Initial import of Scalos. To decrease size I have
[AROS-Contrib.git] / scalos / libraries / sqlite / src / os_unix.c
blob13faac3a5e33e8c134af991d31a3320d7c8bd17d
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
27 ** The layout of divisions is as follows:
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
33 ** + for no-op locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
50 ** There are various methods for file locking used for concurrency
51 ** control:
53 ** 1. POSIX locking (the default),
54 ** 2. No locking,
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
69 # else
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
71 # endif
72 #endif
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
76 ** vxworks, or 0 otherwise.
78 #ifndef OS_VXWORKS
79 # if defined(__RTP__) || defined(_WRS_KERNEL)
80 # define OS_VXWORKS 1
81 # else
82 # define OS_VXWORKS 0
83 # endif
84 #endif
87 ** These #defines should enable >2GB file support on Posix if the
88 ** underlying operating system supports it. If the OS lacks
89 ** large file support, these should be no-ops.
91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92 ** on the compiler command line. This is necessary if you are compiling
93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
94 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
95 ** without this option, LFS is enable. But LFS does not exist in the kernel
96 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
97 ** portability you should omit LFS.
99 ** The previous paragraph was written in 2005. (This paragraph is written
100 ** on 2008-11-28.) These days, all Linux kernels support large files, so
101 ** you should probably leave LFS enabled. But some embedded platforms might
102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE 1
106 # ifndef _FILE_OFFSET_BITS
107 # define _FILE_OFFSET_BITS 64
108 # endif
109 # define _LARGEFILE_SOURCE 1
110 #endif
113 ** standard include files.
115 #include <sys/types.h>
116 #include <sys/stat.h>
117 #include <fcntl.h>
118 #include <unistd.h>
119 #include <time.h>
120 #include <sys/time.h>
121 #include <errno.h>
122 #ifndef SQLITE_OMIT_WAL
123 #include <sys/mman.h>
124 #endif
127 #if SQLITE_ENABLE_LOCKING_STYLE
128 # include <sys/ioctl.h>
129 # if OS_VXWORKS
130 # include <semaphore.h>
131 # include <limits.h>
132 # else
133 # include <sys/file.h>
134 # include <sys/param.h>
135 # endif
136 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
138 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
139 # include <sys/mount.h>
140 #endif
142 #ifdef HAVE_UTIME
143 # include <utime.h>
144 #endif
147 ** Allowed values of unixFile.fsFlags
149 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
152 ** If we are to be thread-safe, include the pthreads header and define
153 ** the SQLITE_UNIX_THREADS macro.
155 #if SQLITE_THREADSAFE
156 # include <pthread.h>
157 # define SQLITE_UNIX_THREADS 1
158 #endif
161 ** Default permissions when creating a new file
163 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
164 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
165 #endif
168 ** Default permissions when creating auto proxy dir
170 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
171 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
172 #endif
175 ** Maximum supported path-length.
177 #define MAX_PATHNAME 512
180 ** Only set the lastErrno if the error code is a real error and not
181 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
183 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
185 /* Forward references */
186 typedef struct unixShm unixShm; /* Connection shared memory */
187 typedef struct unixShmNode unixShmNode; /* Shared memory instance */
188 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
189 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
192 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
193 ** cannot be closed immediately. In these cases, instances of the following
194 ** structure are used to store the file descriptor while waiting for an
195 ** opportunity to either close or reuse it.
197 struct UnixUnusedFd {
198 int fd; /* File descriptor to close */
199 int flags; /* Flags this file descriptor was opened with */
200 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
204 ** The unixFile structure is subclass of sqlite3_file specific to the unix
205 ** VFS implementations.
207 typedef struct unixFile unixFile;
208 struct unixFile {
209 sqlite3_io_methods const *pMethod; /* Always the first entry */
210 sqlite3_vfs *pVfs; /* The VFS that created this unixFile */
211 unixInodeInfo *pInode; /* Info about locks on this inode */
212 int h; /* The file descriptor */
213 unsigned char eFileLock; /* The type of lock held on this fd */
214 unsigned char ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
215 int lastErrno; /* The unix errno from last I/O error */
216 void *lockingContext; /* Locking style specific state */
217 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */
218 const char *zPath; /* Name of the file */
219 unixShm *pShm; /* Shared memory segment information */
220 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
221 #if SQLITE_ENABLE_LOCKING_STYLE
222 int openFlags; /* The flags specified at open() */
223 #endif
224 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
225 unsigned fsFlags; /* cached details from statfs() */
226 #endif
227 #if OS_VXWORKS
228 struct vxworksFileId *pId; /* Unique file ID */
229 #endif
230 #ifndef NDEBUG
231 /* The next group of variables are used to track whether or not the
232 ** transaction counter in bytes 24-27 of database files are updated
233 ** whenever any part of the database changes. An assertion fault will
234 ** occur if a file is updated without also updating the transaction
235 ** counter. This test is made to avoid new problems similar to the
236 ** one described by ticket #3584.
238 unsigned char transCntrChng; /* True if the transaction counter changed */
239 unsigned char dbUpdate; /* True if any part of database file changed */
240 unsigned char inNormalWrite; /* True if in a normal write operation */
241 #endif
242 #ifdef SQLITE_TEST
243 /* In test mode, increase the size of this structure a bit so that
244 ** it is larger than the struct CrashFile defined in test6.c.
246 char aPadding[32];
247 #endif
251 ** Allowed values for the unixFile.ctrlFlags bitmask:
253 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
254 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
255 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
256 #ifndef SQLITE_DISABLE_DIRSYNC
257 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
258 #else
259 # define UNIXFILE_DIRSYNC 0x00
260 #endif
261 #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
262 #define UNIXFILE_DELETE 0x20 /* Delete on close */
263 #define UNIXFILE_URI 0x40 /* Filename might have query parameters */
264 #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
267 ** Include code that is common to all os_*.c files
269 #include "os_common.h"
272 ** Define various macros that are missing from some systems.
274 #ifndef O_LARGEFILE
275 # define O_LARGEFILE 0
276 #endif
277 #ifdef SQLITE_DISABLE_LFS
278 # undef O_LARGEFILE
279 # define O_LARGEFILE 0
280 #endif
281 #ifndef O_NOFOLLOW
282 # define O_NOFOLLOW 0
283 #endif
284 #ifndef O_BINARY
285 # define O_BINARY 0
286 #endif
289 ** The threadid macro resolves to the thread-id or to 0. Used for
290 ** testing and debugging only.
292 #if SQLITE_THREADSAFE
293 #define threadid pthread_self()
294 #else
295 #define threadid 0
296 #endif
299 ** Different Unix systems declare open() in different ways. Same use
300 ** open(const char*,int,mode_t). Others use open(const char*,int,...).
301 ** The difference is important when using a pointer to the function.
303 ** The safest way to deal with the problem is to always use this wrapper
304 ** which always has the same well-defined interface.
306 static int posixOpen(const char *zFile, int flags, int mode){
307 return open(zFile, flags, mode);
310 /* Forward reference */
311 static int openDirectory(const char*, int*);
314 ** Many system calls are accessed through pointer-to-functions so that
315 ** they may be overridden at runtime to facilitate fault injection during
316 ** testing and sandboxing. The following array holds the names and pointers
317 ** to all overrideable system calls.
319 static struct unix_syscall {
320 const char *zName; /* Name of the sytem call */
321 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
322 sqlite3_syscall_ptr pDefault; /* Default value */
323 } aSyscall[] = {
324 { "open", (sqlite3_syscall_ptr)posixOpen, 0 },
325 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
327 { "close", (sqlite3_syscall_ptr)close, 0 },
328 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
330 { "access", (sqlite3_syscall_ptr)access, 0 },
331 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
333 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
334 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
336 { "stat", (sqlite3_syscall_ptr)stat, 0 },
337 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
340 ** The DJGPP compiler environment looks mostly like Unix, but it
341 ** lacks the fcntl() system call. So redefine fcntl() to be something
342 ** that always succeeds. This means that locking does not occur under
343 ** DJGPP. But it is DOS - what did you expect?
345 #ifdef __DJGPP__
346 { "fstat", 0, 0 },
347 #define osFstat(a,b,c) 0
348 #else
349 { "fstat", (sqlite3_syscall_ptr)fstat, 0 },
350 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
351 #endif
353 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
354 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
356 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
357 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
359 { "read", (sqlite3_syscall_ptr)read, 0 },
360 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
362 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
363 { "pread", (sqlite3_syscall_ptr)pread, 0 },
364 #else
365 { "pread", (sqlite3_syscall_ptr)0, 0 },
366 #endif
367 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
369 #if defined(USE_PREAD64)
370 { "pread64", (sqlite3_syscall_ptr)pread64, 0 },
371 #else
372 { "pread64", (sqlite3_syscall_ptr)0, 0 },
373 #endif
374 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
376 { "write", (sqlite3_syscall_ptr)write, 0 },
377 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
379 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
380 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
381 #else
382 { "pwrite", (sqlite3_syscall_ptr)0, 0 },
383 #endif
384 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
385 aSyscall[12].pCurrent)
387 #if defined(USE_PREAD64)
388 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
389 #else
390 { "pwrite64", (sqlite3_syscall_ptr)0, 0 },
391 #endif
392 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\
393 aSyscall[13].pCurrent)
395 #if SQLITE_ENABLE_LOCKING_STYLE
396 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
397 #else
398 { "fchmod", (sqlite3_syscall_ptr)0, 0 },
399 #endif
400 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
402 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
403 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
404 #else
405 { "fallocate", (sqlite3_syscall_ptr)0, 0 },
406 #endif
407 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
409 { "unlink", (sqlite3_syscall_ptr)unlink, 0 },
410 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
412 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
413 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
415 { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 },
416 #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
418 { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 },
419 #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
421 }; /* End of the overrideable system calls */
424 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
425 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
426 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
427 ** system call named zName.
429 static int unixSetSystemCall(
430 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
431 const char *zName, /* Name of system call to override */
432 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
434 unsigned int i;
435 int rc = SQLITE_NOTFOUND;
437 UNUSED_PARAMETER(pNotUsed);
438 if( zName==0 ){
439 /* If no zName is given, restore all system calls to their default
440 ** settings and return NULL
442 rc = SQLITE_OK;
443 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
444 if( aSyscall[i].pDefault ){
445 aSyscall[i].pCurrent = aSyscall[i].pDefault;
448 }else{
449 /* If zName is specified, operate on only the one system call
450 ** specified.
452 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
453 if( strcmp(zName, aSyscall[i].zName)==0 ){
454 if( aSyscall[i].pDefault==0 ){
455 aSyscall[i].pDefault = aSyscall[i].pCurrent;
457 rc = SQLITE_OK;
458 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
459 aSyscall[i].pCurrent = pNewFunc;
460 break;
464 return rc;
468 ** Return the value of a system call. Return NULL if zName is not a
469 ** recognized system call name. NULL is also returned if the system call
470 ** is currently undefined.
472 static sqlite3_syscall_ptr unixGetSystemCall(
473 sqlite3_vfs *pNotUsed,
474 const char *zName
476 unsigned int i;
478 UNUSED_PARAMETER(pNotUsed);
479 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
480 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
482 return 0;
486 ** Return the name of the first system call after zName. If zName==NULL
487 ** then return the name of the first system call. Return NULL if zName
488 ** is the last system call or if zName is not the name of a valid
489 ** system call.
491 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
492 int i = -1;
494 UNUSED_PARAMETER(p);
495 if( zName ){
496 for(i=0; i<ArraySize(aSyscall)-1; i++){
497 if( strcmp(zName, aSyscall[i].zName)==0 ) break;
500 for(i++; i<ArraySize(aSyscall); i++){
501 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
503 return 0;
507 ** Retry open() calls that fail due to EINTR
509 static int robust_open(const char *z, int f, int m){
510 int rc;
511 do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
512 return rc;
516 ** Helper functions to obtain and relinquish the global mutex. The
517 ** global mutex is used to protect the unixInodeInfo and
518 ** vxworksFileId objects used by this file, all of which may be
519 ** shared by multiple threads.
521 ** Function unixMutexHeld() is used to assert() that the global mutex
522 ** is held when required. This function is only used as part of assert()
523 ** statements. e.g.
525 ** unixEnterMutex()
526 ** assert( unixMutexHeld() );
527 ** unixEnterLeave()
529 static void unixEnterMutex(void){
530 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
532 static void unixLeaveMutex(void){
533 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
535 #ifdef SQLITE_DEBUG
536 static int unixMutexHeld(void) {
537 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
539 #endif
542 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
544 ** Helper function for printing out trace information from debugging
545 ** binaries. This returns the string represetation of the supplied
546 ** integer lock-type.
548 static const char *azFileLock(int eFileLock){
549 switch( eFileLock ){
550 case NO_LOCK: return "NONE";
551 case SHARED_LOCK: return "SHARED";
552 case RESERVED_LOCK: return "RESERVED";
553 case PENDING_LOCK: return "PENDING";
554 case EXCLUSIVE_LOCK: return "EXCLUSIVE";
556 return "ERROR";
558 #endif
560 #ifdef SQLITE_LOCK_TRACE
562 ** Print out information about all locking operations.
564 ** This routine is used for troubleshooting locks on multithreaded
565 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
566 ** command-line option on the compiler. This code is normally
567 ** turned off.
569 static int lockTrace(int fd, int op, struct flock *p){
570 char *zOpName, *zType;
571 int s;
572 int savedErrno;
573 if( op==F_GETLK ){
574 zOpName = "GETLK";
575 }else if( op==F_SETLK ){
576 zOpName = "SETLK";
577 }else{
578 s = osFcntl(fd, op, p);
579 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
580 return s;
582 if( p->l_type==F_RDLCK ){
583 zType = "RDLCK";
584 }else if( p->l_type==F_WRLCK ){
585 zType = "WRLCK";
586 }else if( p->l_type==F_UNLCK ){
587 zType = "UNLCK";
588 }else{
589 assert( 0 );
591 assert( p->l_whence==SEEK_SET );
592 s = osFcntl(fd, op, p);
593 savedErrno = errno;
594 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
595 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
596 (int)p->l_pid, s);
597 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
598 struct flock l2;
599 l2 = *p;
600 osFcntl(fd, F_GETLK, &l2);
601 if( l2.l_type==F_RDLCK ){
602 zType = "RDLCK";
603 }else if( l2.l_type==F_WRLCK ){
604 zType = "WRLCK";
605 }else if( l2.l_type==F_UNLCK ){
606 zType = "UNLCK";
607 }else{
608 assert( 0 );
610 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
611 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
613 errno = savedErrno;
614 return s;
616 #undef osFcntl
617 #define osFcntl lockTrace
618 #endif /* SQLITE_LOCK_TRACE */
621 ** Retry ftruncate() calls that fail due to EINTR
623 static int robust_ftruncate(int h, sqlite3_int64 sz){
624 int rc;
625 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
626 return rc;
630 ** This routine translates a standard POSIX errno code into something
631 ** useful to the clients of the sqlite3 functions. Specifically, it is
632 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
633 ** and a variety of "please close the file descriptor NOW" errors into
634 ** SQLITE_IOERR
636 ** Errors during initialization of locks, or file system support for locks,
637 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
639 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
640 switch (posixError) {
641 #if 0
642 /* At one point this code was not commented out. In theory, this branch
643 ** should never be hit, as this function should only be called after
644 ** a locking-related function (i.e. fcntl()) has returned non-zero with
645 ** the value of errno as the first argument. Since a system call has failed,
646 ** errno should be non-zero.
648 ** Despite this, if errno really is zero, we still don't want to return
649 ** SQLITE_OK. The system call failed, and *some* SQLite error should be
650 ** propagated back to the caller. Commenting this branch out means errno==0
651 ** will be handled by the "default:" case below.
653 case 0:
654 return SQLITE_OK;
655 #endif
657 case EAGAIN:
658 case ETIMEDOUT:
659 case EBUSY:
660 case EINTR:
661 case ENOLCK:
662 /* random NFS retry error, unless during file system support
663 * introspection, in which it actually means what it says */
664 return SQLITE_BUSY;
666 case EACCES:
667 /* EACCES is like EAGAIN during locking operations, but not any other time*/
668 if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
669 (sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
670 (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
671 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
672 return SQLITE_BUSY;
674 /* else fall through */
675 case EPERM:
676 return SQLITE_PERM;
678 /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
679 ** this module never makes such a call. And the code in SQLite itself
680 ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
681 ** this case is also commented out. If the system does set errno to EDEADLK,
682 ** the default SQLITE_IOERR_XXX code will be returned. */
683 #if 0
684 case EDEADLK:
685 return SQLITE_IOERR_BLOCKED;
686 #endif
688 #if EOPNOTSUPP!=ENOTSUP
689 case EOPNOTSUPP:
690 /* something went terribly awry, unless during file system support
691 * introspection, in which it actually means what it says */
692 #endif
693 #ifdef ENOTSUP
694 case ENOTSUP:
695 /* invalid fd, unless during file system support introspection, in which
696 * it actually means what it says */
697 #endif
698 case EIO:
699 case EBADF:
700 case EINVAL:
701 case ENOTCONN:
702 case ENODEV:
703 case ENXIO:
704 case ENOENT:
705 #ifdef ESTALE /* ESTALE is not defined on Interix systems */
706 case ESTALE:
707 #endif
708 case ENOSYS:
709 /* these should force the client to close the file and reconnect */
711 default:
712 return sqliteIOErr;
718 /******************************************************************************
719 ****************** Begin Unique File ID Utility Used By VxWorks ***************
721 ** On most versions of unix, we can get a unique ID for a file by concatenating
722 ** the device number and the inode number. But this does not work on VxWorks.
723 ** On VxWorks, a unique file id must be based on the canonical filename.
725 ** A pointer to an instance of the following structure can be used as a
726 ** unique file ID in VxWorks. Each instance of this structure contains
727 ** a copy of the canonical filename. There is also a reference count.
728 ** The structure is reclaimed when the number of pointers to it drops to
729 ** zero.
731 ** There are never very many files open at one time and lookups are not
732 ** a performance-critical path, so it is sufficient to put these
733 ** structures on a linked list.
735 struct vxworksFileId {
736 struct vxworksFileId *pNext; /* Next in a list of them all */
737 int nRef; /* Number of references to this one */
738 int nName; /* Length of the zCanonicalName[] string */
739 char *zCanonicalName; /* Canonical filename */
742 #if OS_VXWORKS
744 ** All unique filenames are held on a linked list headed by this
745 ** variable:
747 static struct vxworksFileId *vxworksFileList = 0;
750 ** Simplify a filename into its canonical form
751 ** by making the following changes:
753 ** * removing any trailing and duplicate /
754 ** * convert /./ into just /
755 ** * convert /A/../ where A is any simple name into just /
757 ** Changes are made in-place. Return the new name length.
759 ** The original filename is in z[0..n-1]. Return the number of
760 ** characters in the simplified name.
762 static int vxworksSimplifyName(char *z, int n){
763 int i, j;
764 while( n>1 && z[n-1]=='/' ){ n--; }
765 for(i=j=0; i<n; i++){
766 if( z[i]=='/' ){
767 if( z[i+1]=='/' ) continue;
768 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
769 i += 1;
770 continue;
772 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
773 while( j>0 && z[j-1]!='/' ){ j--; }
774 if( j>0 ){ j--; }
775 i += 2;
776 continue;
779 z[j++] = z[i];
781 z[j] = 0;
782 return j;
786 ** Find a unique file ID for the given absolute pathname. Return
787 ** a pointer to the vxworksFileId object. This pointer is the unique
788 ** file ID.
790 ** The nRef field of the vxworksFileId object is incremented before
791 ** the object is returned. A new vxworksFileId object is created
792 ** and added to the global list if necessary.
794 ** If a memory allocation error occurs, return NULL.
796 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
797 struct vxworksFileId *pNew; /* search key and new file ID */
798 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
799 int n; /* Length of zAbsoluteName string */
801 assert( zAbsoluteName[0]=='/' );
802 n = (int)strlen(zAbsoluteName);
803 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
804 if( pNew==0 ) return 0;
805 pNew->zCanonicalName = (char*)&pNew[1];
806 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
807 n = vxworksSimplifyName(pNew->zCanonicalName, n);
809 /* Search for an existing entry that matching the canonical name.
810 ** If found, increment the reference count and return a pointer to
811 ** the existing file ID.
813 unixEnterMutex();
814 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
815 if( pCandidate->nName==n
816 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
818 sqlite3_free(pNew);
819 pCandidate->nRef++;
820 unixLeaveMutex();
821 return pCandidate;
825 /* No match was found. We will make a new file ID */
826 pNew->nRef = 1;
827 pNew->nName = n;
828 pNew->pNext = vxworksFileList;
829 vxworksFileList = pNew;
830 unixLeaveMutex();
831 return pNew;
835 ** Decrement the reference count on a vxworksFileId object. Free
836 ** the object when the reference count reaches zero.
838 static void vxworksReleaseFileId(struct vxworksFileId *pId){
839 unixEnterMutex();
840 assert( pId->nRef>0 );
841 pId->nRef--;
842 if( pId->nRef==0 ){
843 struct vxworksFileId **pp;
844 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
845 assert( *pp==pId );
846 *pp = pId->pNext;
847 sqlite3_free(pId);
849 unixLeaveMutex();
851 #endif /* OS_VXWORKS */
852 /*************** End of Unique File ID Utility Used By VxWorks ****************
853 ******************************************************************************/
856 /******************************************************************************
857 *************************** Posix Advisory Locking ****************************
859 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
860 ** section 6.5.2.2 lines 483 through 490 specify that when a process
861 ** sets or clears a lock, that operation overrides any prior locks set
862 ** by the same process. It does not explicitly say so, but this implies
863 ** that it overrides locks set by the same process using a different
864 ** file descriptor. Consider this test case:
866 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
867 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
869 ** Suppose ./file1 and ./file2 are really the same file (because
870 ** one is a hard or symbolic link to the other) then if you set
871 ** an exclusive lock on fd1, then try to get an exclusive lock
872 ** on fd2, it works. I would have expected the second lock to
873 ** fail since there was already a lock on the file due to fd1.
874 ** But not so. Since both locks came from the same process, the
875 ** second overrides the first, even though they were on different
876 ** file descriptors opened on different file names.
878 ** This means that we cannot use POSIX locks to synchronize file access
879 ** among competing threads of the same process. POSIX locks will work fine
880 ** to synchronize access for threads in separate processes, but not
881 ** threads within the same process.
883 ** To work around the problem, SQLite has to manage file locks internally
884 ** on its own. Whenever a new database is opened, we have to find the
885 ** specific inode of the database file (the inode is determined by the
886 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
887 ** and check for locks already existing on that inode. When locks are
888 ** created or removed, we have to look at our own internal record of the
889 ** locks to see if another thread has previously set a lock on that same
890 ** inode.
892 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
893 ** For VxWorks, we have to use the alternative unique ID system based on
894 ** canonical filename and implemented in the previous division.)
896 ** The sqlite3_file structure for POSIX is no longer just an integer file
897 ** descriptor. It is now a structure that holds the integer file
898 ** descriptor and a pointer to a structure that describes the internal
899 ** locks on the corresponding inode. There is one locking structure
900 ** per inode, so if the same inode is opened twice, both unixFile structures
901 ** point to the same locking structure. The locking structure keeps
902 ** a reference count (so we will know when to delete it) and a "cnt"
903 ** field that tells us its internal lock status. cnt==0 means the
904 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
905 ** cnt>0 means there are cnt shared locks on the file.
907 ** Any attempt to lock or unlock a file first checks the locking
908 ** structure. The fcntl() system call is only invoked to set a
909 ** POSIX lock if the internal lock structure transitions between
910 ** a locked and an unlocked state.
912 ** But wait: there are yet more problems with POSIX advisory locks.
914 ** If you close a file descriptor that points to a file that has locks,
915 ** all locks on that file that are owned by the current process are
916 ** released. To work around this problem, each unixInodeInfo object
917 ** maintains a count of the number of pending locks on tha inode.
918 ** When an attempt is made to close an unixFile, if there are
919 ** other unixFile open on the same inode that are holding locks, the call
920 ** to close() the file descriptor is deferred until all of the locks clear.
921 ** The unixInodeInfo structure keeps a list of file descriptors that need to
922 ** be closed and that list is walked (and cleared) when the last lock
923 ** clears.
925 ** Yet another problem: LinuxThreads do not play well with posix locks.
927 ** Many older versions of linux use the LinuxThreads library which is
928 ** not posix compliant. Under LinuxThreads, a lock created by thread
929 ** A cannot be modified or overridden by a different thread B.
930 ** Only thread A can modify the lock. Locking behavior is correct
931 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
932 ** on linux - with NPTL a lock created by thread A can override locks
933 ** in thread B. But there is no way to know at compile-time which
934 ** threading library is being used. So there is no way to know at
935 ** compile-time whether or not thread A can override locks on thread B.
936 ** One has to do a run-time check to discover the behavior of the
937 ** current process.
939 ** SQLite used to support LinuxThreads. But support for LinuxThreads
940 ** was dropped beginning with version 3.7.0. SQLite will still work with
941 ** LinuxThreads provided that (1) there is no more than one connection
942 ** per database file in the same process and (2) database connections
943 ** do not move across threads.
947 ** An instance of the following structure serves as the key used
948 ** to locate a particular unixInodeInfo object.
950 struct unixFileId {
951 dev_t dev; /* Device number */
952 #if OS_VXWORKS
953 struct vxworksFileId *pId; /* Unique file ID for vxworks. */
954 #else
955 ino_t ino; /* Inode number */
956 #endif
960 ** An instance of the following structure is allocated for each open
961 ** inode. Or, on LinuxThreads, there is one of these structures for
962 ** each inode opened by each thread.
964 ** A single inode can have multiple file descriptors, so each unixFile
965 ** structure contains a pointer to an instance of this object and this
966 ** object keeps a count of the number of unixFile pointing to it.
