4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * Modified 2011 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains 2-pass color quantization (color mapping) routines.
10 * These routines provide selection of a custom color map for an image,
11 * followed by mapping of the image to that color map, with optional
12 * Floyd-Steinberg dithering.
13 * It is also possible to use just the second pass to map to an arbitrary
14 * externally-given color map.
16 * Note: ordered dithering is not supported, since there isn't any fast
17 * way to compute intercolor distances; it's unclear that ordered dither's
18 * fundamental assumptions even hold with an irregularly spaced color map.
21 #define JPEG_INTERNALS
25 #ifdef QUANT_2PASS_SUPPORTED
29 * This module implements the well-known Heckbert paradigm for color
30 * quantization. Most of the ideas used here can be traced back to
31 * Heckbert's seminal paper
32 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
33 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
35 * In the first pass over the image, we accumulate a histogram showing the
36 * usage count of each possible color. To keep the histogram to a reasonable
37 * size, we reduce the precision of the input; typical practice is to retain
38 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
39 * in the same histogram cell.
41 * Next, the color-selection step begins with a box representing the whole
42 * color space, and repeatedly splits the "largest" remaining box until we
43 * have as many boxes as desired colors. Then the mean color in each
44 * remaining box becomes one of the possible output colors.
46 * The second pass over the image maps each input pixel to the closest output
47 * color (optionally after applying a Floyd-Steinberg dithering correction).
48 * This mapping is logically trivial, but making it go fast enough requires
51 * Heckbert-style quantizers vary a good deal in their policies for choosing
52 * the "largest" box and deciding where to cut it. The particular policies
53 * used here have proved out well in experimental comparisons, but better ones
56 * In earlier versions of the IJG code, this module quantized in YCbCr color
57 * space, processing the raw upsampled data without a color conversion step.
58 * This allowed the color conversion math to be done only once per colormap
59 * entry, not once per pixel. However, that optimization precluded other
60 * useful optimizations (such as merging color conversion with upsampling)
61 * and it also interfered with desired capabilities such as quantizing to an
62 * externally-supplied colormap. We have therefore abandoned that approach.
63 * The present code works in the post-conversion color space, typically RGB.
65 * To improve the visual quality of the results, we actually work in scaled
66 * RGB space, giving G distances more weight than R, and R in turn more than
67 * B. To do everything in integer math, we must use integer scale factors.
68 * The 2/3/1 scale factors used here correspond loosely to the relative
69 * weights of the colors in the NTSC grayscale equation.
70 * If you want to use this code to quantize a non-RGB color space, you'll
71 * probably need to change these scale factors.
74 #define R_SCALE 2 /* scale R distances by this much */
75 #define G_SCALE 3 /* scale G distances by this much */
76 #define B_SCALE 1 /* and B by this much */
78 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
79 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
80 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
81 * you'll get compile errors until you extend this logic. In that case
82 * you'll probably want to tweak the histogram sizes too.
86 #define C0_SCALE R_SCALE
89 #define C0_SCALE B_SCALE
92 #define C1_SCALE G_SCALE
95 #define C2_SCALE R_SCALE
98 #define C2_SCALE B_SCALE
103 * First we have the histogram data structure and routines for creating it.
105 * The number of bits of precision can be adjusted by changing these symbols.
106 * We recommend keeping 6 bits for G and 5 each for R and B.
107 * If you have plenty of memory and cycles, 6 bits all around gives marginally
108 * better results; if you are short of memory, 5 bits all around will save
109 * some space but degrade the results.
110 * To maintain a fully accurate histogram, we'd need to allocate a "long"
111 * (preferably unsigned long) for each cell. In practice this is overkill;
112 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
113 * and clamping those that do overflow to the maximum value will give close-
114 * enough results. This reduces the recommended histogram size from 256Kb
115 * to 128Kb, which is a useful savings on PC-class machines.
116 * (In the second pass the histogram space is re-used for pixel mapping data;
117 * in that capacity, each cell must be able to store zero to the number of
118 * desired colors. 16 bits/cell is plenty for that too.)
119 * Since the JPEG code is intended to run in small memory model on 80x86
120 * machines, we can't just allocate the histogram in one chunk. Instead
121 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
122 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
123 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
124 * on 80x86 machines, the pointer row is in near memory but the actual
125 * arrays are in far memory (same arrangement as we use for image arrays).
128 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
130 /* These will do the right thing for either R,G,B or B,G,R color order,
131 * but you may not like the results for other color orders.
133 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
134 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
135 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
137 /* Number of elements along histogram axes. */
138 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
139 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
140 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
142 /* These are the amounts to shift an input value to get a histogram index. */
143 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
144 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
145 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
148 typedef UINT16 histcell
; /* histogram cell; prefer an unsigned type */
150 typedef histcell FAR
* histptr
; /* for pointers to histogram cells */
152 typedef histcell hist1d
[HIST_C2_ELEMS
]; /* typedefs for the array */
153 typedef hist1d FAR
* hist2d
; /* type for the 2nd-level pointers */
154 typedef hist2d
* hist3d
; /* type for top-level pointer */
157 /* Declarations for Floyd-Steinberg dithering.
159 * Errors are accumulated into the array fserrors[], at a resolution of
160 * 1/16th of a pixel count. The error at a given pixel is propagated
161 * to its not-yet-processed neighbors using the standard F-S fractions,
164 * We work left-to-right on even rows, right-to-left on odd rows.
166 * We can get away with a single array (holding one row's worth of errors)
167 * by using it to store the current row's errors at pixel columns not yet
168 * processed, but the next row's errors at columns already processed. We
169 * need only a few extra variables to hold the errors immediately around the
170 * current column. (If we are lucky, those variables are in registers, but
171 * even if not, they're probably cheaper to access than array elements are.)
173 * The fserrors[] array has (#columns + 2) entries; the extra entry at
174 * each end saves us from special-casing the first and last pixels.
175 * Each entry is three values long, one value for each color component.
177 * Note: on a wide image, we might not have enough room in a PC's near data
178 * segment to hold the error array; so it is allocated with alloc_large.
