Some "cast to pointer from integer of different size" warnings removed.
[AROS-Contrib.git] / MultiMedia / play / libavcodec / adpcm.c
blob40c2d430ffc5ff902334aa2c60d7909f23734550
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include "avcodec.h"
21 /**
22 * @file adpcm.c
23 * ADPCM codecs.
24 * First version by Francois Revol (revol@free.fr)
25 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
26 * by Mike Melanson (melanson@pcisys.net)
27 * CD-ROM XA ADPCM codec by BERO
28 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
30 * Features and limitations:
32 * Reference documents:
33 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
34 * http://www.geocities.com/SiliconValley/8682/aud3.txt
35 * http://openquicktime.sourceforge.net/plugins.htm
36 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
37 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
38 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
40 * CD-ROM XA:
41 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
42 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
43 * readstr http://www.geocities.co.jp/Playtown/2004/
46 #define BLKSIZE 1024
48 #define CLAMP_TO_SHORT(value) \
49 if (value > 32767) \
50 value = 32767; \
51 else if (value < -32768) \
52 value = -32768; \
54 /* step_table[] and index_table[] are from the ADPCM reference source */
55 /* This is the index table: */
56 static const int index_table[16] = {
57 -1, -1, -1, -1, 2, 4, 6, 8,
58 -1, -1, -1, -1, 2, 4, 6, 8,
61 /**
62 * This is the step table. Note that many programs use slight deviations from
63 * this table, but such deviations are negligible:
65 static const int step_table[89] = {
66 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
67 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
68 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
69 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
70 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
71 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
72 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
73 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
74 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
77 /* These are for MS-ADPCM */
78 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
79 static const int AdaptationTable[] = {
80 230, 230, 230, 230, 307, 409, 512, 614,
81 768, 614, 512, 409, 307, 230, 230, 230
84 static const int AdaptCoeff1[] = {
85 256, 512, 0, 192, 240, 460, 392
88 static const int AdaptCoeff2[] = {
89 0, -256, 0, 64, 0, -208, -232
92 /* These are for CD-ROM XA ADPCM */
93 static const int xa_adpcm_table[5][2] = {
94 { 0, 0 },
95 { 60, 0 },
96 { 115, -52 },
97 { 98, -55 },
98 { 122, -60 }
101 static int ea_adpcm_table[] = {
102 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
103 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
106 static int ct_adpcm_table[8] = {
107 0x00E6, 0x00E6, 0x00E6, 0x00E6,
108 0x0133, 0x0199, 0x0200, 0x0266
111 /* end of tables */
113 typedef struct ADPCMChannelStatus {
114 int predictor;
115 short int step_index;
116 int step;
117 /* for encoding */
118 int prev_sample;
120 /* MS version */
121 short sample1;
122 short sample2;
123 int coeff1;
124 int coeff2;
125 int idelta;
126 } ADPCMChannelStatus;
128 typedef struct ADPCMContext {
129 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
130 ADPCMChannelStatus status[2];
131 short sample_buffer[32]; /* hold left samples while waiting for right samples */
132 } ADPCMContext;
134 /* XXX: implement encoding */
136 #ifdef CONFIG_ENCODERS
137 static int adpcm_encode_init(AVCodecContext *avctx)
139 if (avctx->channels > 2)
140 return -1; /* only stereo or mono =) */
141 switch(avctx->codec->id) {
142 case CODEC_ID_ADPCM_IMA_QT:
143 av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
144 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
145 return -1;
146 break;
147 case CODEC_ID_ADPCM_IMA_WAV:
148 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
149 /* and we have 4 bytes per channel overhead */
150 avctx->block_align = BLKSIZE;
151 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
152 break;
153 case CODEC_ID_ADPCM_MS:
154 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
155 /* and we have 7 bytes per channel overhead */
156 avctx->block_align = BLKSIZE;
157 break;
158 default:
159 return -1;
160 break;