968 struct unixInodeInfo {
969 struct unixFileId fileId; /* The lookup key */
970 int nShared; /* Number of SHARED locks held */
971 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
972 unsigned char bProcessLock; /* An exclusive process lock is held */
973 int nRef; /* Number of pointers to this structure */
974 unixShmNode *pShmNode; /* Shared memory associated with this inode */
975 int nLock; /* Number of outstanding file locks */
976 UnixUnusedFd *pUnused; /* Unused file descriptors to close */
977 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
978 unixInodeInfo *pPrev; /* .... doubly linked */
979 #if SQLITE_ENABLE_LOCKING_STYLE
980 unsigned long long sharedByte; /* for AFP simulated shared lock */
981 #endif
982 #if OS_VXWORKS
983 sem_t *pSem; /* Named POSIX semaphore */
984 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
985 #endif
989 ** A lists of all unixInodeInfo objects.
991 static unixInodeInfo *inodeList = 0;
995 ** This function - unixLogError_x(), is only ever called via the macro
996 ** unixLogError().
998 ** It is invoked after an error occurs in an OS function and errno has been
999 ** set. It logs a message using sqlite3_log() containing the current value of
1000 ** errno and, if possible, the human-readable equivalent from strerror() or
1001 ** strerror_r().
1003 ** The first argument passed to the macro should be the error code that
1004 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
1005 ** The two subsequent arguments should be the name of the OS function that
1006 ** failed (e.g. "unlink", "open") and the the associated file-system path,
1007 ** if any.
1009 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
1010 static int unixLogErrorAtLine(
1011 int errcode, /* SQLite error code */
1012 const char *zFunc, /* Name of OS function that failed */
1013 const char *zPath, /* File path associated with error */
1014 int iLine /* Source line number where error occurred */
1016 char *zErr; /* Message from strerror() or equivalent */
1017 int iErrno = errno; /* Saved syscall error number */
1019 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1020 ** the strerror() function to obtain the human-readable error message
1021 ** equivalent to errno. Otherwise, use strerror_r().
1023 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1024 char aErr[80];
1025 memset(aErr, 0, sizeof(aErr));
1026 zErr = aErr;
1028 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1029 ** assume that the system provides the the GNU version of strerror_r() that
1030 ** returns a pointer to a buffer containing the error message. That pointer
1031 ** may point to aErr[], or it may point to some static storage somewhere.
1032 ** Otherwise, assume that the system provides the POSIX version of
1033 ** strerror_r(), which always writes an error message into aErr[].
1035 ** If the code incorrectly assumes that it is the POSIX version that is
1036 ** available, the error message will often be an empty string. Not a
1037 ** huge problem. Incorrectly concluding that the GNU version is available
1038 ** could lead to a segfault though.
1040 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1041 zErr =
1042 # endif
1043 strerror_r(iErrno, aErr, sizeof(aErr)-1);
1045 #elif SQLITE_THREADSAFE
1046 /* This is a threadsafe build, but strerror_r() is not available. */
1047 zErr = "";
1048 #else
1049 /* Non-threadsafe build, use strerror(). */
1050 zErr = strerror(iErrno);
1051 #endif
1053 assert( errcode!=SQLITE_OK );
1054 if( zPath==0 ) zPath = "";
1055 sqlite3_log(errcode,
1056 "os_unix.c:%d: (%d) %s(%s) - %s",
1057 iLine, iErrno, zFunc, zPath, zErr
1060 return errcode;
1064 ** Close a file descriptor.
1066 ** We assume that close() almost always works, since it is only in a
1067 ** very sick application or on a very sick platform that it might fail.
1068 ** If it does fail, simply leak the file descriptor, but do log the
1069 ** error.
1071 ** Note that it is not safe to retry close() after EINTR since the
1072 ** file descriptor might have already been reused by another thread.
1073 ** So we don't even try to recover from an EINTR. Just log the error
1074 ** and move on.
1076 static void robust_close(unixFile *pFile, int h, int lineno){
1077 if( osClose(h) ){
1078 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1079 pFile ? pFile->zPath : 0, lineno);
1084 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1086 static void closePendingFds(unixFile *pFile){
1087 unixInodeInfo *pInode = pFile->pInode;
1088 UnixUnusedFd *p;
1089 UnixUnusedFd *pNext;
1090 for(p=pInode->pUnused; p; p=pNext){
1091 pNext = p->pNext;
1092 robust_close(pFile, p->fd, __LINE__);
1093 sqlite3_free(p);
1095 pInode->pUnused = 0;
1099 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1101 ** The mutex entered using the unixEnterMutex() function must be held
1102 ** when this function is called.
1104 static void releaseInodeInfo(unixFile *pFile){
1105 unixInodeInfo *pInode = pFile->pInode;
1106 assert( unixMutexHeld() );
1107 if( ALWAYS(pInode) ){
1108 pInode->nRef--;
1109 if( pInode->nRef==0 ){
1110 assert( pInode->pShmNode==0 );
1111 closePendingFds(pFile);
1112 if( pInode->pPrev ){
1113 assert( pInode->pPrev->pNext==pInode );
1114 pInode->pPrev->pNext = pInode->pNext;
1115 }else{
1116 assert( inodeList==pInode );
1117 inodeList = pInode->pNext;
1119 if( pInode->pNext ){
1120 assert( pInode->pNext->pPrev==pInode );
1121 pInode->pNext->pPrev = pInode->pPrev;
1123 sqlite3_free(pInode);
1129 ** Given a file descriptor, locate the unixInodeInfo object that
1130 ** describes that file descriptor. Create a new one if necessary. The
1131 ** return value might be uninitialized if an error occurs.
1133 ** The mutex entered using the unixEnterMutex() function must be held
1134 ** when this function is called.
1136 ** Return an appropriate error code.
1138 static int findInodeInfo(
1139 unixFile *pFile, /* Unix file with file desc used in the key */
1140 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
1142 int rc; /* System call return code */
1143 int fd; /* The file descriptor for pFile */
1144 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
1145 struct stat statbuf; /* Low-level file information */
1146 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
1148 assert( unixMutexHeld() );
1150 /* Get low-level information about the file that we can used to
1151 ** create a unique name for the file.
1153 fd = pFile->h;
1154 rc = osFstat(fd, &statbuf);
1155 if( rc!=0 ){
1156 pFile->lastErrno = errno;
1157 #ifdef EOVERFLOW
1158 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1159 #endif
1160 return SQLITE_IOERR;
1163 #ifdef __APPLE__
1164 /* On OS X on an msdos filesystem, the inode number is reported
1165 ** incorrectly for zero-size files. See ticket #3260. To work
1166 ** around this problem (we consider it a bug in OS X, not SQLite)
1167 ** we always increase the file size to 1 by writing a single byte
1168 ** prior to accessing the inode number. The one byte written is
1169 ** an ASCII 'S' character which also happens to be the first byte
1170 ** in the header of every SQLite database. In this way, if there
1171 ** is a race condition such that another thread has already populated
1172 ** the first page of the database, no damage is done.
1174 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1175 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1176 if( rc!=1 ){
1177 pFile->lastErrno = errno;
1178 return SQLITE_IOERR;
1180 rc = osFstat(fd, &statbuf);
1181 if( rc!=0 ){
1182 pFile->lastErrno = errno;
1183 return SQLITE_IOERR;
1186 #endif
1188 memset(&fileId, 0, sizeof(fileId));
1189 fileId.dev = statbuf.st_dev;
1190 #if OS_VXWORKS
1191 fileId.pId = pFile->pId;
1192 #else
1193 fileId.ino = statbuf.st_ino;
1194 #endif
1195 pInode = inodeList;
1196 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1197 pInode = pInode->pNext;
1199 if( pInode==0 ){
1200 pInode = sqlite3_malloc( sizeof(*pInode) );
1201 if( pInode==0 ){
1202 return SQLITE_NOMEM;
1204 memset(pInode, 0, sizeof(*pInode));
1205 memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1206 pInode->nRef = 1;
1207 pInode->pNext = inodeList;
1208 pInode->pPrev = 0;
1209 if( inodeList ) inodeList->pPrev = pInode;
1210 inodeList = pInode;
1211 }else{
1212 pInode->nRef++;
1214 *ppInode = pInode;
1215 return SQLITE_OK;
1220 ** This routine checks if there is a RESERVED lock held on the specified
1221 ** file by this or any other process. If such a lock is held, set *pResOut
1222 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1223 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1225 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1226 int rc = SQLITE_OK;
1227 int reserved = 0;
1228 unixFile *pFile = (unixFile*)id;
1230 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1232 assert( pFile );
1233 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1235 /* Check if a thread in this process holds such a lock */
1236 if( pFile->pInode->eFileLock>SHARED_LOCK ){
1237 reserved = 1;
1240 /* Otherwise see if some other process holds it.
1242 #ifndef __DJGPP__
1243 if( !reserved && !pFile->pInode->bProcessLock ){
1244 struct flock lock;
1245 lock.l_whence = SEEK_SET;
1246 lock.l_start = RESERVED_BYTE;
1247 lock.l_len = 1;
1248 lock.l_type = F_WRLCK;
1249 if( osFcntl(pFile->h, F_GETLK, &lock) ){
1250 rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1251 pFile->lastErrno = errno;
1252 } else if( lock.l_type!=F_UNLCK ){
1253 reserved = 1;
1256 #endif
1258 unixLeaveMutex();
1259 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1261 *pResOut = reserved;
1262 return rc;
1266 ** Attempt to set a system-lock on the file pFile. The lock is
1267 ** described by pLock.
1269 ** If the pFile was opened read/write from unix-excl, then the only lock
1270 ** ever obtained is an exclusive lock, and it is obtained exactly once
1271 ** the first time any lock is attempted. All subsequent system locking
1272 ** operations become no-ops. Locking operations still happen internally,
1273 ** in order to coordinate access between separate database connections
1274 ** within this process, but all of that is handled in memory and the
1275 ** operating system does not participate.
1277 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1278 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1279 ** and is read-only.
1281 ** Zero is returned if the call completes successfully, or -1 if a call
1282 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1284 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1285 int rc;
1286 unixInodeInfo *pInode = pFile->pInode;
1287 assert( unixMutexHeld() );
1288 assert( pInode!=0 );
1289 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1290 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
1292 if( pInode->bProcessLock==0 ){
1293 struct flock lock;
1294 assert( pInode->nLock==0 );
1295 lock.l_whence = SEEK_SET;
1296 lock.l_start = SHARED_FIRST;
1297 lock.l_len = SHARED_SIZE;
1298 lock.l_type = F_WRLCK;
1299 rc = osFcntl(pFile->h, F_SETLK, &lock);
1300 if( rc<0 ) return rc;
1301 pInode->bProcessLock = 1;
1302 pInode->nLock++;
1303 }else{
1304 rc = 0;
1306 }else{
1307 rc = osFcntl(pFile->h, F_SETLK, pLock);
1309 return rc;
1313 ** Lock the file with the lock specified by parameter eFileLock - one
1314 ** of the following:
1316 ** (1) SHARED_LOCK
1317 ** (2) RESERVED_LOCK
1318 ** (3) PENDING_LOCK
1319 ** (4) EXCLUSIVE_LOCK
1321 ** Sometimes when requesting one lock state, additional lock states
1322 ** are inserted in between. The locking might fail on one of the later
1323 ** transitions leaving the lock state different from what it started but
1324 ** still short of its goal. The following chart shows the allowed
1325 ** transitions and the inserted intermediate states:
1327 ** UNLOCKED -> SHARED
1328 ** SHARED -> RESERVED
1329 ** SHARED -> (PENDING) -> EXCLUSIVE
1330 ** RESERVED -> (PENDING) -> EXCLUSIVE
1331 ** PENDING -> EXCLUSIVE
1333 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1334 ** routine to lower a locking level.
1336 static int unixLock(sqlite3_file *id, int eFileLock){
1337 /* The following describes the implementation of the various locks and
1338 ** lock transitions in terms of the POSIX advisory shared and exclusive
1339 ** lock primitives (called read-locks and write-locks below, to avoid
1340 ** confusion with SQLite lock names). The algorithms are complicated
1341 ** slightly in order to be compatible with windows systems simultaneously
1342 ** accessing the same database file, in case that is ever required.
1344 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1345 ** byte', each single bytes at well known offsets, and the 'shared byte
1346 ** range', a range of 510 bytes at a well known offset.
1348 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1349 ** byte'. If this is successful, a random byte from the 'shared byte
1350 ** range' is read-locked and the lock on the 'pending byte' released.
1352 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1353 ** A RESERVED lock is implemented by grabbing a write-lock on the
1354 ** 'reserved byte'.
1356 ** A process may only obtain a PENDING lock after it has obtained a
1357 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1358 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1359 ** obtained, but existing SHARED locks are allowed to persist. A process
1360 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1361 ** This property is used by the algorithm for rolling back a journal file
1362 ** after a crash.
1364 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1365 ** implemented by obtaining a write-lock on the entire 'shared byte
1366 ** range'. Since all other locks require a read-lock on one of the bytes
1367 ** within this range, this ensures that no other locks are held on the
1368 ** database.
1370 ** The reason a single byte cannot be used instead of the 'shared byte
1371 ** range' is that some versions of windows do not support read-locks. By
1372 ** locking a random byte from a range, concurrent SHARED locks may exist
1373 ** even if the locking primitive used is always a write-lock.
1375 int rc = SQLITE_OK;
1376 unixFile *pFile = (unixFile*)id;
1377 unixInodeInfo *pInode;
1378 struct flock lock;
1379 int tErrno = 0;
1381 assert( pFile );
1382 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1383 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1384 azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));
1386 /* If there is already a lock of this type or more restrictive on the
1387 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1388 ** unixEnterMutex() hasn't been called yet.
1390 if( pFile->eFileLock>=eFileLock ){
1391 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
1392 azFileLock(eFileLock)));
1393 return SQLITE_OK;
1396 /* Make sure the locking sequence is correct.
1397 ** (1) We never move from unlocked to anything higher than shared lock.
1398 ** (2) SQLite never explicitly requests a pendig lock.
1399 ** (3) A shared lock is always held when a reserve lock is requested.
1401 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1402 assert( eFileLock!=PENDING_LOCK );
1403 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1405 /* This mutex is needed because pFile->pInode is shared across threads
1407 unixEnterMutex();
1408 pInode = pFile->pInode;
1410 /* If some thread using this PID has a lock via a different unixFile*
1411 ** handle that precludes the requested lock, return BUSY.
1413 if( (pFile->eFileLock!=pInode->eFileLock &&
1414 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1416 rc = SQLITE_BUSY;
1417 goto end_lock;
1420 /* If a SHARED lock is requested, and some thread using this PID already
1421 ** has a SHARED or RESERVED lock, then increment reference counts and
1422 ** return SQLITE_OK.
1424 if( eFileLock==SHARED_LOCK &&
1425 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1426 assert( eFileLock==SHARED_LOCK );
1427 assert( pFile->eFileLock==0 );
1428 assert( pInode->nShared>0 );
1429 pFile->eFileLock = SHARED_LOCK;
1430 pInode->nShared++;
1431 pInode->nLock++;
1432 goto end_lock;
1436 /* A PENDING lock is needed before acquiring a SHARED lock and before
1437 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1438 ** be released.
1440 lock.l_len = 1L;
1441 lock.l_whence = SEEK_SET;
1442 if( eFileLock==SHARED_LOCK
1443 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1445 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1446 lock.l_start = PENDING_BYTE;
1447 if( unixFileLock(pFile, &lock) ){
1448 tErrno = errno;
1449 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1450 if( rc!=SQLITE_BUSY ){
1451 pFile->lastErrno = tErrno;
1453 goto end_lock;
1458 /* If control gets to this point, then actually go ahead and make
1459 ** operating system calls for the specified lock.
1461 if( eFileLock==SHARED_LOCK ){
1462 assert( pInode->nShared==0 );
1463 assert( pInode->eFileLock==0 );
1464 assert( rc==SQLITE_OK );
1466 /* Now get the read-lock */
1467 lock.l_start = SHARED_FIRST;
1468 lock.l_len = SHARED_SIZE;
1469 if( unixFileLock(pFile, &lock) ){
1470 tErrno = errno;
1471 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1474 /* Drop the temporary PENDING lock */
1475 lock.l_start = PENDING_BYTE;
1476 lock.l_len = 1L;
1477 lock.l_type = F_UNLCK;
1478 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1479 /* This could happen with a network mount */
1480 tErrno = errno;
1481 rc = SQLITE_IOERR_UNLOCK;
1484 if( rc ){
1485 if( rc!=SQLITE_BUSY ){
1486 pFile->lastErrno = tErrno;
1488 goto end_lock;
1489 }else{
1490 pFile->eFileLock = SHARED_LOCK;
1491 pInode->nLock++;
1492 pInode->nShared = 1;
1494 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1495 /* We are trying for an exclusive lock but another thread in this
1496 ** same process is still holding a shared lock. */
1497 rc = SQLITE_BUSY;
1498 }else{
1499 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1500 ** assumed that there is a SHARED or greater lock on the file
1501 ** already.
1503 assert( 0!=pFile->eFileLock );
1504 lock.l_type = F_WRLCK;
1506 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1507 if( eFileLock==RESERVED_LOCK ){
1508 lock.l_start = RESERVED_BYTE;
1509 lock.l_len = 1L;
1510 }else{
1511 lock.l_start = SHARED_FIRST;
1512 lock.l_len = SHARED_SIZE;
1515 if( unixFileLock(pFile, &lock) ){
1516 tErrno = errno;
1517 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1518 if( rc!=SQLITE_BUSY ){
1519 pFile->lastErrno = tErrno;
1525 #ifndef NDEBUG
1526 /* Set up the transaction-counter change checking flags when
1527 ** transitioning from a SHARED to a RESERVED lock. The change
1528 ** from SHARED to RESERVED marks the beginning of a normal
1529 ** write operation (not a hot journal rollback).
1531 if( rc==SQLITE_OK
1532 && pFile->eFileLock<=SHARED_LOCK
1533 && eFileLock==RESERVED_LOCK
1535 pFile->transCntrChng = 0;
1536 pFile->dbUpdate = 0;
1537 pFile->inNormalWrite = 1;
1539 #endif
1542 if( rc==SQLITE_OK ){
1543 pFile->eFileLock = eFileLock;
1544 pInode->eFileLock = eFileLock;
1545 }else if( eFileLock==EXCLUSIVE_LOCK ){
1546 pFile->eFileLock = PENDING_LOCK;
1547 pInode->eFileLock = PENDING_LOCK;
1550 end_lock:
1551 unixLeaveMutex();
1552 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1553 rc==SQLITE_OK ? "ok" : "failed"));
1554 return rc;
1558 ** Add the file descriptor used by file handle pFile to the corresponding
1559 ** pUnused list.
1561 static void setPendingFd(unixFile *pFile){
1562 unixInodeInfo *pInode = pFile->pInode;
1563 UnixUnusedFd *p = pFile->pUnused;
1564 p->pNext = pInode->pUnused;
1565 pInode->pUnused = p;
1566 pFile->h = -1;
1567 pFile->pUnused = 0;
1571 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1572 ** must be either NO_LOCK or SHARED_LOCK.
1574 ** If the locking level of the file descriptor is already at or below
1575 ** the requested locking level, this routine is a no-op.
1577 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1578 ** the byte range is divided into 2 parts and the first part is unlocked then
1579 ** set to a read lock, then the other part is simply unlocked. This works
1580 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1581 ** remove the write lock on a region when a read lock is set.
1583 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1584 unixFile *pFile = (unixFile*)id;
1585 unixInodeInfo *pInode;
1586 struct flock lock;
1587 int rc = SQLITE_OK;
1589 assert( pFile );
1590 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1591 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1592 getpid()));
1594 assert( eFileLock<=SHARED_LOCK );
1595 if( pFile->eFileLock<=eFileLock ){
1596 return SQLITE_OK;
1598 unixEnterMutex();
1599 pInode = pFile->pInode;
1600 assert( pInode->nShared!=0 );
1601 if( pFile->eFileLock>SHARED_LOCK ){
1602 assert( pInode->eFileLock==pFile->eFileLock );
1604 #ifndef NDEBUG
1605 /* When reducing a lock such that other processes can start
1606 ** reading the database file again, make sure that the
1607 ** transaction counter was updated if any part of the database
1608 ** file changed. If the transaction counter is not updated,
1609 ** other connections to the same file might not realize that
1610 ** the file has changed and hence might not know to flush their
1611 ** cache. The use of a stale cache can lead to database corruption.
1613 pFile->inNormalWrite = 0;
1614 #endif
1616 /* downgrading to a shared lock on NFS involves clearing the write lock
1617 ** before establishing the readlock - to avoid a race condition we downgrade
1618 ** the lock in 2 blocks, so that part of the range will be covered by a
1619 ** write lock until the rest is covered by a read lock:
1620 ** 1: [WWWWW]
1621 ** 2: [....W]
1622 ** 3: [RRRRW]
1623 ** 4: [RRRR.]
1625 if( eFileLock==SHARED_LOCK ){
1627 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1628 (void)handleNFSUnlock;
1629 assert( handleNFSUnlock==0 );
1630 #endif
1631 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1632 if( handleNFSUnlock ){
1633 int tErrno; /* Error code from system call errors */
1634 off_t divSize = SHARED_SIZE - 1;
1636 lock.l_type = F_UNLCK;
1637 lock.l_whence = SEEK_SET;
1638 lock.l_start = SHARED_FIRST;
1639 lock.l_len = divSize;
1640 if( unixFileLock(pFile, &lock)==(-1) ){
1641 tErrno = errno;
1642 rc = SQLITE_IOERR_UNLOCK;
1643 if( IS_LOCK_ERROR(rc) ){
1644 pFile->lastErrno = tErrno;
1646 goto end_unlock;
1648 lock.l_type = F_RDLCK;
1649 lock.l_whence = SEEK_SET;
1650 lock.l_start = SHARED_FIRST;
1651 lock.l_len = divSize;
1652 if( unixFileLock(pFile, &lock)==(-1) ){
1653 tErrno = errno;
1654 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1655 if( IS_LOCK_ERROR(rc) ){
1656 pFile->lastErrno = tErrno;
1658 goto end_unlock;
1660 lock.l_type = F_UNLCK;
1661 lock.l_whence = SEEK_SET;
1662 lock.l_start = SHARED_FIRST+divSize;
1663 lock.l_len = SHARED_SIZE-divSize;
1664 if( unixFileLock(pFile, &lock)==(-1) ){
1665 tErrno = errno;
1666 rc = SQLITE_IOERR_UNLOCK;
1667 if( IS_LOCK_ERROR(rc) ){
1668 pFile->lastErrno = tErrno;
1670 goto end_unlock;
1672 }else
1673 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1675 lock.l_type = F_RDLCK;
1676 lock.l_whence = SEEK_SET;
1677 lock.l_start = SHARED_FIRST;
1678 lock.l_len = SHARED_SIZE;
1679 if( unixFileLock(pFile, &lock) ){
1680 /* In theory, the call to unixFileLock() cannot fail because another
1681 ** process is holding an incompatible lock. If it does, this
1682 ** indicates that the other process is not following the locking
1683 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1684 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1685 ** an assert to fail). */
1686 rc = SQLITE_IOERR_RDLOCK;
1687 pFile->lastErrno = errno;
1688 goto end_unlock;
1692 lock.l_type = F_UNLCK;
1693 lock.l_whence = SEEK_SET;
1694 lock.l_start = PENDING_BYTE;
1695 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1696 if( unixFileLock(pFile, &lock)==0 ){
1697 pInode->eFileLock = SHARED_LOCK;
1698 }else{
1699 rc = SQLITE_IOERR_UNLOCK;
1700 pFile->lastErrno = errno;
1701 goto end_unlock;
1704 if( eFileLock==NO_LOCK ){
1705 /* Decrement the shared lock counter. Release the lock using an
1706 ** OS call only when all threads in this same process have released
1707 ** the lock.
1709 pInode->nShared--;
1710 if( pInode->nShared==0 ){
1711 lock.l_type = F_UNLCK;
1712 lock.l_whence = SEEK_SET;
1713 lock.l_start = lock.l_len = 0L;
1714 if( unixFileLock(pFile, &lock)==0 ){
1715 pInode->eFileLock = NO_LOCK;
1716 }else{
1717 rc = SQLITE_IOERR_UNLOCK;
1718 pFile->lastErrno = errno;
1719 pInode->eFileLock = NO_LOCK;
1720 pFile->eFileLock = NO_LOCK;
1724 /* Decrement the count of locks against this same file. When the
1725 ** count reaches zero, close any other file descriptors whose close
1726 ** was deferred because of outstanding locks.
1728 pInode->nLock--;
1729 assert( pInode->nLock>=0 );
1730 if( pInode->nLock==0 ){
1731 closePendingFds(pFile);
1735 end_unlock:
1736 unixLeaveMutex();
1737 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1738 return rc;
1742 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1743 ** must be either NO_LOCK or SHARED_LOCK.
1745 ** If the locking level of the file descriptor is already at or below
1746 ** the requested locking level, this routine is a no-op.
1748 static int unixUnlock(sqlite3_file *id, int eFileLock){
1749 return posixUnlock(id, eFileLock, 0);
1753 ** This function performs the parts of the "close file" operation
1754 ** common to all locking schemes. It closes the directory and file
1755 ** handles, if they are valid, and sets all fields of the unixFile
1756 ** structure to 0.
1758 ** It is *not* necessary to hold the mutex when this routine is called,
1759 ** even on VxWorks. A mutex will be acquired on VxWorks by the
1760 ** vxworksReleaseFileId() routine.
1762 static int closeUnixFile(sqlite3_file *id){
1763 unixFile *pFile = (unixFile*)id;
1764 if( pFile->h>=0 ){
1765 robust_close(pFile, pFile->h, __LINE__);
1766 pFile->h = -1;
1768 #if OS_VXWORKS
1769 if( pFile->pId ){
1770 if( pFile->ctrlFlags & UNIXFILE_DELETE ){
1771 osUnlink(pFile->pId->zCanonicalName);
1773 vxworksReleaseFileId(pFile->pId);
1774 pFile->pId = 0;
1776 #endif
1777 OSTRACE(("CLOSE %-3d\n", pFile->h));
1778 OpenCounter(-1);
1779 sqlite3_free(pFile->pUnused);
1780 memset(pFile, 0, sizeof(unixFile));
1781 return SQLITE_OK;
1785 ** Close a file.
