Ported to AROS.
[AROS-Contrib.git] / libs / mpega / layer12.c
blob3c5d0ce613010406a11802f77c1a9274450184de
1 /*
2 * libmad - MPEG audio decoder library
3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * $Id$
22 # ifdef HAVE_CONFIG_H
23 # include "config.h"
24 # endif
26 # include "global.h"
28 # ifdef HAVE_LIMITS_H
29 # include <limits.h>
30 # else
31 # define CHAR_BIT 8
32 # endif
34 # include "fixed.h"
35 # include "bit.h"
36 # include "stream.h"
37 # include "frame.h"
38 # include "layer12.h"
41 * scalefactor table
42 * used in both Layer I and Layer II decoding
44 static
45 mad_fixed_t const sf_table[64] = {
46 # include "sf_table.dat"
49 /* --- Layer I ------------------------------------------------------------- */
51 /* linear scaling table */
52 static
53 mad_fixed_t const linear_table[14] = {
54 MAD_F(0x15555555), /* 2^2 / (2^2 - 1) == 1.33333333333333 */
55 MAD_F(0x12492492), /* 2^3 / (2^3 - 1) == 1.14285714285714 */
56 MAD_F(0x11111111), /* 2^4 / (2^4 - 1) == 1.06666666666667 */
57 MAD_F(0x10842108), /* 2^5 / (2^5 - 1) == 1.03225806451613 */
58 MAD_F(0x10410410), /* 2^6 / (2^6 - 1) == 1.01587301587302 */
59 MAD_F(0x10204081), /* 2^7 / (2^7 - 1) == 1.00787401574803 */
60 MAD_F(0x10101010), /* 2^8 / (2^8 - 1) == 1.00392156862745 */
61 MAD_F(0x10080402), /* 2^9 / (2^9 - 1) == 1.00195694716243 */
62 MAD_F(0x10040100), /* 2^10 / (2^10 - 1) == 1.00097751710655 */
63 MAD_F(0x10020040), /* 2^11 / (2^11 - 1) == 1.00048851978505 */
64 MAD_F(0x10010010), /* 2^12 / (2^12 - 1) == 1.00024420024420 */
65 MAD_F(0x10008004), /* 2^13 / (2^13 - 1) == 1.00012208521548 */
66 MAD_F(0x10004001), /* 2^14 / (2^14 - 1) == 1.00006103888177 */
67 MAD_F(0x10002000) /* 2^15 / (2^15 - 1) == 1.00003051850948 */
71 * NAME: I_sample()
72 * DESCRIPTION: decode one requantized Layer I sample from a bitstream
74 static
75 mad_fixed_t I_sample(struct mad_bitptr *ptr, unsigned int nb)
77 mad_fixed_t sample;
79 sample = mad_bit_read(ptr, nb);
81 /* invert most significant bit, extend sign, then scale to fixed format */
83 sample ^= 1 << (nb - 1);
84 sample |= -(sample & (1 << (nb - 1)));
86 sample <<= MAD_F_FRACBITS - (nb - 1);
88 /* requantize the sample */
90 /* s'' = (2^nb / (2^nb - 1)) * (s''' + 2^(-nb + 1)) */
92 sample += MAD_F_ONE >> (nb - 1);
94 return mad_f_mul(sample, linear_table[nb - 2]);
96 /* s' = factor * s'' */
97 /* (to be performed by caller) */
101 * NAME: layer->I()
102 * DESCRIPTION: decode a single Layer I frame
104 int mad_layer_I(struct mad_stream *stream, struct mad_frame *frame)
106 struct mad_header *header = &frame->header;
107 unsigned int nch, bound, ch, s, sb, nb;
108 unsigned char allocation[2][32], scalefactor[2][32];
110 nch = MAD_NCHANNELS(header);
112 bound = 32;
113 if (header->mode == MAD_MODE_JOINT_STEREO) {
114 header->flags |= MAD_FLAG_I_STEREO;
115 bound = 4 + header->mode_extension * 4;
118 /* check CRC word */
120 if (header->flags & MAD_FLAG_PROTECTION) {
121 header->crc_check =
122 mad_bit_crc(stream->ptr, 4 * (bound * nch + (32 - bound)),
123 header->crc_check);