181 #if BITS_IN_JSAMPLE == 8
182 typedef INT16 FSERROR
; /* 16 bits should be enough */
183 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
185 typedef INT32 FSERROR
; /* may need more than 16 bits */
186 typedef INT32 LOCFSERROR
; /* be sure calculation temps are big enough */
189 typedef FSERROR FAR
*FSERRPTR
; /* pointer to error array (in FAR storage!) */
192 /* Private subobject */
195 struct jpeg_color_quantizer pub
; /* public fields */
197 /* Space for the eventually created colormap is stashed here */
198 JSAMPARRAY sv_colormap
; /* colormap allocated at init time */
199 int desired
; /* desired # of colors = size of colormap */
201 /* Variables for accumulating image statistics */
202 hist3d histogram
; /* pointer to the histogram */
204 boolean needs_zeroed
; /* TRUE if next pass must zero histogram */
206 /* Variables for Floyd-Steinberg dithering */
207 FSERRPTR fserrors
; /* accumulated errors */
208 boolean on_odd_row
; /* flag to remember which row we are on */
209 int * error_limiter
; /* table for clamping the applied error */
212 typedef my_cquantizer
* my_cquantize_ptr
;
216 * Prescan some rows of pixels.
217 * In this module the prescan simply updates the histogram, which has been
218 * initialized to zeroes by start_pass.
219 * An output_buf parameter is required by the method signature, but no data
220 * is actually output (in fact the buffer controller is probably passing a
225 prescan_quantize (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
226 JSAMPARRAY output_buf
, int num_rows
)
228 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
229 register JSAMPROW ptr
;
230 register histptr histp
;
231 register hist3d histogram
= cquantize
->histogram
;
234 JDIMENSION width
= cinfo
->output_width
;
236 for (row
= 0; row
< num_rows
; row
++) {
237 ptr
= input_buf
[row
];
238 for (col
= width
; col
> 0; col
--) {
239 /* get pixel value and index into the histogram */
240 histp
= & histogram
[GETJSAMPLE(ptr
[0]) >> C0_SHIFT
]
241 [GETJSAMPLE(ptr
[1]) >> C1_SHIFT
]
242 [GETJSAMPLE(ptr
[2]) >> C2_SHIFT
];
243 /* increment, check for overflow and undo increment if so. */
253 * Next we have the really interesting routines: selection of a colormap
254 * given the completed histogram.
255 * These routines work with a list of "boxes", each representing a rectangular
256 * subset of the input color space (to histogram precision).
260 /* The bounds of the box (inclusive); expressed as histogram indexes */
264 /* The volume (actually 2-norm) of the box */
266 /* The number of nonzero histogram cells within this box */
270 typedef box
* boxptr
;
274 find_biggest_color_pop (boxptr boxlist
, int numboxes
)
275 /* Find the splittable box with the largest color population */
276 /* Returns NULL if no splittable boxes remain */
278 register boxptr boxp
;
280 register long maxc
= 0;
283 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
284 if (boxp
->colorcount
> maxc
&& boxp
->volume
> 0) {
286 maxc
= boxp
->colorcount
;
294 find_biggest_volume (boxptr boxlist
, int numboxes
)
295 /* Find the splittable box with the largest (scaled) volume */
296 /* Returns NULL if no splittable boxes remain */
298 register boxptr boxp
;
300 register INT32 maxv
= 0;
303 for (i
= 0, boxp
= boxlist
; i
< numboxes
; i
++, boxp
++) {
304 if (boxp
->volume
> maxv
) {
314 update_box (j_decompress_ptr cinfo
, boxptr boxp
)
315 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
316 /* and recompute its volume and population */
318 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
319 hist3d histogram
= cquantize
->histogram
;
322 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
323 INT32 dist0
,dist1
,dist2
;
326 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
327 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
328 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
331 for (c0
= c0min
; c0
<= c0max
; c0
++)
332 for (c1
= c1min
; c1
<= c1max
; c1
++) {
333 histp
= & histogram
[c0
][c1
][c2min
];
334 for (c2
= c2min
; c2
<= c2max
; c2
++)
336 boxp
->c0min
= c0min
= c0
;
342 for (c0
= c0max
; c0
>= c0min
; c0
--)
343 for (c1
= c1min
; c1
<= c1max
; c1
++) {
344 histp
= & histogram
[c0
][c1
][c2min
];
345 for (c2
= c2min
; c2
<= c2max
; c2
++)
347 boxp
->c0max
= c0max
= c0
;
353 for (c1
= c1min
; c1
<= c1max
; c1
++)
354 for (c0
= c0min
; c0
<= c0max
; c0
++) {
355 histp
= & histogram
[c0
][c1
][c2min
];
356 for (c2
= c2min
; c2
<= c2max
; c2
++)
358 boxp
->c1min
= c1min
= c1
;
364 for (c1
= c1max
; c1
>= c1min
; c1
--)
365 for (c0
= c0min
; c0
<= c0max
; c0
++) {
366 histp
= & histogram
[c0
][c1
][c2min
];
367 for (c2
= c2min
; c2
<= c2max
; c2
++)
369 boxp
->c1max
= c1max
= c1
;
375 for (c2
= c2min
; c2
<= c2max
; c2
++)
376 for (c0
= c0min
; c0
<= c0max
; c0
++) {
377 histp
= & histogram
[c0
][c1min
][c2
];
378 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
380 boxp
->c2min
= c2min
= c2
;
386 for (c2
= c2max
; c2
>= c2min
; c2
--)
387 for (c0
= c0min
; c0
<= c0max
; c0
++) {
388 histp
= & histogram
[c0
][c1min
][c2
];
389 for (c1
= c1min
; c1
<= c1max
; c1
++, histp
+= HIST_C2_ELEMS
)
391 boxp
->c2max
= c2max
= c2
;
397 /* Update box volume.
398 * We use 2-norm rather than real volume here; this biases the method
399 * against making long narrow boxes, and it has the side benefit that
400 * a box is splittable iff norm > 0.
401 * Since the differences are expressed in histogram-cell units,
402 * we have to shift back to JSAMPLE units to get consistent distances;
403 * after which, we scale according to the selected distance scale factors.
