64bit fixes.
[AROS-Contrib.git] / sqlite3 / vdbeaux.c
blobe64831e7545275589cb7ae6c9bd7b6c9f7d25728
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
17 #include "sqliteInt.h"
18 #include "os.h"
19 #include <ctype.h>
20 #include "vdbeInt.h"
24 ** When debugging the code generator in a symbolic debugger, one can
25 ** set the sqlite3_vdbe_addop_trace to 1 and all opcodes will be printed
26 ** as they are added to the instruction stream.
28 #ifndef NDEBUG
29 int sqlite3_vdbe_addop_trace = 0;
30 #endif
34 ** Create a new virtual database engine.
36 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
37 Vdbe *p;
38 p = sqliteMalloc( sizeof(Vdbe) );
39 if( p==0 ) return 0;
40 p->db = db;
41 if( db->pVdbe ){
42 db->pVdbe->pPrev = p;
44 p->pNext = db->pVdbe;
45 p->pPrev = 0;
46 db->pVdbe = p;
47 p->magic = VDBE_MAGIC_INIT;
48 return p;
52 ** Turn tracing on or off
54 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
55 p->trace = trace;
59 ** Resize the Vdbe.aOp array so that it contains at least N
60 ** elements. If the Vdbe is in VDBE_MAGIC_RUN state, then
61 ** the Vdbe.aOp array will be sized to contain exactly N
62 ** elements.
64 static void resizeOpArray(Vdbe *p, int N){
65 if( p->magic==VDBE_MAGIC_RUN ){
66 assert( N==p->nOp );
67 p->nOpAlloc = N;
68 p->aOp = sqliteRealloc(p->aOp, N*sizeof(Op));
69 }else if( p->nOpAlloc<N ){
70 int oldSize = p->nOpAlloc;
71 p->nOpAlloc = N+100;
72 p->aOp = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
73 if( p->aOp ){
74 memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
80 ** Add a new instruction to the list of instructions current in the
81 ** VDBE. Return the address of the new instruction.
83 ** Parameters:
85 ** p Pointer to the VDBE
87 ** op The opcode for this instruction
89 ** p1, p2 First two of the three possible operands.
91 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
92 ** the sqlite3VdbeChangeP3() function to change the value of the P3
93 ** operand.
95 int sqlite3VdbeAddOp(Vdbe *p, int op, int p1, int p2){
96 int i;
97 VdbeOp *pOp;
99 i = p->nOp;
100 p->nOp++;
101 assert( p->magic==VDBE_MAGIC_INIT );
102 resizeOpArray(p, i+1);
103 if( p->aOp==0 ){
104 return 0;
106 pOp = &p->aOp[i];
107 pOp->opcode = op;
108 pOp->p1 = p1;
109 pOp->p2 = p2;
110 pOp->p3 = 0;
111 pOp->p3type = P3_NOTUSED;
112 #ifdef SQLITE_DEBUG
113 if( sqlite3_vdbe_addop_trace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
114 #endif
115 return i;
119 ** Add an opcode that includes the p3 value.
121 int sqlite3VdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3,int p3type){
122 int addr = sqlite3VdbeAddOp(p, op, p1, p2);
123 sqlite3VdbeChangeP3(p, addr, zP3, p3type);
124 return addr;
128 ** Create a new symbolic label for an instruction that has yet to be
129 ** coded. The symbolic label is really just a negative number. The
130 ** label can be used as the P2 value of an operation. Later, when
131 ** the label is resolved to a specific address, the VDBE will scan
132 ** through its operation list and change all values of P2 which match
133 ** the label into the resolved address.
135 ** The VDBE knows that a P2 value is a label because labels are
136 ** always negative and P2 values are suppose to be non-negative.
137 ** Hence, a negative P2 value is a label that has yet to be resolved.
139 ** Zero is returned if a malloc() fails.
141 int sqlite3VdbeMakeLabel(Vdbe *p){
142 int i;
143 i = p->nLabel++;
144 assert( p->magic==VDBE_MAGIC_INIT );
145 if( i>=p->nLabelAlloc ){
146 p->nLabelAlloc = p->nLabelAlloc*2 + 10;
147 p->aLabel = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
149 if( p->aLabel ){
150 p->aLabel[i] = -1;
152 return -1-i;
156 ** Resolve label "x" to be the address of the next instruction to
157 ** be inserted. The parameter "x" must have been obtained from
158 ** a prior call to sqlite3VdbeMakeLabel().
160 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
161 int j = -1-x;
162 assert( p->magic==VDBE_MAGIC_INIT );
163 assert( j>=0 && j<p->nLabel );
164 if( p->aLabel ){
165 p->aLabel[j] = p->nOp;
170 ** Return non-zero if opcode 'op' is guarenteed not to push more values
171 ** onto the VDBE stack than it pops off.
173 static int opcodeNoPush(u8 op){
174 /* The 10 NOPUSH_MASK_n constants are defined in the automatically
175 ** generated header file opcodes.h. Each is a 16-bit bitmask, one
176 ** bit corresponding to each opcode implemented by the virtual
177 ** machine in vdbe.c. The bit is true if the word "no-push" appears
178 ** in a comment on the same line as the "case OP_XXX:" in
179 ** sqlite3VdbeExec() in vdbe.c.
181 ** If the bit is true, then the corresponding opcode is guarenteed not
182 ** to grow the stack when it is executed. Otherwise, it may grow the
183 ** stack by at most one entry.
185 ** NOPUSH_MASK_0 corresponds to opcodes 0 to 15. NOPUSH_MASK_1 contains
186 ** one bit for opcodes 16 to 31, and so on.
188 ** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h
189 ** because the file is generated by an awk program. Awk manipulates
190 ** all numbers as floating-point and we don't want to risk a rounding
191 ** error if someone builds with an awk that uses (for example) 32-bit
192 ** IEEE floats.
194 static const u32 masks[5] = {
195 NOPUSH_MASK_0 + (NOPUSH_MASK_1<<16),
196 NOPUSH_MASK_2 + (NOPUSH_MASK_3<<16),
197 NOPUSH_MASK_4 + (NOPUSH_MASK_5<<16),
198 NOPUSH_MASK_6 + (NOPUSH_MASK_7<<16),
199 NOPUSH_MASK_8 + (NOPUSH_MASK_9<<16)
201 return (masks[op>>5] & (1<<(op&0x1F)));
204 #ifndef NDEBUG
205 int sqlite3VdbeOpcodeNoPush(u8 op){
206 return opcodeNoPush(op);
208 #endif
211 ** Loop through the program looking for P2 values that are negative.
212 ** Each such value is a label. Resolve the label by setting the P2
213 ** value to its correct non-zero value.
215 ** This routine is called once after all opcodes have been inserted.
217 ** Variable *pMaxFuncArgs is set to the maximum value of any P1 argument
218 ** to an OP_Function or P2 to an OP_AggFunc opcode. This is used by
219 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
221 ** The integer *pMaxStack is set to the maximum number of vdbe stack
222 ** entries that static analysis reveals this program might need.
224 ** This routine also does the following optimization: It scans for
225 ** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
226 ** IdxInsert instructions where P2!=0. If no such instruction is
227 ** found, then every Statement instruction is changed to a Noop. In
228 ** this way, we avoid creating the statement journal file unnecessarily.
230 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
231 int i;
232 int nMaxArgs = 0;
233 int nMaxStack = p->nOp;
234 Op *pOp;
235 int *aLabel = p->aLabel;
236 int doesStatementRollback = 0;
237 int hasStatementBegin = 0;
238 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
239 u8 opcode = pOp->opcode;
241 /* Todo: Maybe OP_AggFunc should change to use P1 in the same
242 * way as OP_Function.
244 if( opcode==OP_Function ){
245 if( pOp->p1>nMaxArgs ) nMaxArgs = pOp->p1;
246 }else if( opcode==OP_AggFunc ){
247 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
248 }else if( opcode==OP_Halt ){
249 if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
250 doesStatementRollback = 1;
252 }else if( opcode==OP_IdxInsert ){
253 if( pOp->p2 ){
254 doesStatementRollback = 1;
256 }else if( opcode==OP_Statement ){
257 hasStatementBegin = 1;
260 if( opcodeNoPush(opcode) ){
261 nMaxStack--;
264 if( pOp->p2>=0 ) continue;
265 assert( -1-pOp->p2<p->nLabel );
266 pOp->p2 = aLabel[-1-pOp->p2];
268 sqliteFree(p->aLabel);
269 p->aLabel = 0;
271 *pMaxFuncArgs = nMaxArgs;
272 *pMaxStack = nMaxStack;
274 /* If we never rollback a statement transaction, then statement
275 ** transactions are not needed. So change every OP_Statement
276 ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
277 ** which can be expensive on some platforms.