1787 static int unixClose(sqlite3_file *id){
1788 int rc = SQLITE_OK;
1789 unixFile *pFile = (unixFile *)id;
1790 unixUnlock(id, NO_LOCK);
1791 unixEnterMutex();
1793 /* unixFile.pInode is always valid here. Otherwise, a different close
1794 ** routine (e.g. nolockClose()) would be called instead.
1796 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1797 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1798 /* If there are outstanding locks, do not actually close the file just
1799 ** yet because that would clear those locks. Instead, add the file
1800 ** descriptor to pInode->pUnused list. It will be automatically closed
1801 ** when the last lock is cleared.
1803 setPendingFd(pFile);
1805 releaseInodeInfo(pFile);
1806 rc = closeUnixFile(id);
1807 unixLeaveMutex();
1808 return rc;
1811 /************** End of the posix advisory lock implementation *****************
1812 ******************************************************************************/
1814 /******************************************************************************
1815 ****************************** No-op Locking **********************************
1817 ** Of the various locking implementations available, this is by far the
1818 ** simplest: locking is ignored. No attempt is made to lock the database
1819 ** file for reading or writing.
1821 ** This locking mode is appropriate for use on read-only databases
1822 ** (ex: databases that are burned into CD-ROM, for example.) It can
1823 ** also be used if the application employs some external mechanism to
1824 ** prevent simultaneous access of the same database by two or more
1825 ** database connections. But there is a serious risk of database
1826 ** corruption if this locking mode is used in situations where multiple
1827 ** database connections are accessing the same database file at the same
1828 ** time and one or more of those connections are writing.
1831 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1832 UNUSED_PARAMETER(NotUsed);
1833 *pResOut = 0;
1834 return SQLITE_OK;
1836 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1837 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1838 return SQLITE_OK;
1840 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1841 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1842 return SQLITE_OK;
1846 ** Close the file.
1848 static int nolockClose(sqlite3_file *id) {
1849 return closeUnixFile(id);
1852 /******************* End of the no-op lock implementation *********************
1853 ******************************************************************************/
1855 /******************************************************************************
1856 ************************* Begin dot-file Locking ******************************
1858 ** The dotfile locking implementation uses the existance of separate lock
1859 ** files (really a directory) to control access to the database. This works
1860 ** on just about every filesystem imaginable. But there are serious downsides:
1862 ** (1) There is zero concurrency. A single reader blocks all other
1863 ** connections from reading or writing the database.
1865 ** (2) An application crash or power loss can leave stale lock files
1866 ** sitting around that need to be cleared manually.
1868 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
1869 ** other locking strategy is available.
1871 ** Dotfile locking works by creating a subdirectory in the same directory as
1872 ** the database and with the same name but with a ".lock" extension added.
1873 ** The existance of a lock directory implies an EXCLUSIVE lock. All other
1874 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1878 ** The file suffix added to the data base filename in order to create the
1879 ** lock directory.
1881 #define DOTLOCK_SUFFIX ".lock"
1884 ** This routine checks if there is a RESERVED lock held on the specified
1885 ** file by this or any other process. If such a lock is held, set *pResOut
1886 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1887 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1889 ** In dotfile locking, either a lock exists or it does not. So in this
1890 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
1891 ** is held on the file and false if the file is unlocked.
1893 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1894 int rc = SQLITE_OK;
1895 int reserved = 0;
1896 unixFile *pFile = (unixFile*)id;
1898 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1900 assert( pFile );
1902 /* Check if a thread in this process holds such a lock */
1903 if( pFile->eFileLock>SHARED_LOCK ){
1904 /* Either this connection or some other connection in the same process
1905 ** holds a lock on the file. No need to check further. */
1906 reserved = 1;
1907 }else{
1908 /* The lock is held if and only if the lockfile exists */
1909 const char *zLockFile = (const char*)pFile->lockingContext;
1910 reserved = osAccess(zLockFile, 0)==0;
1912 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
1913 *pResOut = reserved;
1914 return rc;
1918 ** Lock the file with the lock specified by parameter eFileLock - one
1919 ** of the following:
1921 ** (1) SHARED_LOCK
1922 ** (2) RESERVED_LOCK
1923 ** (3) PENDING_LOCK
1924 ** (4) EXCLUSIVE_LOCK
1926 ** Sometimes when requesting one lock state, additional lock states
1927 ** are inserted in between. The locking might fail on one of the later
1928 ** transitions leaving the lock state different from what it started but
1929 ** still short of its goal. The following chart shows the allowed
1930 ** transitions and the inserted intermediate states:
1932 ** UNLOCKED -> SHARED
1933 ** SHARED -> RESERVED
1934 ** SHARED -> (PENDING) -> EXCLUSIVE
1935 ** RESERVED -> (PENDING) -> EXCLUSIVE
1936 ** PENDING -> EXCLUSIVE
1938 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1939 ** routine to lower a locking level.
1941 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
1942 ** But we track the other locking levels internally.
1944 static int dotlockLock(sqlite3_file *id, int eFileLock) {
1945 unixFile *pFile = (unixFile*)id;
1946 char *zLockFile = (char *)pFile->lockingContext;
1947 int rc = SQLITE_OK;
1950 /* If we have any lock, then the lock file already exists. All we have
1951 ** to do is adjust our internal record of the lock level.
1953 if( pFile->eFileLock > NO_LOCK ){
1954 pFile->eFileLock = eFileLock;
1955 /* Always update the timestamp on the old file */
1956 #ifdef HAVE_UTIME
1957 utime(zLockFile, NULL);
1958 #else
1959 utimes(zLockFile, NULL);
1960 #endif
1961 return SQLITE_OK;
1964 /* grab an exclusive lock */
1965 rc = osMkdir(zLockFile, 0777);
1966 if( rc<0 ){
1967 /* failed to open/create the lock directory */
1968 int tErrno = errno;
1969 if( EEXIST == tErrno ){
1970 rc = SQLITE_BUSY;
1971 } else {
1972 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1973 if( IS_LOCK_ERROR(rc) ){
1974 pFile->lastErrno = tErrno;
1977 return rc;
1980 /* got it, set the type and return ok */
1981 pFile->eFileLock = eFileLock;
1982 return rc;
1986 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1987 ** must be either NO_LOCK or SHARED_LOCK.
1989 ** If the locking level of the file descriptor is already at or below
1990 ** the requested locking level, this routine is a no-op.
1992 ** When the locking level reaches NO_LOCK, delete the lock file.
1994 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
1995 unixFile *pFile = (unixFile*)id;
1996 char *zLockFile = (char *)pFile->lockingContext;
1997 int rc;
1999 assert( pFile );
2000 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
2001 pFile->eFileLock, getpid()));
2002 assert( eFileLock<=SHARED_LOCK );
2004 /* no-op if possible */
2005 if( pFile->eFileLock==eFileLock ){
2006 return SQLITE_OK;
2009 /* To downgrade to shared, simply update our internal notion of the
2010 ** lock state. No need to mess with the file on disk.
2012 if( eFileLock==SHARED_LOCK ){
2013 pFile->eFileLock = SHARED_LOCK;
2014 return SQLITE_OK;
2017 /* To fully unlock the database, delete the lock file */
2018 assert( eFileLock==NO_LOCK );
2019 rc = osRmdir(zLockFile);
2020 if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
2021 if( rc<0 ){
2022 int tErrno = errno;
2023 rc = 0;
2024 if( ENOENT != tErrno ){
2025 rc = SQLITE_IOERR_UNLOCK;
2027 if( IS_LOCK_ERROR(rc) ){
2028 pFile->lastErrno = tErrno;
2030 return rc;
2032 pFile->eFileLock = NO_LOCK;
2033 return SQLITE_OK;
2037 ** Close a file. Make sure the lock has been released before closing.
2039 static int dotlockClose(sqlite3_file *id) {
2040 int rc;
2041 if( id ){
2042 unixFile *pFile = (unixFile*)id;
2043 dotlockUnlock(id, NO_LOCK);
2044 sqlite3_free(pFile->lockingContext);
2046 rc = closeUnixFile(id);
2047 return rc;
2049 /****************** End of the dot-file lock implementation *******************
2050 ******************************************************************************/
2052 /******************************************************************************
2053 ************************** Begin flock Locking ********************************
2055 ** Use the flock() system call to do file locking.
2057 ** flock() locking is like dot-file locking in that the various
2058 ** fine-grain locking levels supported by SQLite are collapsed into
2059 ** a single exclusive lock. In other words, SHARED, RESERVED, and
2060 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2061 ** still works when you do this, but concurrency is reduced since
2062 ** only a single process can be reading the database at a time.
2064 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2065 ** compiling for VXWORKS.
2067 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
2070 ** Retry flock() calls that fail with EINTR
2072 #ifdef EINTR
2073 static int robust_flock(int fd, int op){
2074 int rc;
2075 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2076 return rc;
2078 #else
2079 # define robust_flock(a,b) flock(a,b)
2080 #endif
2084 ** This routine checks if there is a RESERVED lock held on the specified
2085 ** file by this or any other process. If such a lock is held, set *pResOut
2086 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2087 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2089 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2090 int rc = SQLITE_OK;
2091 int reserved = 0;
2092 unixFile *pFile = (unixFile*)id;
2094 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2096 assert( pFile );
2098 /* Check if a thread in this process holds such a lock */
2099 if( pFile->eFileLock>SHARED_LOCK ){
2100 reserved = 1;
2103 /* Otherwise see if some other process holds it. */
2104 if( !reserved ){
2105 /* attempt to get the lock */
2106 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2107 if( !lrc ){
2108 /* got the lock, unlock it */
2109 lrc = robust_flock(pFile->h, LOCK_UN);
2110 if ( lrc ) {
2111 int tErrno = errno;
2112 /* unlock failed with an error */
2113 lrc = SQLITE_IOERR_UNLOCK;
2114 if( IS_LOCK_ERROR(lrc) ){
2115 pFile->lastErrno = tErrno;
2116 rc = lrc;
2119 } else {
2120 int tErrno = errno;
2121 reserved = 1;
2122 /* someone else might have it reserved */
2123 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2124 if( IS_LOCK_ERROR(lrc) ){
2125 pFile->lastErrno = tErrno;
2126 rc = lrc;
2130 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2132 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2133 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2134 rc = SQLITE_OK;
2135 reserved=1;
2137 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2138 *pResOut = reserved;
2139 return rc;
2143 ** Lock the file with the lock specified by parameter eFileLock - one
2144 ** of the following:
2146 ** (1) SHARED_LOCK
2147 ** (2) RESERVED_LOCK
2148 ** (3) PENDING_LOCK
2149 ** (4) EXCLUSIVE_LOCK
2151 ** Sometimes when requesting one lock state, additional lock states
2152 ** are inserted in between. The locking might fail on one of the later
2153 ** transitions leaving the lock state different from what it started but
2154 ** still short of its goal. The following chart shows the allowed
2155 ** transitions and the inserted intermediate states:
2157 ** UNLOCKED -> SHARED
2158 ** SHARED -> RESERVED
2159 ** SHARED -> (PENDING) -> EXCLUSIVE
2160 ** RESERVED -> (PENDING) -> EXCLUSIVE
2161 ** PENDING -> EXCLUSIVE
2163 ** flock() only really support EXCLUSIVE locks. We track intermediate
2164 ** lock states in the sqlite3_file structure, but all locks SHARED or
2165 ** above are really EXCLUSIVE locks and exclude all other processes from
2166 ** access the file.
2168 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2169 ** routine to lower a locking level.
2171 static int flockLock(sqlite3_file *id, int eFileLock) {
2172 int rc = SQLITE_OK;
2173 unixFile *pFile = (unixFile*)id;
2175 assert( pFile );
2177 /* if we already have a lock, it is exclusive.
2178 ** Just adjust level and punt on outta here. */
2179 if (pFile->eFileLock > NO_LOCK) {
2180 pFile->eFileLock = eFileLock;
2181 return SQLITE_OK;
2184 /* grab an exclusive lock */
2186 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2187 int tErrno = errno;
2188 /* didn't get, must be busy */
2189 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2190 if( IS_LOCK_ERROR(rc) ){
2191 pFile->lastErrno = tErrno;
2193 } else {
2194 /* got it, set the type and return ok */
2195 pFile->eFileLock = eFileLock;
2197 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2198 rc==SQLITE_OK ? "ok" : "failed"));
2199 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2200 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2201 rc = SQLITE_BUSY;
2203 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2204 return rc;
2209 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2210 ** must be either NO_LOCK or SHARED_LOCK.
2212 ** If the locking level of the file descriptor is already at or below
2213 ** the requested locking level, this routine is a no-op.
2215 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2216 unixFile *pFile = (unixFile*)id;
2218 assert( pFile );
2219 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2220 pFile->eFileLock, getpid()));
2221 assert( eFileLock<=SHARED_LOCK );
2223 /* no-op if possible */
2224 if( pFile->eFileLock==eFileLock ){
2225 return SQLITE_OK;
2228 /* shared can just be set because we always have an exclusive */
2229 if (eFileLock==SHARED_LOCK) {
2230 pFile->eFileLock = eFileLock;
2231 return SQLITE_OK;
2234 /* no, really, unlock. */
2235 if( robust_flock(pFile->h, LOCK_UN) ){
2236 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2237 return SQLITE_OK;
2238 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2239 return SQLITE_IOERR_UNLOCK;
2240 }else{
2241 pFile->eFileLock = NO_LOCK;
2242 return SQLITE_OK;
2247 ** Close a file.
2249 static int flockClose(sqlite3_file *id) {
2250 if( id ){
2251 flockUnlock(id, NO_LOCK);
2253 return closeUnixFile(id);
2256 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2258 /******************* End of the flock lock implementation *********************
2259 ******************************************************************************/
2261 /******************************************************************************
2262 ************************ Begin Named Semaphore Locking ************************
2264 ** Named semaphore locking is only supported on VxWorks.
2266 ** Semaphore locking is like dot-lock and flock in that it really only
2267 ** supports EXCLUSIVE locking. Only a single process can read or write
2268 ** the database file at a time. This reduces potential concurrency, but
2269 ** makes the lock implementation much easier.
2271 #if OS_VXWORKS
2274 ** This routine checks if there is a RESERVED lock held on the specified
2275 ** file by this or any other process. If such a lock is held, set *pResOut
2276 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2277 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2279 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2280 int rc = SQLITE_OK;
2281 int reserved = 0;
2282 unixFile *pFile = (unixFile*)id;
2284 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2286 assert( pFile );
2288 /* Check if a thread in this process holds such a lock */
2289 if( pFile->eFileLock>SHARED_LOCK ){
2290 reserved = 1;
2293 /* Otherwise see if some other process holds it. */
2294 if( !reserved ){
2295 sem_t *pSem = pFile->pInode->pSem;
2296 struct stat statBuf;
2298 if( sem_trywait(pSem)==-1 ){
2299 int tErrno = errno;
2300 if( EAGAIN != tErrno ){
2301 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2302 pFile->lastErrno = tErrno;
2303 } else {
2304 /* someone else has the lock when we are in NO_LOCK */
2305 reserved = (pFile->eFileLock < SHARED_LOCK);
2307 }else{
2308 /* we could have it if we want it */
2309 sem_post(pSem);
2312 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2314 *pResOut = reserved;
2315 return rc;
2319 ** Lock the file with the lock specified by parameter eFileLock - one
2320 ** of the following:
2322 ** (1) SHARED_LOCK
2323 ** (2) RESERVED_LOCK
2324 ** (3) PENDING_LOCK
2325 ** (4) EXCLUSIVE_LOCK
2327 ** Sometimes when requesting one lock state, additional lock states
2328 ** are inserted in between. The locking might fail on one of the later
2329 ** transitions leaving the lock state different from what it started but
2330 ** still short of its goal. The following chart shows the allowed
2331 ** transitions and the inserted intermediate states:
2333 ** UNLOCKED -> SHARED
2334 ** SHARED -> RESERVED
2335 ** SHARED -> (PENDING) -> EXCLUSIVE
2336 ** RESERVED -> (PENDING) -> EXCLUSIVE
2337 ** PENDING -> EXCLUSIVE
2339 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2340 ** lock states in the sqlite3_file structure, but all locks SHARED or
2341 ** above are really EXCLUSIVE locks and exclude all other processes from
2342 ** access the file.
2344 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2345 ** routine to lower a locking level.
2347 static int semLock(sqlite3_file *id, int eFileLock) {
2348 unixFile *pFile = (unixFile*)id;
2349 int fd;
2350 sem_t *pSem = pFile->pInode->pSem;
2351 int rc = SQLITE_OK;
2353 /* if we already have a lock, it is exclusive.
2354 ** Just adjust level and punt on outta here. */
2355 if (pFile->eFileLock > NO_LOCK) {
2356 pFile->eFileLock = eFileLock;
2357 rc = SQLITE_OK;
2358 goto sem_end_lock;
2361 /* lock semaphore now but bail out when already locked. */
2362 if( sem_trywait(pSem)==-1 ){
2363 rc = SQLITE_BUSY;
2364 goto sem_end_lock;
2367 /* got it, set the type and return ok */
2368 pFile->eFileLock = eFileLock;
2370 sem_end_lock:
2371 return rc;
2375 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2376 ** must be either NO_LOCK or SHARED_LOCK.
2378 ** If the locking level of the file descriptor is already at or below
2379 ** the requested locking level, this routine is a no-op.
2381 static int semUnlock(sqlite3_file *id, int eFileLock) {
2382 unixFile *pFile = (unixFile*)id;
2383 sem_t *pSem = pFile->pInode->pSem;
2385 assert( pFile );
2386 assert( pSem );
2387 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2388 pFile->eFileLock, getpid()));
2389 assert( eFileLock<=SHARED_LOCK );
2391 /* no-op if possible */
2392 if( pFile->eFileLock==eFileLock ){
2393 return SQLITE_OK;
2396 /* shared can just be set because we always have an exclusive */
2397 if (eFileLock==SHARED_LOCK) {
2398 pFile->eFileLock = eFileLock;
2399 return SQLITE_OK;
2402 /* no, really unlock. */
2403 if ( sem_post(pSem)==-1 ) {
2404 int rc, tErrno = errno;
2405 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2406 if( IS_LOCK_ERROR(rc) ){
2407 pFile->lastErrno = tErrno;
2409 return rc;
2411 pFile->eFileLock = NO_LOCK;
2412 return SQLITE_OK;
2416 ** Close a file.
2418 static int semClose(sqlite3_file *id) {
2419 if( id ){
2420 unixFile *pFile = (unixFile*)id;
2421 semUnlock(id, NO_LOCK);
2422 assert( pFile );
2423 unixEnterMutex();
2424 releaseInodeInfo(pFile);
2425 unixLeaveMutex();
2426 closeUnixFile(id);
2428 return SQLITE_OK;
2431 #endif /* OS_VXWORKS */
2433 ** Named semaphore locking is only available on VxWorks.
2435 *************** End of the named semaphore lock implementation ****************
2436 ******************************************************************************/
2439 /******************************************************************************
2440 *************************** Begin AFP Locking *********************************
2442 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2443 ** on Apple Macintosh computers - both OS9 and OSX.
2445 ** Third-party implementations of AFP are available. But this code here
2446 ** only works on OSX.
2449 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2451 ** The afpLockingContext structure contains all afp lock specific state
2453 typedef struct afpLockingContext afpLockingContext;
2454 struct afpLockingContext {
2455 int reserved;
2456 const char *dbPath; /* Name of the open file */
2459 struct ByteRangeLockPB2
2461 unsigned long long offset; /* offset to first byte to lock */
2462 unsigned long long length; /* nbr of bytes to lock */
2463 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2464 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
2465 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
2466 int fd; /* file desc to assoc this lock with */
2469 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2472 ** This is a utility for setting or clearing a bit-range lock on an
2473 ** AFP filesystem.
2475 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2477 static int afpSetLock(
2478 const char *path, /* Name of the file to be locked or unlocked */
2479 unixFile *pFile, /* Open file descriptor on path */
2480 unsigned long long offset, /* First byte to be locked */
2481 unsigned long long length, /* Number of bytes to lock */
2482 int setLockFlag /* True to set lock. False to clear lock */
2484 struct ByteRangeLockPB2 pb;
2485 int err;
2487 pb.unLockFlag = setLockFlag ? 0 : 1;
2488 pb.startEndFlag = 0;
2489 pb.offset = offset;
2490 pb.length = length;
2491 pb.fd = pFile->h;
2493 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2494 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2495 offset, length));
2496 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2497 if ( err==-1 ) {
2498 int rc;
2499 int tErrno = errno;
2500 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2501 path, tErrno, strerror(tErrno)));
2502 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2503 rc = SQLITE_BUSY;
2504 #else
2505 rc = sqliteErrorFromPosixError(tErrno,
2506 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2507 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2508 if( IS_LOCK_ERROR(rc) ){
2509 pFile->lastErrno = tErrno;
2511 return rc;
2512 } else {
2513 return SQLITE_OK;
2518 ** This routine checks if there is a RESERVED lock held on the specified
2519 ** file by this or any other process. If such a lock is held, set *pResOut
2520 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2521 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2523 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2524 int rc = SQLITE_OK;
2525 int reserved = 0;
2526 unixFile *pFile = (unixFile*)id;
2527 afpLockingContext *context;
2529 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2531 assert( pFile );
2532 context = (afpLockingContext *) pFile->lockingContext;
2533 if( context->reserved ){
2534 *pResOut = 1;
2535 return SQLITE_OK;
2537 unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2539 /* Check if a thread in this process holds such a lock */
2540 if( pFile->pInode->eFileLock>SHARED_LOCK ){
2541 reserved = 1;
2544 /* Otherwise see if some other process holds it.
2546 if( !reserved ){
2547 /* lock the RESERVED byte */
2548 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2549 if( SQLITE_OK==lrc ){
2550 /* if we succeeded in taking the reserved lock, unlock it to restore
2551 ** the original state */
2552 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2553 } else {
2554 /* if we failed to get the lock then someone else must have it */
2555 reserved = 1;
2557 if( IS_LOCK_ERROR(lrc) ){
2558 rc=lrc;
2562 unixLeaveMutex();
2563 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2565 *pResOut = reserved;
2566 return rc;
2570 ** Lock the file with the lock specified by parameter eFileLock - one
2571 ** of the following:
2573 ** (1) SHARED_LOCK
2574 ** (2) RESERVED_LOCK
2575 ** (3) PENDING_LOCK
2576 ** (4) EXCLUSIVE_LOCK
2578 ** Sometimes when requesting one lock state, additional lock states
2579 ** are inserted in between. The locking might fail on one of the later
2580 ** transitions leaving the lock state different from what it started but
2581 ** still short of its goal. The following chart shows the allowed
2582 ** transitions and the inserted intermediate states:
2584 ** UNLOCKED -> SHARED
2585 ** SHARED -> RESERVED
2586 ** SHARED -> (PENDING) -> EXCLUSIVE
2587 ** RESERVED -> (PENDING) -> EXCLUSIVE
2588 ** PENDING -> EXCLUSIVE
2590 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2591 ** routine to lower a locking level.
2593 static int afpLock(sqlite3_file *id, int eFileLock){
2594 int rc = SQLITE_OK;
2595 unixFile *pFile = (unixFile*)id;
2596 unixInodeInfo *pInode = pFile->pInode;
2597 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2599 assert( pFile );
2600 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2601 azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2602 azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
2604 /* If there is already a lock of this type or more restrictive on the
2605 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2606 ** unixEnterMutex() hasn't been called yet.
2608 if( pFile->eFileLock>=eFileLock ){
2609 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
2610 azFileLock(eFileLock)));
2611 return SQLITE_OK;
2614 /* Make sure the locking sequence is correct
2615 ** (1) We never move from unlocked to anything higher than shared lock.
2616 ** (2) SQLite never explicitly requests a pendig lock.
2617 ** (3) A shared lock is always held when a reserve lock is requested.
2619 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2620 assert( eFileLock!=PENDING_LOCK );
2621 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2623 /* This mutex is needed because pFile->pInode is shared across threads
2625 unixEnterMutex();
2626 pInode = pFile->pInode;
2628 /* If some thread using this PID has a lock via a different unixFile*
2629 ** handle that precludes the requested lock, return BUSY.
2631 if( (pFile->eFileLock!=pInode->eFileLock &&
2632 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2634 rc = SQLITE_BUSY;
2635 goto afp_end_lock;
2638 /* If a SHARED lock is requested, and some thread using this PID already
2639 ** has a SHARED or RESERVED lock, then increment reference counts and
2640 ** return SQLITE_OK.
2642 if( eFileLock==SHARED_LOCK &&
2643 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2644 assert( eFileLock==SHARED_LOCK );
2645 assert( pFile->eFileLock==0 );
2646 assert( pInode->nShared>0 );
2647 pFile->eFileLock = SHARED_LOCK;
2648 pInode->nShared++;
2649 pInode->nLock++;
2650 goto afp_end_lock;
2653 /* A PENDING lock is needed before acquiring a SHARED lock and before
2654 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2655 ** be released.
2657 if( eFileLock==SHARED_LOCK
2658 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2660 int failed;
2661 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2662 if (failed) {
2663 rc = failed;
2664 goto afp_end_lock;
2668 /* If control gets to this point, then actually go ahead and make
2669 ** operating system calls for the specified lock.