405 dist0
= ((c0max
- c0min
) << C0_SHIFT
) * C0_SCALE
;
406 dist1
= ((c1max
- c1min
) << C1_SHIFT
) * C1_SCALE
;
407 dist2
= ((c2max
- c2min
) << C2_SHIFT
) * C2_SCALE
;
408 boxp
->volume
= dist0
*dist0
+ dist1
*dist1
+ dist2
*dist2
;
410 /* Now scan remaining volume of box and compute population */
412 for (c0
= c0min
; c0
<= c0max
; c0
++)
413 for (c1
= c1min
; c1
<= c1max
; c1
++) {
414 histp
= & histogram
[c0
][c1
][c2min
];
415 for (c2
= c2min
; c2
<= c2max
; c2
++, histp
++)
420 boxp
->colorcount
= ccount
;
425 median_cut (j_decompress_ptr cinfo
, boxptr boxlist
, int numboxes
,
427 /* Repeatedly select and split the largest box until we have enough boxes */
431 register boxptr b1
,b2
;
433 while (numboxes
< desired_colors
) {
434 /* Select box to split.
435 * Current algorithm: by population for first half, then by volume.
437 if (numboxes
*2 <= desired_colors
) {
438 b1
= find_biggest_color_pop(boxlist
, numboxes
);
440 b1
= find_biggest_volume(boxlist
, numboxes
);
442 if (b1
== NULL
) /* no splittable boxes left! */
444 b2
= &boxlist
[numboxes
]; /* where new box will go */
445 /* Copy the color bounds to the new box. */
446 b2
->c0max
= b1
->c0max
; b2
->c1max
= b1
->c1max
; b2
->c2max
= b1
->c2max
;
447 b2
->c0min
= b1
->c0min
; b2
->c1min
= b1
->c1min
; b2
->c2min
= b1
->c2min
;
448 /* Choose which axis to split the box on.
449 * Current algorithm: longest scaled axis.
450 * See notes in update_box about scaling distances.
452 c0
= ((b1
->c0max
- b1
->c0min
) << C0_SHIFT
) * C0_SCALE
;
453 c1
= ((b1
->c1max
- b1
->c1min
) << C1_SHIFT
) * C1_SCALE
;
454 c2
= ((b1
->c2max
- b1
->c2min
) << C2_SHIFT
) * C2_SCALE
;
455 /* We want to break any ties in favor of green, then red, blue last.
456 * This code does the right thing for R,G,B or B,G,R color orders only.
460 if (c0
> cmax
) { cmax
= c0
; n
= 0; }
461 if (c2
> cmax
) { n
= 2; }
464 if (c2
> cmax
) { cmax
= c2
; n
= 2; }
465 if (c0
> cmax
) { n
= 0; }
467 /* Choose split point along selected axis, and update box bounds.
468 * Current algorithm: split at halfway point.
469 * (Since the box has been shrunk to minimum volume,
470 * any split will produce two nonempty subboxes.)
471 * Note that lb value is max for lower box, so must be < old max.
475 lb
= (b1
->c0max
+ b1
->c0min
) / 2;
480 lb
= (b1
->c1max
+ b1
->c1min
) / 2;
485 lb
= (b1
->c2max
+ b1
->c2min
) / 2;
490 /* Update stats for boxes */
491 update_box(cinfo
, b1
);
492 update_box(cinfo
, b2
);
500 compute_color (j_decompress_ptr cinfo
, boxptr boxp
, int icolor
)
501 /* Compute representative color for a box, put it in colormap[icolor] */
503 /* Current algorithm: mean weighted by pixels (not colors) */
504 /* Note it is important to get the rounding correct! */
505 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
506 hist3d histogram
= cquantize
->histogram
;
509 int c0min
,c0max
,c1min
,c1max
,c2min
,c2max
;
516 c0min
= boxp
->c0min
; c0max
= boxp
->c0max
;
517 c1min
= boxp
->c1min
; c1max
= boxp
->c1max
;
518 c2min
= boxp
->c2min
; c2max
= boxp
->c2max
;
520 for (c0
= c0min
; c0
<= c0max
; c0
++)
521 for (c1
= c1min
; c1
<= c1max
; c1
++) {
522 histp
= & histogram
[c0
][c1
][c2min
];
523 for (c2
= c2min
; c2
<= c2max
; c2
++) {
524 if ((count
= *histp
++) != 0) {
526 c0total
+= ((c0
<< C0_SHIFT
) + ((1<<C0_SHIFT
)>>1)) * count
;
527 c1total
+= ((c1
<< C1_SHIFT
) + ((1<<C1_SHIFT
)>>1)) * count
;
528 c2total
+= ((c2
<< C2_SHIFT
) + ((1<<C2_SHIFT
)>>1)) * count
;
533 cinfo
->colormap
[0][icolor
] = (JSAMPLE
) ((c0total
+ (total
>>1)) / total
);
534 cinfo
->colormap
[1][icolor
] = (JSAMPLE
) ((c1total
+ (total
>>1)) / total
);
535 cinfo
->colormap
[2][icolor
] = (JSAMPLE
) ((c2total
+ (total
>>1)) / total
);
540 select_colors (j_decompress_ptr cinfo
, int desired_colors
)
541 /* Master routine for color selection */
547 /* Allocate workspace for box list */
548 boxlist
= (boxptr
) (*cinfo
->mem
->alloc_small
)
549 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, desired_colors
* SIZEOF(box
));
550 /* Initialize one box containing whole space */
552 boxlist
[0].c0min
= 0;
553 boxlist
[0].c0max
= MAXJSAMPLE
>> C0_SHIFT
;
554 boxlist
[0].c1min
= 0;
555 boxlist
[0].c1max
= MAXJSAMPLE
>> C1_SHIFT
;
556 boxlist
[0].c2min
= 0;
557 boxlist
[0].c2max
= MAXJSAMPLE
>> C2_SHIFT
;
558 /* Shrink it to actually-used volume and set its statistics */
559 update_box(cinfo
, & boxlist
[0]);
560 /* Perform median-cut to produce final box list */
561 numboxes
= median_cut(cinfo
, boxlist
, numboxes
, desired_colors
);
562 /* Compute the representative color for each box, fill colormap */
563 for (i
= 0; i
< numboxes
; i
++)
564 compute_color(cinfo
, & boxlist
[i
], i
);
565 cinfo
->actual_number_of_colors
= numboxes
;
566 TRACEMS1(cinfo
, 1, JTRC_QUANT_SELECTED
, numboxes
);
571 * These routines are concerned with the time-critical task of mapping input
572 * colors to the nearest color in the selected colormap.