279 if( hasStatementBegin && !doesStatementRollback ){
280 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
281 if( pOp->opcode==OP_Statement ){
282 pOp->opcode = OP_Noop;
289 ** Return the address of the next instruction to be inserted.
291 int sqlite3VdbeCurrentAddr(Vdbe *p){
292 assert( p->magic==VDBE_MAGIC_INIT );
293 return p->nOp;
297 ** Add a whole list of operations to the operation stack. Return the
298 ** address of the first operation added.
300 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
301 int addr;
302 assert( p->magic==VDBE_MAGIC_INIT );
303 resizeOpArray(p, p->nOp + nOp);
304 if( p->aOp==0 ){
305 return 0;
307 addr = p->nOp;
308 if( nOp>0 ){
309 int i;
310 VdbeOpList const *pIn = aOp;
311 for(i=0; i<nOp; i++, pIn++){
312 int p2 = pIn->p2;
313 VdbeOp *pOut = &p->aOp[i+addr];
314 pOut->opcode = pIn->opcode;
315 pOut->p1 = pIn->p1;
316 pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
317 pOut->p3 = pIn->p3;
318 pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
319 #ifdef SQLITE_DEBUG
320 if( sqlite3_vdbe_addop_trace ){
321 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
323 #endif
325 p->nOp += nOp;
327 return addr;
331 ** Change the value of the P1 operand for a specific instruction.
332 ** This routine is useful when a large program is loaded from a
333 ** static array using sqlite3VdbeAddOpList but we want to make a
334 ** few minor changes to the program.
336 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
337 assert( p->magic==VDBE_MAGIC_INIT );
338 if( p && addr>=0 && p->nOp>addr && p->aOp ){
339 p->aOp[addr].p1 = val;
344 ** Change the value of the P2 operand for a specific instruction.
345 ** This routine is useful for setting a jump destination.
347 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
348 assert( val>=0 );
349 assert( p->magic==VDBE_MAGIC_INIT );
350 if( p && addr>=0 && p->nOp>addr && p->aOp ){
351 p->aOp[addr].p2 = val;
356 ** Change the value of the P3 operand for a specific instruction.
357 ** This routine is useful when a large program is loaded from a
358 ** static array using sqlite3VdbeAddOpList but we want to make a
359 ** few minor changes to the program.
361 ** If n>=0 then the P3 operand is dynamic, meaning that a copy of
362 ** the string is made into memory obtained from sqliteMalloc().
363 ** A value of n==0 means copy bytes of zP3 up to and including the
364 ** first null byte. If n>0 then copy n+1 bytes of zP3.
366 ** If n==P3_KEYINFO it means that zP3 is a pointer to a KeyInfo structure.
367 ** A copy is made of the KeyInfo structure into memory obtained from
368 ** sqliteMalloc, to be freed when the Vdbe is finalized.
369 ** n==P3_KEYINFO_HANDOFF indicates that zP3 points to a KeyInfo structure
370 ** stored in memory that the caller has obtained from sqliteMalloc. The
371 ** caller should not free the allocation, it will be freed when the Vdbe is
372 ** finalized.
374 ** Other values of n (P3_STATIC, P3_COLLSEQ etc.) indicate that zP3 points
375 ** to a string or structure that is guaranteed to exist for the lifetime of
376 ** the Vdbe. In these cases we can just copy the pointer.
378 ** If addr<0 then change P3 on the most recently inserted instruction.
380 void sqlite3VdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
381 Op *pOp;
382 assert( p->magic==VDBE_MAGIC_INIT );
383 if( p==0 || p->aOp==0 ){
384 if( n==P3_DYNAMIC || n==P3_KEYINFO_HANDOFF ){
385 sqliteFree((void*)zP3);
387 if( n==P3_MEM ){
388 sqlite3ValueFree((sqlite3_value *)zP3);
390 return;
392 if( addr<0 || addr>=p->nOp ){
393 addr = p->nOp - 1;
394 if( addr<0 ) return;
396 pOp = &p->aOp[addr];
397 if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
398 sqliteFree(pOp->p3);
399 pOp->p3 = 0;
401 if( zP3==0 ){
402 pOp->p3 = 0;
403 pOp->p3type = P3_NOTUSED;
404 }else if( n==P3_KEYINFO ){
405 KeyInfo *pKeyInfo;
406 int nField, nByte;
407 nField = ((KeyInfo*)zP3)->nField;
408 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]);
409 pKeyInfo = sqliteMallocRaw( nByte );
410 pOp->p3 = (char*)pKeyInfo;
411 if( pKeyInfo ){
412 memcpy(pKeyInfo, zP3, nByte);
413 pOp->p3type = P3_KEYINFO;
414 }else{
415 pOp->p3type = P3_NOTUSED;
417 }else if( n==P3_KEYINFO_HANDOFF ){
418 pOp->p3 = (char*)zP3;
419 pOp->p3type = P3_KEYINFO;
420 }else if( n<0 ){
421 pOp->p3 = (char*)zP3;
422 pOp->p3type = n;
423 }else{
424 if( n==0 ) n = strlen(zP3);
425 pOp->p3 = sqliteStrNDup(zP3, n);
426 pOp->p3type = P3_DYNAMIC;
430 #ifndef NDEBUG
432 ** Replace the P3 field of the most recently coded instruction with
433 ** comment text.
435 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
436 va_list ap;
437 assert( p->nOp>0 );
438 assert( p->aOp==0 || p->aOp[p->nOp-1].p3==0 );
439 va_start(ap, zFormat);
440 sqlite3VdbeChangeP3(p, -1, sqlite3VMPrintf(zFormat, ap), P3_DYNAMIC);
441 va_end(ap);
443 #endif
446 ** If the P3 operand to the specified instruction appears
447 ** to be a quoted string token, then this procedure removes
448 ** the quotes.
450 ** The quoting operator can be either a grave ascent (ASCII 0x27)
451 ** or a double quote character (ASCII 0x22). Two quotes in a row
452 ** resolve to be a single actual quote character within the string.
454 void sqlite3VdbeDequoteP3(Vdbe *p, int addr){
455 Op *pOp;
456 assert( p->magic==VDBE_MAGIC_INIT );
457 if( p->aOp==0 ) return;
458 if( addr<0 || addr>=p->nOp ){
459 addr = p->nOp - 1;
460 if( addr<0 ) return;
462 pOp = &p->aOp[addr];
463 if( pOp->p3==0 || pOp->p3[0]==0 ) return;
464 if( pOp->p3type==P3_STATIC ){
465 pOp->p3 = sqliteStrDup(pOp->p3);
466 pOp->p3type = P3_DYNAMIC;
468 assert( pOp->p3type==P3_DYNAMIC );
469 sqlite3Dequote(pOp->p3);
473 ** Search the current program starting at instruction addr for the given
474 ** opcode and P2 value. Return the address plus 1 if found and 0 if not
475 ** found.
477 int sqlite3VdbeFindOp(Vdbe *p, int addr, int op, int p2){
478 int i;
479 assert( p->magic==VDBE_MAGIC_INIT );
480 for(i=addr; i<p->nOp; i++){
481 if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
483 return 0;
487 ** Return the opcode for a given address.
489 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
490 assert( p->magic==VDBE_MAGIC_INIT );
491 assert( addr>=0 && addr<p->nOp );
492 return &p->aOp[addr];
495 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
496 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
498 ** Compute a string that describes the P3 parameter for an opcode.
499 ** Use zTemp for any required temporary buffer space.