2671 if( eFileLock==SHARED_LOCK ){
2672 int lrc1, lrc2, lrc1Errno = 0;
2673 long lk, mask;
2675 assert( pInode->nShared==0 );
2676 assert( pInode->eFileLock==0 );
2678 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2679 /* Now get the read-lock SHARED_LOCK */
2680 /* note that the quality of the randomness doesn't matter that much */
2681 lk = random();
2682 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2683 lrc1 = afpSetLock(context->dbPath, pFile,
2684 SHARED_FIRST+pInode->sharedByte, 1, 1);
2685 if( IS_LOCK_ERROR(lrc1) ){
2686 lrc1Errno = pFile->lastErrno;
2688 /* Drop the temporary PENDING lock */
2689 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2691 if( IS_LOCK_ERROR(lrc1) ) {
2692 pFile->lastErrno = lrc1Errno;
2693 rc = lrc1;
2694 goto afp_end_lock;
2695 } else if( IS_LOCK_ERROR(lrc2) ){
2696 rc = lrc2;
2697 goto afp_end_lock;
2698 } else if( lrc1 != SQLITE_OK ) {
2699 rc = lrc1;
2700 } else {
2701 pFile->eFileLock = SHARED_LOCK;
2702 pInode->nLock++;
2703 pInode->nShared = 1;
2705 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2706 /* We are trying for an exclusive lock but another thread in this
2707 ** same process is still holding a shared lock. */
2708 rc = SQLITE_BUSY;
2709 }else{
2710 /* The request was for a RESERVED or EXCLUSIVE lock. It is
2711 ** assumed that there is a SHARED or greater lock on the file
2712 ** already.
2714 int failed = 0;
2715 assert( 0!=pFile->eFileLock );
2716 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2717 /* Acquire a RESERVED lock */
2718 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2719 if( !failed ){
2720 context->reserved = 1;
2723 if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2724 /* Acquire an EXCLUSIVE lock */
2726 /* Remove the shared lock before trying the range. we'll need to
2727 ** reestablish the shared lock if we can't get the afpUnlock
2729 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2730 pInode->sharedByte, 1, 0)) ){
2731 int failed2 = SQLITE_OK;
2732 /* now attemmpt to get the exclusive lock range */
2733 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2734 SHARED_SIZE, 1);
2735 if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2736 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2737 /* Can't reestablish the shared lock. Sqlite can't deal, this is
2738 ** a critical I/O error
2740 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2741 SQLITE_IOERR_LOCK;
2742 goto afp_end_lock;
2744 }else{
2745 rc = failed;
2748 if( failed ){
2749 rc = failed;
2753 if( rc==SQLITE_OK ){
2754 pFile->eFileLock = eFileLock;
2755 pInode->eFileLock = eFileLock;
2756 }else if( eFileLock==EXCLUSIVE_LOCK ){
2757 pFile->eFileLock = PENDING_LOCK;
2758 pInode->eFileLock = PENDING_LOCK;
2761 afp_end_lock:
2762 unixLeaveMutex();
2763 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2764 rc==SQLITE_OK ? "ok" : "failed"));
2765 return rc;
2769 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2770 ** must be either NO_LOCK or SHARED_LOCK.
2772 ** If the locking level of the file descriptor is already at or below
2773 ** the requested locking level, this routine is a no-op.
2775 static int afpUnlock(sqlite3_file *id, int eFileLock) {
2776 int rc = SQLITE_OK;
2777 unixFile *pFile = (unixFile*)id;
2778 unixInodeInfo *pInode;
2779 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2780 int skipShared = 0;
2781 #ifdef SQLITE_TEST
2782 int h = pFile->h;
2783 #endif
2785 assert( pFile );
2786 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
2787 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
2788 getpid()));
2790 assert( eFileLock<=SHARED_LOCK );
2791 if( pFile->eFileLock<=eFileLock ){
2792 return SQLITE_OK;
2794 unixEnterMutex();
2795 pInode = pFile->pInode;
2796 assert( pInode->nShared!=0 );
2797 if( pFile->eFileLock>SHARED_LOCK ){
2798 assert( pInode->eFileLock==pFile->eFileLock );
2799 SimulateIOErrorBenign(1);
2800 SimulateIOError( h=(-1) )
2801 SimulateIOErrorBenign(0);
2803 #ifndef NDEBUG
2804 /* When reducing a lock such that other processes can start
2805 ** reading the database file again, make sure that the
2806 ** transaction counter was updated if any part of the database
2807 ** file changed. If the transaction counter is not updated,
2808 ** other connections to the same file might not realize that
2809 ** the file has changed and hence might not know to flush their
2810 ** cache. The use of a stale cache can lead to database corruption.
2812 assert( pFile->inNormalWrite==0
2813 || pFile->dbUpdate==0
2814 || pFile->transCntrChng==1 );
2815 pFile->inNormalWrite = 0;
2816 #endif
2818 if( pFile->eFileLock==EXCLUSIVE_LOCK ){
2819 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2820 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
2821 /* only re-establish the shared lock if necessary */
2822 int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2823 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2824 } else {
2825 skipShared = 1;
2828 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
2829 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2831 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
2832 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2833 if( !rc ){
2834 context->reserved = 0;
2837 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2838 pInode->eFileLock = SHARED_LOCK;
2841 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
2843 /* Decrement the shared lock counter. Release the lock using an
2844 ** OS call only when all threads in this same process have released
2845 ** the lock.
2847 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2848 pInode->nShared--;
2849 if( pInode->nShared==0 ){
2850 SimulateIOErrorBenign(1);
2851 SimulateIOError( h=(-1) )
2852 SimulateIOErrorBenign(0);
2853 if( !skipShared ){
2854 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
2856 if( !rc ){
2857 pInode->eFileLock = NO_LOCK;
2858 pFile->eFileLock = NO_LOCK;
2861 if( rc==SQLITE_OK ){
2862 pInode->nLock--;
2863 assert( pInode->nLock>=0 );
2864 if( pInode->nLock==0 ){
2865 closePendingFds(pFile);
2870 unixLeaveMutex();
2871 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
2872 return rc;
2876 ** Close a file & cleanup AFP specific locking context
2878 static int afpClose(sqlite3_file *id) {
2879 int rc = SQLITE_OK;
2880 if( id ){
2881 unixFile *pFile = (unixFile*)id;
2882 afpUnlock(id, NO_LOCK);
2883 unixEnterMutex();
2884 if( pFile->pInode && pFile->pInode->nLock ){
2885 /* If there are outstanding locks, do not actually close the file just
2886 ** yet because that would clear those locks. Instead, add the file
2887 ** descriptor to pInode->aPending. It will be automatically closed when
2888 ** the last lock is cleared.
2890 setPendingFd(pFile);
2892 releaseInodeInfo(pFile);
2893 sqlite3_free(pFile->lockingContext);
2894 rc = closeUnixFile(id);
2895 unixLeaveMutex();
2897 return rc;
2900 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2902 ** The code above is the AFP lock implementation. The code is specific
2903 ** to MacOSX and does not work on other unix platforms. No alternative
2904 ** is available. If you don't compile for a mac, then the "unix-afp"
2905 ** VFS is not available.
2907 ********************* End of the AFP lock implementation **********************
2908 ******************************************************************************/
2910 /******************************************************************************
2911 *************************** Begin NFS Locking ********************************/
2913 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2915 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2916 ** must be either NO_LOCK or SHARED_LOCK.
2918 ** If the locking level of the file descriptor is already at or below
2919 ** the requested locking level, this routine is a no-op.
2921 static int nfsUnlock(sqlite3_file *id, int eFileLock){
2922 return posixUnlock(id, eFileLock, 1);
2925 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2927 ** The code above is the NFS lock implementation. The code is specific
2928 ** to MacOSX and does not work on other unix platforms. No alternative
2929 ** is available.
2931 ********************* End of the NFS lock implementation **********************
2932 ******************************************************************************/
2934 /******************************************************************************
2935 **************** Non-locking sqlite3_file methods *****************************
2937 ** The next division contains implementations for all methods of the
2938 ** sqlite3_file object other than the locking methods. The locking
2939 ** methods were defined in divisions above (one locking method per
2940 ** division). Those methods that are common to all locking modes
2941 ** are gather together into this division.
2945 ** Seek to the offset passed as the second argument, then read cnt
2946 ** bytes into pBuf. Return the number of bytes actually read.
2948 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
2949 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
2950 ** one system to another. Since SQLite does not define USE_PREAD
2951 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2952 ** See tickets #2741 and #2681.
2954 ** To avoid stomping the errno value on a failed read the lastErrno value
2955 ** is set before returning.
2957 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
2958 int got;
2959 int prior = 0;
2960 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
2961 i64 newOffset;
2962 #endif
2963 TIMER_START;
2965 #if defined(USE_PREAD)
2966 got = osPread(id->h, pBuf, cnt, offset);
2967 SimulateIOError( got = -1 );
2968 #elif defined(USE_PREAD64)
2969 got = osPread64(id->h, pBuf, cnt, offset);
2970 SimulateIOError( got = -1 );
2971 #else
2972 newOffset = lseek(id->h, offset, SEEK_SET);
2973 SimulateIOError( newOffset-- );
2974 if( newOffset!=offset ){
2975 if( newOffset == -1 ){
2976 ((unixFile*)id)->lastErrno = errno;
2977 }else{
2978 ((unixFile*)id)->lastErrno = 0;
2980 return -1;
2982 got = osRead(id->h, pBuf, cnt);
2983 #endif
2984 if( got==cnt ) break;
2985 if( got<0 ){
2986 if( errno==EINTR ){ got = 1; continue; }
2987 prior = 0;
2988 ((unixFile*)id)->lastErrno = errno;
2989 break;
2990 }else if( got>0 ){
2991 cnt -= got;
2992 offset += got;
2993 prior += got;
2994 pBuf = (void*)(got + (char*)pBuf);
2996 }while( got>0 );
2997 TIMER_END;
2998 OSTRACE(("READ %-3d %5d %7lld %llu\n",
2999 id->h, got+prior, offset-prior, TIMER_ELAPSED));
3000 return got+prior;
3004 ** Read data from a file into a buffer. Return SQLITE_OK if all
3005 ** bytes were read successfully and SQLITE_IOERR if anything goes
3006 ** wrong.
3008 static int unixRead(
3009 sqlite3_file *id,
3010 void *pBuf,
3011 int amt,
3012 sqlite3_int64 offset
3014 unixFile *pFile = (unixFile *)id;
3015 int got;
3016 assert( id );
3018 /* If this is a database file (not a journal, master-journal or temp
3019 ** file), the bytes in the locking range should never be read or written. */
3020 #if 0
3021 assert( pFile->pUnused==0
3022 || offset>=PENDING_BYTE+512
3023 || offset+amt<=PENDING_BYTE
3025 #endif
3027 got = seekAndRead(pFile, offset, pBuf, amt);
3028 if( got==amt ){
3029 return SQLITE_OK;
3030 }else if( got<0 ){
3031 /* lastErrno set by seekAndRead */
3032 return SQLITE_IOERR_READ;
3033 }else{
3034 pFile->lastErrno = 0; /* not a system error */
3035 /* Unread parts of the buffer must be zero-filled */
3036 memset(&((char*)pBuf)[got], 0, amt-got);
3037 return SQLITE_IOERR_SHORT_READ;
3042 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3043 ** Return the number of bytes actually read. Update the offset.
3045 ** To avoid stomping the errno value on a failed write the lastErrno value
3046 ** is set before returning.
3048 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3049 int got;
3050 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3051 i64 newOffset;
3052 #endif
3053 TIMER_START;
3054 #if defined(USE_PREAD)
3055 do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
3056 #elif defined(USE_PREAD64)
3057 do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
3058 #else
3060 newOffset = lseek(id->h, offset, SEEK_SET);
3061 SimulateIOError( newOffset-- );
3062 if( newOffset!=offset ){
3063 if( newOffset == -1 ){
3064 ((unixFile*)id)->lastErrno = errno;
3065 }else{
3066 ((unixFile*)id)->lastErrno = 0;
3068 return -1;
3070 got = osWrite(id->h, pBuf, cnt);
3071 }while( got<0 && errno==EINTR );
3072 #endif
3073 TIMER_END;
3074 if( got<0 ){
3075 ((unixFile*)id)->lastErrno = errno;
3078 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
3079 return got;
3084 ** Write data from a buffer into a file. Return SQLITE_OK on success
3085 ** or some other error code on failure.
3087 static int unixWrite(
3088 sqlite3_file *id,
3089 const void *pBuf,
3090 int amt,
3091 sqlite3_int64 offset
3093 unixFile *pFile = (unixFile*)id;
3094 int wrote = 0;
3095 assert( id );
3096 assert( amt>0 );
3098 /* If this is a database file (not a journal, master-journal or temp
3099 ** file), the bytes in the locking range should never be read or written. */
3100 #if 0
3101 assert( pFile->pUnused==0
3102 || offset>=PENDING_BYTE+512
3103 || offset+amt<=PENDING_BYTE
3105 #endif
3107 #ifndef NDEBUG
3108 /* If we are doing a normal write to a database file (as opposed to
3109 ** doing a hot-journal rollback or a write to some file other than a
3110 ** normal database file) then record the fact that the database
3111 ** has changed. If the transaction counter is modified, record that
3112 ** fact too.
3114 if( pFile->inNormalWrite ){
3115 pFile->dbUpdate = 1; /* The database has been modified */
3116 if( offset<=24 && offset+amt>=27 ){
3117 int rc;
3118 char oldCntr[4];
3119 SimulateIOErrorBenign(1);
3120 rc = seekAndRead(pFile, 24, oldCntr, 4);
3121 SimulateIOErrorBenign(0);
3122 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3123 pFile->transCntrChng = 1; /* The transaction counter has changed */
3127 #endif
3129 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
3130 amt -= wrote;
3131 offset += wrote;
3132 pBuf = &((char*)pBuf)[wrote];
3134 SimulateIOError(( wrote=(-1), amt=1 ));
3135 SimulateDiskfullError(( wrote=0, amt=1 ));
3137 if( amt>0 ){
3138 if( wrote<0 && pFile->lastErrno!=ENOSPC ){
3139 /* lastErrno set by seekAndWrite */
3140 return SQLITE_IOERR_WRITE;
3141 }else{
3142 pFile->lastErrno = 0; /* not a system error */
3143 return SQLITE_FULL;
3147 return SQLITE_OK;
3150 #ifdef SQLITE_TEST
3152 ** Count the number of fullsyncs and normal syncs. This is used to test
3153 ** that syncs and fullsyncs are occurring at the right times.
3155 int sqlite3_sync_count = 0;
3156 int sqlite3_fullsync_count = 0;
3157 #endif
3160 ** We do not trust systems to provide a working fdatasync(). Some do.
3161 ** Others do no. To be safe, we will stick with the (slightly slower)
3162 ** fsync(). If you know that your system does support fdatasync() correctly,
3163 ** then simply compile with -Dfdatasync=fdatasync
3165 #if !defined(fdatasync)
3166 # define fdatasync fsync
3167 #endif
3170 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3171 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3172 ** only available on Mac OS X. But that could change.
3174 #ifdef F_FULLFSYNC
3175 # define HAVE_FULLFSYNC 1
3176 #else
3177 # define HAVE_FULLFSYNC 0
3178 #endif
3182 ** The fsync() system call does not work as advertised on many
3183 ** unix systems. The following procedure is an attempt to make
3184 ** it work better.
3186 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3187 ** for testing when we want to run through the test suite quickly.
3188 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3189 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3190 ** or power failure will likely corrupt the database file.
3192 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3193 ** The idea behind dataOnly is that it should only write the file content
3194 ** to disk, not the inode. We only set dataOnly if the file size is
3195 ** unchanged since the file size is part of the inode. However,
3196 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3197 ** file size has changed. The only real difference between fdatasync()
3198 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3199 ** inode if the mtime or owner or other inode attributes have changed.
3200 ** We only care about the file size, not the other file attributes, so
3201 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3202 ** So, we always use fdatasync() if it is available, regardless of
3203 ** the value of the dataOnly flag.
3205 static int full_fsync(int fd, int fullSync, int dataOnly){
3206 int rc;
3208 /* The following "ifdef/elif/else/" block has the same structure as
3209 ** the one below. It is replicated here solely to avoid cluttering
3210 ** up the real code with the UNUSED_PARAMETER() macros.
3212 #ifdef SQLITE_NO_SYNC
3213 UNUSED_PARAMETER(fd);
3214 UNUSED_PARAMETER(fullSync);
3215 UNUSED_PARAMETER(dataOnly);
3216 #elif HAVE_FULLFSYNC
3217 UNUSED_PARAMETER(dataOnly);
3218 #else
3219 UNUSED_PARAMETER(fullSync);
3220 UNUSED_PARAMETER(dataOnly);
3221 #endif
3223 /* Record the number of times that we do a normal fsync() and
3224 ** FULLSYNC. This is used during testing to verify that this procedure
3225 ** gets called with the correct arguments.
3227 #ifdef SQLITE_TEST
3228 if( fullSync ) sqlite3_fullsync_count++;
3229 sqlite3_sync_count++;
3230 #endif
3232 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3233 ** no-op
3235 #ifdef SQLITE_NO_SYNC
3236 rc = SQLITE_OK;
3237 #elif HAVE_FULLFSYNC
3238 if( fullSync ){
3239 rc = osFcntl(fd, F_FULLFSYNC, 0);
3240 }else{
3241 rc = 1;
3243 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3244 ** It shouldn't be possible for fullfsync to fail on the local
3245 ** file system (on OSX), so failure indicates that FULLFSYNC
3246 ** isn't supported for this file system. So, attempt an fsync
3247 ** and (for now) ignore the overhead of a superfluous fcntl call.
3248 ** It'd be better to detect fullfsync support once and avoid
3249 ** the fcntl call every time sync is called.
3251 if( rc ) rc = fsync(fd);
3253 #elif defined(__APPLE__)
3254 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3255 ** so currently we default to the macro that redefines fdatasync to fsync
3257 rc = fsync(fd);
3258 #else
3259 rc = fdatasync(fd);
3260 #if OS_VXWORKS
3261 if( rc==-1 && errno==ENOTSUP ){
3262 rc = fsync(fd);
3264 #endif /* OS_VXWORKS */
3265 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3267 if( OS_VXWORKS && rc!= -1 ){
3268 rc = 0;
3270 return rc;
3274 ** Open a file descriptor to the directory containing file zFilename.
3275 ** If successful, *pFd is set to the opened file descriptor and
3276 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3277 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3278 ** value.
3280 ** The directory file descriptor is used for only one thing - to
3281 ** fsync() a directory to make sure file creation and deletion events
3282 ** are flushed to disk. Such fsyncs are not needed on newer
3283 ** journaling filesystems, but are required on older filesystems.
3285 ** This routine can be overridden using the xSetSysCall interface.
3286 ** The ability to override this routine was added in support of the
3287 ** chromium sandbox. Opening a directory is a security risk (we are
3288 ** told) so making it overrideable allows the chromium sandbox to
3289 ** replace this routine with a harmless no-op. To make this routine
3290 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3291 ** *pFd set to a negative number.
3293 ** If SQLITE_OK is returned, the caller is responsible for closing
3294 ** the file descriptor *pFd using close().
3296 static int openDirectory(const char *zFilename, int *pFd){
3297 int ii;
3298 int fd = -1;
3299 char zDirname[MAX_PATHNAME+1];
3301 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3302 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3303 if( ii>0 ){
3304 zDirname[ii] = '\0';
3305 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3306 if( fd>=0 ){
3307 #ifdef FD_CLOEXEC
3308 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
3309 #endif
3310 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3313 *pFd = fd;
3314 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
3318 ** Make sure all writes to a particular file are committed to disk.
3320 ** If dataOnly==0 then both the file itself and its metadata (file
3321 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3322 ** file data is synced.
3324 ** Under Unix, also make sure that the directory entry for the file
3325 ** has been created by fsync-ing the directory that contains the file.
3326 ** If we do not do this and we encounter a power failure, the directory
3327 ** entry for the journal might not exist after we reboot. The next
3328 ** SQLite to access the file will not know that the journal exists (because
3329 ** the directory entry for the journal was never created) and the transaction
3330 ** will not roll back - possibly leading to database corruption.
3332 static int unixSync(sqlite3_file *id, int flags){
3333 int rc;
3334 unixFile *pFile = (unixFile*)id;
3336 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3337 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3339 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3340 assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3341 || (flags&0x0F)==SQLITE_SYNC_FULL
3344 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3345 ** line is to test that doing so does not cause any problems.
3347 SimulateDiskfullError( return SQLITE_FULL );
3349 assert( pFile );
3350 OSTRACE(("SYNC %-3d\n", pFile->h));
3351 rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3352 SimulateIOError( rc=1 );
3353 if( rc ){
3354 pFile->lastErrno = errno;
3355 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3358 /* Also fsync the directory containing the file if the DIRSYNC flag
3359 ** is set. This is a one-time occurrance. Many systems (examples: AIX)
3360 ** are unable to fsync a directory, so ignore errors on the fsync.
3362 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3363 int dirfd;
3364 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3365 HAVE_FULLFSYNC, isFullsync));
3366 rc = osOpenDirectory(pFile->zPath, &dirfd);
3367 if( rc==SQLITE_OK && dirfd>=0 ){
3368 full_fsync(dirfd, 0, 0);
3369 robust_close(pFile, dirfd, __LINE__);
3370 }else if( rc==SQLITE_CANTOPEN ){
3371 rc = SQLITE_OK;
3373 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3375 return rc;
3379 ** Truncate an open file to a specified size
3381 static int unixTruncate(sqlite3_file *id, i64 nByte){
3382 unixFile *pFile = (unixFile *)id;
3383 int rc;
3384 assert( pFile );
3385 SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3387 /* If the user has configured a chunk-size for this file, truncate the
3388 ** file so that it consists of an integer number of chunks (i.e. the
3389 ** actual file size after the operation may be larger than the requested
3390 ** size).
3392 if( pFile->szChunk ){
3393 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3396 rc = robust_ftruncate(pFile->h, (off_t)nByte);
3397 if( rc ){
3398 pFile->lastErrno = errno;
3399 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3400 }else{
3401 #ifndef NDEBUG
3402 /* If we are doing a normal write to a database file (as opposed to
3403 ** doing a hot-journal rollback or a write to some file other than a
3404 ** normal database file) and we truncate the file to zero length,
3405 ** that effectively updates the change counter. This might happen
3406 ** when restoring a database using the backup API from a zero-length
3407 ** source.
3409 if( pFile->inNormalWrite && nByte==0 ){
3410 pFile->transCntrChng = 1;
3412 #endif
3414 return SQLITE_OK;
3419 ** Determine the current size of a file in bytes
3421 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3422 int rc;
3423 struct stat buf;
3424 assert( id );
3425 rc = osFstat(((unixFile*)id)->h, &buf);
3426 SimulateIOError( rc=1 );
3427 if( rc!=0 ){
3428 ((unixFile*)id)->lastErrno = errno;
3429 return SQLITE_IOERR_FSTAT;
3431 *pSize = buf.st_size;
3433 /* When opening a zero-size database, the findInodeInfo() procedure
3434 ** writes a single byte into that file in order to work around a bug
3435 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3436 ** layers, we need to report this file size as zero even though it is
3437 ** really 1. Ticket #3260.
3439 if( *pSize==1 ) *pSize = 0;
3442 return SQLITE_OK;
3445 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3447 ** Handler for proxy-locking file-control verbs. Defined below in the
3448 ** proxying locking division.
3450 static int proxyFileControl(sqlite3_file*,int,void*);
3451 #endif
3454 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3455 ** file-control operation. Enlarge the database to nBytes in size
3456 ** (rounded up to the next chunk-size). If the database is already
3457 ** nBytes or larger, this routine is a no-op.
3459 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3460 if( pFile->szChunk>0 ){
3461 i64 nSize; /* Required file size */
3462 struct stat buf; /* Used to hold return values of fstat() */
3464 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
3466 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3467 if( nSize>(i64)buf.st_size ){
3469 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3470 /* The code below is handling the return value of osFallocate()
3471 ** correctly. posix_fallocate() is defined to "returns zero on success,
3472 ** or an error number on failure". See the manpage for details. */
3473 int err;
3475 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3476 }while( err==EINTR );
3477 if( err ) return SQLITE_IOERR_WRITE;
3478 #else
3479 /* If the OS does not have posix_fallocate(), fake it. First use
3480 ** ftruncate() to set the file size, then write a single byte to
3481 ** the last byte in each block within the extended region. This
3482 ** is the same technique used by glibc to implement posix_fallocate()
3483 ** on systems that do not have a real fallocate() system call.
3485 int nBlk = buf.st_blksize; /* File-system block size */
3486 i64 iWrite; /* Next offset to write to */
3488 if( robust_ftruncate(pFile->h, nSize) ){
3489 pFile->lastErrno = errno;
3490 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3492 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
3493 while( iWrite<nSize ){
3494 int nWrite = seekAndWrite(pFile, iWrite, "", 1);
3495 if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3496 iWrite += nBlk;
3498 #endif
3502 return SQLITE_OK;
3506 ** If *pArg is inititially negative then this is a query. Set *pArg to
3507 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3509 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3511 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
3512 if( *pArg<0 ){
3513 *pArg = (pFile->ctrlFlags & mask)!=0;
3514 }else if( (*pArg)==0 ){
3515 pFile->ctrlFlags &= ~mask;
3516 }else{
3517 pFile->ctrlFlags |= mask;
3522 ** Information and control of an open file handle.
3524 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3525 unixFile *pFile = (unixFile*)id;
3526 switch( op ){
3527 case SQLITE_FCNTL_LOCKSTATE: {
3528 *(int*)pArg = pFile->eFileLock;
3529 return SQLITE_OK;
3531 case SQLITE_LAST_ERRNO: {
3532 *(int*)pArg = pFile->lastErrno;
3533 return SQLITE_OK;
3535 case SQLITE_FCNTL_CHUNK_SIZE: {
3536 pFile->szChunk = *(int *)pArg;
3537 return SQLITE_OK;
3539 case SQLITE_FCNTL_SIZE_HINT: {
3540 int rc;
3541 SimulateIOErrorBenign(1);
3542 rc = fcntlSizeHint(pFile, *(i64 *)pArg);
3543 SimulateIOErrorBenign(0);
3544 return rc;
3546 case SQLITE_FCNTL_PERSIST_WAL: {
3547 unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
3548 return SQLITE_OK;
3550 case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
3551 unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
3552 return SQLITE_OK;
3554 case SQLITE_FCNTL_VFSNAME: {
3555 *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
3556 return SQLITE_OK;
3558 #ifndef NDEBUG
3559 /* The pager calls this method to signal that it has done
3560 ** a rollback and that the database is therefore unchanged and
3561 ** it hence it is OK for the transaction change counter to be
3562 ** unchanged.
