Build Lunapaint from Contrib.
[AROS-Contrib.git] / MultiMedia / mad / layer12.c
blob597c09fafae30ac699be0339760a076cfb9cc563
1 /*
2 * mad - MPEG audio decoder
3 * Copyright (C) 2000-2001 Robert Leslie
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * $Id$
22 # ifdef HAVE_CONFIG_H
23 # include "config.h"
24 # endif
26 # include "global.h"
28 # ifdef HAVE_LIMITS_H
29 # include <limits.h>
30 # else
31 # define CHAR_BIT 8
32 # endif
34 # include "fixed.h"
35 # include "bit.h"
36 # include "stream.h"
37 # include "frame.h"
38 # include "layer12.h"
41 * scalefactor table
42 * used in both Layer I and Layer II decoding
44 static
45 mad_fixed_t const sf_table[63] = {
46 # include "sf_table.dat"
49 /* --- Layer I ------------------------------------------------------------- */
51 /* linear scaling table */
52 static
53 mad_fixed_t const linear_table[14] = {
54 MAD_F(0x15555555), /* 2^2 / (2^2 - 1) == 1.33333333333333 */
55 MAD_F(0x12492492), /* 2^3 / (2^3 - 1) == 1.14285714285714 */
56 MAD_F(0x11111111), /* 2^4 / (2^4 - 1) == 1.06666666666667 */
57 MAD_F(0x10842108), /* 2^5 / (2^5 - 1) == 1.03225806451613 */
58 MAD_F(0x10410410), /* 2^6 / (2^6 - 1) == 1.01587301587302 */
59 MAD_F(0x10204081), /* 2^7 / (2^7 - 1) == 1.00787401574803 */
60 MAD_F(0x10101010), /* 2^8 / (2^8 - 1) == 1.00392156862745 */
61 MAD_F(0x10080402), /* 2^9 / (2^9 - 1) == 1.00195694716243 */
62 MAD_F(0x10040100), /* 2^10 / (2^10 - 1) == 1.00097751710655 */
63 MAD_F(0x10020040), /* 2^11 / (2^11 - 1) == 1.00048851978505 */
64 MAD_F(0x10010010), /* 2^12 / (2^12 - 1) == 1.00024420024420 */
65 MAD_F(0x10008004), /* 2^13 / (2^13 - 1) == 1.00012208521548 */
66 MAD_F(0x10004001), /* 2^14 / (2^14 - 1) == 1.00006103888177 */
67 MAD_F(0x10002000) /* 2^15 / (2^15 - 1) == 1.00003051850948 */
71 * NAME: I_sample()
72 * DESCRIPTION: decode one requantized Layer I sample from a bitstream
74 static
75 mad_fixed_t I_sample(struct mad_bitptr *ptr, unsigned int nb)
77 mad_fixed_t sample;
79 sample = mad_bit_read(ptr, nb);
81 /* invert most significant bit, extend sign, then scale to fixed format */
83 sample ^= 1 << (nb - 1);
84 sample |= -(sample & (1 << (nb - 1)));
86 sample <<= MAD_F_FRACBITS - (nb - 1);
88 /* requantize the sample */
90 /* s'' = (2^nb / (2^nb - 1)) * (s''' + 2^(-nb + 1)) */
92 sample += MAD_F_ONE >> (nb - 1);
94 return mad_f_mul(sample, linear_table[nb - 2]);
96 /* s' = factor * s'' */
97 /* (to be performed by caller) */
101 * NAME: layer->I()
102 * DESCRIPTION: decode a single Layer I frame
104 int mad_layer_I(struct mad_stream *stream, struct mad_frame *frame)
106 struct mad_header *header = &frame->header;
107 unsigned int nch, bound, ch, s, sb, nb;
108 unsigned char allocation[2][32], scalefactor[2][32];
110 nch = MAD_NCHANNELS(header);
112 bound = 32;
113 if (header->mode == MAD_MODE_JOINT_STEREO) {
114 header->flags |= MAD_FLAG_I_STEREO;
115 bound = 4 + header->mode_extension * 4;
118 /* check CRC word */
120 if (header->flags & MAD_FLAG_PROTECTION) {
121 header->crc_check =
122 mad_bit_crc(stream->ptr, 4 * (bound * nch + (32 - bound)),
123 header->crc_check);
125 if (header->crc_check != header->crc_target &&
126 !(frame->options & MAD_OPTION_IGNORECRC)) {
127 stream->error = MAD_ERROR_BADCRC;
128 return -1;
132 /* decode bit allocations */
134 for (sb = 0; sb < bound; ++sb) {
135 for (ch = 0; ch < nch; ++ch) {
136 nb = mad_bit_read(&stream->ptr, 4);
138 if (nb == 15) {
139 stream->error = MAD_ERROR_BADBITALLOC;
140 return -1;
143 allocation[ch][sb] = nb ? nb + 1 : 0;
147 for (sb = bound; sb < 32; ++sb) {
148 nb = mad_bit_read(&stream->ptr, 4);
150 if (nb == 15) {
151 stream->error = MAD_ERROR_BADBITALLOC;
152 return -1;
155 allocation[0][sb] =
156 allocation[1][sb] = nb ? nb + 1 : 0;
159 /* decode scalefactors */
161 for (sb = 0; sb < 32; ++sb) {
162 for (ch = 0; ch < nch; ++ch) {
163 if (allocation[ch][sb]) {
164 scalefactor[ch][sb] = mad_bit_read(&stream->ptr, 6);
166 if (scalefactor[ch][sb] == 63) {
167 stream->error = MAD_ERROR_BADSCALEFACTOR;
168 return -1;
174 /* decode samples */
176 for (s = 0; s < 12; ++s) {
177 for (sb = 0; sb < bound; ++sb) {
178 for (ch = 0; ch < nch; ++ch) {
179 nb = allocation[ch][sb];
180 frame->sbsample[ch][s][sb] = nb ?
