1p
27 + 1.0;
58 double c
, cc
, hx
, hy
, p
, q
, tx
, ty
;
66 if (x
== 0.0 || y
== 0.0)
69 /* Results of frexp() are undefined for these cases. */
70 if (!isfinite(x
) || !isfinite(y
) || !isfinite(z
))
76 oround
= fegetround();
77 spread
= ex
+ ey
- ez
;
80 * If x * y and z are many orders of magnitude apart, the scaling
81 * will overflow, so we handle these cases specially. Rounding
82 * modes other than FE_TONEAREST are painful.
84 if (spread
> DBL_MANT_DIG
* 2) {
86 feraiseexcept(FE_INEXACT
);
91 if (x
> 0.0 ^ y
< 0.0 ^ z
< 0.0)
95 if (!fetestexcept(FE_INEXACT
))
104 if (!fetestexcept(FE_INEXACT
))
105 r
= nextafter(r
, -INFINITY
);
108 default: /* FE_UPWARD */
113 if (!fetestexcept(FE_INEXACT
))
114 r
= nextafter(r
, INFINITY
);
119 if (spread
< -DBL_MANT_DIG
) {
120 feraiseexcept(FE_INEXACT
);
122 feraiseexcept(FE_UNDERFLOW
);
127 if (x
> 0.0 ^ y
< 0.0 ^ z
< 0.0)
130 return (nextafter(z
, 0));
132 if (x
> 0.0 ^ y
< 0.0)
135 return (nextafter(z
, -INFINITY
));
136 default: /* FE_UPWARD */
137 if (x
> 0.0 ^ y
< 0.0)
138 return (nextafter(z
, INFINITY
));
145 * Use Dekker's algorithm to perform the multiplication and
146 * subsequent addition in twice the machine precision.
147 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
149 fesetround(FE_TONEAREST
);
162 q
= hx
* ty
+ tx
* hy
;
164 cc
= p
- c
+ q
+ tx
* ty
;
166 zs
= ldexp(zs
, -spread
);
169 rr
= (c
- (r
- s
)) + (zs
- s
) + cc
;
172 if (spread
+ ilogb(r
) > -1023) {
177 * The result is subnormal, so we round before scaling to
178 * avoid double rounding.
180 p
= ldexp(copysign(0x1p
-1022, r
), -spread
);
183 cc
= (r
- (c
- s
)) + (p
- s
) + rr
;
187 return (ldexp(r
, spread
));
189 #else /* LDBL_MANT_DIG == 113 */
191 * 113 bits of precision is more than twice the precision of a double,
192 * so it is enough to represent the intermediate product exactly.
195 fma(double x
, double y
, double z
)
197 return ((long double)x
* y
+ z
);
199 #endif /* LDBL_MANT_DIG != 113 */
201 #if (LDBL_MANT_DIG == 53)
202 /* Alias fma -> fmal */
203 AROS_MAKE_ASM_SYM(typeof(fmal
), fmal
, AROS_CSYM_FROM_ASM_NAME(fmal
), AROS_CSYM_FROM_ASM_NAME(fma
));
204 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(fmal
));