3564 case SQLITE_FCNTL_DB_UNCHANGED: {
3565 ((unixFile*)id)->dbUpdate = 0;
3566 return SQLITE_OK;
3568 #endif
3569 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3570 case SQLITE_SET_LOCKPROXYFILE:
3571 case SQLITE_GET_LOCKPROXYFILE: {
3572 return proxyFileControl(id,op,pArg);
3574 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3576 return SQLITE_NOTFOUND;
3580 ** Return the sector size in bytes of the underlying block device for
3581 ** the specified file. This is almost always 512 bytes, but may be
3582 ** larger for some devices.
3584 ** SQLite code assumes this function cannot fail. It also assumes that
3585 ** if two files are created in the same file-system directory (i.e.
3586 ** a database and its journal file) that the sector size will be the
3587 ** same for both.
3589 static int unixSectorSize(sqlite3_file *pFile){
3590 (void)pFile;
3591 return SQLITE_DEFAULT_SECTOR_SIZE;
3595 ** Return the device characteristics for the file.
3597 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
3598 ** However, that choice is contraversial since technically the underlying
3599 ** file system does not always provide powersafe overwrites. (In other
3600 ** words, after a power-loss event, parts of the file that were never
3601 ** written might end up being altered.) However, non-PSOW behavior is very,
3602 ** very rare. And asserting PSOW makes a large reduction in the amount
3603 ** of required I/O for journaling, since a lot of padding is eliminated.
3604 ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
3605 ** available to turn it off and URI query parameter available to turn it off.
3607 static int unixDeviceCharacteristics(sqlite3_file *id){
3608 unixFile *p = (unixFile*)id;
3609 if( p->ctrlFlags & UNIXFILE_PSOW ){
3610 return SQLITE_IOCAP_POWERSAFE_OVERWRITE;
3611 }else{
3612 return 0;
3616 #ifndef SQLITE_OMIT_WAL
3620 ** Object used to represent an shared memory buffer.
3622 ** When multiple threads all reference the same wal-index, each thread
3623 ** has its own unixShm object, but they all point to a single instance
3624 ** of this unixShmNode object. In other words, each wal-index is opened
3625 ** only once per process.
3627 ** Each unixShmNode object is connected to a single unixInodeInfo object.
3628 ** We could coalesce this object into unixInodeInfo, but that would mean
3629 ** every open file that does not use shared memory (in other words, most
3630 ** open files) would have to carry around this extra information. So
3631 ** the unixInodeInfo object contains a pointer to this unixShmNode object
3632 ** and the unixShmNode object is created only when needed.
3634 ** unixMutexHeld() must be true when creating or destroying
3635 ** this object or while reading or writing the following fields:
3637 ** nRef
3639 ** The following fields are read-only after the object is created:
3641 ** fid
3642 ** zFilename
3644 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
3645 ** unixMutexHeld() is true when reading or writing any other field
3646 ** in this structure.
3648 struct unixShmNode {
3649 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
3650 sqlite3_mutex *mutex; /* Mutex to access this object */
3651 char *zFilename; /* Name of the mmapped file */
3652 int h; /* Open file descriptor */
3653 int szRegion; /* Size of shared-memory regions */
3654 u16 nRegion; /* Size of array apRegion */
3655 u8 isReadonly; /* True if read-only */
3656 char **apRegion; /* Array of mapped shared-memory regions */
3657 int nRef; /* Number of unixShm objects pointing to this */
3658 unixShm *pFirst; /* All unixShm objects pointing to this */
3659 #ifdef SQLITE_DEBUG
3660 u8 exclMask; /* Mask of exclusive locks held */
3661 u8 sharedMask; /* Mask of shared locks held */
3662 u8 nextShmId; /* Next available unixShm.id value */
3663 #endif
3667 ** Structure used internally by this VFS to record the state of an
3668 ** open shared memory connection.
3670 ** The following fields are initialized when this object is created and
3671 ** are read-only thereafter:
3673 ** unixShm.pFile
3674 ** unixShm.id
3676 ** All other fields are read/write. The unixShm.pFile->mutex must be held
3677 ** while accessing any read/write fields.
3679 struct unixShm {
3680 unixShmNode *pShmNode; /* The underlying unixShmNode object */
3681 unixShm *pNext; /* Next unixShm with the same unixShmNode */
3682 u8 hasMutex; /* True if holding the unixShmNode mutex */
3683 u8 id; /* Id of this connection within its unixShmNode */
3684 u16 sharedMask; /* Mask of shared locks held */
3685 u16 exclMask; /* Mask of exclusive locks held */
3689 ** Constants used for locking
3691 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
3692 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
3695 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
3697 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3698 ** otherwise.
3700 static int unixShmSystemLock(
3701 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
3702 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
3703 int ofst, /* First byte of the locking range */
3704 int n /* Number of bytes to lock */
3706 struct flock f; /* The posix advisory locking structure */
3707 int rc = SQLITE_OK; /* Result code form fcntl() */
3709 /* Access to the unixShmNode object is serialized by the caller */
3710 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
3712 /* Shared locks never span more than one byte */
3713 assert( n==1 || lockType!=F_RDLCK );
3715 /* Locks are within range */
3716 assert( n>=1 && n<SQLITE_SHM_NLOCK );
3718 if( pShmNode->h>=0 ){
3719 /* Initialize the locking parameters */
3720 memset(&f, 0, sizeof(f));
3721 f.l_type = lockType;
3722 f.l_whence = SEEK_SET;
3723 f.l_start = ofst;
3724 f.l_len = n;
3726 rc = osFcntl(pShmNode->h, F_SETLK, &f);
3727 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
3730 /* Update the global lock state and do debug tracing */
3731 #ifdef SQLITE_DEBUG
3732 { u16 mask;
3733 OSTRACE(("SHM-LOCK "));
3734 mask = (1<<(ofst+n)) - (1<<ofst);
3735 if( rc==SQLITE_OK ){
3736 if( lockType==F_UNLCK ){
3737 OSTRACE(("unlock %d ok", ofst));
3738 pShmNode->exclMask &= ~mask;
3739 pShmNode->sharedMask &= ~mask;
3740 }else if( lockType==F_RDLCK ){
3741 OSTRACE(("read-lock %d ok", ofst));
3742 pShmNode->exclMask &= ~mask;
3743 pShmNode->sharedMask |= mask;
3744 }else{
3745 assert( lockType==F_WRLCK );
3746 OSTRACE(("write-lock %d ok", ofst));
3747 pShmNode->exclMask |= mask;
3748 pShmNode->sharedMask &= ~mask;
3750 }else{
3751 if( lockType==F_UNLCK ){
3752 OSTRACE(("unlock %d failed", ofst));
3753 }else if( lockType==F_RDLCK ){
3754 OSTRACE(("read-lock failed"));
3755 }else{
3756 assert( lockType==F_WRLCK );
3757 OSTRACE(("write-lock %d failed", ofst));
3760 OSTRACE((" - afterwards %03x,%03x\n",
3761 pShmNode->sharedMask, pShmNode->exclMask));
3763 #endif
3765 return rc;
3770 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
3772 ** This is not a VFS shared-memory method; it is a utility function called
3773 ** by VFS shared-memory methods.
3775 static void unixShmPurge(unixFile *pFd){
3776 unixShmNode *p = pFd->pInode->pShmNode;
3777 assert( unixMutexHeld() );
3778 if( p && p->nRef==0 ){
3779 int i;
3780 assert( p->pInode==pFd->pInode );
3781 sqlite3_mutex_free(p->mutex);
3782 for(i=0; i<p->nRegion; i++){
3783 if( p->h>=0 ){
3784 munmap(p->apRegion[i], p->szRegion);
3785 }else{
3786 sqlite3_free(p->apRegion[i]);
3789 sqlite3_free(p->apRegion);
3790 if( p->h>=0 ){
3791 robust_close(pFd, p->h, __LINE__);
3792 p->h = -1;
3794 p->pInode->pShmNode = 0;
3795 sqlite3_free(p);
3800 ** Open a shared-memory area associated with open database file pDbFd.
3801 ** This particular implementation uses mmapped files.
3803 ** The file used to implement shared-memory is in the same directory
3804 ** as the open database file and has the same name as the open database
3805 ** file with the "-shm" suffix added. For example, if the database file
3806 ** is "/home/user1/config.db" then the file that is created and mmapped
3807 ** for shared memory will be called "/home/user1/config.db-shm".
3809 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
3810 ** some other tmpfs mount. But if a file in a different directory
3811 ** from the database file is used, then differing access permissions
3812 ** or a chroot() might cause two different processes on the same
3813 ** database to end up using different files for shared memory -
3814 ** meaning that their memory would not really be shared - resulting
3815 ** in database corruption. Nevertheless, this tmpfs file usage
3816 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
3817 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
3818 ** option results in an incompatible build of SQLite; builds of SQLite
3819 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
3820 ** same database file at the same time, database corruption will likely
3821 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
3822 ** "unsupported" and may go away in a future SQLite release.
3824 ** When opening a new shared-memory file, if no other instances of that
3825 ** file are currently open, in this process or in other processes, then
3826 ** the file must be truncated to zero length or have its header cleared.
3828 ** If the original database file (pDbFd) is using the "unix-excl" VFS
3829 ** that means that an exclusive lock is held on the database file and
3830 ** that no other processes are able to read or write the database. In
3831 ** that case, we do not really need shared memory. No shared memory
3832 ** file is created. The shared memory will be simulated with heap memory.
3834 static int unixOpenSharedMemory(unixFile *pDbFd){
3835 struct unixShm *p = 0; /* The connection to be opened */
3836 struct unixShmNode *pShmNode; /* The underlying mmapped file */
3837 int rc; /* Result code */
3838 unixInodeInfo *pInode; /* The inode of fd */
3839 char *zShmFilename; /* Name of the file used for SHM */
3840 int nShmFilename; /* Size of the SHM filename in bytes */
3842 /* Allocate space for the new unixShm object. */
3843 p = sqlite3_malloc( sizeof(*p) );
3844 if( p==0 ) return SQLITE_NOMEM;
3845 memset(p, 0, sizeof(*p));
3846 assert( pDbFd->pShm==0 );
3848 /* Check to see if a unixShmNode object already exists. Reuse an existing
3849 ** one if present. Create a new one if necessary.
3851 unixEnterMutex();
3852 pInode = pDbFd->pInode;
3853 pShmNode = pInode->pShmNode;
3854 if( pShmNode==0 ){
3855 struct stat sStat; /* fstat() info for database file */
3857 /* Call fstat() to figure out the permissions on the database file. If
3858 ** a new *-shm file is created, an attempt will be made to create it
3859 ** with the same permissions. The actual permissions the file is created
3860 ** with are subject to the current umask setting.
3862 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
3863 rc = SQLITE_IOERR_FSTAT;
3864 goto shm_open_err;
3867 #ifdef SQLITE_SHM_DIRECTORY
3868 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
3869 #else
3870 nShmFilename = 6 + (int)strlen(pDbFd->zPath);
3871 #endif
3872 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
3873 if( pShmNode==0 ){
3874 rc = SQLITE_NOMEM;
3875 goto shm_open_err;
3877 memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
3878 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
3879 #ifdef SQLITE_SHM_DIRECTORY
3880 sqlite3_snprintf(nShmFilename, zShmFilename,
3881 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
3882 (u32)sStat.st_ino, (u32)sStat.st_dev);
3883 #else
3884 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
3885 sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
3886 #endif
3887 pShmNode->h = -1;
3888 pDbFd->pInode->pShmNode = pShmNode;
3889 pShmNode->pInode = pDbFd->pInode;
3890 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
3891 if( pShmNode->mutex==0 ){
3892 rc = SQLITE_NOMEM;
3893 goto shm_open_err;
3896 if( pInode->bProcessLock==0 ){
3897 int openFlags = O_RDWR | O_CREAT;
3898 if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
3899 openFlags = O_RDONLY;
3900 pShmNode->isReadonly = 1;
3902 pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777));
3903 if( pShmNode->h<0 ){
3904 if( pShmNode->h<0 ){
3905 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
3906 goto shm_open_err;
3910 /* Check to see if another process is holding the dead-man switch.
3911 ** If not, truncate the file to zero length.
3913 rc = SQLITE_OK;
3914 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3915 if( robust_ftruncate(pShmNode->h, 0) ){
3916 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
3919 if( rc==SQLITE_OK ){
3920 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
3922 if( rc ) goto shm_open_err;
3926 /* Make the new connection a child of the unixShmNode */
3927 p->pShmNode = pShmNode;
3928 #ifdef SQLITE_DEBUG
3929 p->id = pShmNode->nextShmId++;
3930 #endif
3931 pShmNode->nRef++;
3932 pDbFd->pShm = p;
3933 unixLeaveMutex();
3935 /* The reference count on pShmNode has already been incremented under
3936 ** the cover of the unixEnterMutex() mutex and the pointer from the
3937 ** new (struct unixShm) object to the pShmNode has been set. All that is
3938 ** left to do is to link the new object into the linked list starting
3939 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
3940 ** mutex.
3942 sqlite3_mutex_enter(pShmNode->mutex);
3943 p->pNext = pShmNode->pFirst;
3944 pShmNode->pFirst = p;
3945 sqlite3_mutex_leave(pShmNode->mutex);
3946 return SQLITE_OK;
3948 /* Jump here on any error */
3949 shm_open_err:
3950 unixShmPurge(pDbFd); /* This call frees pShmNode if required */
3951 sqlite3_free(p);
3952 unixLeaveMutex();
3953 return rc;
3957 ** This function is called to obtain a pointer to region iRegion of the
3958 ** shared-memory associated with the database file fd. Shared-memory regions
3959 ** are numbered starting from zero. Each shared-memory region is szRegion
3960 ** bytes in size.
3962 ** If an error occurs, an error code is returned and *pp is set to NULL.
3964 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
3965 ** region has not been allocated (by any client, including one running in a
3966 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
3967 ** bExtend is non-zero and the requested shared-memory region has not yet
3968 ** been allocated, it is allocated by this function.
3970 ** If the shared-memory region has already been allocated or is allocated by
3971 ** this call as described above, then it is mapped into this processes
3972 ** address space (if it is not already), *pp is set to point to the mapped
3973 ** memory and SQLITE_OK returned.
3975 static int unixShmMap(
3976 sqlite3_file *fd, /* Handle open on database file */
3977 int iRegion, /* Region to retrieve */
3978 int szRegion, /* Size of regions */
3979 int bExtend, /* True to extend file if necessary */
3980 void volatile **pp /* OUT: Mapped memory */
3982 unixFile *pDbFd = (unixFile*)fd;
3983 unixShm *p;
3984 unixShmNode *pShmNode;
3985 int rc = SQLITE_OK;
3987 /* If the shared-memory file has not yet been opened, open it now. */
3988 if( pDbFd->pShm==0 ){
3989 rc = unixOpenSharedMemory(pDbFd);
3990 if( rc!=SQLITE_OK ) return rc;
3993 p = pDbFd->pShm;
3994 pShmNode = p->pShmNode;
3995 sqlite3_mutex_enter(pShmNode->mutex);
3996 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
3997 assert( pShmNode->pInode==pDbFd->pInode );
3998 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
3999 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4001 if( pShmNode->nRegion<=iRegion ){
4002 char **apNew; /* New apRegion[] array */
4003 int nByte = (iRegion+1)*szRegion; /* Minimum required file size */
4004 struct stat sStat; /* Used by fstat() */
4006 pShmNode->szRegion = szRegion;
4008 if( pShmNode->h>=0 ){
4009 /* The requested region is not mapped into this processes address space.
4010 ** Check to see if it has been allocated (i.e. if the wal-index file is
4011 ** large enough to contain the requested region).
4013 if( osFstat(pShmNode->h, &sStat) ){
4014 rc = SQLITE_IOERR_SHMSIZE;
4015 goto shmpage_out;
4018 if( sStat.st_size<nByte ){
4019 /* The requested memory region does not exist. If bExtend is set to
4020 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
4022 ** Alternatively, if bExtend is true, use ftruncate() to allocate
4023 ** the requested memory region.
4025 if( !bExtend ) goto shmpage_out;
4026 if( robust_ftruncate(pShmNode->h, nByte) ){
4027 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
4028 pShmNode->zFilename);
4029 goto shmpage_out;
4034 /* Map the requested memory region into this processes address space. */
4035 apNew = (char **)sqlite3_realloc(
4036 pShmNode->apRegion, (iRegion+1)*sizeof(char *)
4038 if( !apNew ){
4039 rc = SQLITE_IOERR_NOMEM;
4040 goto shmpage_out;
4042 pShmNode->apRegion = apNew;
4043 while(pShmNode->nRegion<=iRegion){
4044 void *pMem;
4045 if( pShmNode->h>=0 ){
4046 pMem = mmap(0, szRegion,
4047 pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
4048 MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
4050 if( pMem==MAP_FAILED ){
4051 rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
4052 goto shmpage_out;
4054 }else{
4055 pMem = sqlite3_malloc(szRegion);
4056 if( pMem==0 ){
4057 rc = SQLITE_NOMEM;
4058 goto shmpage_out;
4060 memset(pMem, 0, szRegion);
4062 pShmNode->apRegion[pShmNode->nRegion] = pMem;
4063 pShmNode->nRegion++;
4067 shmpage_out:
4068 if( pShmNode->nRegion>iRegion ){
4069 *pp = pShmNode->apRegion[iRegion];
4070 }else{
4071 *pp = 0;
4073 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
4074 sqlite3_mutex_leave(pShmNode->mutex);
4075 return rc;
4079 ** Change the lock state for a shared-memory segment.
4081 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4082 ** different here than in posix. In xShmLock(), one can go from unlocked
4083 ** to shared and back or from unlocked to exclusive and back. But one may
4084 ** not go from shared to exclusive or from exclusive to shared.
4086 static int unixShmLock(
4087 sqlite3_file *fd, /* Database file holding the shared memory */
4088 int ofst, /* First lock to acquire or release */
4089 int n, /* Number of locks to acquire or release */
4090 int flags /* What to do with the lock */
4092 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
4093 unixShm *p = pDbFd->pShm; /* The shared memory being locked */
4094 unixShm *pX; /* For looping over all siblings */
4095 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */
4096 int rc = SQLITE_OK; /* Result code */
4097 u16 mask; /* Mask of locks to take or release */
4099 assert( pShmNode==pDbFd->pInode->pShmNode );
4100 assert( pShmNode->pInode==pDbFd->pInode );
4101 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4102 assert( n>=1 );
4103 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4104 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4105 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4106 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4107 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4108 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4109 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4111 mask = (1<<(ofst+n)) - (1<<ofst);
4112 assert( n>1 || mask==(1<<ofst) );
4113 sqlite3_mutex_enter(pShmNode->mutex);
4114 if( flags & SQLITE_SHM_UNLOCK ){
4115 u16 allMask = 0; /* Mask of locks held by siblings */
4117 /* See if any siblings hold this same lock */
4118 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4119 if( pX==p ) continue;
4120 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4121 allMask |= pX->sharedMask;
4124 /* Unlock the system-level locks */
4125 if( (mask & allMask)==0 ){
4126 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4127 }else{
4128 rc = SQLITE_OK;
4131 /* Undo the local locks */
4132 if( rc==SQLITE_OK ){
4133 p->exclMask &= ~mask;
4134 p->sharedMask &= ~mask;
4136 }else if( flags & SQLITE_SHM_SHARED ){
4137 u16 allShared = 0; /* Union of locks held by connections other than "p" */
4139 /* Find out which shared locks are already held by sibling connections.
4140 ** If any sibling already holds an exclusive lock, go ahead and return
4141 ** SQLITE_BUSY.
4143 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4144 if( (pX->exclMask & mask)!=0 ){
4145 rc = SQLITE_BUSY;
4146 break;
4148 allShared |= pX->sharedMask;
4151 /* Get shared locks at the system level, if necessary */
4152 if( rc==SQLITE_OK ){
4153 if( (allShared & mask)==0 ){
4154 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4155 }else{
4156 rc = SQLITE_OK;
4160 /* Get the local shared locks */
4161 if( rc==SQLITE_OK ){
4162 p->sharedMask |= mask;
4164 }else{
4165 /* Make sure no sibling connections hold locks that will block this
4166 ** lock. If any do, return SQLITE_BUSY right away.
4168 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4169 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4170 rc = SQLITE_BUSY;
4171 break;
4175 /* Get the exclusive locks at the system level. Then if successful
4176 ** also mark the local connection as being locked.
4178 if( rc==SQLITE_OK ){
4179 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4180 if( rc==SQLITE_OK ){
4181 assert( (p->sharedMask & mask)==0 );
4182 p->exclMask |= mask;
4186 sqlite3_mutex_leave(pShmNode->mutex);
4187 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4188 p->id, getpid(), p->sharedMask, p->exclMask));
4189 return rc;
4193 ** Implement a memory barrier or memory fence on shared memory.
4195 ** All loads and stores begun before the barrier must complete before
4196 ** any load or store begun after the barrier.
4198 static void unixShmBarrier(
4199 sqlite3_file *fd /* Database file holding the shared memory */
4201 UNUSED_PARAMETER(fd);
4202 unixEnterMutex();
4203 unixLeaveMutex();
4207 ** Close a connection to shared-memory. Delete the underlying
4208 ** storage if deleteFlag is true.
4210 ** If there is no shared memory associated with the connection then this
4211 ** routine is a harmless no-op.
4213 static int unixShmUnmap(
4214 sqlite3_file *fd, /* The underlying database file */
4215 int deleteFlag /* Delete shared-memory if true */
4217 unixShm *p; /* The connection to be closed */
4218 unixShmNode *pShmNode; /* The underlying shared-memory file */
4219 unixShm **pp; /* For looping over sibling connections */
4220 unixFile *pDbFd; /* The underlying database file */
4222 pDbFd = (unixFile*)fd;
4223 p = pDbFd->pShm;
4224 if( p==0 ) return SQLITE_OK;
4225 pShmNode = p->pShmNode;
4227 assert( pShmNode==pDbFd->pInode->pShmNode );
4228 assert( pShmNode->pInode==pDbFd->pInode );
4230 /* Remove connection p from the set of connections associated
4231 ** with pShmNode */
4232 sqlite3_mutex_enter(pShmNode->mutex);
4233 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4234 *pp = p->pNext;
4236 /* Free the connection p */
4237 sqlite3_free(p);
4238 pDbFd->pShm = 0;
4239 sqlite3_mutex_leave(pShmNode->mutex);
4241 /* If pShmNode->nRef has reached 0, then close the underlying
4242 ** shared-memory file, too */
4243 unixEnterMutex();
4244 assert( pShmNode->nRef>0 );
4245 pShmNode->nRef--;
4246 if( pShmNode->nRef==0 ){
4247 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
4248 unixShmPurge(pDbFd);
4250 unixLeaveMutex();
4252 return SQLITE_OK;
4256 #else
4257 # define unixShmMap 0
4258 # define unixShmLock 0
4259 # define unixShmBarrier 0
4260 # define unixShmUnmap 0
4261 #endif /* #ifndef SQLITE_OMIT_WAL */
4264 ** Here ends the implementation of all sqlite3_file methods.
4266 ********************** End sqlite3_file Methods *******************************
4267 ******************************************************************************/
4270 ** This division contains definitions of sqlite3_io_methods objects that
4271 ** implement various file locking strategies. It also contains definitions
4272 ** of "finder" functions. A finder-function is used to locate the appropriate
4273 ** sqlite3_io_methods object for a particular database file. The pAppData
4274 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4275 ** the correct finder-function for that VFS.
4277 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
4278 ** object. The only interesting finder-function is autolockIoFinder, which
4279 ** looks at the filesystem type and tries to guess the best locking
4280 ** strategy from that.
4282 ** For finder-funtion F, two objects are created:
4284 ** (1) The real finder-function named "FImpt()".
4286 ** (2) A constant pointer to this function named just "F".
4289 ** A pointer to the F pointer is used as the pAppData value for VFS
4290 ** objects. We have to do this instead of letting pAppData point
4291 ** directly at the finder-function since C90 rules prevent a void*
4292 ** from be cast into a function pointer.
4295 ** Each instance of this macro generates two objects:
4297 ** * A constant sqlite3_io_methods object call METHOD that has locking
4298 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4300 ** * An I/O method finder function called FINDER that returns a pointer
4301 ** to the METHOD object in the previous bullet.
4303 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK) \
4304 static const sqlite3_io_methods METHOD = { \
4305 VERSION, /* iVersion */ \
4306 CLOSE, /* xClose */ \
4307 unixRead, /* xRead */ \
4308 unixWrite, /* xWrite */ \
4309 unixTruncate, /* xTruncate */ \
4310 unixSync, /* xSync */ \
4311 unixFileSize, /* xFileSize */ \
4312 LOCK, /* xLock */ \
4313 UNLOCK, /* xUnlock */ \
4314 CKLOCK, /* xCheckReservedLock */ \
4315 unixFileControl, /* xFileControl */ \
4316 unixSectorSize, /* xSectorSize */ \
4317 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
4318 unixShmMap, /* xShmMap */ \
4319 unixShmLock, /* xShmLock */ \
4320 unixShmBarrier, /* xShmBarrier */ \
4321 unixShmUnmap /* xShmUnmap */ \
4322 }; \
4323 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
4324 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
4325 return &METHOD; \
4327 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
4328 = FINDER##Impl;
4331 ** Here are all of the sqlite3_io_methods objects for each of the
4332 ** locking strategies. Functions that return pointers to these methods
4333 ** are also created.