501 static char *displayP3(Op *pOp, char *zTemp, int nTemp){
502 char *zP3;
503 assert( nTemp>=20 );
504 switch( pOp->p3type ){
505 case P3_KEYINFO: {
506 int i, j;
507 KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
508 sprintf(zTemp, "keyinfo(%d", pKeyInfo->nField);
509 i = strlen(zTemp);
510 for(j=0; j<pKeyInfo->nField; j++){
511 CollSeq *pColl = pKeyInfo->aColl[j];
512 if( pColl ){
513 int n = strlen(pColl->zName);
514 if( i+n>nTemp-6 ){
515 strcpy(&zTemp[i],",...");
516 break;
518 zTemp[i++] = ',';
519 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
520 zTemp[i++] = '-';
522 strcpy(&zTemp[i], pColl->zName);
523 i += n;
524 }else if( i+4<nTemp-6 ){
525 strcpy(&zTemp[i],",nil");
526 i += 4;
529 zTemp[i++] = ')';
530 zTemp[i] = 0;
531 assert( i<nTemp );
532 zP3 = zTemp;
533 break;
535 case P3_COLLSEQ: {
536 CollSeq *pColl = (CollSeq*)pOp->p3;
537 sprintf(zTemp, "collseq(%.20s)", pColl->zName);
538 zP3 = zTemp;
539 break;
541 case P3_FUNCDEF: {
542 FuncDef *pDef = (FuncDef*)pOp->p3;
543 char zNum[30];
544 sprintf(zTemp, "%.*s", nTemp, pDef->zName);
545 sprintf(zNum,"(%d)", pDef->nArg);
546 if( strlen(zTemp)+strlen(zNum)+1<=nTemp ){
547 strcat(zTemp, zNum);
549 zP3 = zTemp;
550 break;
552 default: {
553 zP3 = pOp->p3;
554 if( zP3==0 || pOp->opcode==OP_Noop ){
555 zP3 = "";
559 return zP3;
561 #endif
564 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
566 ** Print a single opcode. This routine is used for debugging only.
568 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
569 char *zP3;
570 char zPtr[50];
571 static const char *zFormat1 = "%4d %-13s %4d %4d %s\n";
572 if( pOut==0 ) pOut = stdout;
573 zP3 = displayP3(pOp, zPtr, sizeof(zPtr));
574 fprintf(pOut, zFormat1,
575 pc, sqlite3OpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3);
576 fflush(pOut);
578 #endif
581 ** Release an array of N Mem elements
583 static void releaseMemArray(Mem *p, int N){
584 if( p ){
585 while( N-->0 ){
586 sqlite3VdbeMemRelease(p++);
591 #ifndef SQLITE_OMIT_EXPLAIN
593 ** Give a listing of the program in the virtual machine.
595 ** The interface is the same as sqlite3VdbeExec(). But instead of
596 ** running the code, it invokes the callback once for each instruction.
597 ** This feature is used to implement "EXPLAIN".
599 int sqlite3VdbeList(
600 Vdbe *p /* The VDBE */
602 sqlite3 *db = p->db;
603 int i;
604 int rc = SQLITE_OK;
606 assert( p->explain );
607 if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
608 assert( db->magic==SQLITE_MAGIC_BUSY );
609 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
611 /* Even though this opcode does not put dynamic strings onto the
612 ** the stack, they may become dynamic if the user calls
613 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
615 if( p->pTos==&p->aStack[4] ){
616 releaseMemArray(p->aStack, 5);
618 p->resOnStack = 0;
621 i = p->pc++;
622 if( i>=p->nOp ){
623 p->rc = SQLITE_OK;
624 rc = SQLITE_DONE;
625 }else if( db->flags & SQLITE_Interrupt ){
626 db->flags &= ~SQLITE_Interrupt;
627 p->rc = SQLITE_INTERRUPT;
628 rc = SQLITE_ERROR;
629 sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
630 }else{
631 Op *pOp = &p->aOp[i];
632 Mem *pMem = p->aStack;
633 pMem->flags = MEM_Int;
634 pMem->type = SQLITE_INTEGER;
635 pMem->i = i; /* Program counter */
636 pMem++;
638 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
639 pMem->z = sqlite3OpcodeNames[pOp->opcode]; /* Opcode */
640 pMem->n = strlen(pMem->z);
641 pMem->type = SQLITE_TEXT;
642 pMem->enc = SQLITE_UTF8;
643 pMem++;
645 pMem->flags = MEM_Int;
646 pMem->i = pOp->p1; /* P1 */
647 pMem->type = SQLITE_INTEGER;
648 pMem++;
650 pMem->flags = MEM_Int;
651 pMem->i = pOp->p2; /* P2 */
652 pMem->type = SQLITE_INTEGER;
653 pMem++;
655 pMem->flags = MEM_Short|MEM_Str|MEM_Term; /* P3 */
656 pMem->z = displayP3(pOp, pMem->zShort, sizeof(pMem->zShort));
657 pMem->type = SQLITE_TEXT;
658 pMem->enc = SQLITE_UTF8;
660 p->nResColumn = 5;
661 p->pTos = pMem;
662 p->rc = SQLITE_OK;
663 p->resOnStack = 1;
664 rc = SQLITE_ROW;
666 return rc;
668 #endif /* SQLITE_OMIT_EXPLAIN */
671 ** Print the SQL that was used to generate a VDBE program.
673 void sqlite3VdbePrintSql(Vdbe *p){
674 #ifdef SQLITE_DEBUG
675 int nOp = p->nOp;
676 VdbeOp *pOp;
677 if( nOp<1 ) return;
678 pOp = &p->aOp[nOp-1];
679 if( pOp->opcode==OP_Noop && pOp->p3!=0 ){
680 const char *z = pOp->p3;
681 while( isspace(*(u8*)z) ) z++;
682 printf("SQL: [%s]\n", z);
684 #endif
688 ** Prepare a virtual machine for execution. This involves things such
689 ** as allocating stack space and initializing the program counter.
690 ** After the VDBE has be prepped, it can be executed by one or more
691 ** calls to sqlite3VdbeExec().
693 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
694 ** VDBE_MAGIC_RUN.
696 void sqlite3VdbeMakeReady(
697 Vdbe *p, /* The VDBE */
698 int nVar, /* Number of '?' see in the SQL statement */
699 int nMem, /* Number of memory cells to allocate */
700 int nCursor, /* Number of cursors to allocate */
701 int nAgg, /* Number of aggregate contexts required */
702 int isExplain /* True if the EXPLAIN keywords is present */
704 int n;
706 assert( p!=0 );
707 assert( p->magic==VDBE_MAGIC_INIT );
709 /* There should be at least one opcode.
711 assert( p->nOp>0 );
713 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
714 * is because the call to resizeOpArray() below may shrink the
715 * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
716 * state.
718 p->magic = VDBE_MAGIC_RUN;
720 /* No instruction ever pushes more than a single element onto the
721 ** stack. And the stack never grows on successive executions of the
722 ** same loop. So the total number of instructions is an upper bound
723 ** on the maximum stack depth required. (Added later:) The
724 ** resolveP2Values() call computes a tighter upper bound on the
725 ** stack size.
727 ** Allocation all the stack space we will ever need.
729 if( p->aStack==0 ){
730 int nArg; /* Maximum number of args passed to a user function. */
731 int nStack; /* Maximum number of stack entries required */
732 resolveP2Values(p, &nArg, &nStack);
733 resizeOpArray(p, p->nOp);
734 assert( nVar>=0 );
735 assert( nStack<p->nOp );
736 nStack = isExplain ? 10 : nStack;
737 p->aStack = sqliteMalloc(
738 nStack*sizeof(p->aStack[0]) /* aStack */
739 + nArg*sizeof(Mem*) /* apArg */
740 + nVar*sizeof(Mem) /* aVar */
741 + nVar*sizeof(char*) /* azVar */
742 + nMem*sizeof(Mem) /* aMem */
743 + nCursor*sizeof(Cursor*) /* apCsr */
744 + nAgg*sizeof(Agg) /* Aggregate contexts */
746 if( !sqlite3_malloc_failed ){
747 p->aMem = &p->aStack[nStack];
748 p->nMem = nMem;
749 p->aVar = &p->aMem[nMem];
750 p->nVar = nVar;
751 p->okVar = 0;
752 p->apArg = (Mem**)&p->aVar[nVar];
753 p->azVar = (char**)&p->apArg[nArg];
754 p->apCsr = (Cursor**)&p->azVar[nVar];
755 if( nAgg>0 ){
756 p->nAgg = nAgg;
757 p->apAgg = (Agg*)&p->apCsr[nCursor];
759 p->nCursor = nCursor;
760 for(n=0; n<nVar; n++){
761 p->aVar[n].flags = MEM_Null;
765 p->pAgg = p->apAgg;
766 for(n=0; n<p->nMem; n++){
767 p->aMem[n].flags = MEM_Null;
770 #ifdef SQLITE_DEBUG
771 if( (p->db->flags & SQLITE_VdbeListing)!=0
772 || sqlite3OsFileExists("vdbe_explain")
774 int i;
775 printf("VDBE Program Listing:\n");
776 sqlite3VdbePrintSql(p);
777 for(i=0; i<p->nOp; i++){
778 sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
781 if( sqlite3OsFileExists("vdbe_trace") ){
782 p->trace = stdout;
784 #endif
785 p->pTos = &p->aStack[-1];
786 p->pc = -1;
787 p->rc = SQLITE_OK;
788 p->uniqueCnt = 0;
789 p->returnDepth = 0;
790 p->errorAction = OE_Abort;
791 p->popStack = 0;
792 p->explain |= isExplain;
793 p->magic = VDBE_MAGIC_RUN;
794 p->nChange = 0;
795 #ifdef VDBE_PROFILE
797 int i;
798 for(i=0; i<p->nOp; i++){
799 p->aOp[i].cnt = 0;
800 p->aOp[i].cycles = 0;
803 #endif
808 ** Remove any elements that remain on the sorter for the VDBE given.