181 mad_f_mul(I_sample(&stream->ptr, nb),
182 sf_table[scalefactor[ch][sb]]) : 0;
186 for (sb = bound; sb < 32; ++sb) {
187 if ((nb = allocation[0][sb])) {
188 mad_fixed_t sample;
190 sample = I_sample(&stream->ptr, nb);
192 for (ch = 0; ch < nch; ++ch) {
193 frame->sbsample[ch][s][sb] =
194 mad_f_mul(sample, sf_table[scalefactor[ch][sb]]);
197 else {
198 for (ch = 0; ch < nch; ++ch)
199 frame->sbsample[ch][s][sb] = 0;
204 return 0;
207 /* --- Layer II ------------------------------------------------------------ */
209 /* possible quantization per subband table */
210 static
211 struct {
212 unsigned int sblimit;
213 unsigned char const offsets[30];
214 } const sbquant_table[5] = {
215 /* ISO/IEC 11172-3 Table B.2a */
216 { 27, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, /* 0 */
217 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 } },
218 /* ISO/IEC 11172-3 Table B.2b */
219 { 30, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, /* 1 */
220 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0 } },
221 /* ISO/IEC 11172-3 Table B.2c */
222 { 8, { 5, 5, 2, 2, 2, 2, 2, 2 } }, /* 2 */
223 /* ISO/IEC 11172-3 Table B.2d */
224 { 12, { 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } }, /* 3 */
225 /* ISO/IEC 13818-3 Table B.1 */
226 { 30, { 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, /* 4 */
227 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } }
230 /* bit allocation table */
231 static
232 struct {
233 unsigned short nbal;
234 unsigned short offset;
235 } const bitalloc_table[8] = {
236 { 2, 0 }, /* 0 */
237 { 2, 3 }, /* 1 */
238 { 3, 3 }, /* 2 */
239 { 3, 1 }, /* 3 */
240 { 4, 2 }, /* 4 */
241 { 4, 3 }, /* 5 */
242 { 4, 4 }, /* 6 */
243 { 4, 5 } /* 7 */
246 /* offsets into quantization class table */
247 static
248 unsigned char const offset_table[6][15] = {
249 { 0, 1, 16 }, /* 0 */
250 { 0, 1, 2, 3, 4, 5, 16 }, /* 1 */
251 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, /* 2 */
252 { 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, /* 3 */
253 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16 }, /* 4 */
254 { 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 } /* 5 */
257 /* quantization class table */
258 static
259 struct quantclass {
260 unsigned short nlevels;
261 unsigned char group;
262 unsigned char bits;
263 mad_fixed_t C;
264 mad_fixed_t D;
265 } const qc_table[17] = {
266 # include "qc_table.dat"
270 * NAME: II_samples()
271 * DESCRIPTION: decode three requantized Layer II samples from a bitstream
273 static
274 void II_samples(struct mad_bitptr *ptr,
275 struct quantclass const *quantclass,
276 mad_fixed_t output[3])
278 unsigned int nb, s, sample[3];
280 if ((nb = quantclass->group)) {
281 unsigned int c, nlevels;
283 /* degrouping */
284 c = mad_bit_read(ptr, quantclass->bits);
285 nlevels = quantclass->nlevels;
287 for (s = 0; s < 3; ++s) {
288 sample[s] = c % nlevels;
289 c /= nlevels;
292 else {
293 nb = quantclass->bits;
295 for (s = 0; s < 3; ++s)
296 sample[s] = mad_bit_read(ptr, nb);
299 for (s = 0; s < 3; ++s) {
300 mad_fixed_t requantized;
302 /* invert most significant bit, extend sign, then scale to fixed format */
304 requantized = sample[s] ^ (1 << (nb - 1));
305 requantized |= -(requantized & (1 << (nb - 1)));
307 requantized <<= MAD_F_FRACBITS - (nb - 1);
309 /* requantize the sample */
311 /* s'' = C * (s''' + D) */
313 output[s] = mad_f_mul(requantized + quantclass->D, quantclass->C);
315 /* s' = factor * s'' */
316 /* (to be performed by caller) */
321 * NAME: layer->II()
322 * DESCRIPTION: decode a single Layer II frame
324 int mad_layer_II(struct mad_stream *stream, struct mad_frame *frame)
326 struct mad_header *header = &frame->header;
327 struct mad_bitptr start;