4335 IOMETHODS(
4336 posixIoFinder, /* Finder function name */
4337 posixIoMethods, /* sqlite3_io_methods object name */
4338 2, /* shared memory is enabled */
4339 unixClose, /* xClose method */
4340 unixLock, /* xLock method */
4341 unixUnlock, /* xUnlock method */
4342 unixCheckReservedLock /* xCheckReservedLock method */
4344 IOMETHODS(
4345 nolockIoFinder, /* Finder function name */
4346 nolockIoMethods, /* sqlite3_io_methods object name */
4347 1, /* shared memory is disabled */
4348 nolockClose, /* xClose method */
4349 nolockLock, /* xLock method */
4350 nolockUnlock, /* xUnlock method */
4351 nolockCheckReservedLock /* xCheckReservedLock method */
4353 IOMETHODS(
4354 dotlockIoFinder, /* Finder function name */
4355 dotlockIoMethods, /* sqlite3_io_methods object name */
4356 1, /* shared memory is disabled */
4357 dotlockClose, /* xClose method */
4358 dotlockLock, /* xLock method */
4359 dotlockUnlock, /* xUnlock method */
4360 dotlockCheckReservedLock /* xCheckReservedLock method */
4363 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
4364 IOMETHODS(
4365 flockIoFinder, /* Finder function name */
4366 flockIoMethods, /* sqlite3_io_methods object name */
4367 1, /* shared memory is disabled */
4368 flockClose, /* xClose method */
4369 flockLock, /* xLock method */
4370 flockUnlock, /* xUnlock method */
4371 flockCheckReservedLock /* xCheckReservedLock method */
4373 #endif
4375 #if OS_VXWORKS
4376 IOMETHODS(
4377 semIoFinder, /* Finder function name */
4378 semIoMethods, /* sqlite3_io_methods object name */
4379 1, /* shared memory is disabled */
4380 semClose, /* xClose method */
4381 semLock, /* xLock method */
4382 semUnlock, /* xUnlock method */
4383 semCheckReservedLock /* xCheckReservedLock method */
4385 #endif
4387 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4388 IOMETHODS(
4389 afpIoFinder, /* Finder function name */
4390 afpIoMethods, /* sqlite3_io_methods object name */
4391 1, /* shared memory is disabled */
4392 afpClose, /* xClose method */
4393 afpLock, /* xLock method */
4394 afpUnlock, /* xUnlock method */
4395 afpCheckReservedLock /* xCheckReservedLock method */
4397 #endif
4400 ** The proxy locking method is a "super-method" in the sense that it
4401 ** opens secondary file descriptors for the conch and lock files and
4402 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
4403 ** secondary files. For this reason, the division that implements
4404 ** proxy locking is located much further down in the file. But we need
4405 ** to go ahead and define the sqlite3_io_methods and finder function
4406 ** for proxy locking here. So we forward declare the I/O methods.
4408 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4409 static int proxyClose(sqlite3_file*);
4410 static int proxyLock(sqlite3_file*, int);
4411 static int proxyUnlock(sqlite3_file*, int);
4412 static int proxyCheckReservedLock(sqlite3_file*, int*);
4413 IOMETHODS(
4414 proxyIoFinder, /* Finder function name */
4415 proxyIoMethods, /* sqlite3_io_methods object name */
4416 1, /* shared memory is disabled */
4417 proxyClose, /* xClose method */
4418 proxyLock, /* xLock method */
4419 proxyUnlock, /* xUnlock method */
4420 proxyCheckReservedLock /* xCheckReservedLock method */
4422 #endif
4424 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4425 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4426 IOMETHODS(
4427 nfsIoFinder, /* Finder function name */
4428 nfsIoMethods, /* sqlite3_io_methods object name */
4429 1, /* shared memory is disabled */
4430 unixClose, /* xClose method */
4431 unixLock, /* xLock method */
4432 nfsUnlock, /* xUnlock method */
4433 unixCheckReservedLock /* xCheckReservedLock method */
4435 #endif
4437 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4439 ** This "finder" function attempts to determine the best locking strategy
4440 ** for the database file "filePath". It then returns the sqlite3_io_methods
4441 ** object that implements that strategy.
4443 ** This is for MacOSX only.
4445 static const sqlite3_io_methods *autolockIoFinderImpl(
4446 const char *filePath, /* name of the database file */
4447 unixFile *pNew /* open file object for the database file */
4449 static const struct Mapping {
4450 const char *zFilesystem; /* Filesystem type name */
4451 const sqlite3_io_methods *pMethods; /* Appropriate locking method */
4452 } aMap[] = {
4453 { "hfs", &posixIoMethods },
4454 { "ufs", &posixIoMethods },
4455 { "afpfs", &afpIoMethods },
4456 { "smbfs", &afpIoMethods },
4457 { "webdav", &nolockIoMethods },
4458 { 0, 0 }
4460 int i;
4461 struct statfs fsInfo;
4462 struct flock lockInfo;
4464 if( !filePath ){
4465 /* If filePath==NULL that means we are dealing with a transient file
4466 ** that does not need to be locked. */
4467 return &nolockIoMethods;
4469 if( statfs(filePath, &fsInfo) != -1 ){
4470 if( fsInfo.f_flags & MNT_RDONLY ){
4471 return &nolockIoMethods;
4473 for(i=0; aMap[i].zFilesystem; i++){
4474 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
4475 return aMap[i].pMethods;
4480 /* Default case. Handles, amongst others, "nfs".
4481 ** Test byte-range lock using fcntl(). If the call succeeds,
4482 ** assume that the file-system supports POSIX style locks.
4484 lockInfo.l_len = 1;
4485 lockInfo.l_start = 0;
4486 lockInfo.l_whence = SEEK_SET;
4487 lockInfo.l_type = F_RDLCK;
4488 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4489 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
4490 return &nfsIoMethods;
4491 } else {
4492 return &posixIoMethods;
4494 }else{
4495 return &dotlockIoMethods;
4498 static const sqlite3_io_methods
4499 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4501 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
4503 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4505 ** This "finder" function attempts to determine the best locking strategy
4506 ** for the database file "filePath". It then returns the sqlite3_io_methods
4507 ** object that implements that strategy.
4509 ** This is for VXWorks only.
4511 static const sqlite3_io_methods *autolockIoFinderImpl(
4512 const char *filePath, /* name of the database file */
4513 unixFile *pNew /* the open file object */
4515 struct flock lockInfo;
4517 if( !filePath ){
4518 /* If filePath==NULL that means we are dealing with a transient file
4519 ** that does not need to be locked. */
4520 return &nolockIoMethods;
4523 /* Test if fcntl() is supported and use POSIX style locks.
4524 ** Otherwise fall back to the named semaphore method.
4526 lockInfo.l_len = 1;
4527 lockInfo.l_start = 0;
4528 lockInfo.l_whence = SEEK_SET;
4529 lockInfo.l_type = F_RDLCK;
4530 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4531 return &posixIoMethods;
4532 }else{
4533 return &semIoMethods;
4536 static const sqlite3_io_methods
4537 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4539 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
4542 ** An abstract type for a pointer to a IO method finder function:
4544 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
4547 /****************************************************************************
4548 **************************** sqlite3_vfs methods ****************************
4550 ** This division contains the implementation of methods on the
4551 ** sqlite3_vfs object.
4555 ** Initialize the contents of the unixFile structure pointed to by pId.
4557 static int fillInUnixFile(
4558 sqlite3_vfs *pVfs, /* Pointer to vfs object */
4559 int h, /* Open file descriptor of file being opened */
4560 sqlite3_file *pId, /* Write to the unixFile structure here */
4561 const char *zFilename, /* Name of the file being opened */
4562 int ctrlFlags /* Zero or more UNIXFILE_* values */
4564 const sqlite3_io_methods *pLockingStyle;
4565 unixFile *pNew = (unixFile *)pId;
4566 int rc = SQLITE_OK;
4568 assert( pNew->pInode==NULL );
4570 /* Usually the path zFilename should not be a relative pathname. The
4571 ** exception is when opening the proxy "conch" file in builds that
4572 ** include the special Apple locking styles.
4574 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4575 assert( zFilename==0 || zFilename[0]=='/'
4576 || pVfs->pAppData==(void*)&autolockIoFinder );
4577 #else
4578 assert( zFilename==0 || zFilename[0]=='/' );
4579 #endif
4581 /* No locking occurs in temporary files */
4582 assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
4584 OSTRACE(("OPEN %-3d %s\n", h, zFilename));
4585 pNew->h = h;
4586 pNew->pVfs = pVfs;
4587 pNew->zPath = zFilename;
4588 pNew->ctrlFlags = (u8)ctrlFlags;
4589 if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
4590 "psow", SQLITE_POWERSAFE_OVERWRITE) ){
4591 pNew->ctrlFlags |= UNIXFILE_PSOW;
4593 if( memcmp(pVfs->zName,"unix-excl",10)==0 ){
4594 pNew->ctrlFlags |= UNIXFILE_EXCL;
4597 #if OS_VXWORKS
4598 pNew->pId = vxworksFindFileId(zFilename);
4599 if( pNew->pId==0 ){
4600 ctrlFlags |= UNIXFILE_NOLOCK;
4601 rc = SQLITE_NOMEM;
4603 #endif
4605 if( ctrlFlags & UNIXFILE_NOLOCK ){
4606 pLockingStyle = &nolockIoMethods;
4607 }else{
4608 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
4609 #if SQLITE_ENABLE_LOCKING_STYLE
4610 /* Cache zFilename in the locking context (AFP and dotlock override) for
4611 ** proxyLock activation is possible (remote proxy is based on db name)
4612 ** zFilename remains valid until file is closed, to support */
4613 pNew->lockingContext = (void*)zFilename;
4614 #endif
4617 if( pLockingStyle == &posixIoMethods
4618 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4619 || pLockingStyle == &nfsIoMethods
4620 #endif
4622 unixEnterMutex();
4623 rc = findInodeInfo(pNew, &pNew->pInode);
4624 if( rc!=SQLITE_OK ){
4625 /* If an error occured in findInodeInfo(), close the file descriptor
4626 ** immediately, before releasing the mutex. findInodeInfo() may fail
4627 ** in two scenarios:
4629 ** (a) A call to fstat() failed.
4630 ** (b) A malloc failed.
4632 ** Scenario (b) may only occur if the process is holding no other
4633 ** file descriptors open on the same file. If there were other file
4634 ** descriptors on this file, then no malloc would be required by
4635 ** findInodeInfo(). If this is the case, it is quite safe to close
4636 ** handle h - as it is guaranteed that no posix locks will be released
4637 ** by doing so.
4639 ** If scenario (a) caused the error then things are not so safe. The
4640 ** implicit assumption here is that if fstat() fails, things are in
4641 ** such bad shape that dropping a lock or two doesn't matter much.
4643 robust_close(pNew, h, __LINE__);
4644 h = -1;
4646 unixLeaveMutex();
4649 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4650 else if( pLockingStyle == &afpIoMethods ){
4651 /* AFP locking uses the file path so it needs to be included in
4652 ** the afpLockingContext.
4654 afpLockingContext *pCtx;
4655 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
4656 if( pCtx==0 ){
4657 rc = SQLITE_NOMEM;
4658 }else{
4659 /* NB: zFilename exists and remains valid until the file is closed
4660 ** according to requirement F11141. So we do not need to make a
4661 ** copy of the filename. */
4662 pCtx->dbPath = zFilename;
4663 pCtx->reserved = 0;
4664 srandomdev();
4665 unixEnterMutex();
4666 rc = findInodeInfo(pNew, &pNew->pInode);
4667 if( rc!=SQLITE_OK ){
4668 sqlite3_free(pNew->lockingContext);
4669 robust_close(pNew, h, __LINE__);
4670 h = -1;
4672 unixLeaveMutex();
4675 #endif
4677 else if( pLockingStyle == &dotlockIoMethods ){
4678 /* Dotfile locking uses the file path so it needs to be included in
4679 ** the dotlockLockingContext
4681 char *zLockFile;
4682 int nFilename;
4683 assert( zFilename!=0 );
4684 nFilename = (int)strlen(zFilename) + 6;
4685 zLockFile = (char *)sqlite3_malloc(nFilename);
4686 if( zLockFile==0 ){
4687 rc = SQLITE_NOMEM;
4688 }else{
4689 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
4691 pNew->lockingContext = zLockFile;
4694 #if OS_VXWORKS
4695 else if( pLockingStyle == &semIoMethods ){
4696 /* Named semaphore locking uses the file path so it needs to be
4697 ** included in the semLockingContext
4699 unixEnterMutex();
4700 rc = findInodeInfo(pNew, &pNew->pInode);
4701 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
4702 char *zSemName = pNew->pInode->aSemName;
4703 int n;
4704 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
4705 pNew->pId->zCanonicalName);
4706 for( n=1; zSemName[n]; n++ )
4707 if( zSemName[n]=='/' ) zSemName[n] = '_';
4708 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
4709 if( pNew->pInode->pSem == SEM_FAILED ){
4710 rc = SQLITE_NOMEM;
4711 pNew->pInode->aSemName[0] = '\0';
4714 unixLeaveMutex();
4716 #endif
4718 pNew->lastErrno = 0;
4719 #if OS_VXWORKS
4720 if( rc!=SQLITE_OK ){
4721 if( h>=0 ) robust_close(pNew, h, __LINE__);
4722 h = -1;
4723 osUnlink(zFilename);
4724 isDelete = 0;
4726 if( isDelete ) pNew->ctrlFlags |= UNIXFILE_DELETE;
4727 #endif
4728 if( rc!=SQLITE_OK ){
4729 if( h>=0 ) robust_close(pNew, h, __LINE__);
4730 }else{
4731 pNew->pMethod = pLockingStyle;
4732 OpenCounter(+1);
4734 return rc;
4738 ** Return the name of a directory in which to put temporary files.
4739 ** If no suitable temporary file directory can be found, return NULL.
4741 static const char *unixTempFileDir(void){
4742 static const char *azDirs[] = {
4745 "/var/tmp",
4746 "/usr/tmp",
4747 "/tmp",
4748 0 /* List terminator */
4750 unsigned int i;
4751 struct stat buf;
4752 const char *zDir = 0;
4754 azDirs[0] = sqlite3_temp_directory;
4755 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
4756 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
4757 if( zDir==0 ) continue;
4758 if( osStat(zDir, &buf) ) continue;
4759 if( !S_ISDIR(buf.st_mode) ) continue;
4760 if( osAccess(zDir, 07) ) continue;
4761 break;
4763 return zDir;
4767 ** Create a temporary file name in zBuf. zBuf must be allocated
4768 ** by the calling process and must be big enough to hold at least
4769 ** pVfs->mxPathname bytes.
4771 static int unixGetTempname(int nBuf, char *zBuf){
4772 static const unsigned char zChars[] =
4773 "abcdefghijklmnopqrstuvwxyz"
4774 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4775 "0123456789";
4776 unsigned int i, j;
4777 const char *zDir;
4779 /* It's odd to simulate an io-error here, but really this is just
4780 ** using the io-error infrastructure to test that SQLite handles this
4781 ** function failing.
4783 SimulateIOError( return SQLITE_IOERR );
4785 zDir = unixTempFileDir();
4786 if( zDir==0 ) zDir = ".";
4788 /* Check that the output buffer is large enough for the temporary file
4789 ** name. If it is not, return SQLITE_ERROR.
4791 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){
4792 return SQLITE_ERROR;
4796 sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
4797 j = (int)strlen(zBuf);
4798 sqlite3_randomness(15, &zBuf[j]);
4799 for(i=0; i<15; i++, j++){
4800 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
4802 zBuf[j] = 0;
4803 zBuf[j+1] = 0;
4804 }while( osAccess(zBuf,0)==0 );
4805 return SQLITE_OK;
4808 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4810 ** Routine to transform a unixFile into a proxy-locking unixFile.
4811 ** Implementation in the proxy-lock division, but used by unixOpen()
4812 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
4814 static int proxyTransformUnixFile(unixFile*, const char*);
4815 #endif
4818 ** Search for an unused file descriptor that was opened on the database
4819 ** file (not a journal or master-journal file) identified by pathname
4820 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
4821 ** argument to this function.
4823 ** Such a file descriptor may exist if a database connection was closed
4824 ** but the associated file descriptor could not be closed because some
4825 ** other file descriptor open on the same file is holding a file-lock.
4826 ** Refer to comments in the unixClose() function and the lengthy comment
4827 ** describing "Posix Advisory Locking" at the start of this file for
4828 ** further details. Also, ticket #4018.
4830 ** If a suitable file descriptor is found, then it is returned. If no
4831 ** such file descriptor is located, -1 is returned.
4833 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
4834 UnixUnusedFd *pUnused = 0;
4836 /* Do not search for an unused file descriptor on vxworks. Not because
4837 ** vxworks would not benefit from the change (it might, we're not sure),
4838 ** but because no way to test it is currently available. It is better
4839 ** not to risk breaking vxworks support for the sake of such an obscure
4840 ** feature. */
4841 #if !OS_VXWORKS
4842 struct stat sStat; /* Results of stat() call */
4844 /* A stat() call may fail for various reasons. If this happens, it is
4845 ** almost certain that an open() call on the same path will also fail.
4846 ** For this reason, if an error occurs in the stat() call here, it is
4847 ** ignored and -1 is returned. The caller will try to open a new file
4848 ** descriptor on the same path, fail, and return an error to SQLite.
4850 ** Even if a subsequent open() call does succeed, the consequences of
4851 ** not searching for a resusable file descriptor are not dire. */
4852 if( 0==osStat(zPath, &sStat) ){
4853 unixInodeInfo *pInode;
4855 unixEnterMutex();
4856 pInode = inodeList;
4857 while( pInode && (pInode->fileId.dev!=sStat.st_dev
4858 || pInode->fileId.ino!=sStat.st_ino) ){
4859 pInode = pInode->pNext;
4861 if( pInode ){
4862 UnixUnusedFd **pp;
4863 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
4864 pUnused = *pp;
4865 if( pUnused ){
4866 *pp = pUnused->pNext;
4869 unixLeaveMutex();
4871 #endif /* if !OS_VXWORKS */
4872 return pUnused;
4876 ** This function is called by unixOpen() to determine the unix permissions
4877 ** to create new files with. If no error occurs, then SQLITE_OK is returned
4878 ** and a value suitable for passing as the third argument to open(2) is
4879 ** written to *pMode. If an IO error occurs, an SQLite error code is
4880 ** returned and the value of *pMode is not modified.
4882 ** If the file being opened is a temporary file, it is always created with
4883 ** the octal permissions 0600 (read/writable by owner only). If the file
4884 ** is a database or master journal file, it is created with the permissions
4885 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
4887 ** Finally, if the file being opened is a WAL or regular journal file, then
4888 ** this function queries the file-system for the permissions on the
4889 ** corresponding database file and sets *pMode to this value. Whenever
4890 ** possible, WAL and journal files are created using the same permissions
4891 ** as the associated database file.
4893 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
4894 ** original filename is unavailable. But 8_3_NAMES is only used for
4895 ** FAT filesystems and permissions do not matter there, so just use
4896 ** the default permissions.
4898 static int findCreateFileMode(
4899 const char *zPath, /* Path of file (possibly) being created */
4900 int flags, /* Flags passed as 4th argument to xOpen() */
4901 mode_t *pMode /* OUT: Permissions to open file with */
4903 int rc = SQLITE_OK; /* Return Code */
4904 *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
4905 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
4906 char zDb[MAX_PATHNAME+1]; /* Database file path */
4907 int nDb; /* Number of valid bytes in zDb */
4908 struct stat sStat; /* Output of stat() on database file */
4910 /* zPath is a path to a WAL or journal file. The following block derives
4911 ** the path to the associated database file from zPath. This block handles
4912 ** the following naming conventions:
4914 ** "<path to db>-journal"
4915 ** "<path to db>-wal"
4916 ** "<path to db>-journalNN"
4917 ** "<path to db>-walNN"
4919 ** where NN is a decimal number. The NN naming schemes are
4920 ** used by the test_multiplex.c module.
4922 nDb = sqlite3Strlen30(zPath) - 1;
4923 #ifdef SQLITE_ENABLE_8_3_NAMES
4924 while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--;
4925 if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
4926 #else
4927 while( zPath[nDb]!='-' ){
4928 assert( nDb>0 );
4929 assert( zPath[nDb]!='\n' );
4930 nDb--;
4932 #endif
4933 memcpy(zDb, zPath, nDb);
4934 zDb[nDb] = '\0';
4936 if( 0==osStat(zDb, &sStat) ){
4937 *pMode = sStat.st_mode & 0777;
4938 }else{
4939 rc = SQLITE_IOERR_FSTAT;
4941 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
4942 *pMode = 0600;
4944 return rc;
4948 ** Open the file zPath.
4950 ** Previously, the SQLite OS layer used three functions in place of this
4951 ** one:
4953 ** sqlite3OsOpenReadWrite();
4954 ** sqlite3OsOpenReadOnly();
4955 ** sqlite3OsOpenExclusive();
4957 ** These calls correspond to the following combinations of flags:
4959 ** ReadWrite() -> (READWRITE | CREATE)
4960 ** ReadOnly() -> (READONLY)
4961 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
4963 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
4964 ** true, the file was configured to be automatically deleted when the
4965 ** file handle closed. To achieve the same effect using this new
4966 ** interface, add the DELETEONCLOSE flag to those specified above for
4967 ** OpenExclusive().
4969 static int unixOpen(
4970 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
4971 const char *zPath, /* Pathname of file to be opened */
4972 sqlite3_file *pFile, /* The file descriptor to be filled in */
4973 int flags, /* Input flags to control the opening */
4974 int *pOutFlags /* Output flags returned to SQLite core */
4976 unixFile *p = (unixFile *)pFile;
4977 int fd = -1; /* File descriptor returned by open() */
4978 int openFlags = 0; /* Flags to pass to open() */
4979 int eType = flags&0xFFFFFF00; /* Type of file to open */
4980 int noLock; /* True to omit locking primitives */
4981 int rc = SQLITE_OK; /* Function Return Code */
4982 int ctrlFlags = 0; /* UNIXFILE_* flags */
4984 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
4985 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
4986 int isCreate = (flags & SQLITE_OPEN_CREATE);
4987 int isReadonly = (flags & SQLITE_OPEN_READONLY);
4988 int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
4989 #if SQLITE_ENABLE_LOCKING_STYLE
4990 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
4991 #endif
4992 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
4993 struct statfs fsInfo;
4994 #endif
4996 /* If creating a master or main-file journal, this function will open
4997 ** a file-descriptor on the directory too. The first time unixSync()
4998 ** is called the directory file descriptor will be fsync()ed and close()d.
5000 int syncDir = (isCreate && (
5001 eType==SQLITE_OPEN_MASTER_JOURNAL
5002 || eType==SQLITE_OPEN_MAIN_JOURNAL
5003 || eType==SQLITE_OPEN_WAL
5006 /* If argument zPath is a NULL pointer, this function is required to open
5007 ** a temporary file. Use this buffer to store the file name in.
5009 char zTmpname[MAX_PATHNAME+2];
5010 const char *zName = zPath;
5012 /* Check the following statements are true:
5014 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
5015 ** (b) if CREATE is set, then READWRITE must also be set, and
5016 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
5017 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
5019 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
5020 assert(isCreate==0 || isReadWrite);
5021 assert(isExclusive==0 || isCreate);
5022 assert(isDelete==0 || isCreate);
5024 /* The main DB, main journal, WAL file and master journal are never
5025 ** automatically deleted. Nor are they ever temporary files. */
5026 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5027 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5028 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
5029 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5031 /* Assert that the upper layer has set one of the "file-type" flags. */
5032 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
5033 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5034 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
5035 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5038 memset(p, 0, sizeof(unixFile));
5040 if( eType==SQLITE_OPEN_MAIN_DB ){
5041 UnixUnusedFd *pUnused;
5042 pUnused = findReusableFd(zName, flags);
5043 if( pUnused ){
5044 fd = pUnused->fd;
5045 }else{
5046 pUnused = sqlite3_malloc(sizeof(*pUnused));
5047 if( !pUnused ){
5048 return SQLITE_NOMEM;
5051 p->pUnused = pUnused;
5053 /* Database filenames are double-zero terminated if they are not
5054 ** URIs with parameters. Hence, they can always be passed into
5055 ** sqlite3_uri_parameter(). */
5056 assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
5058 }else if( !zName ){
5059 /* If zName is NULL, the upper layer is requesting a temp file. */
5060 assert(isDelete && !syncDir);
5061 rc = unixGetTempname(MAX_PATHNAME+2, zTmpname);
5062 if( rc!=SQLITE_OK ){
5063 return rc;
5065 zName = zTmpname;
5067 /* Generated temporary filenames are always double-zero terminated
5068 ** for use by sqlite3_uri_parameter(). */
5069 assert( zName[strlen(zName)+1]==0 );
5072 /* Determine the value of the flags parameter passed to POSIX function
5073 ** open(). These must be calculated even if open() is not called, as
5074 ** they may be stored as part of the file handle and used by the
5075 ** 'conch file' locking functions later on. */
5076 if( isReadonly ) openFlags |= O_RDONLY;
5077 if( isReadWrite ) openFlags |= O_RDWR;
5078 if( isCreate ) openFlags |= O_CREAT;
5079 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5080 openFlags |= (O_LARGEFILE|O_BINARY);
5082 if( fd<0 ){
5083 mode_t openMode; /* Permissions to create file with */
5084 rc = findCreateFileMode(zName, flags, &openMode);
5085 if( rc!=SQLITE_OK ){
5086 assert( !p->pUnused );
5087 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5088 return rc;
5090 fd = robust_open(zName, openFlags, openMode);
5091 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
5092 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
5093 /* Failed to open the file for read/write access. Try read-only. */
5094 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5095 openFlags &= ~(O_RDWR|O_CREAT);
5096 flags |= SQLITE_OPEN_READONLY;
5097 openFlags |= O_RDONLY;
5098 isReadonly = 1;
5099 fd = robust_open(zName, openFlags, openMode);
5101 if( fd<0 ){
5102 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5103 goto open_finished;
5106 assert( fd>=0 );
5107 if( pOutFlags ){
5108 *pOutFlags = flags;
5111 if( p->pUnused ){
5112 p->pUnused->fd = fd;
5113 p->pUnused->flags = flags;
5116 if( isDelete ){
5117 #if OS_VXWORKS
5118 zPath = zName;
5119 #else
5120 osUnlink(zName);
5121 #endif
5123 #if SQLITE_ENABLE_LOCKING_STYLE
5124 else{
5125 p->openFlags = openFlags;
5127 #endif
5129 #ifdef FD_CLOEXEC
5130 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
5131 #endif
5133 noLock = eType!=SQLITE_OPEN_MAIN_DB;
5136 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5137 if( fstatfs(fd, &fsInfo) == -1 ){
5138 ((unixFile*)pFile)->lastErrno = errno;
5139 robust_close(p, fd, __LINE__);
5140 return SQLITE_IOERR_ACCESS;
5142 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5143 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5145 #endif
5147 /* Set up appropriate ctrlFlags */
5148 if( isDelete ) ctrlFlags |= UNIXFILE_DELETE;
5149 if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY;
5150 if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK;
5151 if( syncDir ) ctrlFlags |= UNIXFILE_DIRSYNC;
5152 if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
5154 #if SQLITE_ENABLE_LOCKING_STYLE
5155 #if SQLITE_PREFER_PROXY_LOCKING
5156 isAutoProxy = 1;
5157 #endif
5158 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
5159 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5160 int useProxy = 0;
5162 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5163 ** never use proxy, NULL means use proxy for non-local files only. */
5164 if( envforce!=NULL ){
5165 useProxy = atoi(envforce)>0;
5166 }else{
5167 if( statfs(zPath, &fsInfo) == -1 ){
5168 /* In theory, the close(fd) call is sub-optimal. If the file opened
5169 ** with fd is a database file, and there are other connections open
5170 ** on that file that are currently holding advisory locks on it,
5171 ** then the call to close() will cancel those locks. In practice,
5172 ** we're assuming that statfs() doesn't fail very often. At least
5173 ** not while other file descriptors opened by the same process on
5174 ** the same file are working. */
5175 p->lastErrno = errno;
5176 robust_close(p, fd, __LINE__);
5177 rc = SQLITE_IOERR_ACCESS;
5178 goto open_finished;
5180 useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5182 if( useProxy ){
5183 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
5184 if( rc==SQLITE_OK ){
5185 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
5186 if( rc!=SQLITE_OK ){
5187 /* Use unixClose to clean up the resources added in fillInUnixFile
5188 ** and clear all the structure's references. Specifically,
5189 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5191 unixClose(pFile);
5192 return rc;
5195 goto open_finished;
5198 #endif
5200 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
5202 open_finished:
5203 if( rc!=SQLITE_OK ){
5204 sqlite3_free(p->pUnused);
5206 return rc;
5211 ** Delete the file at zPath. If the dirSync argument is true, fsync()
5212 ** the directory after deleting the file.