810 void sqlite3VdbeSorterReset(Vdbe *p){
811 while( p->pSort ){
812 Sorter *pSorter = p->pSort;
813 p->pSort = pSorter->pNext;
814 sqliteFree(pSorter->zKey);
815 sqlite3VdbeMemRelease(&pSorter->data);
816 sqliteFree(pSorter);
818 p->pSortTail = 0;
822 ** Free all resources allociated with AggElem pElem, an element of
823 ** aggregate pAgg.
825 static void freeAggElem(AggElem *pElem, Agg *pAgg){
826 int i;
827 for(i=0; i<pAgg->nMem; i++){
828 Mem *pMem = &pElem->aMem[i];
829 if( pAgg->apFunc && pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
830 sqlite3_context ctx;
831 ctx.pFunc = pAgg->apFunc[i];
832 ctx.s.flags = MEM_Null;
833 ctx.pAgg = pMem->z;
834 ctx.cnt = pMem->i;
835 ctx.isError = 0;
836 (*ctx.pFunc->xFinalize)(&ctx);
837 pMem->z = ctx.pAgg;
838 if( pMem->z!=0 && pMem->z!=pMem->zShort ){
839 sqliteFree(pMem->z);
841 sqlite3VdbeMemRelease(&ctx.s);
842 }else{
843 sqlite3VdbeMemRelease(pMem);
846 sqliteFree(pElem);
850 ** Reset an Agg structure. Delete all its contents.
852 ** For installable aggregate functions, if the step function has been
853 ** called, make sure the finalizer function has also been called. The
854 ** finalizer might need to free memory that was allocated as part of its
855 ** private context. If the finalizer has not been called yet, call it
856 ** now.
858 ** If db is NULL, then this is being called from sqliteVdbeReset(). In
859 ** this case clean up all references to the temp-table used for
860 ** aggregates (if it was ever opened).
862 ** If db is not NULL, then this is being called from with an OP_AggReset
863 ** opcode. Open the temp-table, if it has not already been opened and
864 ** delete the contents of the table used for aggregate information, ready
865 ** for the next round of aggregate processing.
867 int sqlite3VdbeAggReset(sqlite3 *db, Agg *pAgg, KeyInfo *pKeyInfo){
868 int rc = 0;
869 BtCursor *pCsr;
871 if( !pAgg ) return SQLITE_OK;
872 pCsr = pAgg->pCsr;
873 assert( (pCsr && pAgg->nTab>0) || (!pCsr && pAgg->nTab==0)
874 || sqlite3_malloc_failed );
876 /* If pCsr is not NULL, then the table used for aggregate information
877 ** is open. Loop through it and free the AggElem* structure pointed at
878 ** by each entry. If the finalizer has not been called for an AggElem,
879 ** do that too. Finally, clear the btree table itself.
881 if( pCsr ){
882 int res;
883 assert( pAgg->pBtree );
884 assert( pAgg->nTab>0 );
886 rc=sqlite3BtreeFirst(pCsr, &res);
887 while( res==0 && rc==SQLITE_OK ){
888 AggElem *pElem;
889 rc = sqlite3BtreeData(pCsr, 0, sizeof(AggElem*), (char *)&pElem);
890 if( rc!=SQLITE_OK ){
891 return rc;
893 assert( pAgg->apFunc!=0 );
894 freeAggElem(pElem, pAgg);
895 rc=sqlite3BtreeNext(pCsr, &res);
897 if( rc!=SQLITE_OK ){
898 return rc;
901 sqlite3BtreeCloseCursor(pCsr);
902 sqlite3BtreeClearTable(pAgg->pBtree, pAgg->nTab);
903 }else{
904 /* The cursor may not be open because the aggregator was never used,
905 ** or it could be that it was used but there was no GROUP BY clause.
907 if( pAgg->pCurrent ){
908 freeAggElem(pAgg->pCurrent, pAgg);
912 /* If db is not NULL and we have not yet and we have not yet opened
913 ** the temporary btree then do so and create the table to store aggregate
914 ** information.
916 ** If db is NULL, then close the temporary btree if it is open.
918 if( db ){
919 if( !pAgg->pBtree ){
920 assert( pAgg->nTab==0 );
921 #ifndef SQLITE_OMIT_MEMORYDB
922 rc = sqlite3BtreeFactory(db, ":memory:", 0, TEMP_PAGES, &pAgg->pBtree);
923 #else
924 rc = sqlite3BtreeFactory(db, 0, 0, TEMP_PAGES, &pAgg->pBtree);
925 #endif
926 if( rc!=SQLITE_OK ) return rc;
927 sqlite3BtreeBeginTrans(pAgg->pBtree, 1);
928 rc = sqlite3BtreeCreateTable(pAgg->pBtree, &pAgg->nTab, 0);
929 if( rc!=SQLITE_OK ) return rc;
931 assert( pAgg->nTab!=0 );
933 rc = sqlite3BtreeCursor(pAgg->pBtree, pAgg->nTab, 1,
934 sqlite3VdbeRecordCompare, pKeyInfo, &pAgg->pCsr);
935 if( rc!=SQLITE_OK ) return rc;
936 }else{
937 if( pAgg->pBtree ){
938 sqlite3BtreeClose(pAgg->pBtree);
939 pAgg->pBtree = 0;
940 pAgg->nTab = 0;
942 pAgg->pCsr = 0;
945 if( pAgg->apFunc ){
946 sqliteFree(pAgg->apFunc);
947 pAgg->apFunc = 0;
949 pAgg->pCurrent = 0;
950 pAgg->nMem = 0;
951 pAgg->searching = 0;
952 return SQLITE_OK;
957 ** Delete a keylist
959 void sqlite3VdbeKeylistFree(Keylist *p){
960 while( p ){
961 Keylist *pNext = p->pNext;
962 sqliteFree(p);
963 p = pNext;
968 ** Close a cursor and release all the resources that cursor happens
969 ** to hold.
971 void sqlite3VdbeFreeCursor(Cursor *pCx){
972 if( pCx==0 ){
973 return;
975 if( pCx->pCursor ){
976 sqlite3BtreeCloseCursor(pCx->pCursor);
978 if( pCx->pBt ){
979 sqlite3BtreeClose(pCx->pBt);
981 sqliteFree(pCx->pData);
982 sqliteFree(pCx->aType);
983 sqliteFree(pCx);
987 ** Close all cursors
989 static void closeAllCursors(Vdbe *p){
990 int i;
991 if( p->apCsr==0 ) return;
992 for(i=0; i<p->nCursor; i++){
993 sqlite3VdbeFreeCursor(p->apCsr[i]);
994 p->apCsr[i] = 0;
999 ** Clean up the VM after execution.
1001 ** This routine will automatically close any cursors, lists, and/or
1002 ** sorters that were left open. It also deletes the values of
1003 ** variables in the aVar[] array.