163 avctx->coded_frame= avcodec_alloc_frame();
164 avctx->coded_frame->key_frame= 1;
166 return 0;
169 static int adpcm_encode_close(AVCodecContext *avctx)
171 av_freep(&avctx->coded_frame);
173 return 0;
177 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
179 int step_index;
180 unsigned char nibble;
182 int sign = 0; /* sign bit of the nibble (MSB) */
183 int delta, predicted_delta;
185 delta = sample - c->prev_sample;
187 if (delta < 0) {
188 sign = 1;
189 delta = -delta;
192 step_index = c->step_index;
194 /* nibble = 4 * delta / step_table[step_index]; */
195 nibble = (delta << 2) / step_table[step_index];
197 if (nibble > 7)
198 nibble = 7;
200 step_index += index_table[nibble];
201 if (step_index < 0)
202 step_index = 0;
203 if (step_index > 88)
204 step_index = 88;
206 /* what the decoder will find */
207 predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);
209 if (sign)
210 c->prev_sample -= predicted_delta;
211 else
212 c->prev_sample += predicted_delta;
214 CLAMP_TO_SHORT(c->prev_sample);
217 nibble += sign << 3; /* sign * 8 */
219 /* save back */
220 c->step_index = step_index;
222 return nibble;
225 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
227 int predictor, nibble, bias;
229 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
231 nibble= sample - predictor;
232 if(nibble>=0) bias= c->idelta/2;
233 else bias=-c->idelta/2;
235 nibble= (nibble + bias) / c->idelta;
236 nibble= clip(nibble, -8, 7)&0x0F;
238 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
239 CLAMP_TO_SHORT(predictor);
241 c->sample2 = c->sample1;
242 c->sample1 = predictor;
244 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
245 if (c->idelta < 16) c->idelta = 16;
247 return nibble;
250 static int adpcm_encode_frame(AVCodecContext *avctx,
251 unsigned char *frame, int buf_size, void *data)
253 int n, i, st;
254 short *samples;
255 unsigned char *dst;
256 ADPCMContext *c = avctx->priv_data;
258 dst = frame;
259 samples = (short *)data;
260 st= avctx->channels == 2;
261 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
263 switch(avctx->codec->id) {
264 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
265 break;
266 case CODEC_ID_ADPCM_IMA_WAV:
267 n = avctx->frame_size / 8;
268 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
269 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
270 *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
271 *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
272 *dst++ = (unsigned char)c->status[0].step_index;
273 *dst++ = 0; /* unknown */
274 samples++;
275 if (avctx->channels == 2) {
276 c->status[1].prev_sample = (signed short)samples[1];
277 /* c->status[1].step_index = 0; */
278 *dst++ = (c->status[1].prev_sample) & 0xFF;
279 *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
280 *dst++ = (unsigned char)c->status[1].step_index;
281 *dst++ = 0;
282 samples++;
285 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
286 for (; n>0; n--) {
287 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
288 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
289 dst++;
290 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
291 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
292 dst++;
293 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
294 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
295 dst++;
296 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
297 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
298 dst++;
299 /* right channel */
300 if (avctx->channels == 2) {
301 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
302 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
303 dst++;
304 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
305 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
306 dst++;
307 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
308 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
309 dst++;
310 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
311 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
312 dst++;
314 samples += 8 * avctx->channels;
316 break;
317 case CODEC_ID_ADPCM_MS:
318 for(i=0; i<avctx->channels; i++){
319 int predictor=0;
321 *dst++ = predictor;
322 c->status[i].coeff1 = AdaptCoeff1[predictor];
323 c->status[i].coeff2 = AdaptCoeff2[predictor];
325 for(i=0; i<avctx->channels; i++){
326 if (c->status[i].idelta < 16)