125 if (header->crc_check != header->crc_target &&
126 !(frame->options & MAD_OPTION_IGNORECRC)) {
127 stream->error = MAD_ERROR_BADCRC;
128 return -1;
132 /* decode bit allocations */
134 for (sb = 0; sb < bound; ++sb) {
135 for (ch = 0; ch < nch; ++ch) {
136 nb = mad_bit_read(&stream->ptr, 4);
138 if (nb == 15) {
139 stream->error = MAD_ERROR_BADBITALLOC;
140 return -1;
143 allocation[ch][sb] = nb ? nb + 1 : 0;
147 for (sb = bound; sb < 32; ++sb) {
148 nb = mad_bit_read(&stream->ptr, 4);
150 if (nb == 15) {
151 stream->error = MAD_ERROR_BADBITALLOC;
152 return -1;
155 allocation[0][sb] =
156 allocation[1][sb] = nb ? nb + 1 : 0;
159 /* decode scalefactors */
161 for (sb = 0; sb < 32; ++sb) {
162 for (ch = 0; ch < nch; ++ch) {
163 if (allocation[ch][sb]) {
164 scalefactor[ch][sb] = mad_bit_read(&stream->ptr, 6);
166 # if defined(OPT_STRICT)
168 * Scalefactor index 63 does not appear in Table B.1 of
169 * ISO/IEC 11172-3. Nonetheless, other implementations accept it,
170 * so we only reject it if OPT_STRICT is defined.
172 if (scalefactor[ch][sb] == 63) {
173 stream->error = MAD_ERROR_BADSCALEFACTOR;
174 return -1;
176 # endif
181 /* decode samples */
183 for (s = 0; s < 12; ++s) {
184 for (sb = 0; sb < bound; ++sb) {
185 for (ch = 0; ch < nch; ++ch) {
186 nb = allocation[ch][sb];
187 frame->sbsample[ch][s][sb] = nb ?
188 mad_f_mul(I_sample(&stream->ptr, nb),
189 sf_table[scalefactor[ch][sb]]) : 0;
193 for (sb = bound; sb < 32; ++sb) {
194 if ((nb = allocation[0][sb])) {
195 mad_fixed_t sample;
197 sample = I_sample(&stream->ptr, nb);
199 for (ch = 0; ch < nch; ++ch) {
200 frame->sbsample[ch][s][sb] =
201 mad_f_mul(sample, sf_table[scalefactor[ch][sb]]);
204 else {
205 for (ch = 0; ch < nch; ++ch)
206 frame->sbsample[ch][s][sb] = 0;
211 return 0;
214 /* --- Layer II ------------------------------------------------------------ */
216 /* possible quantization per subband table */
217 static
218 struct {
219 unsigned int sblimit;
220 unsigned char const offsets[30];
221 } const sbquant_table[5] = {
222 /* ISO/IEC 11172-3 Table B.2a */
223 { 27, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, /* 0 */
224 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 } },
225 /* ISO/IEC 11172-3 Table B.2b */
226 { 30, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, /* 1 */
227 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0 } },
228 /* ISO/IEC 11172-3 Table B.2c */
229 { 8, { 5, 5, 2, 2, 2, 2, 2, 2 } }, /* 2 */
230 /* ISO/IEC 11172-3 Table B.2d */
231 { 12, { 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } }, /* 3 */
232 /* ISO/IEC 13818-3 Table B.1 */
233 { 30, { 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, /* 4 */
234 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } }
237 /* bit allocation table */
238 static
239 struct {
240 unsigned short nbal;
241 unsigned short offset;
242 } const bitalloc_table[8] = {
243 { 2, 0 }, /* 0 */
244 { 2, 3 }, /* 1 */
245 { 3, 3 }, /* 2 */
246 { 3, 1 }, /* 3 */
247 { 4, 2 }, /* 4 */
248 { 4, 3 }, /* 5 */
249 { 4, 4 }, /* 6 */
250 { 4, 5 } /* 7 */