1005 static void Cleanup(Vdbe *p){
1006 int i;
1007 if( p->aStack ){
1008 releaseMemArray(p->aStack, 1 + (p->pTos - p->aStack));
1009 p->pTos = &p->aStack[-1];
1011 closeAllCursors(p);
1012 releaseMemArray(p->aMem, p->nMem);
1013 if( p->pList ){
1014 sqlite3VdbeKeylistFree(p->pList);
1015 p->pList = 0;
1017 if( p->contextStack ){
1018 for(i=0; i<p->contextStackTop; i++){
1019 sqlite3VdbeKeylistFree(p->contextStack[i].pList);
1021 sqliteFree(p->contextStack);
1023 sqlite3VdbeSorterReset(p);
1024 for(i=0; i<p->nAgg; i++){
1025 sqlite3VdbeAggReset(0, &p->apAgg[i], 0);
1027 p->contextStack = 0;
1028 p->contextStackDepth = 0;
1029 p->contextStackTop = 0;
1030 sqliteFree(p->zErrMsg);
1031 p->zErrMsg = 0;
1035 ** Set the number of result columns that will be returned by this SQL
1036 ** statement. This is now set at compile time, rather than during
1037 ** execution of the vdbe program so that sqlite3_column_count() can
1038 ** be called on an SQL statement before sqlite3_step().
1040 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1041 Mem *pColName;
1042 int n;
1043 assert( 0==p->nResColumn );
1044 p->nResColumn = nResColumn;
1045 n = nResColumn*2;
1046 p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n );
1047 if( p->aColName==0 ) return;
1048 while( n-- > 0 ){
1049 (pColName++)->flags = MEM_Null;
1054 ** Set the name of the idx'th column to be returned by the SQL statement.
1055 ** zName must be a pointer to a nul terminated string.
1057 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1059 ** If N==P3_STATIC it means that zName is a pointer to a constant static
1060 ** string and we can just copy the pointer. If it is P3_DYNAMIC, then
1061 ** the string is freed using sqliteFree() when the vdbe is finished with
1062 ** it. Otherwise, N bytes of zName are copied.
1064 int sqlite3VdbeSetColName(Vdbe *p, int idx, const char *zName, int N){
1065 int rc;
1066 Mem *pColName;
1067 assert( idx<(2*p->nResColumn) );
1068 if( sqlite3_malloc_failed ) return SQLITE_NOMEM;
1069 assert( p->aColName!=0 );
1070 pColName = &(p->aColName[idx]);
1071 if( N==P3_DYNAMIC || N==P3_STATIC ){
1072 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
1073 }else{
1074 rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
1076 if( rc==SQLITE_OK && N==P3_DYNAMIC ){
1077 pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
1078 pColName->xDel = 0;
1080 return rc;
1084 ** A read or write transaction may or may not be active on database handle
1085 ** db. If a transaction is active, commit it. If there is a
1086 ** write-transaction spanning more than one database file, this routine
1087 ** takes care of the master journal trickery.
1089 static int vdbeCommit(sqlite3 *db){
1090 int i;
1091 int nTrans = 0; /* Number of databases with an active write-transaction */
1092 int rc = SQLITE_OK;
1093 int needXcommit = 0;
1095 for(i=0; i<db->nDb; i++){
1096 Btree *pBt = db->aDb[i].pBt;
1097 if( pBt && sqlite3BtreeIsInTrans(pBt) ){
1098 needXcommit = 1;
1099 if( i!=1 ) nTrans++;
1103 /* If there are any write-transactions at all, invoke the commit hook */
1104 if( needXcommit && db->xCommitCallback ){
1105 int rc;
1106 sqlite3SafetyOff(db);
1107 rc = db->xCommitCallback(db->pCommitArg);
1108 sqlite3SafetyOn(db);
1109 if( rc ){
1110 return SQLITE_CONSTRAINT;
1114 /* The simple case - no more than one database file (not counting the
1115 ** TEMP database) has a transaction active. There is no need for the
1116 ** master-journal.
1118 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1119 ** string, it means the main database is :memory:. In that case we do
1120 ** not support atomic multi-file commits, so use the simple case then
1121 ** too.
1123 if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
1124 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1125 Btree *pBt = db->aDb[i].pBt;
1126 if( pBt ){
1127 rc = sqlite3BtreeSync(pBt, 0);
1131 /* Do the commit only if all databases successfully synced */
1132 if( rc==SQLITE_OK ){
1133 for(i=0; i<db->nDb; i++){
1134 Btree *pBt = db->aDb[i].pBt;
1135 if( pBt ){
1136 sqlite3BtreeCommit(pBt);
1142 /* The complex case - There is a multi-file write-transaction active.
1143 ** This requires a master journal file to ensure the transaction is
1144 ** committed atomicly.
1146 #ifndef SQLITE_OMIT_DISKIO
1147 else{
1148 char *zMaster = 0; /* File-name for the master journal */
1149 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1150 OsFile master;
1152 /* Select a master journal file name */
1153 do {
1154 u32 random;
1155 sqliteFree(zMaster);
1156 sqlite3Randomness(sizeof(random), &random);
1157 zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random&0x7fffffff);
1158 if( !zMaster ){
1159 return SQLITE_NOMEM;
1161 }while( sqlite3OsFileExists(zMaster) );
1163 /* Open the master journal. */
1164 memset(&master, 0, sizeof(master));
1165 rc = sqlite3OsOpenExclusive(zMaster, &master, 0);
1166 if( rc!=SQLITE_OK ){
1167 sqliteFree(zMaster);
1168 return rc;
1171 /* Write the name of each database file in the transaction into the new
1172 ** master journal file. If an error occurs at this point close
1173 ** and delete the master journal file. All the individual journal files
1174 ** still have 'null' as the master journal pointer, so they will roll
1175 ** back independently if a failure occurs.
1177 for(i=0; i<db->nDb; i++){
1178 Btree *pBt = db->aDb[i].pBt;
1179 if( i==1 ) continue; /* Ignore the TEMP database */
1180 if( pBt && sqlite3BtreeIsInTrans(pBt) ){
1181 char const *zFile = sqlite3BtreeGetJournalname(pBt);
1182 if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
1183 rc = sqlite3OsWrite(&master, zFile, strlen(zFile)+1);
1184 if( rc!=SQLITE_OK ){
1185 sqlite3OsClose(&master);
1186 sqlite3OsDelete(zMaster);
1187 sqliteFree(zMaster);
1188 return rc;
1194 /* Sync the master journal file. Before doing this, open the directory
1195 ** the master journal file is store in so that it gets synced too.
1197 zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
1198 rc = sqlite3OsOpenDirectory(zMainFile, &master);
1199 if( rc!=SQLITE_OK || (rc = sqlite3OsSync(&master))!=SQLITE_OK ){
1200 sqlite3OsClose(&master);
1201 sqlite3OsDelete(zMaster);
1202 sqliteFree(zMaster);
1203 return rc;
1206 /* Sync all the db files involved in the transaction. The same call
1207 ** sets the master journal pointer in each individual journal. If
1208 ** an error occurs here, do not delete the master journal file.
1210 ** If the error occurs during the first call to sqlite3BtreeSync(),
1211 ** then there is a chance that the master journal file will be
1212 ** orphaned. But we cannot delete it, in case the master journal
1213 ** file name was written into the journal file before the failure
1214 ** occured.
1216 for(i=0; i<db->nDb; i++){
1217 Btree *pBt = db->aDb[i].pBt;
1218 if( pBt && sqlite3BtreeIsInTrans(pBt) ){
1219 rc = sqlite3BtreeSync(pBt, zMaster);
1220 if( rc!=SQLITE_OK ){
1221 sqlite3OsClose(&master);
1222 sqliteFree(zMaster);
1223 return rc;
1227 sqlite3OsClose(&master);
1229 /* Delete the master journal file. This commits the transaction. After
1230 ** doing this the directory is synced again before any individual
1231 ** transaction files are deleted.
1233 rc = sqlite3OsDelete(zMaster);
1234 assert( rc==SQLITE_OK );
1235 sqliteFree(zMaster);
1236 zMaster = 0;
1237 rc = sqlite3OsSyncDirectory(zMainFile);
1238 if( rc!=SQLITE_OK ){
1239 /* This is not good. The master journal file has been deleted, but
1240 ** the directory sync failed. There is no completely safe course of
1241 ** action from here. The individual journals contain the name of the
1242 ** master journal file, but there is no way of knowing if that
1243 ** master journal exists now or if it will exist after the operating
1244 ** system crash that may follow the fsync() failure.