574 * We re-use the histogram space as an "inverse color map", essentially a
575 * cache for the results of nearest-color searches. All colors within a
576 * histogram cell will be mapped to the same colormap entry, namely the one
577 * closest to the cell's center. This may not be quite the closest entry to
578 * the actual input color, but it's almost as good. A zero in the cache
579 * indicates we haven't found the nearest color for that cell yet; the array
580 * is cleared to zeroes before starting the mapping pass. When we find the
581 * nearest color for a cell, its colormap index plus one is recorded in the
582 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
583 * when they need to use an unfilled entry in the cache.
585 * Our method of efficiently finding nearest colors is based on the "locally
586 * sorted search" idea described by Heckbert and on the incremental distance
587 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
588 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
589 * the distances from a given colormap entry to each cell of the histogram can
590 * be computed quickly using an incremental method: the differences between
591 * distances to adjacent cells themselves differ by a constant. This allows a
592 * fairly fast implementation of the "brute force" approach of computing the
593 * distance from every colormap entry to every histogram cell. Unfortunately,
594 * it needs a work array to hold the best-distance-so-far for each histogram
595 * cell (because the inner loop has to be over cells, not colormap entries).
596 * The work array elements have to be INT32s, so the work array would need
597 * 256Kb at our recommended precision. This is not feasible in DOS machines.
599 * To get around these problems, we apply Thomas' method to compute the
600 * nearest colors for only the cells within a small subbox of the histogram.
601 * The work array need be only as big as the subbox, so the memory usage
602 * problem is solved. Furthermore, we need not fill subboxes that are never
603 * referenced in pass2; many images use only part of the color gamut, so a
604 * fair amount of work is saved. An additional advantage of this
605 * approach is that we can apply Heckbert's locality criterion to quickly
606 * eliminate colormap entries that are far away from the subbox; typically
607 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
608 * and we need not compute their distances to individual cells in the subbox.
609 * The speed of this approach is heavily influenced by the subbox size: too
610 * small means too much overhead, too big loses because Heckbert's criterion
611 * can't eliminate as many colormap entries. Empirically the best subbox
612 * size seems to be about 1/512th of the histogram (1/8th in each direction).
614 * Thomas' article also describes a refined method which is asymptotically
615 * faster than the brute-force method, but it is also far more complex and
616 * cannot efficiently be applied to small subboxes. It is therefore not
617 * useful for programs intended to be portable to DOS machines. On machines
618 * with plenty of memory, filling the whole histogram in one shot with Thomas'
619 * refined method might be faster than the present code --- but then again,
620 * it might not be any faster, and it's certainly more complicated.
624 /* log2(histogram cells in update box) for each axis; this can be adjusted */
625 #define BOX_C0_LOG (HIST_C0_BITS-3)
626 #define BOX_C1_LOG (HIST_C1_BITS-3)
627 #define BOX_C2_LOG (HIST_C2_BITS-3)
629 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
630 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
631 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
633 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
634 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
635 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
639 * The next three routines implement inverse colormap filling. They could
640 * all be folded into one big routine, but splitting them up this way saves
641 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
642 * and may allow some compilers to produce better code by registerizing more
643 * inner-loop variables.
647 find_nearby_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
649 /* Locate the colormap entries close enough to an update box to be candidates
650 * for the nearest entry to some cell(s) in the update box. The update box
651 * is specified by the center coordinates of its first cell. The number of
652 * candidate colormap entries is returned, and their colormap indexes are
653 * placed in colorlist[].
654 * This routine uses Heckbert's "locally sorted search" criterion to select
655 * the colors that need further consideration.
658 int numcolors
= cinfo
->actual_number_of_colors
;
659 int maxc0
, maxc1
, maxc2
;
660 int centerc0
, centerc1
, centerc2
;
662 INT32 minmaxdist
, min_dist
, max_dist
, tdist
;
663 INT32 mindist
[MAXNUMCOLORS
]; /* min distance to colormap entry i */
665 /* Compute true coordinates of update box's upper corner and center.
666 * Actually we compute the coordinates of the center of the upper-corner
667 * histogram cell, which are the upper bounds of the volume we care about.
668 * Note that since ">>" rounds down, the "center" values may be closer to
669 * min than to max; hence comparisons to them must be "<=", not "<".
671 maxc0
= minc0
+ ((1 << BOX_C0_SHIFT
) - (1 << C0_SHIFT
));
672 centerc0
= (minc0
+ maxc0
) >> 1;
673 maxc1
= minc1
+ ((1 << BOX_C1_SHIFT
) - (1 << C1_SHIFT
));
674 centerc1
= (minc1
+ maxc1
) >> 1;
675 maxc2
= minc2
+ ((1 << BOX_C2_SHIFT
) - (1 << C2_SHIFT
));
676 centerc2
= (minc2
+ maxc2
) >> 1;
678 /* For each color in colormap, find:
679 * 1. its minimum squared-distance to any point in the update box
680 * (zero if color is within update box);
681 * 2. its maximum squared-distance to any point in the update box.
682 * Both of these can be found by considering only the corners of the box.
683 * We save the minimum distance for each color in mindist[];
684 * only the smallest maximum distance is of interest.