327 c->status[i].idelta = 16;
329 *dst++ = c->status[i].idelta & 0xFF;
330 *dst++ = c->status[i].idelta >> 8;
332 for(i=0; i<avctx->channels; i++){
333 c->status[i].sample1= *samples++;
335 *dst++ = c->status[i].sample1 & 0xFF;
336 *dst++ = c->status[i].sample1 >> 8;
338 for(i=0; i<avctx->channels; i++){
339 c->status[i].sample2= *samples++;
341 *dst++ = c->status[i].sample2 & 0xFF;
342 *dst++ = c->status[i].sample2 >> 8;
345 for(i=7*avctx->channels; i<avctx->block_align; i++) {
346 int nibble;
347 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
348 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
349 *dst++ = nibble;
351 break;
352 default:
353 return -1;
355 return dst - frame;
357 #endif //CONFIG_ENCODERS
359 static int adpcm_decode_init(AVCodecContext * avctx)
361 ADPCMContext *c = avctx->priv_data;
363 c->channel = 0;
364 c->status[0].predictor = c->status[1].predictor = 0;
365 c->status[0].step_index = c->status[1].step_index = 0;
366 c->status[0].step = c->status[1].step = 0;
368 switch(avctx->codec->id) {
369 case CODEC_ID_ADPCM_CT:
370 c->status[0].step = c->status[1].step = 511;
371 break;
372 default:
373 break;
375 return 0;
378 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
380 int step_index;
381 int predictor;
382 int sign, delta, diff, step;
384 step = step_table[c->step_index];
385 step_index = c->step_index + index_table[(unsigned)nibble];
386 if (step_index < 0) step_index = 0;
387 else if (step_index > 88) step_index = 88;
389 sign = nibble & 8;
390 delta = nibble & 7;
391 /* perform direct multiplication instead of series of jumps proposed by
392 * the reference ADPCM implementation since modern CPUs can do the mults
393 * quickly enough */
394 diff = ((2 * delta + 1) * step) >> shift;
395 predictor = c->predictor;
396 if (sign) predictor -= diff;
397 else predictor += diff;
399 CLAMP_TO_SHORT(predictor);
400 c->predictor = predictor;
401 c->step_index = step_index;
403 return (short)predictor;
406 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
408 int predictor;
410 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
411 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
412 CLAMP_TO_SHORT(predictor);
414 c->sample2 = c->sample1;
415 c->sample1 = predictor;
416 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
417 if (c->idelta < 16) c->idelta = 16;
419 return (short)predictor;
422 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
424 int predictor;
425 int sign, delta, diff;
426 int new_step;
428 sign = nibble & 8;
429 delta = nibble & 7;
430 /* perform direct multiplication instead of series of jumps proposed by
431 * the reference ADPCM implementation since modern CPUs can do the mults
432 * quickly enough */
433 diff = ((2 * delta + 1) * c->step) >> 3;
434 predictor = c->predictor;
435 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
436 if(sign)
437 predictor = ((predictor * 254) >> 8) - diff;
438 else
439 predictor = ((predictor * 254) >> 8) + diff;
440 /* calculate new step and clamp it to range 511..32767 */
441 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
442 c->step = new_step;
443 if(c->step < 511)
444 c->step = 511;
445 if(c->step > 32767)
446 c->step = 32767;
448 CLAMP_TO_SHORT(predictor);
449 c->predictor = predictor;
450 return (short)predictor;
453 static void xa_decode(short *out, const unsigned char *in,
454 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
456 int i, j;
457 int shift,filter,f0,f1;
458 int s_1,s_2;
459 int d,s,t;
461 for(i=0;i<4;i++) {
463 shift = 12 - (in[4+i*2] & 15);
464 filter = in[4+i*2] >> 4;
465 f0 = xa_adpcm_table[filter][0];
466 f1 = xa_adpcm_table[filter][1];
468 s_1 = left->sample1;
469 s_2 = left->sample2;
471 for(j=0;j<28;j++) {
472 d = in[16+i+j*4];
474 t = (signed char)(d<<4)>>4;
475 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
476 CLAMP_TO_SHORT(s);
477 *out = s;
478 out += inc;
479 s_2 = s_1;
480 s_1 = s;
483 if (inc==2) { /* stereo */
484 left->sample1 = s_1;
485 left->sample2 = s_2;
486 s_1 = right->sample1;
487 s_2 = right->sample2;
488 out = out + 1 - 28*2;
491 shift = 12 - (in[5+i*2] & 15);
492 filter = in[5+i*2] >> 4;
494 f0 = xa_adpcm_table[filter][0];
495 f1 = xa_adpcm_table[filter][1];
497 for(j=0;j<28;j++) {
498 d = in[16+i+j*4];
500 t = (signed char)d >> 4;
501 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