253 /* offsets into quantization class table */
254 static
255 unsigned char const offset_table[6][15] = {
256 { 0, 1, 16 }, /* 0 */
257 { 0, 1, 2, 3, 4, 5, 16 }, /* 1 */
258 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, /* 2 */
259 { 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, /* 3 */
260 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16 }, /* 4 */
261 { 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 } /* 5 */
264 /* quantization class table */
265 static
266 struct quantclass {
267 unsigned short nlevels;
268 unsigned char group;
269 unsigned char bits;
270 mad_fixed_t C;
271 mad_fixed_t D;
272 } const qc_table[17] = {
273 # include "qc_table.dat"
277 * NAME: II_samples()
278 * DESCRIPTION: decode three requantized Layer II samples from a bitstream
280 static
281 void II_samples(struct mad_bitptr *ptr,
282 struct quantclass const *quantclass,
283 mad_fixed_t output[3])
285 unsigned int nb, s, sample[3];
287 if ((nb = quantclass->group)) {
288 unsigned int c, nlevels;
290 /* degrouping */
291 c = mad_bit_read(ptr, quantclass->bits);
292 nlevels = quantclass->nlevels;
294 for (s = 0; s < 3; ++s) {
295 sample[s] = c % nlevels;
296 c /= nlevels;
299 else {
300 nb = quantclass->bits;
302 for (s = 0; s < 3; ++s)
303 sample[s] = mad_bit_read(ptr, nb);
306 for (s = 0; s < 3; ++s) {
307 mad_fixed_t requantized;
309 /* invert most significant bit, extend sign, then scale to fixed format */
311 requantized = sample[s] ^ (1 << (nb - 1));
312 requantized |= -(requantized & (1 << (nb - 1)));
314 requantized <<= MAD_F_FRACBITS - (nb - 1);
316 /* requantize the sample */
318 /* s'' = C * (s''' + D) */
320 output[s] = mad_f_mul(requantized + quantclass->D, quantclass->C);
322 /* s' = factor * s'' */
323 /* (to be performed by caller) */
328 * NAME: layer->II()
329 * DESCRIPTION: decode a single Layer II frame
331 int mad_layer_II(struct mad_stream *stream, struct mad_frame *frame)
333 struct mad_header *header = &frame->header;
334 struct mad_bitptr start;
335 unsigned int index, sblimit, nbal, nch, bound, gr, ch, s, sb;
336 unsigned char const *offsets;
337 unsigned char allocation[2][32], scfsi[2][32], scalefactor[2][32][3];
338 mad_fixed_t samples[3];
340 nch = MAD_NCHANNELS(header);
342 if (header->flags & MAD_FLAG_LSF_EXT)
343 index = 4;
344 else if (header->flags & MAD_FLAG_FREEFORMAT)
345 goto freeformat;
346 else {
347 unsigned long bitrate_per_channel;
349 bitrate_per_channel = header->bitrate;
350 if (nch == 2) {
351 bitrate_per_channel /= 2;
353 # if defined(OPT_STRICT)
355 * ISO/IEC 11172-3 allows only single channel mode for 32, 48, 56, and
356 * 80 kbps bitrates in Layer II, but some encoders ignore this
357 * restriction. We enforce it if OPT_STRICT is defined.
359 if (bitrate_per_channel <= 28000 || bitrate_per_channel == 40000) {
360 stream->error = MAD_ERROR_BADMODE;
361 return -1;
363 # endif
365 else { /* nch == 1 */
366 if (bitrate_per_channel > 192000) {
368 * ISO/IEC 11172-3 does not allow single channel mode for 224, 256,
369 * 320, or 384 kbps bitrates in Layer II.