686 minmaxdist
= 0x7FFFFFFFL
;
688 for (i
= 0; i
< numcolors
; i
++) {
689 /* We compute the squared-c0-distance term, then add in the other two. */
690 x
= GETJSAMPLE(cinfo
->colormap
[0][i
]);
692 tdist
= (x
- minc0
) * C0_SCALE
;
693 min_dist
= tdist
*tdist
;
694 tdist
= (x
- maxc0
) * C0_SCALE
;
695 max_dist
= tdist
*tdist
;
696 } else if (x
> maxc0
) {
697 tdist
= (x
- maxc0
) * C0_SCALE
;
698 min_dist
= tdist
*tdist
;
699 tdist
= (x
- minc0
) * C0_SCALE
;
700 max_dist
= tdist
*tdist
;
702 /* within cell range so no contribution to min_dist */
705 tdist
= (x
- maxc0
) * C0_SCALE
;
706 max_dist
= tdist
*tdist
;
708 tdist
= (x
- minc0
) * C0_SCALE
;
709 max_dist
= tdist
*tdist
;
713 x
= GETJSAMPLE(cinfo
->colormap
[1][i
]);
715 tdist
= (x
- minc1
) * C1_SCALE
;
716 min_dist
+= tdist
*tdist
;
717 tdist
= (x
- maxc1
) * C1_SCALE
;
718 max_dist
+= tdist
*tdist
;
719 } else if (x
> maxc1
) {
720 tdist
= (x
- maxc1
) * C1_SCALE
;
721 min_dist
+= tdist
*tdist
;
722 tdist
= (x
- minc1
) * C1_SCALE
;
723 max_dist
+= tdist
*tdist
;
725 /* within cell range so no contribution to min_dist */
727 tdist
= (x
- maxc1
) * C1_SCALE
;
728 max_dist
+= tdist
*tdist
;
730 tdist
= (x
- minc1
) * C1_SCALE
;
731 max_dist
+= tdist
*tdist
;
735 x
= GETJSAMPLE(cinfo
->colormap
[2][i
]);
737 tdist
= (x
- minc2
) * C2_SCALE
;
738 min_dist
+= tdist
*tdist
;
739 tdist
= (x
- maxc2
) * C2_SCALE
;
740 max_dist
+= tdist
*tdist
;
741 } else if (x
> maxc2
) {
742 tdist
= (x
- maxc2
) * C2_SCALE
;
743 min_dist
+= tdist
*tdist
;
744 tdist
= (x
- minc2
) * C2_SCALE
;
745 max_dist
+= tdist
*tdist
;
747 /* within cell range so no contribution to min_dist */
749 tdist
= (x
- maxc2
) * C2_SCALE
;
750 max_dist
+= tdist
*tdist
;
752 tdist
= (x
- minc2
) * C2_SCALE
;
753 max_dist
+= tdist
*tdist
;
757 mindist
[i
] = min_dist
; /* save away the results */
758 if (max_dist
< minmaxdist
)
759 minmaxdist
= max_dist
;
762 /* Now we know that no cell in the update box is more than minmaxdist
763 * away from some colormap entry. Therefore, only colors that are
764 * within minmaxdist of some part of the box need be considered.
767 for (i
= 0; i
< numcolors
; i
++) {
768 if (mindist
[i
] <= minmaxdist
)
769 colorlist
[ncolors
++] = (JSAMPLE
) i
;
776 find_best_colors (j_decompress_ptr cinfo
, int minc0
, int minc1
, int minc2
,
777 int numcolors
, JSAMPLE colorlist
[], JSAMPLE bestcolor
[])
778 /* Find the closest colormap entry for each cell in the update box,
779 * given the list of candidate colors prepared by find_nearby_colors.
780 * Return the indexes of the closest entries in the bestcolor[] array.
781 * This routine uses Thomas' incremental distance calculation method to
782 * find the distance from a colormap entry to successive cells in the box.
787 register INT32
* bptr
; /* pointer into bestdist[] array */
788 JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
789 INT32 dist0
, dist1
; /* initial distance values */
790 register INT32 dist2
; /* current distance in inner loop */
791 INT32 xx0
, xx1
; /* distance increments */
793 INT32 inc0
, inc1
, inc2
; /* initial values for increments */
794 /* This array holds the distance to the nearest-so-far color for each cell */
795 INT32 bestdist
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
797 /* Initialize best-distance for each cell of the update box */
799 for (i
= BOX_C0_ELEMS
*BOX_C1_ELEMS
*BOX_C2_ELEMS
-1; i
>= 0; i
--)
800 *bptr
++ = 0x7FFFFFFFL
;
802 /* For each color selected by find_nearby_colors,
803 * compute its distance to the center of each cell in the box.
804 * If that's less than best-so-far, update best distance and color number.
807 /* Nominal steps between cell centers ("x" in Thomas article) */
808 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
809 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
810 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
812 for (i
= 0; i
< numcolors
; i
++) {
813 icolor
= GETJSAMPLE(colorlist
[i
]);
814 /* Compute (square of) distance from minc0/c1/c2 to this color */
815 inc0
= (minc0
- GETJSAMPLE(cinfo
->colormap
[0][icolor
])) * C0_SCALE
;
817 inc1
= (minc1
- GETJSAMPLE(cinfo
->colormap
[1][icolor
])) * C1_SCALE
;
819 inc2
= (minc2
- GETJSAMPLE(cinfo
->colormap
[2][icolor
])) * C2_SCALE
;
821 /* Form the initial difference increments */
822 inc0
= inc0
* (2 * STEP_C0
) + STEP_C0
* STEP_C0
;
823 inc1
= inc1
* (2 * STEP_C1
) + STEP_C1
* STEP_C1
;
824 inc2
= inc2
* (2 * STEP_C2
) + STEP_C2
* STEP_C2
;
825 /* Now loop over all cells in box, updating distance per Thomas method */
829 for (ic0
= BOX_C0_ELEMS
-1; ic0
>= 0; ic0
--) {
832 for (ic1
= BOX_C1_ELEMS
-1; ic1
>= 0; ic1
--) {
835 for (ic2
= BOX_C2_ELEMS
-1; ic2
>= 0; ic2
--) {
838 *cptr
= (JSAMPLE
) icolor
;
841 xx2
+= 2 * STEP_C2
* STEP_C2
;
846 xx1
+= 2 * STEP_C1
* STEP_C1
;
849 xx0
+= 2 * STEP_C0
* STEP_C0
;
856 fill_inverse_cmap (j_decompress_ptr cinfo
, int c0
, int c1
, int c2
)
857 /* Fill the inverse-colormap entries in the update box that contains */
858 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
859 /* we can fill as many others as we wish.) */
861 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
862 hist3d histogram
= cquantize
->histogram
;
863 int minc0
, minc1
, minc2
; /* lower left corner of update box */
865 register JSAMPLE
* cptr
; /* pointer into bestcolor[] array */
866 register histptr cachep
; /* pointer into main cache array */
867 /* This array lists the candidate colormap indexes. */
868 JSAMPLE colorlist
[MAXNUMCOLORS
];
869 int numcolors
; /* number of candidate colors */
870 /* This array holds the actually closest colormap index for each cell. */
871 JSAMPLE bestcolor
[BOX_C0_ELEMS
* BOX_C1_ELEMS
* BOX_C2_ELEMS
];
873 /* Convert cell coordinates to update box ID */
878 /* Compute true coordinates of update box's origin corner.