502 CLAMP_TO_SHORT(s);
503 *out = s;
504 out += inc;
505 s_2 = s_1;
506 s_1 = s;
509 if (inc==2) { /* stereo */
510 right->sample1 = s_1;
511 right->sample2 = s_2;
512 out -= 1;
513 } else {
514 left->sample1 = s_1;
515 left->sample2 = s_2;
521 /* DK3 ADPCM support macro */
522 #define DK3_GET_NEXT_NIBBLE() \
523 if (decode_top_nibble_next) \
525 nibble = (last_byte >> 4) & 0x0F; \
526 decode_top_nibble_next = 0; \
528 else \
530 last_byte = *src++; \
531 if (src >= buf + buf_size) break; \
532 nibble = last_byte & 0x0F; \
533 decode_top_nibble_next = 1; \
536 static int adpcm_decode_frame(AVCodecContext *avctx,
537 void *data, int *data_size,
538 uint8_t *buf, int buf_size)
540 ADPCMContext *c = avctx->priv_data;
541 ADPCMChannelStatus *cs;
542 int n, m, channel, i;
543 int block_predictor[2];
544 short *samples;
545 uint8_t *src;
546 int st; /* stereo */
548 /* DK3 ADPCM accounting variables */
549 unsigned char last_byte = 0;
550 unsigned char nibble;
551 int decode_top_nibble_next = 0;
552 int diff_channel;
554 /* EA ADPCM state variables */
555 uint32_t samples_in_chunk;
556 int32_t previous_left_sample, previous_right_sample;
557 int32_t current_left_sample, current_right_sample;
558 int32_t next_left_sample, next_right_sample;
559 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
560 uint8_t shift_left, shift_right;
561 int count1, count2;
563 if (!buf_size)
564 return 0;
566 samples = data;
567 src = buf;
569 st = avctx->channels == 2;
571 switch(avctx->codec->id) {
572 case CODEC_ID_ADPCM_IMA_QT:
573 n = (buf_size - 2);/* >> 2*avctx->channels;*/
574 channel = c->channel;
575 cs = &(c->status[channel]);
576 /* (pppppp) (piiiiiii) */
578 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
579 cs->predictor = (*src++) << 8;
580 cs->predictor |= (*src & 0x80);
581 cs->predictor &= 0xFF80;
583 /* sign extension */
584 if(cs->predictor & 0x8000)
585 cs->predictor -= 0x10000;
587 CLAMP_TO_SHORT(cs->predictor);
589 cs->step_index = (*src++) & 0x7F;
591 if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
592 if (cs->step_index > 88) cs->step_index = 88;
594 cs->step = step_table[cs->step_index];
596 if (st && channel)
597 samples++;
599 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
600 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
601 samples += avctx->channels;
602 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
603 samples += avctx->channels;
604 src ++;
607 if(st) { /* handle stereo interlacing */
608 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
609 if(channel == 1) { /* wait for the other packet before outputing anything */
610 return src - buf;
613 break;
614 case CODEC_ID_ADPCM_IMA_WAV:
615 if (avctx->block_align != 0 && buf_size > avctx->block_align)
616 buf_size = avctx->block_align;
618 for(i=0; i<avctx->channels; i++){
619 cs = &(c->status[i]);
620 cs->predictor = *src++;
621 cs->predictor |= (*src++) << 8;
622 if(cs->predictor & 0x8000)
623 cs->predictor -= 0x10000;
624 CLAMP_TO_SHORT(cs->predictor);
626 // XXX: is this correct ??: *samples++ = cs->predictor;
628 cs->step_index = *src++;
629 if (cs->step_index < 0) cs->step_index = 0;
630 if (cs->step_index > 88) cs->step_index = 88;
631 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */
634 for(m=4; src < (buf + buf_size);) {
635 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3);
636 if (st)
637 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F, 3);
638 *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F, 3);
639 if (st) {
640 *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F, 3);
641 if (!--m) {
642 m=4;
643 src+=4;
646 src++;
648 break;
649 case CODEC_ID_ADPCM_4XM:
650 cs = &(c->status[0]);
651 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
652 if(st){
653 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
655 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
656 if(st){
657 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
659 if (cs->step_index < 0) cs->step_index = 0;
660 if (cs->step_index > 88) cs->step_index = 88;
662 m= (buf_size - (src - buf))>>st;
663 for(i=0; i<m; i++) {
664 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
665 if (st)
666 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
667 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
668 if (st)
669 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
