w.i.p. add an icon for the developer env shell (abc shell)
[AROS-Contrib.git] / sqlite3 / date.c
blobc6872831b9e4216c303113190f0b8251b5c94fc7
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** $Id$
21 ** NOTES:
23 ** SQLite processes all times and dates as Julian Day numbers. The
24 ** dates and times are stored as the number of days since noon
25 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
26 ** calendar system.
28 ** 1970-01-01 00:00:00 is JD 2440587.5
29 ** 2000-01-01 00:00:00 is JD 2451544.5
31 ** This implemention requires years to be expressed as a 4-digit number
32 ** which means that only dates between 0000-01-01 and 9999-12-31 can
33 ** be represented, even though julian day numbers allow a much wider
34 ** range of dates.
36 ** The Gregorian calendar system is used for all dates and times,
37 ** even those that predate the Gregorian calendar. Historians usually
38 ** use the Julian calendar for dates prior to 1582-10-15 and for some
39 ** dates afterwards, depending on locale. Beware of this difference.
41 ** The conversion algorithms are implemented based on descriptions
42 ** in the following text:
44 ** Jean Meeus
45 ** Astronomical Algorithms, 2nd Edition, 1998
46 ** ISBM 0-943396-61-1
47 ** Willmann-Bell, Inc
48 ** Richmond, Virginia (USA)
50 #include "sqliteInt.h"
51 #include "os.h"
52 #include <ctype.h>
53 #include <stdlib.h>
54 #include <assert.h>
55 #include <time.h>
57 #ifndef SQLITE_OMIT_DATETIME_FUNCS
60 ** A structure for holding a single date and time.
62 typedef struct DateTime DateTime;
63 struct DateTime {
64 double rJD; /* The julian day number */
65 int Y, M, D; /* Year, month, and day */
66 int h, m; /* Hour and minutes */
67 int tz; /* Timezone offset in minutes */
68 double s; /* Seconds */
69 char validYMD; /* True if Y,M,D are valid */
70 char validHMS; /* True if h,m,s are valid */
71 char validJD; /* True if rJD is valid */
72 char validTZ; /* True if tz is valid */
77 ** Convert zDate into one or more integers. Additional arguments
78 ** come in groups of 5 as follows:
80 ** N number of digits in the integer
81 ** min minimum allowed value of the integer
82 ** max maximum allowed value of the integer
83 ** nextC first character after the integer
84 ** pVal where to write the integers value.
86 ** Conversions continue until one with nextC==0 is encountered.
87 ** The function returns the number of successful conversions.
89 static int getDigits(const char *zDate, ...){
90 va_list ap;
91 int val;
92 int N;
93 int min;
94 int max;
95 int nextC;
96 int *pVal;
97 int cnt = 0;
98 va_start(ap, zDate);
99 do{
100 N = va_arg(ap, int);
101 min = va_arg(ap, int);
102 max = va_arg(ap, int);
103 nextC = va_arg(ap, int);
104 pVal = va_arg(ap, int*);
105 val = 0;
106 while( N-- ){
107 if( !isdigit(*(u8*)zDate) ){
108 return cnt;
110 val = val*10 + *zDate - '0';
111 zDate++;
113 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
114 return cnt;
116 *pVal = val;
117 zDate++;
118 cnt++;
119 }while( nextC );
120 return cnt;
124 ** Read text from z[] and convert into a floating point number. Return
125 ** the number of digits converted.
127 static int getValue(const char *z, double *pR){
128 const char *zEnd;
129 *pR = sqlite3AtoF(z, &zEnd);
130 return zEnd - z;
134 ** Parse a timezone extension on the end of a date-time.
135 ** The extension is of the form:
137 ** (+/-)HH:MM
139 ** If the parse is successful, write the number of minutes
140 ** of change in *pnMin and return 0. If a parser error occurs,
141 ** return 0.
143 ** A missing specifier is not considered an error.
145 static int parseTimezone(const char *zDate, DateTime *p){
146 int sgn = 0;
147 int nHr, nMn;
148 while( isspace(*(u8*)zDate) ){ zDate++; }
149 p->tz = 0;
150 if( *zDate=='-' ){
151 sgn = -1;
152 }else if( *zDate=='+' ){
153 sgn = +1;
154 }else{
155 return *zDate!=0;
157 zDate++;
158 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
159 return 1;
161 zDate += 5;
162 p->tz = sgn*(nMn + nHr*60);
163 while( isspace(*(u8*)zDate) ){ zDate++; }
164 return *zDate!=0;
168 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
169 ** The HH, MM, and SS must each be exactly 2 digits. The
170 ** fractional seconds FFFF can be one or more digits.