879 * Actually we compute the coordinates of the center of the corner
880 * histogram cell, which are the lower bounds of the volume we care about.
882 minc0
= (c0
<< BOX_C0_SHIFT
) + ((1 << C0_SHIFT
) >> 1);
883 minc1
= (c1
<< BOX_C1_SHIFT
) + ((1 << C1_SHIFT
) >> 1);
884 minc2
= (c2
<< BOX_C2_SHIFT
) + ((1 << C2_SHIFT
) >> 1);
886 /* Determine which colormap entries are close enough to be candidates
887 * for the nearest entry to some cell in the update box.
889 numcolors
= find_nearby_colors(cinfo
, minc0
, minc1
, minc2
, colorlist
);
891 /* Determine the actually nearest colors. */
892 find_best_colors(cinfo
, minc0
, minc1
, minc2
, numcolors
, colorlist
,
895 /* Save the best color numbers (plus 1) in the main cache array */
896 c0
<<= BOX_C0_LOG
; /* convert ID back to base cell indexes */
900 for (ic0
= 0; ic0
< BOX_C0_ELEMS
; ic0
++) {
901 for (ic1
= 0; ic1
< BOX_C1_ELEMS
; ic1
++) {
902 cachep
= & histogram
[c0
+ic0
][c1
+ic1
][c2
];
903 for (ic2
= 0; ic2
< BOX_C2_ELEMS
; ic2
++) {
904 *cachep
++ = (histcell
) (GETJSAMPLE(*cptr
++) + 1);
912 * Map some rows of pixels to the output colormapped representation.
916 pass2_no_dither (j_decompress_ptr cinfo
,
917 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
918 /* This version performs no dithering */
920 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
921 hist3d histogram
= cquantize
->histogram
;
922 register JSAMPROW inptr
, outptr
;
923 register histptr cachep
;
924 register int c0
, c1
, c2
;
927 JDIMENSION width
= cinfo
->output_width
;
929 for (row
= 0; row
< num_rows
; row
++) {
930 inptr
= input_buf
[row
];
931 outptr
= output_buf
[row
];
932 for (col
= width
; col
> 0; col
--) {
933 /* get pixel value and index into the cache */
934 c0
= GETJSAMPLE(*inptr
++) >> C0_SHIFT
;
935 c1
= GETJSAMPLE(*inptr
++) >> C1_SHIFT
;
936 c2
= GETJSAMPLE(*inptr
++) >> C2_SHIFT
;
937 cachep
= & histogram
[c0
][c1
][c2
];
938 /* If we have not seen this color before, find nearest colormap entry */
939 /* and update the cache */
941 fill_inverse_cmap(cinfo
, c0
,c1
,c2
);
942 /* Now emit the colormap index for this cell */
943 *outptr
++ = (JSAMPLE
) (*cachep
- 1);
950 pass2_fs_dither (j_decompress_ptr cinfo
,
951 JSAMPARRAY input_buf
, JSAMPARRAY output_buf
, int num_rows
)
952 /* This version performs Floyd-Steinberg dithering */
954 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
955 hist3d histogram
= cquantize
->histogram
;
956 register LOCFSERROR cur0
, cur1
, cur2
; /* current error or pixel value */
957 LOCFSERROR belowerr0
, belowerr1
, belowerr2
; /* error for pixel below cur */
958 LOCFSERROR bpreverr0
, bpreverr1
, bpreverr2
; /* error for below/prev col */
959 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
960 JSAMPROW inptr
; /* => current input pixel */
961 JSAMPROW outptr
; /* => current output pixel */
963 int dir
; /* +1 or -1 depending on direction */
964 int dir3
; /* 3*dir, for advancing inptr & errorptr */
967 JDIMENSION width
= cinfo
->output_width
;
968 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
969 int *error_limit
= cquantize
->error_limiter
;
970 JSAMPROW colormap0
= cinfo
->colormap
[0];
971 JSAMPROW colormap1
= cinfo
->colormap
[1];
972 JSAMPROW colormap2
= cinfo
->colormap
[2];
975 for (row
= 0; row
< num_rows
; row
++) {
976 inptr
= input_buf
[row
];
977 outptr
= output_buf
[row
];
978 if (cquantize
->on_odd_row
) {
979 /* work right to left in this row */
980 inptr
+= (width
-1) * 3; /* so point to rightmost pixel */
984 errorptr
= cquantize
->fserrors
+ (width
+1)*3; /* => entry after last column */
985 cquantize
->on_odd_row
= FALSE
; /* flip for next time */
987 /* work left to right in this row */
990 errorptr
= cquantize
->fserrors
; /* => entry before first real column */
991 cquantize
->on_odd_row
= TRUE
; /* flip for next time */
993 /* Preset error values: no error propagated to first pixel from left */
994 cur0
= cur1
= cur2
= 0;
995 /* and no error propagated to row below yet */
996 belowerr0
= belowerr1
= belowerr2
= 0;
997 bpreverr0
= bpreverr1
= bpreverr2
= 0;
999 for (col
= width
; col
> 0; col
--) {
1000 /* curN holds the error propagated from the previous pixel on the
1001 * current line. Add the error propagated from the previous line
1002 * to form the complete error correction term for this pixel, and
1003 * round the error term (which is expressed * 16) to an integer.
1004 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1005 * for either sign of the error value.
1006 * Note: errorptr points to *previous* column's array entry.
1008 cur0
= RIGHT_SHIFT(cur0
+ errorptr
[dir3
+0] + 8, 4);
1009 cur1
= RIGHT_SHIFT(cur1
+ errorptr
[dir3
+1] + 8, 4);
1010 cur2
= RIGHT_SHIFT(cur2
+ errorptr
[dir3
+2] + 8, 4);
1011 /* Limit the error using transfer function set by init_error_limit.
1012 * See comments with init_error_limit for rationale.