1246 return rc;
1249 /* All files and directories have already been synced, so the following
1250 ** calls to sqlite3BtreeCommit() are only closing files and deleting
1251 ** journals. If something goes wrong while this is happening we don't
1252 ** really care. The integrity of the transaction is already guaranteed,
1253 ** but some stray 'cold' journals may be lying around. Returning an
1254 ** error code won't help matters.
1256 for(i=0; i<db->nDb; i++){
1257 Btree *pBt = db->aDb[i].pBt;
1258 if( pBt ){
1259 sqlite3BtreeCommit(pBt);
1263 #endif
1265 return rc;
1269 ** Find every active VM other than pVdbe and change its status to
1270 ** aborted. This happens when one VM causes a rollback due to an
1271 ** ON CONFLICT ROLLBACK clause (for example). The other VMs must be
1272 ** aborted so that they do not have data rolled out from underneath
1273 ** them leading to a segfault.
1275 static void abortOtherActiveVdbes(Vdbe *pVdbe){
1276 Vdbe *pOther;
1277 for(pOther=pVdbe->db->pVdbe; pOther; pOther=pOther->pNext){
1278 if( pOther==pVdbe ) continue;
1279 if( pOther->magic!=VDBE_MAGIC_RUN || pOther->pc<0 ) continue;
1280 closeAllCursors(pOther);
1281 pOther->aborted = 1;
1286 ** This routine checks that the sqlite3.activeVdbeCnt count variable
1287 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1288 ** currently active. An assertion fails if the two counts do not match.
1289 ** This is an internal self-check only - it is not an essential processing
1290 ** step.
1292 ** This is a no-op if NDEBUG is defined.
1294 #ifndef NDEBUG
1295 static void checkActiveVdbeCnt(sqlite3 *db){
1296 Vdbe *p;
1297 int cnt = 0;
1298 p = db->pVdbe;
1299 while( p ){
1300 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
1301 cnt++;
1303 p = p->pNext;
1305 assert( cnt==db->activeVdbeCnt );
1307 #else
1308 #define checkActiveVdbeCnt(x)
1309 #endif
1312 ** This routine is called the when a VDBE tries to halt. If the VDBE
1313 ** has made changes and is in autocommit mode, then commit those
1314 ** changes. If a rollback is needed, then do the rollback.
1316 ** This routine is the only way to move the state of a VM from
1317 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.
1319 ** Return an error code. If the commit could not complete because of
1320 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
1321 ** means the close did not happen and needs to be repeated.
1323 int sqlite3VdbeHalt(Vdbe *p){
1324 sqlite3 *db = p->db;
1325 int i;
1326 int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
1328 if( p->magic!=VDBE_MAGIC_RUN ){
1329 /* Already halted. Nothing to do. */
1330 assert( p->magic==VDBE_MAGIC_HALT );
1331 return SQLITE_OK;
1333 closeAllCursors(p);
1334 checkActiveVdbeCnt(db);
1335 if( p->pc<0 ){
1336 /* No commit or rollback needed if the program never started */
1337 }else if( db->autoCommit && db->activeVdbeCnt==1 ){
1338 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
1339 /* The auto-commit flag is true, there are no other active queries
1340 ** using this handle and the vdbe program was successful or hit an
1341 ** 'OR FAIL' constraint. This means a commit is required.
1343 int rc = vdbeCommit(db);
1344 if( rc==SQLITE_BUSY ){
1345 return SQLITE_BUSY;
1346 }else if( rc!=SQLITE_OK ){
1347 p->rc = rc;
1348 xFunc = sqlite3BtreeRollback;
1350 }else{
1351 xFunc = sqlite3BtreeRollback;
1353 }else{
1354 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
1355 xFunc = sqlite3BtreeCommitStmt;
1356 }else if( p->errorAction==OE_Abort ){
1357 xFunc = sqlite3BtreeRollbackStmt;
1358 }else{
1359 xFunc = sqlite3BtreeRollback;
1360 db->autoCommit = 1;
1361 abortOtherActiveVdbes(p);
1365 /* If xFunc is not NULL, then it is one of sqlite3BtreeRollback,
1366 ** sqlite3BtreeRollbackStmt or sqlite3BtreeCommitStmt. Call it once on
1367 ** each backend. If an error occurs and the return code is still
1368 ** SQLITE_OK, set the return code to the new error value.
1370 for(i=0; xFunc && i<db->nDb; i++){
1371 int rc;
1372 Btree *pBt = db->aDb[i].pBt;
1373 if( pBt ){
1374 rc = xFunc(pBt);
1375 if( p->rc==SQLITE_OK ) p->rc = rc;
1379 /* If this was an INSERT, UPDATE or DELETE, set the change counter. */
1380 if( p->changeCntOn && p->pc>=0 ){
1381 if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
1382 sqlite3VdbeSetChanges(db, p->nChange);
1383 }else{
1384 sqlite3VdbeSetChanges(db, 0);
1386 p->nChange = 0;
1389 /* Rollback or commit any schema changes that occurred. */
1390 if( p->rc!=SQLITE_OK ){
1391 sqlite3RollbackInternalChanges(db);
1392 }else if( db->flags & SQLITE_InternChanges ){
1393 sqlite3CommitInternalChanges(db);
1396 /* We have successfully halted and closed the VM. Record this fact. */
1397 if( p->pc>=0 ){
1398 db->activeVdbeCnt--;
1400 p->magic = VDBE_MAGIC_HALT;
1401 checkActiveVdbeCnt(db);
1403 return SQLITE_OK;
1407 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
1408 ** Write any error messages into *pzErrMsg. Return the result code.
1410 ** After this routine is run, the VDBE should be ready to be executed
1411 ** again.
1413 ** To look at it another way, this routine resets the state of the
1414 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
1415 ** VDBE_MAGIC_INIT.
1417 int sqlite3VdbeReset(Vdbe *p){
1418 if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
1419 sqlite3Error(p->db, SQLITE_MISUSE, 0);
1420 return SQLITE_MISUSE;
1423 /* If the VM did not run to completion or if it encountered an
1424 ** error, then it might not have been halted properly. So halt
1425 ** it now.
1427 sqlite3VdbeHalt(p);
1429 /* If the VDBE has be run even partially, then transfer the error code
1430 ** and error message from the VDBE into the main database structure. But
1431 ** if the VDBE has just been set to run but has not actually executed any
1432 ** instructions yet, leave the main database error information unchanged.
1434 if( p->pc>=0 ){
1435 if( p->zErrMsg ){
1436 sqlite3Error(p->db, p->rc, "%s", p->zErrMsg);
1437 sqliteFree(p->zErrMsg);
1438 p->zErrMsg = 0;
1439 }else if( p->rc ){
1440 sqlite3Error(p->db, p->rc, 0);
1441 }else{
1442 sqlite3Error(p->db, SQLITE_OK, 0);
1444 }else if( p->rc && p->expired ){
1445 /* The expired flag was set on the VDBE before the first call
1446 ** to sqlite3_step(). For consistency (since sqlite3_step() was
1447 ** called), set the database error in this case as well.
1449 sqlite3Error(p->db, p->rc, 0);
1452 /* Reclaim all memory used by the VDBE
1454 Cleanup(p);
1456 /* Save profiling information from this VDBE run.
1458 assert( p->pTos<&p->aStack[p->pc<0?0:p->pc] || sqlite3_malloc_failed==1 );
1459 #ifdef VDBE_PROFILE
1461 FILE *out = fopen("vdbe_profile.out", "a");
1462 if( out ){
1463 int i;
1464 fprintf(out, "---- ");
1465 for(i=0; i<p->nOp; i++){
1466 fprintf(out, "%02x", p->aOp[i].opcode);
1468 fprintf(out, "\n");
1469 for(i=0; i<p->nOp; i++){
1470 fprintf(out, "%6d %10lld %8lld ",
1471 p->aOp[i].cnt,
1472 p->aOp[i].cycles,
1473 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
1475 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
1477 fclose(out);
1480 #endif
1481 p->magic = VDBE_MAGIC_INIT;
1482 p->aborted = 0;
1483 if( p->rc==SQLITE_SCHEMA ){
1484 sqlite3ResetInternalSchema(p->db, 0);
1486 return p->rc;
1490 ** Clean up and delete a VDBE after execution. Return an integer which is
1491 ** the result code. Write any error message text into *pzErrMsg.