5214 static int unixDelete(
5215 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
5216 const char *zPath, /* Name of file to be deleted */
5217 int dirSync /* If true, fsync() directory after deleting file */
5219 int rc = SQLITE_OK;
5220 UNUSED_PARAMETER(NotUsed);
5221 SimulateIOError(return SQLITE_IOERR_DELETE);
5222 if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
5223 return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
5225 #ifndef SQLITE_DISABLE_DIRSYNC
5226 if( (dirSync & 1)!=0 ){
5227 int fd;
5228 rc = osOpenDirectory(zPath, &fd);
5229 if( rc==SQLITE_OK ){
5230 #if OS_VXWORKS
5231 if( fsync(fd)==-1 )
5232 #else
5233 if( fsync(fd) )
5234 #endif
5236 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
5238 robust_close(0, fd, __LINE__);
5239 }else if( rc==SQLITE_CANTOPEN ){
5240 rc = SQLITE_OK;
5243 #endif
5244 return rc;
5248 ** Test the existance of or access permissions of file zPath. The
5249 ** test performed depends on the value of flags:
5251 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5252 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5253 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5255 ** Otherwise return 0.
5257 static int unixAccess(
5258 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
5259 const char *zPath, /* Path of the file to examine */
5260 int flags, /* What do we want to learn about the zPath file? */
5261 int *pResOut /* Write result boolean here */
5263 int amode = 0;
5264 UNUSED_PARAMETER(NotUsed);
5265 SimulateIOError( return SQLITE_IOERR_ACCESS; );
5266 switch( flags ){
5267 case SQLITE_ACCESS_EXISTS:
5268 amode = F_OK;
5269 break;
5270 case SQLITE_ACCESS_READWRITE:
5271 amode = W_OK|R_OK;
5272 break;
5273 case SQLITE_ACCESS_READ:
5274 amode = R_OK;
5275 break;
5277 default:
5278 assert(!"Invalid flags argument");
5280 *pResOut = (osAccess(zPath, amode)==0);
5281 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
5282 struct stat buf;
5283 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
5284 *pResOut = 0;
5287 return SQLITE_OK;
5292 ** Turn a relative pathname into a full pathname. The relative path
5293 ** is stored as a nul-terminated string in the buffer pointed to by
5294 ** zPath.
5296 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5297 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
5298 ** this buffer before returning.
5300 static int unixFullPathname(
5301 sqlite3_vfs *pVfs, /* Pointer to vfs object */
5302 const char *zPath, /* Possibly relative input path */
5303 int nOut, /* Size of output buffer in bytes */
5304 char *zOut /* Output buffer */
5307 /* It's odd to simulate an io-error here, but really this is just
5308 ** using the io-error infrastructure to test that SQLite handles this
5309 ** function failing. This function could fail if, for example, the
5310 ** current working directory has been unlinked.
5312 SimulateIOError( return SQLITE_ERROR );
5314 assert( pVfs->mxPathname==MAX_PATHNAME );
5315 UNUSED_PARAMETER(pVfs);
5317 zOut[nOut-1] = '\0';
5318 if( zPath[0]=='/' ){
5319 sqlite3_snprintf(nOut, zOut, "%s", zPath);
5320 }else{
5321 int nCwd;
5322 if( osGetcwd(zOut, nOut-1)==0 ){
5323 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
5325 nCwd = (int)strlen(zOut);
5326 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
5328 return SQLITE_OK;
5332 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5334 ** Interfaces for opening a shared library, finding entry points
5335 ** within the shared library, and closing the shared library.
5337 #include <dlfcn.h>
5338 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
5339 UNUSED_PARAMETER(NotUsed);
5340 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
5344 ** SQLite calls this function immediately after a call to unixDlSym() or
5345 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
5346 ** message is available, it is written to zBufOut. If no error message
5347 ** is available, zBufOut is left unmodified and SQLite uses a default
5348 ** error message.
5350 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
5351 const char *zErr;
5352 UNUSED_PARAMETER(NotUsed);
5353 unixEnterMutex();
5354 zErr = dlerror();
5355 if( zErr ){
5356 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
5358 unixLeaveMutex();
5360 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
5362 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5363 ** cast into a pointer to a function. And yet the library dlsym() routine
5364 ** returns a void* which is really a pointer to a function. So how do we
5365 ** use dlsym() with -pedantic-errors?
5367 ** Variable x below is defined to be a pointer to a function taking
5368 ** parameters void* and const char* and returning a pointer to a function.
5369 ** We initialize x by assigning it a pointer to the dlsym() function.
5370 ** (That assignment requires a cast.) Then we call the function that
5371 ** x points to.
5373 ** This work-around is unlikely to work correctly on any system where
5374 ** you really cannot cast a function pointer into void*. But then, on the
5375 ** other hand, dlsym() will not work on such a system either, so we have
5376 ** not really lost anything.
5378 void (*(*x)(void*,const char*))(void);
5379 UNUSED_PARAMETER(NotUsed);
5380 x = (void(*(*)(void*,const char*))(void))dlsym;
5381 return (*x)(p, zSym);
5383 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
5384 UNUSED_PARAMETER(NotUsed);
5385 dlclose(pHandle);
5387 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5388 #define unixDlOpen 0
5389 #define unixDlError 0
5390 #define unixDlSym 0
5391 #define unixDlClose 0
5392 #endif
5395 ** Write nBuf bytes of random data to the supplied buffer zBuf.
5397 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
5398 UNUSED_PARAMETER(NotUsed);
5399 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
5401 /* We have to initialize zBuf to prevent valgrind from reporting
5402 ** errors. The reports issued by valgrind are incorrect - we would
5403 ** prefer that the randomness be increased by making use of the
5404 ** uninitialized space in zBuf - but valgrind errors tend to worry
5405 ** some users. Rather than argue, it seems easier just to initialize
5406 ** the whole array and silence valgrind, even if that means less randomness
5407 ** in the random seed.
5409 ** When testing, initializing zBuf[] to zero is all we do. That means
5410 ** that we always use the same random number sequence. This makes the
5411 ** tests repeatable.
5413 memset(zBuf, 0, nBuf);
5414 #if !defined(SQLITE_TEST)
5416 int pid, fd;
5417 fd = robust_open("/dev/urandom", O_RDONLY, 0);
5418 if( fd<0 ){
5419 time_t t;
5420 time(&t);
5421 memcpy(zBuf, &t, sizeof(t));
5422 pid = getpid();
5423 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
5424 assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
5425 nBuf = sizeof(t) + sizeof(pid);
5426 }else{
5427 do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
5428 robust_close(0, fd, __LINE__);
5431 #endif
5432 return nBuf;
5437 ** Sleep for a little while. Return the amount of time slept.
5438 ** The argument is the number of microseconds we want to sleep.
5439 ** The return value is the number of microseconds of sleep actually
5440 ** requested from the underlying operating system, a number which
5441 ** might be greater than or equal to the argument, but not less
5442 ** than the argument.
5444 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
5445 #if OS_VXWORKS
5446 struct timespec sp;
5448 sp.tv_sec = microseconds / 1000000;
5449 sp.tv_nsec = (microseconds % 1000000) * 1000;
5450 nanosleep(&sp, NULL);
5451 UNUSED_PARAMETER(NotUsed);
5452 return microseconds;
5453 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
5454 usleep(microseconds);
5455 UNUSED_PARAMETER(NotUsed);
5456 return microseconds;
5457 #else
5458 int seconds = (microseconds+999999)/1000000;
5459 sleep(seconds);
5460 UNUSED_PARAMETER(NotUsed);
5461 return seconds*1000000;
5462 #endif
5466 ** The following variable, if set to a non-zero value, is interpreted as
5467 ** the number of seconds since 1970 and is used to set the result of
5468 ** sqlite3OsCurrentTime() during testing.
5470 #ifdef SQLITE_TEST
5471 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
5472 #endif
5475 ** Find the current time (in Universal Coordinated Time). Write into *piNow
5476 ** the current time and date as a Julian Day number times 86_400_000. In
5477 ** other words, write into *piNow the number of milliseconds since the Julian
5478 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5479 ** proleptic Gregorian calendar.
5481 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
5482 ** cannot be found.
5484 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
5485 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
5486 int rc = SQLITE_OK;
5487 #if defined(NO_GETTOD)
5488 time_t t;
5489 time(&t);
5490 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
5491 #elif OS_VXWORKS
5492 struct timespec sNow;
5493 clock_gettime(CLOCK_REALTIME, &sNow);
5494 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
5495 #else
5496 struct timeval sNow;
5497 if( gettimeofday(&sNow, 0)==0 ){
5498 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
5499 }else{
5500 rc = SQLITE_ERROR;
5502 #endif
5504 #ifdef SQLITE_TEST
5505 if( sqlite3_current_time ){
5506 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
5508 #endif
5509 UNUSED_PARAMETER(NotUsed);
5510 return rc;
5514 ** Find the current time (in Universal Coordinated Time). Write the
5515 ** current time and date as a Julian Day number into *prNow and
5516 ** return 0. Return 1 if the time and date cannot be found.
5518 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
5519 sqlite3_int64 i = 0;
5520 int rc;
5521 UNUSED_PARAMETER(NotUsed);
5522 rc = unixCurrentTimeInt64(0, &i);
5523 *prNow = i/86400000.0;
5524 return rc;
5528 ** We added the xGetLastError() method with the intention of providing
5529 ** better low-level error messages when operating-system problems come up
5530 ** during SQLite operation. But so far, none of that has been implemented
5531 ** in the core. So this routine is never called. For now, it is merely
5532 ** a place-holder.
5534 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
5535 UNUSED_PARAMETER(NotUsed);
5536 UNUSED_PARAMETER(NotUsed2);
5537 UNUSED_PARAMETER(NotUsed3);
5538 return 0;
5543 ************************ End of sqlite3_vfs methods ***************************
5544 ******************************************************************************/
5546 /******************************************************************************
5547 ************************** Begin Proxy Locking ********************************
5549 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
5550 ** other locking methods on secondary lock files. Proxy locking is a
5551 ** meta-layer over top of the primitive locking implemented above. For
5552 ** this reason, the division that implements of proxy locking is deferred
5553 ** until late in the file (here) after all of the other I/O methods have
5554 ** been defined - so that the primitive locking methods are available
5555 ** as services to help with the implementation of proxy locking.
5557 ****
5559 ** The default locking schemes in SQLite use byte-range locks on the
5560 ** database file to coordinate safe, concurrent access by multiple readers
5561 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
5562 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
5563 ** as POSIX read & write locks over fixed set of locations (via fsctl),
5564 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
5565 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
5566 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
5567 ** address in the shared range is taken for a SHARED lock, the entire
5568 ** shared range is taken for an EXCLUSIVE lock):
5570 ** PENDING_BYTE 0x40000000
5571 ** RESERVED_BYTE 0x40000001
5572 ** SHARED_RANGE 0x40000002 -> 0x40000200
5574 ** This works well on the local file system, but shows a nearly 100x
5575 ** slowdown in read performance on AFP because the AFP client disables
5576 ** the read cache when byte-range locks are present. Enabling the read
5577 ** cache exposes a cache coherency problem that is present on all OS X
5578 ** supported network file systems. NFS and AFP both observe the
5579 ** close-to-open semantics for ensuring cache coherency
5580 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
5581 ** address the requirements for concurrent database access by multiple
5582 ** readers and writers
5583 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
5585 ** To address the performance and cache coherency issues, proxy file locking
5586 ** changes the way database access is controlled by limiting access to a
5587 ** single host at a time and moving file locks off of the database file
5588 ** and onto a proxy file on the local file system.
5591 ** Using proxy locks
5592 ** -----------------
5594 ** C APIs
5596 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
5597 ** <proxy_path> | ":auto:");
5598 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
5601 ** SQL pragmas
5603 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
5604 ** PRAGMA [database.]lock_proxy_file
5606 ** Specifying ":auto:" means that if there is a conch file with a matching
5607 ** host ID in it, the proxy path in the conch file will be used, otherwise
5608 ** a proxy path based on the user's temp dir
5609 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
5610 ** actual proxy file name is generated from the name and path of the
5611 ** database file. For example:
5613 ** For database path "/Users/me/foo.db"
5614 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
5616 ** Once a lock proxy is configured for a database connection, it can not
5617 ** be removed, however it may be switched to a different proxy path via
5618 ** the above APIs (assuming the conch file is not being held by another
5619 ** connection or process).
5622 ** How proxy locking works
5623 ** -----------------------
5625 ** Proxy file locking relies primarily on two new supporting files:
5627 ** * conch file to limit access to the database file to a single host
5628 ** at a time
5630 ** * proxy file to act as a proxy for the advisory locks normally
5631 ** taken on the database
5633 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
5634 ** by taking an sqlite-style shared lock on the conch file, reading the
5635 ** contents and comparing the host's unique host ID (see below) and lock
5636 ** proxy path against the values stored in the conch. The conch file is
5637 ** stored in the same directory as the database file and the file name
5638 ** is patterned after the database file name as ".<databasename>-conch".
5639 ** If the conch file does not exist, or it's contents do not match the
5640 ** host ID and/or proxy path, then the lock is escalated to an exclusive
5641 ** lock and the conch file contents is updated with the host ID and proxy
5642 ** path and the lock is downgraded to a shared lock again. If the conch
5643 ** is held by another process (with a shared lock), the exclusive lock
5644 ** will fail and SQLITE_BUSY is returned.
5646 ** The proxy file - a single-byte file used for all advisory file locks
5647 ** normally taken on the database file. This allows for safe sharing
5648 ** of the database file for multiple readers and writers on the same
5649 ** host (the conch ensures that they all use the same local lock file).
5651 ** Requesting the lock proxy does not immediately take the conch, it is
5652 ** only taken when the first request to lock database file is made.
5653 ** This matches the semantics of the traditional locking behavior, where
5654 ** opening a connection to a database file does not take a lock on it.
5655 ** The shared lock and an open file descriptor are maintained until
5656 ** the connection to the database is closed.
5658 ** The proxy file and the lock file are never deleted so they only need
5659 ** to be created the first time they are used.
5661 ** Configuration options
5662 ** ---------------------
5664 ** SQLITE_PREFER_PROXY_LOCKING
5666 ** Database files accessed on non-local file systems are
5667 ** automatically configured for proxy locking, lock files are
5668 ** named automatically using the same logic as
5669 ** PRAGMA lock_proxy_file=":auto:"
5671 ** SQLITE_PROXY_DEBUG
5673 ** Enables the logging of error messages during host id file
5674 ** retrieval and creation
5676 ** LOCKPROXYDIR
5678 ** Overrides the default directory used for lock proxy files that
5679 ** are named automatically via the ":auto:" setting
5681 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
5683 ** Permissions to use when creating a directory for storing the
5684 ** lock proxy files, only used when LOCKPROXYDIR is not set.
5687 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
5688 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
5689 ** force proxy locking to be used for every database file opened, and 0
5690 ** will force automatic proxy locking to be disabled for all database
5691 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
5692 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
5696 ** Proxy locking is only available on MacOSX
5698 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5701 ** The proxyLockingContext has the path and file structures for the remote
5702 ** and local proxy files in it
5704 typedef struct proxyLockingContext proxyLockingContext;
5705 struct proxyLockingContext {
5706 unixFile *conchFile; /* Open conch file */
5707 char *conchFilePath; /* Name of the conch file */
5708 unixFile *lockProxy; /* Open proxy lock file */
5709 char *lockProxyPath; /* Name of the proxy lock file */
5710 char *dbPath; /* Name of the open file */
5711 int conchHeld; /* 1 if the conch is held, -1 if lockless */
5712 void *oldLockingContext; /* Original lockingcontext to restore on close */
5713 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
5717 ** The proxy lock file path for the database at dbPath is written into lPath,
5718 ** which must point to valid, writable memory large enough for a maxLen length
5719 ** file path.
5721 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
5722 int len;
5723 int dbLen;
5724 int i;
5726 #ifdef LOCKPROXYDIR
5727 len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
5728 #else
5729 # ifdef _CS_DARWIN_USER_TEMP_DIR
5731 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
5732 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
5733 lPath, errno, getpid()));
5734 return SQLITE_IOERR_LOCK;
5736 len = strlcat(lPath, "sqliteplocks", maxLen);
5738 # else
5739 len = strlcpy(lPath, "/tmp/", maxLen);
5740 # endif
5741 #endif
5743 if( lPath[len-1]!='/' ){
5744 len = strlcat(lPath, "/", maxLen);
5747 /* transform the db path to a unique cache name */
5748 dbLen = (int)strlen(dbPath);
5749 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
5750 char c = dbPath[i];
5751 lPath[i+len] = (c=='/')?'_':c;
5753 lPath[i+len]='\0';
5754 strlcat(lPath, ":auto:", maxLen);
5755 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid()));
5756 return SQLITE_OK;
5760 ** Creates the lock file and any missing directories in lockPath
5762 static int proxyCreateLockPath(const char *lockPath){
5763 int i, len;
5764 char buf[MAXPATHLEN];
5765 int start = 0;
5767 assert(lockPath!=NULL);
5768 /* try to create all the intermediate directories */
5769 len = (int)strlen(lockPath);
5770 buf[0] = lockPath[0];
5771 for( i=1; i<len; i++ ){
5772 if( lockPath[i] == '/' && (i - start > 0) ){
5773 /* only mkdir if leaf dir != "." or "/" or ".." */
5774 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
5775 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
5776 buf[i]='\0';
5777 if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
5778 int err=errno;
5779 if( err!=EEXIST ) {
5780 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
5781 "'%s' proxy lock path=%s pid=%d\n",
5782 buf, strerror(err), lockPath, getpid()));
5783 return err;
5787 start=i+1;
5789 buf[i] = lockPath[i];
5791 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid()));
5792 return 0;
5796 ** Create a new VFS file descriptor (stored in memory obtained from
5797 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
5799 ** The caller is responsible not only for closing the file descriptor
5800 ** but also for freeing the memory associated with the file descriptor.
5802 static int proxyCreateUnixFile(
5803 const char *path, /* path for the new unixFile */
5804 unixFile **ppFile, /* unixFile created and returned by ref */
5805 int islockfile /* if non zero missing dirs will be created */
5807 int fd = -1;
5808 unixFile *pNew;
5809 int rc = SQLITE_OK;
5810 int openFlags = O_RDWR | O_CREAT;
5811 sqlite3_vfs dummyVfs;
5812 int terrno = 0;
5813 UnixUnusedFd *pUnused = NULL;
5815 /* 1. first try to open/create the file
5816 ** 2. if that fails, and this is a lock file (not-conch), try creating
5817 ** the parent directories and then try again.
5818 ** 3. if that fails, try to open the file read-only
5819 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
5821 pUnused = findReusableFd(path, openFlags);
5822 if( pUnused ){
5823 fd = pUnused->fd;
5824 }else{
5825 pUnused = sqlite3_malloc(sizeof(*pUnused));
5826 if( !pUnused ){
5827 return SQLITE_NOMEM;
5830 if( fd<0 ){
5831 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5832 terrno = errno;
5833 if( fd<0 && errno==ENOENT && islockfile ){
5834 if( proxyCreateLockPath(path) == SQLITE_OK ){
5835 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5839 if( fd<0 ){
5840 openFlags = O_RDONLY;
5841 fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5842 terrno = errno;
5844 if( fd<0 ){
5845 if( islockfile ){
5846 return SQLITE_BUSY;
5848 switch (terrno) {
5849 case EACCES:
5850 return SQLITE_PERM;
5851 case EIO:
5852 return SQLITE_IOERR_LOCK; /* even though it is the conch */
5853 default:
5854 return SQLITE_CANTOPEN_BKPT;
5858 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
5859 if( pNew==NULL ){
5860 rc = SQLITE_NOMEM;
5861 goto end_create_proxy;
5863 memset(pNew, 0, sizeof(unixFile));
5864 pNew->openFlags = openFlags;
5865 memset(&dummyVfs, 0, sizeof(dummyVfs));
5866 dummyVfs.pAppData = (void*)&autolockIoFinder;
5867 dummyVfs.zName = "dummy";
5868 pUnused->fd = fd;
5869 pUnused->flags = openFlags;
5870 pNew->pUnused = pUnused;
5872 rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
5873 if( rc==SQLITE_OK ){
5874 *ppFile = pNew;
5875 return SQLITE_OK;
5877 end_create_proxy:
5878 robust_close(pNew, fd, __LINE__);
5879 sqlite3_free(pNew);
5880 sqlite3_free(pUnused);
5881 return rc;
5884 #ifdef SQLITE_TEST
5885 /* simulate multiple hosts by creating unique hostid file paths */
5886 int sqlite3_hostid_num = 0;
5887 #endif
5889 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
5891 /* Not always defined in the headers as it ought to be */
5892 extern int gethostuuid(uuid_t id, const struct timespec *wait);
5894 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
5895 ** bytes of writable memory.
5897 static int proxyGetHostID(unsigned char *pHostID, int *pError){
5898 assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
5899 memset(pHostID, 0, PROXY_HOSTIDLEN);
5900 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
5901 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
5903 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
5904 if( gethostuuid(pHostID, &timeout) ){
5905 int err = errno;
5906 if( pError ){
5907 *pError = err;
5909 return SQLITE_IOERR;
5912 #else
5913 UNUSED_PARAMETER(pError);
5914 #endif
5915 #ifdef SQLITE_TEST
5916 /* simulate multiple hosts by creating unique hostid file paths */
5917 if( sqlite3_hostid_num != 0){
5918 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
5920 #endif
5922 return SQLITE_OK;
5925 /* The conch file contains the header, host id and lock file path
5927 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
5928 #define PROXY_HEADERLEN 1 /* conch file header length */
5929 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
5930 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
5933 ** Takes an open conch file, copies the contents to a new path and then moves
5934 ** it back. The newly created file's file descriptor is assigned to the
5935 ** conch file structure and finally the original conch file descriptor is
5936 ** closed. Returns zero if successful.
5938 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
5939 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5940 unixFile *conchFile = pCtx->conchFile;
5941 char tPath[MAXPATHLEN];
5942 char buf[PROXY_MAXCONCHLEN];
5943 char *cPath = pCtx->conchFilePath;
5944 size_t readLen = 0;
5945 size_t pathLen = 0;
5946 char errmsg[64] = "";
5947 int fd = -1;
5948 int rc = -1;
5949 UNUSED_PARAMETER(myHostID);
5951 /* create a new path by replace the trailing '-conch' with '-break' */
5952 pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
5953 if( pathLen>MAXPATHLEN || pathLen<6 ||
5954 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
5955 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
5956 goto end_breaklock;
5958 /* read the conch content */
5959 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
5960 if( readLen<PROXY_PATHINDEX ){
5961 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
5962 goto end_breaklock;
5964 /* write it out to the temporary break file */
5965 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
5966 SQLITE_DEFAULT_FILE_PERMISSIONS);
5967 if( fd<0 ){
5968 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
5969 goto end_breaklock;
5971 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
5972 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
5973 goto end_breaklock;
5975 if( rename(tPath, cPath) ){
5976 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
5977 goto end_breaklock;
5979 rc = 0;
5980 fprintf(stderr, "broke stale lock on %s\n", cPath);
5981 robust_close(pFile, conchFile->h, __LINE__);
5982 conchFile->h = fd;
5983 conchFile->openFlags = O_RDWR | O_CREAT;
5985 end_breaklock:
5986 if( rc ){
5987 if( fd>=0 ){
5988 osUnlink(tPath);
5989 robust_close(pFile, fd, __LINE__);
5991 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
5993 return rc;
5996 /* Take the requested lock on the conch file and break a stale lock if the
5997 ** host id matches.