1014 cur0
= error_limit
[cur0
];
1015 cur1
= error_limit
[cur1
];
1016 cur2
= error_limit
[cur2
];
1017 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1018 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1019 * this sets the required size of the range_limit array.
1021 cur0
+= GETJSAMPLE(inptr
[0]);
1022 cur1
+= GETJSAMPLE(inptr
[1]);
1023 cur2
+= GETJSAMPLE(inptr
[2]);
1024 cur0
= GETJSAMPLE(range_limit
[cur0
]);
1025 cur1
= GETJSAMPLE(range_limit
[cur1
]);
1026 cur2
= GETJSAMPLE(range_limit
[cur2
]);
1027 /* Index into the cache with adjusted pixel value */
1028 cachep
= & histogram
[cur0
>>C0_SHIFT
][cur1
>>C1_SHIFT
][cur2
>>C2_SHIFT
];
1029 /* If we have not seen this color before, find nearest colormap */
1030 /* entry and update the cache */
1032 fill_inverse_cmap(cinfo
, cur0
>>C0_SHIFT
,cur1
>>C1_SHIFT
,cur2
>>C2_SHIFT
);
1033 /* Now emit the colormap index for this cell */
1034 { register int pixcode
= *cachep
- 1;
1035 *outptr
= (JSAMPLE
) pixcode
;
1036 /* Compute representation error for this pixel */
1037 cur0
-= GETJSAMPLE(colormap0
[pixcode
]);
1038 cur1
-= GETJSAMPLE(colormap1
[pixcode
]);
1039 cur2
-= GETJSAMPLE(colormap2
[pixcode
]);
1041 /* Compute error fractions to be propagated to adjacent pixels.
1042 * Add these into the running sums, and simultaneously shift the
1043 * next-line error sums left by 1 column.
1045 { register LOCFSERROR bnexterr
, delta
;
1047 bnexterr
= cur0
; /* Process component 0 */
1049 cur0
+= delta
; /* form error * 3 */
1050 errorptr
[0] = (FSERROR
) (bpreverr0
+ cur0
);
1051 cur0
+= delta
; /* form error * 5 */
1052 bpreverr0
= belowerr0
+ cur0
;
1053 belowerr0
= bnexterr
;
1054 cur0
+= delta
; /* form error * 7 */
1055 bnexterr
= cur1
; /* Process component 1 */
1057 cur1
+= delta
; /* form error * 3 */
1058 errorptr
[1] = (FSERROR
) (bpreverr1
+ cur1
);
1059 cur1
+= delta
; /* form error * 5 */
1060 bpreverr1
= belowerr1
+ cur1
;
1061 belowerr1
= bnexterr
;
1062 cur1
+= delta
; /* form error * 7 */
1063 bnexterr
= cur2
; /* Process component 2 */
1065 cur2
+= delta
; /* form error * 3 */
1066 errorptr
[2] = (FSERROR
) (bpreverr2
+ cur2
);
1067 cur2
+= delta
; /* form error * 5 */
1068 bpreverr2
= belowerr2
+ cur2
;
1069 belowerr2
= bnexterr
;
1070 cur2
+= delta
; /* form error * 7 */
1072 /* At this point curN contains the 7/16 error value to be propagated
1073 * to the next pixel on the current line, and all the errors for the
1074 * next line have been shifted over. We are therefore ready to move on.
1076 inptr
+= dir3
; /* Advance pixel pointers to next column */
1078 errorptr
+= dir3
; /* advance errorptr to current column */
1080 /* Post-loop cleanup: we must unload the final error values into the
1081 * final fserrors[] entry. Note we need not unload belowerrN because
1082 * it is for the dummy column before or after the actual array.
1084 errorptr
[0] = (FSERROR
) bpreverr0
; /* unload prev errs into array */
1085 errorptr
[1] = (FSERROR
) bpreverr1
;
1086 errorptr
[2] = (FSERROR
) bpreverr2
;
1092 * Initialize the error-limiting transfer function (lookup table).
1093 * The raw F-S error computation can potentially compute error values of up to
1094 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1095 * much less, otherwise obviously wrong pixels will be created. (Typical
1096 * effects include weird fringes at color-area boundaries, isolated bright
1097 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1098 * is to ensure that the "corners" of the color cube are allocated as output
1099 * colors; then repeated errors in the same direction cannot cause cascading
1100 * error buildup. However, that only prevents the error from getting
1101 * completely out of hand; Aaron Giles reports that error limiting improves
1102 * the results even with corner colors allocated.
1103 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1104 * well, but the smoother transfer function used below is even better. Thanks
1105 * to Aaron Giles for this idea.
1109 init_error_limit (j_decompress_ptr cinfo
)
1110 /* Allocate and fill in the error_limiter table */
1112 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1116 table
= (int *) (*cinfo
->mem
->alloc_small
)
1117 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, (MAXJSAMPLE
*2+1) * SIZEOF(int));
1118 table
+= MAXJSAMPLE
; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1119 cquantize
->error_limiter
= table
;
1121 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1122 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1124 for (in
= 0; in
< STEPSIZE
; in
++, out
++) {
1125 table
[in
] = out
; table
[-in
] = -out
;
1127 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1128 for (; in
< STEPSIZE
*3; in
++, out
+= (in
&1) ? 0 : 1) {
1129 table
[in
] = out
; table
[-in
] = -out
;
1131 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1132 for (; in
<= MAXJSAMPLE
; in
++) {
1133 table
[in
] = out
; table
[-in
] = -out
;
1140 * Finish up at the end of each pass.
1144 finish_pass1 (j_decompress_ptr cinfo
)
1146 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1148 /* Select the representative colors and fill in cinfo->colormap */
1149 cinfo
->colormap
= cquantize
->sv_colormap
;
1150 select_colors(cinfo
, cquantize
->desired
);
1151 /* Force next pass to zero the color index table */
1152 cquantize
->needs_zeroed
= TRUE
;
1157 finish_pass2 (j_decompress_ptr cinfo
)
1164 * Initialize for each processing pass.