1493 int sqlite3VdbeFinalize(Vdbe *p){
1494 int rc = SQLITE_OK;
1496 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
1497 rc = sqlite3VdbeReset(p);
1498 }else if( p->magic!=VDBE_MAGIC_INIT ){
1499 return SQLITE_MISUSE;
1501 sqlite3VdbeDelete(p);
1502 return rc;
1506 ** Call the destructor for each auxdata entry in pVdbeFunc for which
1507 ** the corresponding bit in mask is clear. Auxdata entries beyond 31
1508 ** are always destroyed. To destroy all auxdata entries, call this
1509 ** routine with mask==0.
1511 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
1512 int i;
1513 for(i=0; i<pVdbeFunc->nAux; i++){
1514 struct AuxData *pAux = &pVdbeFunc->apAux[i];
1515 if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
1516 if( pAux->xDelete ){
1517 pAux->xDelete(pAux->pAux);
1519 pAux->pAux = 0;
1525 ** Delete an entire VDBE.
1527 void sqlite3VdbeDelete(Vdbe *p){
1528 int i;
1529 if( p==0 ) return;
1530 Cleanup(p);
1531 if( p->pPrev ){
1532 p->pPrev->pNext = p->pNext;
1533 }else{
1534 assert( p->db->pVdbe==p );
1535 p->db->pVdbe = p->pNext;
1537 if( p->pNext ){
1538 p->pNext->pPrev = p->pPrev;
1540 if( p->aOp ){
1541 for(i=0; i<p->nOp; i++){
1542 Op *pOp = &p->aOp[i];
1543 if( pOp->p3type==P3_DYNAMIC || pOp->p3type==P3_KEYINFO ){
1544 sqliteFree(pOp->p3);
1546 if( pOp->p3type==P3_VDBEFUNC ){
1547 VdbeFunc *pVdbeFunc = (VdbeFunc *)pOp->p3;
1548 sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
1549 sqliteFree(pVdbeFunc);
1551 if( pOp->p3type==P3_MEM ){
1552 sqlite3ValueFree((sqlite3_value*)pOp->p3);
1555 sqliteFree(p->aOp);
1557 releaseMemArray(p->aVar, p->nVar);
1558 sqliteFree(p->aLabel);
1559 sqliteFree(p->aStack);
1560 releaseMemArray(p->aColName, p->nResColumn*2);
1561 sqliteFree(p->aColName);
1562 p->magic = VDBE_MAGIC_DEAD;
1563 sqliteFree(p);
1567 ** If a MoveTo operation is pending on the given cursor, then do that
1568 ** MoveTo now. Return an error code. If no MoveTo is pending, this
1569 ** routine does nothing and returns SQLITE_OK.
1571 int sqlite3VdbeCursorMoveto(Cursor *p){
1572 if( p->deferredMoveto ){
1573 int res, rc;
1574 extern int sqlite3_search_count;
1575 assert( p->isTable );
1576 if( p->isTable ){
1577 rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, &res);
1578 }else{
1579 rc = sqlite3BtreeMoveto(p->pCursor,(char*)&p->movetoTarget,
1580 sizeof(i64),&res);
1582 if( rc ) return rc;
1583 *p->pIncrKey = 0;
1584 p->lastRowid = keyToInt(p->movetoTarget);
1585 p->rowidIsValid = res==0;
1586 if( res<0 ){
1587 rc = sqlite3BtreeNext(p->pCursor, &res);
1588 if( rc ) return rc;
1590 sqlite3_search_count++;
1591 p->deferredMoveto = 0;
1592 p->cacheValid = 0;
1594 return SQLITE_OK;
1598 ** The following functions:
1600 ** sqlite3VdbeSerialType()
1601 ** sqlite3VdbeSerialTypeLen()
1602 ** sqlite3VdbeSerialRead()
1603 ** sqlite3VdbeSerialLen()
1604 ** sqlite3VdbeSerialWrite()
1606 ** encapsulate the code that serializes values for storage in SQLite
1607 ** data and index records. Each serialized value consists of a
1608 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
1609 ** integer, stored as a varint.
1611 ** In an SQLite index record, the serial type is stored directly before
1612 ** the blob of data that it corresponds to. In a table record, all serial
1613 ** types are stored at the start of the record, and the blobs of data at
1614 ** the end. Hence these functions allow the caller to handle the
1615 ** serial-type and data blob seperately.
1617 ** The following table describes the various storage classes for data:
1619 ** serial type bytes of data type
1620 ** -------------- --------------- ---------------
1621 ** 0 0 NULL
1622 ** 1 1 signed integer
1623 ** 2 2 signed integer
1624 ** 3 3 signed integer
1625 ** 4 4 signed integer
1626 ** 5 6 signed integer
1627 ** 6 8 signed integer
1628 ** 7 8 IEEE float
1629 ** 8-11 reserved for expansion
1630 ** N>=12 and even (N-12)/2 BLOB
1631 ** N>=13 and odd (N-13)/2 text
1636 ** Return the serial-type for the value stored in pMem.
1638 u32 sqlite3VdbeSerialType(Mem *pMem){
1639 int flags = pMem->flags;
1641 if( flags&MEM_Null ){
1642 return 0;
1644 if( flags&MEM_Int ){
1645 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
1646 # define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
1647 i64 i = pMem->i;
1648 u64 u = i<0 ? -i : i;
1649 if( u<=127 ) return 1;
1650 if( u<=32767 ) return 2;
1651 if( u<=8388607 ) return 3;
1652 if( u<=2147483647 ) return 4;
1653 if( u<=MAX_6BYTE ) return 5;
1654 return 6;
1656 if( flags&MEM_Real ){
1657 return 7;
1659 if( flags&MEM_Str ){
1660 int n = pMem->n;
1661 assert( n>=0 );
1662 return ((n*2) + 13);
1664 if( flags&MEM_Blob ){
1665 return (pMem->n*2 + 12);
1667 return 0;
1671 ** Return the length of the data corresponding to the supplied serial-type.
1673 int sqlite3VdbeSerialTypeLen(u32 serial_type){
1674 if( serial_type>=12 ){
1675 return (serial_type-12)/2;
1676 }else{
1677 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
1678 return aSize[serial_type];
1683 ** Write the serialized data blob for the value stored in pMem into
1684 ** buf. It is assumed that the caller has allocated sufficient space.
1685 ** Return the number of bytes written.
1687 int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem){
1688 u32 serial_type = sqlite3VdbeSerialType(pMem);
1689 int len;
1691 /* NULL */
1692 if( serial_type==0 ){
1693 return 0;
1696 /* Integer and Real */
1697 if( serial_type<=7 ){
1698 u64 v;
1699 int i;
1700 if( serial_type==7 ){
1701 v = *(u64*)&pMem->r;
1702 }else{
1703 v = *(u64*)&pMem->i;
1705 len = i = sqlite3VdbeSerialTypeLen(serial_type);
1706 while( i-- ){
1707 buf[i] = (v&0xFF);
1708 v >>= 8;
1710 return len;
1713 /* String or blob */
1714 assert( serial_type>=12 );
1715 len = sqlite3VdbeSerialTypeLen(serial_type);
1716 memcpy(buf, pMem->z, len);
1717 return len;
1721 ** Deserialize the data blob pointed to by buf as serial type serial_type
1722 ** and store the result in pMem. Return the number of bytes read.