172 ** Return 1 if there is a parsing error and 0 on success.
174 static int parseHhMmSs(const char *zDate, DateTime *p){
175 int h, m, s;
176 double ms = 0.0;
177 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
178 return 1;
180 zDate += 5;
181 if( *zDate==':' ){
182 zDate++;
183 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
184 return 1;
186 zDate += 2;
187 if( *zDate=='.' && isdigit((u8)zDate[1]) ){
188 double rScale = 1.0;
189 zDate++;
190 while( isdigit(*(u8*)zDate) ){
191 ms = ms*10.0 + *zDate - '0';
192 rScale *= 10.0;
193 zDate++;
195 ms /= rScale;
197 }else{
198 s = 0;
200 p->validJD = 0;
201 p->validHMS = 1;
202 p->h = h;
203 p->m = m;
204 p->s = s + ms;
205 if( parseTimezone(zDate, p) ) return 1;
206 p->validTZ = p->tz!=0;
207 return 0;
211 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
212 ** that the YYYY-MM-DD is according to the Gregorian calendar.
214 ** Reference: Meeus page 61
216 static void computeJD(DateTime *p){
217 int Y, M, D, A, B, X1, X2;
219 if( p->validJD ) return;
220 if( p->validYMD ){
221 Y = p->Y;
222 M = p->M;
223 D = p->D;
224 }else{
225 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
226 M = 1;
227 D = 1;
229 if( M<=2 ){
230 Y--;
231 M += 12;
233 A = Y/100;
234 B = 2 - A + (A/4);
235 X1 = 365.25*(Y+4716);
236 X2 = 30.6001*(M+1);
237 p->rJD = X1 + X2 + D + B - 1524.5;
238 p->validJD = 1;
239 p->validYMD = 0;
240 if( p->validHMS ){
241 p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
242 if( p->validTZ ){
243 p->rJD += p->tz*60/86400.0;
244 p->validHMS = 0;
245 p->validTZ = 0;
251 ** Parse dates of the form
253 ** YYYY-MM-DD HH:MM:SS.FFF
254 ** YYYY-MM-DD HH:MM:SS
255 ** YYYY-MM-DD HH:MM
256 ** YYYY-MM-DD
258 ** Write the result into the DateTime structure and return 0
259 ** on success and 1 if the input string is not a well-formed
260 ** date.
262 static int parseYyyyMmDd(const char *zDate, DateTime *p){
263 int Y, M, D, neg;
265 if( zDate[0]=='-' ){
266 zDate++;
267 neg = 1;
268 }else{
269 neg = 0;
271 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
272 return 1;
274 zDate += 10;
275 while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
276 if( parseHhMmSs(zDate, p)==0 ){
277 /* We got the time */
278 }else if( *zDate==0 ){
279 p->validHMS = 0;
280 }else{
281 return 1;
283 p->validJD = 0;
284 p->validYMD = 1;
285 p->Y = neg ? -Y : Y;
286 p->M = M;
287 p->D = D;
288 if( p->validTZ ){
289 computeJD(p);
291 return 0;
295 ** Attempt to parse the given string into a Julian Day Number. Return
296 ** the number of errors.
298 ** The following are acceptable forms for the input string:
300 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
301 ** DDDD.DD
302 ** now
304 ** In the first form, the +/-HH:MM is always optional. The fractional
305 ** seconds extension (the ".FFF") is optional. The seconds portion
306 ** (":SS.FFF") is option. The year and date can be omitted as long
307 ** as there is a time string. The time string can be omitted as long
308 ** as there is a year and date.
310 static int parseDateOrTime(const char *zDate, DateTime *p){
311 memset(p, 0, sizeof(*p));
312 if( parseYyyyMmDd(zDate,p)==0 ){
313 return 0;
314 }else if( parseHhMmSs(zDate, p)==0 ){
315 return 0;
316 }else if( sqlite3StrICmp(zDate,"now")==0){
317 double r;
318 sqlite3OsCurrentTime(&r);
319 p->rJD = r;
320 p->validJD = 1;
321 return 0;
322 }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
323 p->rJD = sqlite3AtoF(zDate, 0);
324 p->validJD = 1;
325 return 0;
327 return 1;
331 ** Compute the Year, Month, and Day from the julian day number.