672 src += m<<st;
674 break;
675 case CODEC_ID_ADPCM_MS:
676 if (avctx->block_align != 0 && buf_size > avctx->block_align)
677 buf_size = avctx->block_align;
678 n = buf_size - 7 * avctx->channels;
679 if (n < 0)
680 return -1;
681 block_predictor[0] = clip(*src++, 0, 7);
682 block_predictor[1] = 0;
683 if (st)
684 block_predictor[1] = clip(*src++, 0, 7);
685 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
686 src+=2;
687 if (st){
688 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
689 src+=2;
691 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
692 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
693 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
694 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
696 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
697 src+=2;
698 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
699 if (st) src+=2;
700 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
701 src+=2;
702 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
703 if (st) src+=2;
705 *samples++ = c->status[0].sample1;
706 if (st) *samples++ = c->status[1].sample1;
707 *samples++ = c->status[0].sample2;
708 if (st) *samples++ = c->status[1].sample2;
709 for(;n>0;n--) {
710 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
711 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
712 src ++;
714 break;
715 case CODEC_ID_ADPCM_IMA_DK4:
716 if (avctx->block_align != 0 && buf_size > avctx->block_align)
717 buf_size = avctx->block_align;
719 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
720 c->status[0].step_index = src[2];
721 src += 4;
722 *samples++ = c->status[0].predictor;
723 if (st) {
724 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
725 c->status[1].step_index = src[2];
726 src += 4;
727 *samples++ = c->status[1].predictor;
729 while (src < buf + buf_size) {
731 /* take care of the top nibble (always left or mono channel) */
732 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
733 (src[0] >> 4) & 0x0F, 3);
735 /* take care of the bottom nibble, which is right sample for
736 * stereo, or another mono sample */
737 if (st)
738 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
739 src[0] & 0x0F, 3);
740 else
741 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
742 src[0] & 0x0F, 3);
744 src++;
746 break;
747 case CODEC_ID_ADPCM_IMA_DK3:
748 if (avctx->block_align != 0 && buf_size > avctx->block_align)
749 buf_size = avctx->block_align;
751 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
752 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
753 c->status[0].step_index = src[14];
754 c->status[1].step_index = src[15];
755 /* sign extend the predictors */
756 src += 16;
757 diff_channel = c->status[1].predictor;
759 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
760 * the buffer is consumed */
761 while (1) {
763 /* for this algorithm, c->status[0] is the sum channel and
764 * c->status[1] is the diff channel */
766 /* process the first predictor of the sum channel */
767 DK3_GET_NEXT_NIBBLE();
768 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
770 /* process the diff channel predictor */
771 DK3_GET_NEXT_NIBBLE();
772 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
774 /* process the first pair of stereo PCM samples */
775 diff_channel = (diff_channel + c->status[1].predictor) / 2;
776 *samples++ = c->status[0].predictor + c->status[1].predictor;
777 *samples++ = c->status[0].predictor - c->status[1].predictor;
779 /* process the second predictor of the sum channel */
780 DK3_GET_NEXT_NIBBLE();
781 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
783 /* process the second pair of stereo PCM samples */
784 diff_channel = (diff_channel + c->status[1].predictor) / 2;
785 *samples++ = c->status[0].predictor + c->status[1].predictor;
786 *samples++ = c->status[0].predictor - c->status[1].predictor;
788 break;
789 case CODEC_ID_ADPCM_IMA_WS:
790 /* no per-block initialization; just start decoding the data */
791 while (src < buf + buf_size) {
793 if (st) {
794 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
795 (src[0] >> 4) & 0x0F, 3);
796 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
797 src[0] & 0x0F, 3);
798 } else {
799 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
800 (src[0] >> 4) & 0x0F, 3);
801 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