328 unsigned int index, sblimit, nbal, nch, bound, gr, ch, s, sb;
329 unsigned char const *offsets;
330 unsigned char allocation[2][32], scfsi[2][32], scalefactor[2][32][3];
331 mad_fixed_t samples[3];
333 nch = MAD_NCHANNELS(header);
335 if (header->flags & MAD_FLAG_LSF_EXT)
336 index = 4;
337 else {
338 switch (nch == 2 ? header->bitrate / 2 : header->bitrate) {
339 case 32000:
340 case 48000:
341 index = (header->samplerate == 32000) ? 3 : 2;
342 break;
344 case 56000:
345 case 64000:
346 case 80000:
347 index = 0;
348 break;
350 default:
351 index = (header->samplerate == 48000) ? 0 : 1;
355 sblimit = sbquant_table[index].sblimit;
356 offsets = sbquant_table[index].offsets;
358 bound = 32;
359 if (header->mode == MAD_MODE_JOINT_STEREO) {
360 header->flags |= MAD_FLAG_I_STEREO;
361 bound = 4 + header->mode_extension * 4;
364 if (bound > sblimit)
365 bound = sblimit;
367 start = stream->ptr;
369 /* decode bit allocations */
371 for (sb = 0; sb < bound; ++sb) {
372 nbal = bitalloc_table[offsets[sb]].nbal;
374 for (ch = 0; ch < nch; ++ch)
375 allocation[ch][sb] = mad_bit_read(&stream->ptr, nbal);
378 for (sb = bound; sb < sblimit; ++sb) {
379 nbal = bitalloc_table[offsets[sb]].nbal;
381 allocation[0][sb] =
382 allocation[1][sb] = mad_bit_read(&stream->ptr, nbal);
385 /* decode scalefactor selection info */
387 for (sb = 0; sb < sblimit; ++sb) {
388 for (ch = 0; ch < nch; ++ch) {
389 if (allocation[ch][sb])
390 scfsi[ch][sb] = mad_bit_read(&stream->ptr, 2);
394 /* check CRC word */
396 if (header->flags & MAD_FLAG_PROTECTION) {
397 header->crc_check =
398 mad_bit_crc(start, mad_bit_length(&start, &stream->ptr),
399 header->crc_check);
401 if (header->crc_check != header->crc_target &&
402 !(frame->options & MAD_OPTION_IGNORECRC)) {
403 stream->error = MAD_ERROR_BADCRC;
404 return -1;
408 /* decode scalefactors */
410 for (sb = 0; sb < sblimit; ++sb) {
411 for (ch = 0; ch < nch; ++ch) {
412 if (allocation[ch][sb]) {
413 scalefactor[ch][sb][0] = mad_bit_read(&stream->ptr, 6);
415 switch (scfsi[ch][sb]) {
416 case 2:
417 scalefactor[ch][sb][2] =
418 scalefactor[ch][sb][1] =
419 scalefactor[ch][sb][0];
420 break;
422 case 0:
423 scalefactor[ch][sb][1] = mad_bit_read(&stream->ptr, 6);
424 /* fall through */
426 case 1:
427 case 3:
428 scalefactor[ch][sb][2] = mad_bit_read(&stream->ptr, 6);
431 if (scfsi[ch][sb] & 1)
432 scalefactor[ch][sb][1] = scalefactor[ch][sb][scfsi[ch][sb] - 1];
434 if (scalefactor[ch][sb][0] == 63 ||
435 scalefactor[ch][sb][1] == 63 ||
436 scalefactor[ch][sb][2] == 63) {
437 stream->error = MAD_ERROR_BADSCALEFACTOR;
438 return -1;
444 /* decode samples */
446 for (gr = 0; gr < 12; ++gr) {
447 for (sb = 0; sb < bound; ++sb) {
448 for (ch = 0; ch < nch; ++ch) {
449 if ((index = allocation[ch][sb])) {
450 index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1];
452 II_samples(&stream->ptr, &qc_table[index], samples);
454 for (s = 0; s < 3; ++s) {
455 frame->sbsample[ch][3 * gr + s][sb] =
456 mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]);
459 else {
460 for (s = 0; s < 3; ++s)
461 frame->sbsample[ch][3 * gr + s][sb] = 0;
466 for (sb = bound; sb < sblimit; ++sb) {
467 if ((index = allocation[0][sb])) {
468 index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1];
470 II_samples(&stream->ptr, &qc_table[index], samples);
472 for (ch = 0; ch < nch; ++ch) {
473 for (s = 0; s < 3; ++s) {
474 frame->sbsample[ch][3 * gr + s][sb] =
475 mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]);
479 else {
480 for (ch = 0; ch < nch; ++ch) {
481 for (s = 0; s < 3; ++s)
482 frame->sbsample[ch][3 * gr + s][sb] = 0;
487 for (ch = 0; ch < nch; ++ch) {
488 for (s = 0; s < 3; ++s) {
489 for (sb = sblimit; sb < 32; ++sb)
490 frame->sbsample[ch][3 * gr + s][sb] = 0;
495 return 0;