333 static void computeYMD(DateTime *p){
334 int Z, A, B, C, D, E, X1;
335 if( p->validYMD ) return;
336 if( !p->validJD ){
337 p->Y = 2000;
338 p->M = 1;
339 p->D = 1;
340 }else{
341 Z = p->rJD + 0.5;
342 A = (Z - 1867216.25)/36524.25;
343 A = Z + 1 + A - (A/4);
344 B = A + 1524;
345 C = (B - 122.1)/365.25;
346 D = 365.25*C;
347 E = (B-D)/30.6001;
348 X1 = 30.6001*E;
349 p->D = B - D - X1;
350 p->M = E<14 ? E-1 : E-13;
351 p->Y = p->M>2 ? C - 4716 : C - 4715;
353 p->validYMD = 1;
357 ** Compute the Hour, Minute, and Seconds from the julian day number.
359 static void computeHMS(DateTime *p){
360 int Z, s;
361 if( p->validHMS ) return;
362 Z = p->rJD + 0.5;
363 s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
364 p->s = 0.001*s;
365 s = p->s;
366 p->s -= s;
367 p->h = s/3600;
368 s -= p->h*3600;
369 p->m = s/60;
370 p->s += s - p->m*60;
371 p->validHMS = 1;
375 ** Compute both YMD and HMS
377 static void computeYMD_HMS(DateTime *p){
378 computeYMD(p);
379 computeHMS(p);
383 ** Clear the YMD and HMS and the TZ
385 static void clearYMD_HMS_TZ(DateTime *p){
386 p->validYMD = 0;
387 p->validHMS = 0;
388 p->validTZ = 0;
392 ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
393 ** for the time value p where p is in UTC.
395 static double localtimeOffset(DateTime *p){
396 DateTime x, y;
397 time_t t;
398 struct tm *pTm;
399 x = *p;
400 computeYMD_HMS(&x);
401 if( x.Y<1971 || x.Y>=2038 ){
402 x.Y = 2000;
403 x.M = 1;
404 x.D = 1;
405 x.h = 0;
406 x.m = 0;
407 x.s = 0.0;
408 } else {
409 int s = x.s + 0.5;
410 x.s = s;
412 x.tz = 0;
413 x.validJD = 0;
414 computeJD(&x);
415 t = (x.rJD-2440587.5)*86400.0 + 0.5;
416 sqlite3OsEnterMutex();
417 pTm = localtime(&t);
418 y.Y = pTm->tm_year + 1900;
419 y.M = pTm->tm_mon + 1;
420 y.D = pTm->tm_mday;
421 y.h = pTm->tm_hour;
422 y.m = pTm->tm_min;
423 y.s = pTm->tm_sec;
424 sqlite3OsLeaveMutex();
425 y.validYMD = 1;
426 y.validHMS = 1;
427 y.validJD = 0;
428 y.validTZ = 0;
429 computeJD(&y);
430 return y.rJD - x.rJD;
434 ** Process a modifier to a date-time stamp. The modifiers are
435 ** as follows:
437 ** NNN days
438 ** NNN hours
439 ** NNN minutes
440 ** NNN.NNNN seconds
441 ** NNN months
442 ** NNN years
443 ** start of month
444 ** start of year
445 ** start of week
446 ** start of day
447 ** weekday N
448 ** unixepoch
449 ** localtime
450 ** utc
452 ** Return 0 on success and 1 if there is any kind of error.
454 static int parseModifier(const char *zMod, DateTime *p){
455 int rc = 1;
456 int n;
457 double r;
458 char *z, zBuf[30];
459 z = zBuf;
460 for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
461 z[n] = tolower(zMod[n]);
463 z[n] = 0;
464 switch( z[0] ){
465 case 'l': {
466 /* localtime
468 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
469 ** show local time.
471 if( strcmp(z, "localtime")==0 ){
472 computeJD(p);
473 p->rJD += localtimeOffset(p);
474 clearYMD_HMS_TZ(p);
475 rc = 0;
477 break;
479 case 'u': {
481 ** unixepoch
483 ** Treat the current value of p->rJD as the number of
484 ** seconds since 1970. Convert to a real julian day number.