802 src[0] & 0x0F, 3);
805 src++;
807 break;
808 case CODEC_ID_ADPCM_XA:
809 c->status[0].sample1 = c->status[0].sample2 =
810 c->status[1].sample1 = c->status[1].sample2 = 0;
811 while (buf_size >= 128) {
812 xa_decode(samples, src, &c->status[0], &c->status[1],
813 avctx->channels);
814 src += 128;
815 samples += 28 * 8;
816 buf_size -= 128;
818 break;
819 case CODEC_ID_ADPCM_EA:
820 samples_in_chunk = LE_32(src);
821 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
822 src += buf_size;
823 break;
825 src += 4;
826 current_left_sample = (int16_t)LE_16(src);
827 src += 2;
828 previous_left_sample = (int16_t)LE_16(src);
829 src += 2;
830 current_right_sample = (int16_t)LE_16(src);
831 src += 2;
832 previous_right_sample = (int16_t)LE_16(src);
833 src += 2;
835 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
836 coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
837 coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
838 coeff1r = ea_adpcm_table[*src & 0x0F];
839 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
840 src++;
842 shift_left = ((*src >> 4) & 0x0F) + 8;
843 shift_right = (*src & 0x0F) + 8;
844 src++;
846 for (count2 = 0; count2 < 28; count2++) {
847 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
848 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
849 src++;
851 next_left_sample = (next_left_sample +
852 (current_left_sample * coeff1l) +
853 (previous_left_sample * coeff2l) + 0x80) >> 8;
854 next_right_sample = (next_right_sample +
855 (current_right_sample * coeff1r) +
856 (previous_right_sample * coeff2r) + 0x80) >> 8;
857 CLAMP_TO_SHORT(next_left_sample);
858 CLAMP_TO_SHORT(next_right_sample);
860 previous_left_sample = current_left_sample;
861 current_left_sample = next_left_sample;
862 previous_right_sample = current_right_sample;
863 current_right_sample = next_right_sample;
864 *samples++ = (unsigned short)current_left_sample;
865 *samples++ = (unsigned short)current_right_sample;
868 break;
869 case CODEC_ID_ADPCM_IMA_SMJPEG:
870 c->status[0].predictor = *src;
871 src += 2;
872 c->status[0].step_index = *src++;
873 src++; /* skip another byte before getting to the meat */
874 while (src < buf + buf_size) {
875 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
876 *src & 0x0F, 3);
877 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
878 (*src >> 4) & 0x0F, 3);
879 src++;
881 break;
882 case CODEC_ID_ADPCM_CT:
883 while (src < buf + buf_size) {
884 if (st) {
885 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
886 (src[0] >> 4) & 0x0F);
887 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
888 src[0] & 0x0F);
889 } else {
890 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
891 (src[0] >> 4) & 0x0F);
892 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
893 src[0] & 0x0F);
895 src++;
897 break;
898 default:
899 return -1;
901 *data_size = (uint8_t *)samples - (uint8_t *)data;
902 return src - buf;
907 #ifdef CONFIG_ENCODERS
908 #define ADPCM_ENCODER(id,name) \
909 AVCodec name ## _encoder = { \
910 #name, \
911 CODEC_TYPE_AUDIO, \
912 id, \
913 sizeof(ADPCMContext), \
914 adpcm_encode_init, \
915 adpcm_encode_frame, \
916 adpcm_encode_close, \
917 NULL, \
919 #else
920 #define ADPCM_ENCODER(id,name)
921 #endif
923 #ifdef CONFIG_DECODERS
924 #define ADPCM_DECODER(id,name) \
925 AVCodec name ## _decoder = { \
926 #name, \
927 CODEC_TYPE_AUDIO, \
928 id, \
929 sizeof(ADPCMContext), \
930 adpcm_decode_init, \
931 NULL, \
932 NULL, \
933 adpcm_decode_frame, \
935 #else
936 #define ADPCM_DECODER(id,name)
937 #endif
939 #define ADPCM_CODEC(id, name) \
940 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
942 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
943 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
944 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
945 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
946 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
947 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
948 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
949 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
950 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
951 ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
952 ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
953 ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
955 #undef ADPCM_CODEC