371 stream->error = MAD_ERROR_BADMODE;
372 return -1;
376 if (bitrate_per_channel <= 48000)
377 index = (header->samplerate == 32000) ? 3 : 2;
378 else if (bitrate_per_channel <= 80000)
379 index = 0;
380 else {
381 freeformat:
382 index = (header->samplerate == 48000) ? 0 : 1;
386 sblimit = sbquant_table[index].sblimit;
387 offsets = sbquant_table[index].offsets;
389 bound = 32;
390 if (header->mode == MAD_MODE_JOINT_STEREO) {
391 header->flags |= MAD_FLAG_I_STEREO;
392 bound = 4 + header->mode_extension * 4;
395 if (bound > sblimit)
396 bound = sblimit;
398 start = stream->ptr;
400 /* decode bit allocations */
402 for (sb = 0; sb < bound; ++sb) {
403 nbal = bitalloc_table[offsets[sb]].nbal;
405 for (ch = 0; ch < nch; ++ch)
406 allocation[ch][sb] = mad_bit_read(&stream->ptr, nbal);
409 for (sb = bound; sb < sblimit; ++sb) {
410 nbal = bitalloc_table[offsets[sb]].nbal;
412 allocation[0][sb] =
413 allocation[1][sb] = mad_bit_read(&stream->ptr, nbal);
416 /* decode scalefactor selection info */
418 for (sb = 0; sb < sblimit; ++sb) {
419 for (ch = 0; ch < nch; ++ch) {
420 if (allocation[ch][sb])
421 scfsi[ch][sb] = mad_bit_read(&stream->ptr, 2);
425 /* check CRC word */
427 if (header->flags & MAD_FLAG_PROTECTION) {
428 header->crc_check =
429 mad_bit_crc(start, mad_bit_length(&start, &stream->ptr),
430 header->crc_check);
432 if (header->crc_check != header->crc_target &&
433 !(frame->options & MAD_OPTION_IGNORECRC)) {
434 stream->error = MAD_ERROR_BADCRC;
435 return -1;
439 /* decode scalefactors */
441 for (sb = 0; sb < sblimit; ++sb) {
442 for (ch = 0; ch < nch; ++ch) {
443 if (allocation[ch][sb]) {
444 scalefactor[ch][sb][0] = mad_bit_read(&stream->ptr, 6);
446 switch (scfsi[ch][sb]) {
447 case 2:
448 scalefactor[ch][sb][2] =
449 scalefactor[ch][sb][1] =
450 scalefactor[ch][sb][0];
451 break;
453 case 0:
454 scalefactor[ch][sb][1] = mad_bit_read(&stream->ptr, 6);
455 /* fall through */
457 case 1:
458 case 3:
459 scalefactor[ch][sb][2] = mad_bit_read(&stream->ptr, 6);
462 if (scfsi[ch][sb] & 1)
463 scalefactor[ch][sb][1] = scalefactor[ch][sb][scfsi[ch][sb] - 1];
465 # if defined(OPT_STRICT)
467 * Scalefactor index 63 does not appear in Table B.1 of
468 * ISO/IEC 11172-3. Nonetheless, other implementations accept it,
469 * so we only reject it if OPT_STRICT is defined.
471 if (scalefactor[ch][sb][0] == 63 ||
472 scalefactor[ch][sb][1] == 63 ||
473 scalefactor[ch][sb][2] == 63) {
474 stream->error = MAD_ERROR_BADSCALEFACTOR;
475 return -1;
477 # endif
482 /* decode samples */
484 for (gr = 0; gr < 12; ++gr) {
485 for (sb = 0; sb < bound; ++sb) {
486 for (ch = 0; ch < nch; ++ch) {
487 if ((index = allocation[ch][sb])) {
488 index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1];
490 II_samples(&stream->ptr, &qc_table[index], samples);
492 for (s = 0; s < 3; ++s) {
493 frame->sbsample[ch][3 * gr + s][sb] =
494 mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]);
497 else {
498 for (s = 0; s < 3; ++s)
499 frame->sbsample[ch][3 * gr + s][sb] = 0;
504 for (sb = bound; sb < sblimit; ++sb) {
505 if ((index = allocation[0][sb])) {
506 index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1];
508 II_samples(&stream->ptr, &qc_table[index], samples);
510 for (ch = 0; ch < nch; ++ch) {
511 for (s = 0; s < 3; ++s) {
512 frame->sbsample[ch][3 * gr + s][sb] =
513 mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]);
517 else {
518 for (ch = 0; ch < nch; ++ch) {
519 for (s = 0; s < 3; ++s)
520 frame->sbsample[ch][3 * gr + s][sb] = 0;
525 for (ch = 0; ch < nch; ++ch) {
526 for (s = 0; s < 3; ++s) {
527 for (sb = sblimit; sb < 32; ++sb)
528 frame->sbsample[ch][3 * gr + s][sb] = 0;
533 return 0;