486 if( strcmp(z, "unixepoch")==0 && p->validJD ){
487 p->rJD = p->rJD/86400.0 + 2440587.5;
488 clearYMD_HMS_TZ(p);
489 rc = 0;
490 }else if( strcmp(z, "utc")==0 ){
491 double c1;
492 computeJD(p);
493 c1 = localtimeOffset(p);
494 p->rJD -= c1;
495 clearYMD_HMS_TZ(p);
496 p->rJD += c1 - localtimeOffset(p);
497 rc = 0;
499 break;
501 case 'w': {
503 ** weekday N
505 ** Move the date to the same time on the next occurrence of
506 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
507 ** date is already on the appropriate weekday, this is a no-op.
509 if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
510 && (n=r)==r && n>=0 && r<7 ){
511 int Z;
512 computeYMD_HMS(p);
513 p->validTZ = 0;
514 p->validJD = 0;
515 computeJD(p);
516 Z = p->rJD + 1.5;
517 Z %= 7;
518 if( Z>n ) Z -= 7;
519 p->rJD += n - Z;
520 clearYMD_HMS_TZ(p);
521 rc = 0;
523 break;
525 case 's': {
527 ** start of TTTTT
529 ** Move the date backwards to the beginning of the current day,
530 ** or month or year.
532 if( strncmp(z, "start of ", 9)!=0 ) break;
533 z += 9;
534 computeYMD(p);
535 p->validHMS = 1;
536 p->h = p->m = 0;
537 p->s = 0.0;
538 p->validTZ = 0;
539 p->validJD = 0;
540 if( strcmp(z,"month")==0 ){
541 p->D = 1;
542 rc = 0;
543 }else if( strcmp(z,"year")==0 ){
544 computeYMD(p);
545 p->M = 1;
546 p->D = 1;
547 rc = 0;
548 }else if( strcmp(z,"day")==0 ){
549 rc = 0;
551 break;
553 case '+':
554 case '-':
555 case '0':
556 case '1':
557 case '2':
558 case '3':
559 case '4':
560 case '5':
561 case '6':
562 case '7':
563 case '8':
564 case '9': {
565 n = getValue(z, &r);
566 if( n<=0 ) break;
567 if( z[n]==':' ){
568 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
569 ** specified number of hours, minutes, seconds, and fractional seconds
570 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
571 ** omitted.
573 const char *z2 = z;
574 DateTime tx;
575 int day;
576 if( !isdigit(*(u8*)z2) ) z2++;
577 memset(&tx, 0, sizeof(tx));
578 if( parseHhMmSs(z2, &tx) ) break;
579 computeJD(&tx);
580 tx.rJD -= 0.5;
581 day = (int)tx.rJD;
582 tx.rJD -= day;
583 if( z[0]=='-' ) tx.rJD = -tx.rJD;
584 computeJD(p);
585 clearYMD_HMS_TZ(p);
586 p->rJD += tx.rJD;
587 rc = 0;
588 break;
590 z += n;
591 while( isspace(*(u8*)z) ) z++;
592 n = strlen(z);
593 if( n>10 || n<3 ) break;
594 if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
595 computeJD(p);
596 rc = 0;
597 if( n==3 && strcmp(z,"day")==0 ){
598 p->rJD += r;
599 }else if( n==4 && strcmp(z,"hour")==0 ){
600 p->rJD += r/24.0;
601 }else if( n==6 && strcmp(z,"minute")==0 ){
602 p->rJD += r/(24.0*60.0);
603 }else if( n==6 && strcmp(z,"second")==0 ){
604 p->rJD += r/(24.0*60.0*60.0);
605 }else if( n==5 && strcmp(z,"month")==0 ){
606 int x, y;
607 computeYMD_HMS(p);
608 p->M += r;
609 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
610 p->Y += x;
611 p->M -= x*12;
612 p->validJD = 0;
613 computeJD(p);
614 y = r;
615 if( y!=r ){
616 p->rJD += (r - y)*30.0;
618 }else if( n==4 && strcmp(z,"year")==0 ){
619 computeYMD_HMS(p);
620 p->Y += r;
621 p->validJD = 0;
622 computeJD(p);
623 }else{
624 rc = 1;
626 clearYMD_HMS_TZ(p);
627 break;
629 default: {
630 break;
633 return rc;
637 ** Process time function arguments. argv[0] is a date-time stamp.
638 ** argv[1] and following are modifiers. Parse them all and write
639 ** the resulting time into the DateTime structure p. Return 0
640 ** on success and 1 if there are any errors.