1724 int sqlite3VdbeSerialGet(
1725 const unsigned char *buf, /* Buffer to deserialize from */
1726 u32 serial_type, /* Serial type to deserialize */
1727 Mem *pMem /* Memory cell to write value into */
1729 switch( serial_type ){
1730 case 8: /* Reserved for future use */
1731 case 9: /* Reserved for future use */
1732 case 10: /* Reserved for future use */
1733 case 11: /* Reserved for future use */
1734 case 0: { /* NULL */
1735 pMem->flags = MEM_Null;
1736 break;
1738 case 1: { /* 1-byte signed integer */
1739 pMem->i = (signed char)buf[0];
1740 pMem->flags = MEM_Int;
1741 return 1;
1743 case 2: { /* 2-byte signed integer */
1744 pMem->i = (((signed char)buf[0])<<8) | buf[1];
1745 pMem->flags = MEM_Int;
1746 return 2;
1748 case 3: { /* 3-byte signed integer */
1749 pMem->i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
1750 pMem->flags = MEM_Int;
1751 return 3;
1753 case 4: { /* 4-byte signed integer */
1754 pMem->i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
1755 pMem->flags = MEM_Int;
1756 return 4;
1758 case 5: { /* 6-byte signed integer */
1759 u64 x = (((signed char)buf[0])<<8) | buf[1];
1760 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
1761 x = (x<<32) | y;
1762 pMem->i = *(i64*)&x;
1763 pMem->flags = MEM_Int;
1764 return 6;
1766 case 6: /* 6-byte signed integer */
1767 case 7: { /* IEEE floating point */
1768 u64 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
1769 u32 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
1770 x = (x<<32) | y;
1771 if( serial_type==6 ){
1772 pMem->i = *(i64*)&x;
1773 pMem->flags = MEM_Int;
1774 }else{
1775 pMem->r = *(double*)&x;
1776 pMem->flags = MEM_Real;
1778 return 8;
1780 default: {
1781 int len = (serial_type-12)/2;
1782 pMem->z = (char *)buf;
1783 pMem->n = len;
1784 pMem->xDel = 0;
1785 if( serial_type&0x01 ){
1786 pMem->flags = MEM_Str | MEM_Ephem;
1787 }else{
1788 pMem->flags = MEM_Blob | MEM_Ephem;
1790 return len;
1793 return 0;
1797 ** This function compares the two table rows or index records specified by
1798 ** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
1799 ** or positive integer if {nKey1, pKey1} is less than, equal to or
1800 ** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
1801 ** composed by the OP_MakeRecord opcode of the VDBE.
1803 int sqlite3VdbeRecordCompare(
1804 void *userData,
1805 int nKey1, const void *pKey1,
1806 int nKey2, const void *pKey2
1808 KeyInfo *pKeyInfo = (KeyInfo*)userData;
1809 u32 d1, d2; /* Offset into aKey[] of next data element */
1810 u32 idx1, idx2; /* Offset into aKey[] of next header element */
1811 u32 szHdr1, szHdr2; /* Number of bytes in header */
1812 int i = 0;
1813 int nField;
1814 int rc = 0;
1815 const unsigned char *aKey1 = (const unsigned char *)pKey1;
1816 const unsigned char *aKey2 = (const unsigned char *)pKey2;
1818 Mem mem1;
1819 Mem mem2;
1820 mem1.enc = pKeyInfo->enc;
1821 mem2.enc = pKeyInfo->enc;
1823 idx1 = sqlite3GetVarint32(pKey1, &szHdr1);
1824 d1 = szHdr1;
1825 idx2 = sqlite3GetVarint32(pKey2, &szHdr2);
1826 d2 = szHdr2;
1827 nField = pKeyInfo->nField;
1828 while( idx1<szHdr1 && idx2<szHdr2 ){
1829 u32 serial_type1;
1830 u32 serial_type2;
1832 /* Read the serial types for the next element in each key. */
1833 idx1 += sqlite3GetVarint32(&aKey1[idx1], &serial_type1);
1834 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
1835 idx2 += sqlite3GetVarint32(&aKey2[idx2], &serial_type2);
1836 if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
1838 /* Assert that there is enough space left in each key for the blob of
1839 ** data to go with the serial type just read. This assert may fail if
1840 ** the file is corrupted. Then read the value from each key into mem1
1841 ** and mem2 respectively.
1843 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
1844 d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
1846 rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
1847 if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
1848 if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
1849 if( rc!=0 ){
1850 break;
1852 i++;
1855 /* One of the keys ran out of fields, but all the fields up to that point
1856 ** were equal. If the incrKey flag is true, then the second key is
1857 ** treated as larger.
1859 if( rc==0 ){
1860 if( pKeyInfo->incrKey ){
1861 rc = -1;
1862 }else if( d1<nKey1 ){
1863 rc = 1;
1864 }else if( d2<nKey2 ){
1865 rc = -1;
1869 if( pKeyInfo->aSortOrder && i<pKeyInfo->nField && pKeyInfo->aSortOrder[i] ){
1870 rc = -rc;
1873 return rc;
1877 ** The argument is an index entry composed using the OP_MakeRecord opcode.
1878 ** The last entry in this record should be an integer (specifically
1879 ** an integer rowid). This routine returns the number of bytes in
1880 ** that integer.
1882 int sqlite3VdbeIdxRowidLen(int nKey, const u8 *aKey){
1883 u32 szHdr; /* Size of the header */
1884 u32 typeRowid; /* Serial type of the rowid */
1886 sqlite3GetVarint32(aKey, &szHdr);
1887 sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
1888 return sqlite3VdbeSerialTypeLen(typeRowid);
1893 ** pCur points at an index entry created using the OP_MakeRecord opcode.
1894 ** Read the rowid (the last field in the record) and store it in *rowid.
1895 ** Return SQLITE_OK if everything works, or an error code otherwise.
1897 int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
1898 i64 nCellKey;
1899 int rc;
1900 u32 szHdr; /* Size of the header */
1901 u32 typeRowid; /* Serial type of the rowid */
1902 u32 lenRowid; /* Size of the rowid */
1903 Mem m, v;
1905 sqlite3BtreeKeySize(pCur, &nCellKey);
1906 if( nCellKey<=0 ){
1907 return SQLITE_CORRUPT;
1909 rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
1910 if( rc ){
1911 return rc;
1913 sqlite3GetVarint32(m.z, &szHdr);
1914 sqlite3GetVarint32(&m.z[szHdr-1], &typeRowid);
1915 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
1916 sqlite3VdbeSerialGet(&m.z[m.n-lenRowid], typeRowid, &v);
1917 *rowid = v.i;
1918 sqlite3VdbeMemRelease(&m);
1919 return SQLITE_OK;
1923 ** Compare the key of the index entry that cursor pC is point to against
1924 ** the key string in pKey (of length nKey). Write into *pRes a number
1925 ** that is negative, zero, or positive if pC is less than, equal to,
1926 ** or greater than pKey. Return SQLITE_OK on success.
1928 ** pKey is either created without a rowid or is truncated so that it
1929 ** omits the rowid at the end. The rowid at the end of the index entry
1930 ** is ignored as well.
1932 int sqlite3VdbeIdxKeyCompare(
1933 Cursor *pC, /* The cursor to compare against */
1934 int nKey, const u8 *pKey, /* The key to compare */
1935 int *res /* Write the comparison result here */
1937 i64 nCellKey;
1938 int rc;
1939 BtCursor *pCur = pC->pCursor;
1940 int lenRowid;
1941 Mem m;
1943 sqlite3BtreeKeySize(pCur, &nCellKey);
1944 if( nCellKey<=0 ){
1945 *res = 0;
1946 return SQLITE_OK;
1948 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
1949 if( rc ){
1950 return rc;
1952 lenRowid = sqlite3VdbeIdxRowidLen(m.n, m.z);
1953 *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
1954 sqlite3VdbeMemRelease(&m);
1955 return SQLITE_OK;
1959 ** This routine sets the value to be returned by subsequent calls to
1960 ** sqlite3_changes() on the database handle 'db'.
1962 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
1963 db->nChange = nChange;
1964 db->nTotalChange += nChange;
1968 ** Set a flag in the vdbe to update the change counter when it is finalised
1969 ** or reset.
1971 void sqlite3VdbeCountChanges(Vdbe *v){
1972 v->changeCntOn = 1;
1976 ** Mark every prepared statement associated with a database connection
1977 ** as expired.
1979 ** An expired statement means that recompilation of the statement is
1980 ** recommend. Statements expire when things happen that make their
1981 ** programs obsolete. Removing user-defined functions or collating
1982 ** sequences, or changing an authorization function are the types of
1983 ** things that make prepared statements obsolete.
1985 void sqlite3ExpirePreparedStatements(sqlite3 *db){
1986 Vdbe *p;
1987 for(p = db->pVdbe; p; p=p->pNext){
1988 p->expired = 1;
1993 ** Return the database associated with the Vdbe.
1995 sqlite3 *sqlite3VdbeDb(Vdbe *v){
1996 return v->db;