1168 start_pass_2_quant (j_decompress_ptr cinfo
, boolean is_pre_scan
)
1170 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1171 hist3d histogram
= cquantize
->histogram
;
1174 /* Only F-S dithering or no dithering is supported. */
1175 /* If user asks for ordered dither, give him F-S. */
1176 if (cinfo
->dither_mode
!= JDITHER_NONE
)
1177 cinfo
->dither_mode
= JDITHER_FS
;
1180 /* Set up method pointers */
1181 cquantize
->pub
.color_quantize
= prescan_quantize
;
1182 cquantize
->pub
.finish_pass
= finish_pass1
;
1183 cquantize
->needs_zeroed
= TRUE
; /* Always zero histogram */
1185 /* Set up method pointers */
1186 if (cinfo
->dither_mode
== JDITHER_FS
)
1187 cquantize
->pub
.color_quantize
= pass2_fs_dither
;
1189 cquantize
->pub
.color_quantize
= pass2_no_dither
;
1190 cquantize
->pub
.finish_pass
= finish_pass2
;
1192 /* Make sure color count is acceptable */
1193 i
= cinfo
->actual_number_of_colors
;
1195 ERREXIT1(cinfo
, JERR_QUANT_FEW_COLORS
, 1);
1196 if (i
> MAXNUMCOLORS
)
1197 ERREXIT1(cinfo
, JERR_QUANT_MANY_COLORS
, MAXNUMCOLORS
);
1199 if (cinfo
->dither_mode
== JDITHER_FS
) {
1200 size_t arraysize
= (size_t) ((cinfo
->output_width
+ 2) *
1201 (3 * SIZEOF(FSERROR
)));
1202 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1203 if (cquantize
->fserrors
== NULL
)
1204 cquantize
->fserrors
= (FSERRPTR
) (*cinfo
->mem
->alloc_large
)
1205 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, arraysize
);
1206 /* Initialize the propagated errors to zero. */
1207 FMEMZERO((void FAR
*) cquantize
->fserrors
, arraysize
);
1208 /* Make the error-limit table if we didn't already. */
1209 if (cquantize
->error_limiter
== NULL
)
1210 init_error_limit(cinfo
);
1211 cquantize
->on_odd_row
= FALSE
;
1215 /* Zero the histogram or inverse color map, if necessary */
1216 if (cquantize
->needs_zeroed
) {
1217 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1218 FMEMZERO((void FAR
*) histogram
[i
],
1219 HIST_C1_ELEMS
*HIST_C2_ELEMS
* SIZEOF(histcell
));
1221 cquantize
->needs_zeroed
= FALSE
;
1227 * Switch to a new external colormap between output passes.
1231 new_color_map_2_quant (j_decompress_ptr cinfo
)
1233 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
1235 /* Reset the inverse color map */
1236 cquantize
->needs_zeroed
= TRUE
;
1241 * Module initialization routine for 2-pass color quantization.
1245 jinit_2pass_quantizer (j_decompress_ptr cinfo
)
1247 my_cquantize_ptr cquantize
;
1250 cquantize
= (my_cquantize_ptr
)
1251 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1252 SIZEOF(my_cquantizer
));
1253 cinfo
->cquantize
= (struct jpeg_color_quantizer
*) cquantize
;
1254 cquantize
->pub
.start_pass
= start_pass_2_quant
;
1255 cquantize
->pub
.new_color_map
= new_color_map_2_quant
;
1256 cquantize
->fserrors
= NULL
; /* flag optional arrays not allocated */
1257 cquantize
->error_limiter
= NULL
;
1259 /* Make sure jdmaster didn't give me a case I can't handle */
1260 if (cinfo
->out_color_components
!= 3)
1261 ERREXIT(cinfo
, JERR_NOTIMPL
);
1263 /* Allocate the histogram/inverse colormap storage */
1264 cquantize
->histogram
= (hist3d
) (*cinfo
->mem
->alloc_small
)
1265 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, HIST_C0_ELEMS
* SIZEOF(hist2d
));
1266 for (i
= 0; i
< HIST_C0_ELEMS
; i
++) {
1267 cquantize
->histogram
[i
] = (hist2d
) (*cinfo
->mem
->alloc_large
)
1268 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1269 HIST_C1_ELEMS
*HIST_C2_ELEMS
* SIZEOF(histcell
));
1271 cquantize
->needs_zeroed
= TRUE
; /* histogram is garbage now */
1273 /* Allocate storage for the completed colormap, if required.
1274 * We do this now since it is FAR storage and may affect
1275 * the memory manager's space calculations.
1277 if (cinfo
->enable_2pass_quant
) {
1278 /* Make sure color count is acceptable */
1279 int desired
= cinfo
->desired_number_of_colors
;
1280 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1282 ERREXIT1(cinfo
, JERR_QUANT_FEW_COLORS
, 8);
1283 /* Make sure colormap indexes can be represented by JSAMPLEs */
1284 if (desired
> MAXNUMCOLORS
)
1285 ERREXIT1(cinfo
, JERR_QUANT_MANY_COLORS
, MAXNUMCOLORS
);
1286 cquantize
->sv_colormap
= (*cinfo
->mem
->alloc_sarray
)
1287 ((j_common_ptr
) cinfo
,JPOOL_IMAGE
, (JDIMENSION
) desired
, (JDIMENSION
) 3);
1288 cquantize
->desired
= desired
;
1290 cquantize
->sv_colormap
= NULL
;
1292 /* Only F-S dithering or no dithering is supported. */
1293 /* If user asks for ordered dither, give him F-S. */
1294 if (cinfo
->dither_mode
!= JDITHER_NONE
)
1295 cinfo
->dither_mode
= JDITHER_FS
;
1297 /* Allocate Floyd-Steinberg workspace if necessary.
1298 * This isn't really needed until pass 2, but again it is FAR storage.
1299 * Although we will cope with a later change in dither_mode,
1300 * we do not promise to honor max_memory_to_use if dither_mode changes.
1302 if (cinfo
->dither_mode
== JDITHER_FS
) {
1303 cquantize
->fserrors
= (FSERRPTR
) (*cinfo
->mem
->alloc_large
)
1304 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1305 (size_t) ((cinfo
->output_width
+ 2) * (3 * SIZEOF(FSERROR
))));
1306 /* Might as well create the error-limiting table too. */
1307 init_error_limit(cinfo
);
1311 #endif /* QUANT_2PASS_SUPPORTED */