642 static int isDate(int argc, sqlite3_value **argv, DateTime *p){
643 int i;
644 if( argc==0 ) return 1;
645 if( SQLITE_NULL==sqlite3_value_type(argv[0]) ||
646 parseDateOrTime(sqlite3_value_text(argv[0]), p) ) return 1;
647 for(i=1; i<argc; i++){
648 if( SQLITE_NULL==sqlite3_value_type(argv[i]) ||
649 parseModifier(sqlite3_value_text(argv[i]), p) ) return 1;
651 return 0;
656 ** The following routines implement the various date and time functions
657 ** of SQLite.
661 ** julianday( TIMESTRING, MOD, MOD, ...)
663 ** Return the julian day number of the date specified in the arguments
665 static void juliandayFunc(
666 sqlite3_context *context,
667 int argc,
668 sqlite3_value **argv
670 DateTime x;
671 if( isDate(argc, argv, &x)==0 ){
672 computeJD(&x);
673 sqlite3_result_double(context, x.rJD);
678 ** datetime( TIMESTRING, MOD, MOD, ...)
680 ** Return YYYY-MM-DD HH:MM:SS
682 static void datetimeFunc(
683 sqlite3_context *context,
684 int argc,
685 sqlite3_value **argv
687 DateTime x;
688 if( isDate(argc, argv, &x)==0 ){
689 char zBuf[100];
690 computeYMD_HMS(&x);
691 sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
692 (int)(x.s));
693 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
698 ** time( TIMESTRING, MOD, MOD, ...)
700 ** Return HH:MM:SS
702 static void timeFunc(
703 sqlite3_context *context,
704 int argc,
705 sqlite3_value **argv
707 DateTime x;
708 if( isDate(argc, argv, &x)==0 ){
709 char zBuf[100];
710 computeHMS(&x);
711 sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
712 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
717 ** date( TIMESTRING, MOD, MOD, ...)
719 ** Return YYYY-MM-DD
721 static void dateFunc(
722 sqlite3_context *context,
723 int argc,
724 sqlite3_value **argv
726 DateTime x;
727 if( isDate(argc, argv, &x)==0 ){
728 char zBuf[100];
729 computeYMD(&x);
730 sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
731 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
736 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
738 ** Return a string described by FORMAT. Conversions as follows:
740 ** %d day of month
741 ** %f ** fractional seconds SS.SSS
742 ** %H hour 00-24
743 ** %j day of year 000-366
744 ** %J ** Julian day number
745 ** %m month 01-12
746 ** %M minute 00-59
747 ** %s seconds since 1970-01-01
748 ** %S seconds 00-59
749 ** %w day of week 0-6 sunday==0
750 ** %W week of year 00-53
751 ** %Y year 0000-9999
752 ** %% %
754 static void strftimeFunc(
755 sqlite3_context *context,
756 int argc,
757 sqlite3_value **argv
759 DateTime x;
760 int n, i, j;
761 char *z;
762 const char *zFmt = sqlite3_value_text(argv[0]);
763 char zBuf[100];
764 if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
765 for(i=0, n=1; zFmt[i]; i++, n++){
766 if( zFmt[i]=='%' ){
767 switch( zFmt[i+1] ){
768 case 'd':
769 case 'H':
770 case 'm':
771 case 'M':
772 case 'S':
773 case 'W':
774 n++;
775 /* fall thru */
776 case 'w':
777 case '%':
778 break;
779 case 'f':
780 n += 8;
781 break;
782 case 'j':
783 n += 3;
784 break;
785 case 'Y':
786 n += 8;
787 break;
788 case 's':
789 case 'J':
790 n += 50;
791 break;
792 default:
793 return; /* ERROR. return a NULL */
795 i++;
798 if( n<sizeof(zBuf) ){
799 z = zBuf;
800 }else{
801 z = sqliteMalloc( n );
802 if( z==0 ) return;
804 computeJD(&x);
805 computeYMD_HMS(&x);
806 for(i=j=0; zFmt[i]; i++){
807 if( zFmt[i]!='%' ){
808 z[j++] = zFmt[i];
809 }else{
810 i++;
811 switch( zFmt[i] ){
812 case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
813 case 'f': {
814 int s = x.s;
815 int ms = (x.s - s)*1000.0;
816 sprintf(&z[j],"%02d.%03d",s,ms);
817 j += strlen(&z[j]);
818 break;
820 case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
821 case 'W': /* Fall thru */
822 case 'j': {
823 int n; /* Number of days since 1st day of year */
824 DateTime y = x;
825 y.validJD = 0;
826 y.M = 1;
827 y.D = 1;
828 computeJD(&y);
829 n = x.rJD - y.rJD;
830 if( zFmt[i]=='W' ){
831 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
832 wd = ((int)(x.rJD+0.5)) % 7;
833 sprintf(&z[j],"%02d",(n+7-wd)/7);
834 j += 2;
835 }else{
836 sprintf(&z[j],"%03d",n+1);
837 j += 3;
839 break;
841 case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
842 case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
843 case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
844 case 's': {
845 sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
846 j += strlen(&z[j]);
847 break;
849 case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
850 case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
851 case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
852 case '%': z[j++] = '%'; break;
856 z[j] = 0;
857 sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
858 if( z!=zBuf ){
859 sqliteFree(z);
864 ** current_time()
866 ** This function returns the same value as time('now').