5999 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
6000 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6001 unixFile *conchFile = pCtx->conchFile;
6002 int rc = SQLITE_OK;
6003 int nTries = 0;
6004 struct timespec conchModTime;
6006 memset(&conchModTime, 0, sizeof(conchModTime));
6007 do {
6008 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6009 nTries ++;
6010 if( rc==SQLITE_BUSY ){
6011 /* If the lock failed (busy):
6012 * 1st try: get the mod time of the conch, wait 0.5s and try again.
6013 * 2nd try: fail if the mod time changed or host id is different, wait
6014 * 10 sec and try again
6015 * 3rd try: break the lock unless the mod time has changed.
6017 struct stat buf;
6018 if( osFstat(conchFile->h, &buf) ){
6019 pFile->lastErrno = errno;
6020 return SQLITE_IOERR_LOCK;
6023 if( nTries==1 ){
6024 conchModTime = buf.st_mtimespec;
6025 usleep(500000); /* wait 0.5 sec and try the lock again*/
6026 continue;
6029 assert( nTries>1 );
6030 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
6031 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
6032 return SQLITE_BUSY;
6035 if( nTries==2 ){
6036 char tBuf[PROXY_MAXCONCHLEN];
6037 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
6038 if( len<0 ){
6039 pFile->lastErrno = errno;
6040 return SQLITE_IOERR_LOCK;
6042 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
6043 /* don't break the lock if the host id doesn't match */
6044 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
6045 return SQLITE_BUSY;
6047 }else{
6048 /* don't break the lock on short read or a version mismatch */
6049 return SQLITE_BUSY;
6051 usleep(10000000); /* wait 10 sec and try the lock again */
6052 continue;
6055 assert( nTries==3 );
6056 if( 0==proxyBreakConchLock(pFile, myHostID) ){
6057 rc = SQLITE_OK;
6058 if( lockType==EXCLUSIVE_LOCK ){
6059 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6061 if( !rc ){
6062 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6066 } while( rc==SQLITE_BUSY && nTries<3 );
6068 return rc;
6071 /* Takes the conch by taking a shared lock and read the contents conch, if
6072 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
6073 ** lockPath means that the lockPath in the conch file will be used if the
6074 ** host IDs match, or a new lock path will be generated automatically
6075 ** and written to the conch file.
6077 static int proxyTakeConch(unixFile *pFile){
6078 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6080 if( pCtx->conchHeld!=0 ){
6081 return SQLITE_OK;
6082 }else{
6083 unixFile *conchFile = pCtx->conchFile;
6084 uuid_t myHostID;
6085 int pError = 0;
6086 char readBuf[PROXY_MAXCONCHLEN];
6087 char lockPath[MAXPATHLEN];
6088 char *tempLockPath = NULL;
6089 int rc = SQLITE_OK;
6090 int createConch = 0;
6091 int hostIdMatch = 0;
6092 int readLen = 0;
6093 int tryOldLockPath = 0;
6094 int forceNewLockPath = 0;
6096 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
6097 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
6099 rc = proxyGetHostID(myHostID, &pError);
6100 if( (rc&0xff)==SQLITE_IOERR ){
6101 pFile->lastErrno = pError;
6102 goto end_takeconch;
6104 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
6105 if( rc!=SQLITE_OK ){
6106 goto end_takeconch;
6108 /* read the existing conch file */
6109 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6110 if( readLen<0 ){
6111 /* I/O error: lastErrno set by seekAndRead */
6112 pFile->lastErrno = conchFile->lastErrno;
6113 rc = SQLITE_IOERR_READ;
6114 goto end_takeconch;
6115 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6116 readBuf[0]!=(char)PROXY_CONCHVERSION ){
6117 /* a short read or version format mismatch means we need to create a new
6118 ** conch file.
6120 createConch = 1;
6122 /* if the host id matches and the lock path already exists in the conch
6123 ** we'll try to use the path there, if we can't open that path, we'll
6124 ** retry with a new auto-generated path
6126 do { /* in case we need to try again for an :auto: named lock file */
6128 if( !createConch && !forceNewLockPath ){
6129 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6130 PROXY_HOSTIDLEN);
6131 /* if the conch has data compare the contents */
6132 if( !pCtx->lockProxyPath ){
6133 /* for auto-named local lock file, just check the host ID and we'll
6134 ** use the local lock file path that's already in there
6136 if( hostIdMatch ){
6137 size_t pathLen = (readLen - PROXY_PATHINDEX);
6139 if( pathLen>=MAXPATHLEN ){
6140 pathLen=MAXPATHLEN-1;
6142 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6143 lockPath[pathLen] = 0;
6144 tempLockPath = lockPath;
6145 tryOldLockPath = 1;
6146 /* create a copy of the lock path if the conch is taken */
6147 goto end_takeconch;
6149 }else if( hostIdMatch
6150 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6151 readLen-PROXY_PATHINDEX)
6153 /* conch host and lock path match */
6154 goto end_takeconch;
6158 /* if the conch isn't writable and doesn't match, we can't take it */
6159 if( (conchFile->openFlags&O_RDWR) == 0 ){
6160 rc = SQLITE_BUSY;
6161 goto end_takeconch;
6164 /* either the conch didn't match or we need to create a new one */
6165 if( !pCtx->lockProxyPath ){
6166 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6167 tempLockPath = lockPath;
6168 /* create a copy of the lock path _only_ if the conch is taken */
6171 /* update conch with host and path (this will fail if other process
6172 ** has a shared lock already), if the host id matches, use the big
6173 ** stick.
6175 futimes(conchFile->h, NULL);
6176 if( hostIdMatch && !createConch ){
6177 if( conchFile->pInode && conchFile->pInode->nShared>1 ){
6178 /* We are trying for an exclusive lock but another thread in this
6179 ** same process is still holding a shared lock. */
6180 rc = SQLITE_BUSY;
6181 } else {
6182 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6184 }else{
6185 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
6187 if( rc==SQLITE_OK ){
6188 char writeBuffer[PROXY_MAXCONCHLEN];
6189 int writeSize = 0;
6191 writeBuffer[0] = (char)PROXY_CONCHVERSION;
6192 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6193 if( pCtx->lockProxyPath!=NULL ){
6194 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
6195 }else{
6196 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6198 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
6199 robust_ftruncate(conchFile->h, writeSize);
6200 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6201 fsync(conchFile->h);
6202 /* If we created a new conch file (not just updated the contents of a
6203 ** valid conch file), try to match the permissions of the database
6205 if( rc==SQLITE_OK && createConch ){
6206 struct stat buf;
6207 int err = osFstat(pFile->h, &buf);
6208 if( err==0 ){
6209 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6210 S_IROTH|S_IWOTH);
6211 /* try to match the database file R/W permissions, ignore failure */
6212 #ifndef SQLITE_PROXY_DEBUG
6213 osFchmod(conchFile->h, cmode);
6214 #else
6216 rc = osFchmod(conchFile->h, cmode);
6217 }while( rc==(-1) && errno==EINTR );
6218 if( rc!=0 ){
6219 int code = errno;
6220 fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6221 cmode, code, strerror(code));
6222 } else {
6223 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6225 }else{
6226 int code = errno;
6227 fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
6228 err, code, strerror(code));
6229 #endif
6233 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
6235 end_takeconch:
6236 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
6237 if( rc==SQLITE_OK && pFile->openFlags ){
6238 int fd;
6239 if( pFile->h>=0 ){
6240 robust_close(pFile, pFile->h, __LINE__);
6242 pFile->h = -1;
6243 fd = robust_open(pCtx->dbPath, pFile->openFlags,
6244 SQLITE_DEFAULT_FILE_PERMISSIONS);
6245 OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
6246 if( fd>=0 ){
6247 pFile->h = fd;
6248 }else{
6249 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
6250 during locking */
6253 if( rc==SQLITE_OK && !pCtx->lockProxy ){
6254 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
6255 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
6256 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
6257 /* we couldn't create the proxy lock file with the old lock file path
6258 ** so try again via auto-naming
6260 forceNewLockPath = 1;
6261 tryOldLockPath = 0;
6262 continue; /* go back to the do {} while start point, try again */
6265 if( rc==SQLITE_OK ){
6266 /* Need to make a copy of path if we extracted the value
6267 ** from the conch file or the path was allocated on the stack
6269 if( tempLockPath ){
6270 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
6271 if( !pCtx->lockProxyPath ){
6272 rc = SQLITE_NOMEM;
6276 if( rc==SQLITE_OK ){
6277 pCtx->conchHeld = 1;
6279 if( pCtx->lockProxy->pMethod == &afpIoMethods ){
6280 afpLockingContext *afpCtx;
6281 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
6282 afpCtx->dbPath = pCtx->lockProxyPath;
6284 } else {
6285 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6287 OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
6288 rc==SQLITE_OK?"ok":"failed"));
6289 return rc;
6290 } while (1); /* in case we need to retry the :auto: lock file -
6291 ** we should never get here except via the 'continue' call. */
6296 ** If pFile holds a lock on a conch file, then release that lock.
6298 static int proxyReleaseConch(unixFile *pFile){
6299 int rc = SQLITE_OK; /* Subroutine return code */
6300 proxyLockingContext *pCtx; /* The locking context for the proxy lock */
6301 unixFile *conchFile; /* Name of the conch file */
6303 pCtx = (proxyLockingContext *)pFile->lockingContext;
6304 conchFile = pCtx->conchFile;
6305 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
6306 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
6307 getpid()));
6308 if( pCtx->conchHeld>0 ){
6309 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6311 pCtx->conchHeld = 0;
6312 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
6313 (rc==SQLITE_OK ? "ok" : "failed")));
6314 return rc;
6318 ** Given the name of a database file, compute the name of its conch file.
6319 ** Store the conch filename in memory obtained from sqlite3_malloc().
6320 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
6321 ** or SQLITE_NOMEM if unable to obtain memory.
6323 ** The caller is responsible for ensuring that the allocated memory
6324 ** space is eventually freed.
6326 ** *pConchPath is set to NULL if a memory allocation error occurs.
6328 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
6329 int i; /* Loop counter */
6330 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
6331 char *conchPath; /* buffer in which to construct conch name */
6333 /* Allocate space for the conch filename and initialize the name to
6334 ** the name of the original database file. */
6335 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
6336 if( conchPath==0 ){
6337 return SQLITE_NOMEM;
6339 memcpy(conchPath, dbPath, len+1);
6341 /* now insert a "." before the last / character */
6342 for( i=(len-1); i>=0; i-- ){
6343 if( conchPath[i]=='/' ){
6344 i++;
6345 break;
6348 conchPath[i]='.';
6349 while ( i<len ){
6350 conchPath[i+1]=dbPath[i];
6351 i++;
6354 /* append the "-conch" suffix to the file */
6355 memcpy(&conchPath[i+1], "-conch", 7);
6356 assert( (int)strlen(conchPath) == len+7 );
6358 return SQLITE_OK;
6362 /* Takes a fully configured proxy locking-style unix file and switches
6363 ** the local lock file path
6365 static int switchLockProxyPath(unixFile *pFile, const char *path) {
6366 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6367 char *oldPath = pCtx->lockProxyPath;
6368 int rc = SQLITE_OK;
6370 if( pFile->eFileLock!=NO_LOCK ){
6371 return SQLITE_BUSY;
6374 /* nothing to do if the path is NULL, :auto: or matches the existing path */
6375 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
6376 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
6377 return SQLITE_OK;
6378 }else{
6379 unixFile *lockProxy = pCtx->lockProxy;
6380 pCtx->lockProxy=NULL;
6381 pCtx->conchHeld = 0;
6382 if( lockProxy!=NULL ){
6383 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
6384 if( rc ) return rc;
6385 sqlite3_free(lockProxy);
6387 sqlite3_free(oldPath);
6388 pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
6391 return rc;
6395 ** pFile is a file that has been opened by a prior xOpen call. dbPath
6396 ** is a string buffer at least MAXPATHLEN+1 characters in size.
6398 ** This routine find the filename associated with pFile and writes it
6399 ** int dbPath.
6401 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
6402 #if defined(__APPLE__)
6403 if( pFile->pMethod == &afpIoMethods ){
6404 /* afp style keeps a reference to the db path in the filePath field
6405 ** of the struct */
6406 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6407 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
6408 } else
6409 #endif
6410 if( pFile->pMethod == &dotlockIoMethods ){
6411 /* dot lock style uses the locking context to store the dot lock
6412 ** file path */
6413 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
6414 memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
6415 }else{
6416 /* all other styles use the locking context to store the db file path */
6417 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6418 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
6420 return SQLITE_OK;
6424 ** Takes an already filled in unix file and alters it so all file locking
6425 ** will be performed on the local proxy lock file. The following fields
6426 ** are preserved in the locking context so that they can be restored and
6427 ** the unix structure properly cleaned up at close time:
6428 ** ->lockingContext
6429 ** ->pMethod
6431 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
6432 proxyLockingContext *pCtx;
6433 char dbPath[MAXPATHLEN+1]; /* Name of the database file */
6434 char *lockPath=NULL;
6435 int rc = SQLITE_OK;
6437 if( pFile->eFileLock!=NO_LOCK ){
6438 return SQLITE_BUSY;
6440 proxyGetDbPathForUnixFile(pFile, dbPath);
6441 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
6442 lockPath=NULL;
6443 }else{
6444 lockPath=(char *)path;
6447 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
6448 (lockPath ? lockPath : ":auto:"), getpid()));
6450 pCtx = sqlite3_malloc( sizeof(*pCtx) );
6451 if( pCtx==0 ){
6452 return SQLITE_NOMEM;
6454 memset(pCtx, 0, sizeof(*pCtx));
6456 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
6457 if( rc==SQLITE_OK ){
6458 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
6459 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
6460 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6461 ** (c) the file system is read-only, then enable no-locking access.
6462 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6463 ** that openFlags will have only one of O_RDONLY or O_RDWR.
6465 struct statfs fsInfo;
6466 struct stat conchInfo;
6467 int goLockless = 0;
6469 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
6470 int err = errno;
6471 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
6472 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
6475 if( goLockless ){
6476 pCtx->conchHeld = -1; /* read only FS/ lockless */
6477 rc = SQLITE_OK;
6481 if( rc==SQLITE_OK && lockPath ){
6482 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
6485 if( rc==SQLITE_OK ){
6486 pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
6487 if( pCtx->dbPath==NULL ){
6488 rc = SQLITE_NOMEM;
6491 if( rc==SQLITE_OK ){
6492 /* all memory is allocated, proxys are created and assigned,
6493 ** switch the locking context and pMethod then return.
6495 pCtx->oldLockingContext = pFile->lockingContext;
6496 pFile->lockingContext = pCtx;
6497 pCtx->pOldMethod = pFile->pMethod;
6498 pFile->pMethod = &proxyIoMethods;
6499 }else{
6500 if( pCtx->conchFile ){
6501 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
6502 sqlite3_free(pCtx->conchFile);
6504 sqlite3DbFree(0, pCtx->lockProxyPath);
6505 sqlite3_free(pCtx->conchFilePath);
6506 sqlite3_free(pCtx);
6508 OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
6509 (rc==SQLITE_OK ? "ok" : "failed")));
6510 return rc;
6515 ** This routine handles sqlite3_file_control() calls that are specific
6516 ** to proxy locking.
6518 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
6519 switch( op ){
6520 case SQLITE_GET_LOCKPROXYFILE: {
6521 unixFile *pFile = (unixFile*)id;
6522 if( pFile->pMethod == &proxyIoMethods ){
6523 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6524 proxyTakeConch(pFile);
6525 if( pCtx->lockProxyPath ){
6526 *(const char **)pArg = pCtx->lockProxyPath;
6527 }else{
6528 *(const char **)pArg = ":auto: (not held)";
6530 } else {
6531 *(const char **)pArg = NULL;
6533 return SQLITE_OK;
6535 case SQLITE_SET_LOCKPROXYFILE: {
6536 unixFile *pFile = (unixFile*)id;
6537 int rc = SQLITE_OK;
6538 int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
6539 if( pArg==NULL || (const char *)pArg==0 ){
6540 if( isProxyStyle ){
6541 /* turn off proxy locking - not supported */
6542 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
6543 }else{
6544 /* turn off proxy locking - already off - NOOP */
6545 rc = SQLITE_OK;
6547 }else{
6548 const char *proxyPath = (const char *)pArg;
6549 if( isProxyStyle ){
6550 proxyLockingContext *pCtx =
6551 (proxyLockingContext*)pFile->lockingContext;
6552 if( !strcmp(pArg, ":auto:")
6553 || (pCtx->lockProxyPath &&
6554 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
6556 rc = SQLITE_OK;
6557 }else{
6558 rc = switchLockProxyPath(pFile, proxyPath);
6560 }else{
6561 /* turn on proxy file locking */
6562 rc = proxyTransformUnixFile(pFile, proxyPath);
6565 return rc;
6567 default: {
6568 assert( 0 ); /* The call assures that only valid opcodes are sent */
6571 /*NOTREACHED*/
6572 return SQLITE_ERROR;
6576 ** Within this division (the proxying locking implementation) the procedures
6577 ** above this point are all utilities. The lock-related methods of the
6578 ** proxy-locking sqlite3_io_method object follow.
6583 ** This routine checks if there is a RESERVED lock held on the specified
6584 ** file by this or any other process. If such a lock is held, set *pResOut
6585 ** to a non-zero value otherwise *pResOut is set to zero. The return value
6586 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
6588 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
6589 unixFile *pFile = (unixFile*)id;
6590 int rc = proxyTakeConch(pFile);
6591 if( rc==SQLITE_OK ){
6592 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6593 if( pCtx->conchHeld>0 ){
6594 unixFile *proxy = pCtx->lockProxy;
6595 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
6596 }else{ /* conchHeld < 0 is lockless */
6597 pResOut=0;
6600 return rc;
6604 ** Lock the file with the lock specified by parameter eFileLock - one
6605 ** of the following:
6607 ** (1) SHARED_LOCK
6608 ** (2) RESERVED_LOCK
6609 ** (3) PENDING_LOCK
6610 ** (4) EXCLUSIVE_LOCK
6612 ** Sometimes when requesting one lock state, additional lock states
6613 ** are inserted in between. The locking might fail on one of the later
6614 ** transitions leaving the lock state different from what it started but
6615 ** still short of its goal. The following chart shows the allowed
6616 ** transitions and the inserted intermediate states:
6618 ** UNLOCKED -> SHARED
6619 ** SHARED -> RESERVED
6620 ** SHARED -> (PENDING) -> EXCLUSIVE
6621 ** RESERVED -> (PENDING) -> EXCLUSIVE
6622 ** PENDING -> EXCLUSIVE
6624 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
6625 ** routine to lower a locking level.
6627 static int proxyLock(sqlite3_file *id, int eFileLock) {
6628 unixFile *pFile = (unixFile*)id;
6629 int rc = proxyTakeConch(pFile);
6630 if( rc==SQLITE_OK ){
6631 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6632 if( pCtx->conchHeld>0 ){
6633 unixFile *proxy = pCtx->lockProxy;
6634 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
6635 pFile->eFileLock = proxy->eFileLock;
6636 }else{
6637 /* conchHeld < 0 is lockless */
6640 return rc;
6645 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
6646 ** must be either NO_LOCK or SHARED_LOCK.
6648 ** If the locking level of the file descriptor is already at or below
6649 ** the requested locking level, this routine is a no-op.
6651 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
6652 unixFile *pFile = (unixFile*)id;
6653 int rc = proxyTakeConch(pFile);
6654 if( rc==SQLITE_OK ){
6655 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6656 if( pCtx->conchHeld>0 ){
6657 unixFile *proxy = pCtx->lockProxy;
6658 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
6659 pFile->eFileLock = proxy->eFileLock;
6660 }else{
6661 /* conchHeld < 0 is lockless */
6664 return rc;
6668 ** Close a file that uses proxy locks.
6670 static int proxyClose(sqlite3_file *id) {
6671 if( id ){
6672 unixFile *pFile = (unixFile*)id;
6673 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6674 unixFile *lockProxy = pCtx->lockProxy;
6675 unixFile *conchFile = pCtx->conchFile;
6676 int rc = SQLITE_OK;
6678 if( lockProxy ){
6679 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
6680 if( rc ) return rc;
6681 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
6682 if( rc ) return rc;
6683 sqlite3_free(lockProxy);
6684 pCtx->lockProxy = 0;
6686 if( conchFile ){
6687 if( pCtx->conchHeld ){
6688 rc = proxyReleaseConch(pFile);
6689 if( rc ) return rc;
6691 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
6692 if( rc ) return rc;
6693 sqlite3_free(conchFile);
6695 sqlite3DbFree(0, pCtx->lockProxyPath);
6696 sqlite3_free(pCtx->conchFilePath);
6697 sqlite3DbFree(0, pCtx->dbPath);
6698 /* restore the original locking context and pMethod then close it */
6699 pFile->lockingContext = pCtx->oldLockingContext;
6700 pFile->pMethod = pCtx->pOldMethod;
6701 sqlite3_free(pCtx);
6702 return pFile->pMethod->xClose(id);
6704 return SQLITE_OK;
6709 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
6711 ** The proxy locking style is intended for use with AFP filesystems.
6712 ** And since AFP is only supported on MacOSX, the proxy locking is also
6713 ** restricted to MacOSX.
6716 ******************* End of the proxy lock implementation **********************
6717 ******************************************************************************/
6720 ** Initialize the operating system interface.
6722 ** This routine registers all VFS implementations for unix-like operating
6723 ** systems. This routine, and the sqlite3_os_end() routine that follows,
6724 ** should be the only routines in this file that are visible from other
6725 ** files.
6727 ** This routine is called once during SQLite initialization and by a
6728 ** single thread. The memory allocation and mutex subsystems have not
6729 ** necessarily been initialized when this routine is called, and so they
6730 ** should not be used.
6732 int sqlite3_os_init(void){
6734 ** The following macro defines an initializer for an sqlite3_vfs object.
6735 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
6736 ** to the "finder" function. (pAppData is a pointer to a pointer because
6737 ** silly C90 rules prohibit a void* from being cast to a function pointer
6738 ** and so we have to go through the intermediate pointer to avoid problems
6739 ** when compiling with -pedantic-errors on GCC.)
6741 ** The FINDER parameter to this macro is the name of the pointer to the
6742 ** finder-function. The finder-function returns a pointer to the
6743 ** sqlite_io_methods object that implements the desired locking
6744 ** behaviors. See the division above that contains the IOMETHODS
6745 ** macro for addition information on finder-functions.
6747 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
6748 ** object. But the "autolockIoFinder" available on MacOSX does a little
6749 ** more than that; it looks at the filesystem type that hosts the
6750 ** database file and tries to choose an locking method appropriate for
6751 ** that filesystem time.
6753 #define UNIXVFS(VFSNAME, FINDER) { \
6754 3, /* iVersion */ \
6755 sizeof(unixFile), /* szOsFile */ \
6756 MAX_PATHNAME, /* mxPathname */ \
6757 0, /* pNext */ \
6758 VFSNAME, /* zName */ \
6759 (void*)&FINDER, /* pAppData */ \
6760 unixOpen, /* xOpen */ \
6761 unixDelete, /* xDelete */ \
6762 unixAccess, /* xAccess */ \
6763 unixFullPathname, /* xFullPathname */ \
6764 unixDlOpen, /* xDlOpen */ \
6765 unixDlError, /* xDlError */ \
6766 unixDlSym, /* xDlSym */ \
6767 unixDlClose, /* xDlClose */ \
6768 unixRandomness, /* xRandomness */ \
6769 unixSleep, /* xSleep */ \
6770 unixCurrentTime, /* xCurrentTime */ \
6771 unixGetLastError, /* xGetLastError */ \
6772 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
6773 unixSetSystemCall, /* xSetSystemCall */ \
6774 unixGetSystemCall, /* xGetSystemCall */ \
6775 unixNextSystemCall, /* xNextSystemCall */ \
6779 ** All default VFSes for unix are contained in the following array.
6781 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
6782 ** by the SQLite core when the VFS is registered. So the following
6783 ** array cannot be const.
6785 static sqlite3_vfs aVfs[] = {
6786 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
6787 UNIXVFS("unix", autolockIoFinder ),
6788 #else
6789 UNIXVFS("unix", posixIoFinder ),
6790 #endif
6791 UNIXVFS("unix-none", nolockIoFinder ),
6792 UNIXVFS("unix-dotfile", dotlockIoFinder ),
6793 UNIXVFS("unix-excl", posixIoFinder ),
6794 #if OS_VXWORKS
6795 UNIXVFS("unix-namedsem", semIoFinder ),
6796 #endif
6797 #if SQLITE_ENABLE_LOCKING_STYLE
6798 UNIXVFS("unix-posix", posixIoFinder ),
6799 #if !OS_VXWORKS
6800 UNIXVFS("unix-flock", flockIoFinder ),
6801 #endif
6802 #endif
6803 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
6804 UNIXVFS("unix-afp", afpIoFinder ),
6805 UNIXVFS("unix-nfs", nfsIoFinder ),
6806 UNIXVFS("unix-proxy", proxyIoFinder ),
6807 #endif
6809 unsigned int i; /* Loop counter */
6811 /* Double-check that the aSyscall[] array has been constructed
6812 ** correctly. See ticket [bb3a86e890c8e96ab] */
6813 assert( ArraySize(aSyscall)==20 );
6815 /* Register all VFSes defined in the aVfs[] array */
6816 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
6817 sqlite3_vfs_register(&aVfs[i], i==0);
6819 return SQLITE_OK;
6823 ** Shutdown the operating system interface.
6825 ** Some operating systems might need to do some cleanup in this routine,
6826 ** to release dynamically allocated objects. But not on unix.
6827 ** This routine is a no-op for unix.
6829 int sqlite3_os_end(void){
6830 return SQLITE_OK;
6833 #endif /* SQLITE_OS_UNIX */