868 static void ctimeFunc(
869 sqlite3_context *context,
870 int argc,
871 sqlite3_value **argv
873 sqlite3_value *pVal = sqlite3ValueNew();
874 if( pVal ){
875 sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
876 timeFunc(context, 1, &pVal);
877 sqlite3ValueFree(pVal);
882 ** current_date()
884 ** This function returns the same value as date('now').
886 static void cdateFunc(
887 sqlite3_context *context,
888 int argc,
889 sqlite3_value **argv
891 sqlite3_value *pVal = sqlite3ValueNew();
892 if( pVal ){
893 sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
894 dateFunc(context, 1, &pVal);
895 sqlite3ValueFree(pVal);
900 ** current_timestamp()
902 ** This function returns the same value as datetime('now').
904 static void ctimestampFunc(
905 sqlite3_context *context,
906 int argc,
907 sqlite3_value **argv
909 sqlite3_value *pVal = sqlite3ValueNew();
910 if( pVal ){
911 sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
912 datetimeFunc(context, 1, &pVal);
913 sqlite3ValueFree(pVal);
916 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
918 #ifdef SQLITE_OMIT_DATETIME_FUNCS
920 ** If the library is compiled to omit the full-scale date and time
921 ** handling (to get a smaller binary), the following minimal version
922 ** of the functions current_time(), current_date() and current_timestamp()
923 ** are included instead. This is to support column declarations that
924 ** include "DEFAULT CURRENT_TIME" etc.
926 ** This function uses the C-library functions time(), gmtime()
927 ** and strftime(). The format string to pass to strftime() is supplied
928 ** as the user-data for the function.
930 static void currentTimeFunc(
931 sqlite3_context *context,
932 int argc,
933 sqlite3_value **argv
935 time_t t;
936 char *zFormat = (char *)sqlite3_user_data(context);
937 char zBuf[20];
939 time(&t);
940 #ifdef SQLITE_TEST
942 extern int sqlite3_current_time; /* See os_XXX.c */
943 if( sqlite3_current_time ){
944 t = sqlite3_current_time;
947 #endif
949 sqlite3OsEnterMutex();
950 strftime(zBuf, 20, zFormat, gmtime(&t));
951 sqlite3OsLeaveMutex();
953 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
955 #endif
958 ** This function registered all of the above C functions as SQL
959 ** functions. This should be the only routine in this file with
960 ** external linkage.
962 void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
963 #ifndef SQLITE_OMIT_DATETIME_FUNCS
964 static const struct {
965 char *zName;
966 int nArg;
967 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
968 } aFuncs[] = {
969 { "julianday", -1, juliandayFunc },
970 { "date", -1, dateFunc },
971 { "time", -1, timeFunc },
972 { "datetime", -1, datetimeFunc },
973 { "strftime", -1, strftimeFunc },
974 { "current_time", 0, ctimeFunc },
975 { "current_timestamp", 0, ctimestampFunc },
976 { "current_date", 0, cdateFunc },
978 int i;
980 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
981 sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
982 SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
984 #else
985 static const struct {
986 char *zName;
987 char *zFormat;
988 } aFuncs[] = {
989 { "current_time", "%H:%M:%S" },
990 { "current_date", "%Y-%m-%d" },
991 { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
993 int i;
995 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
996 sqlite3_create_function(db, aFuncs[i].zName, 0, SQLITE_UTF8,
997 aFuncs[i].zFormat, currentTimeFunc, 0, 0);
999 #endif