Initial import of Scalos. To decrease size I have
[AROS-Contrib.git] / scalos / libraries / sqlite / src / expr.c
blob22643ff331bcea8ba88ee95592d1d42c3af19b6f
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
18 ** Return the 'affinity' of the expression pExpr if any.
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op = pExpr->op;
35 if( op==TK_SELECT ){
36 assert( pExpr->flags&EP_xIsSelect );
37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
39 #ifndef SQLITE_OMIT_CAST
40 if( op==TK_CAST ){
41 assert( !ExprHasProperty(pExpr, EP_IntValue) );
42 return sqlite3AffinityType(pExpr->u.zToken);
44 #endif
45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46 && pExpr->pTab!=0
48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49 ** a TK_COLUMN but was previously evaluated and cached in a register */
50 int j = pExpr->iColumn;
51 if( j<0 ) return SQLITE_AFF_INTEGER;
52 assert( pExpr->pTab && j<pExpr->pTab->nCol );
53 return pExpr->pTab->aCol[j].affinity;
55 return pExpr->affinity;
59 ** Set the explicit collating sequence for an expression to the
60 ** collating sequence supplied in the second argument.
62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63 if( pExpr && pColl ){
64 pExpr->pColl = pColl;
65 pExpr->flags |= EP_ExpCollate;
67 return pExpr;
71 ** Set the collating sequence for expression pExpr to be the collating
72 ** sequence named by pToken. Return a pointer to the revised expression.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
74 ** flag. An explicit collating sequence will override implicit
75 ** collating sequences.
77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78 char *zColl = 0; /* Dequoted name of collation sequence */
79 CollSeq *pColl;
80 sqlite3 *db = pParse->db;
81 zColl = sqlite3NameFromToken(db, pCollName);
82 pColl = sqlite3LocateCollSeq(pParse, zColl);
83 sqlite3ExprSetColl(pExpr, pColl);
84 sqlite3DbFree(db, zColl);
85 return pExpr;
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93 CollSeq *pColl = 0;
94 Expr *p = pExpr;
95 while( p ){
96 int op;
97 pColl = p->pColl;
98 if( pColl ) break;
99 op = p->op;
100 if( p->pTab!=0 && (
101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104 ** a TK_COLUMN but was previously evaluated and cached in a register */
105 const char *zColl;
106 int j = p->iColumn;
107 if( j>=0 ){
108 sqlite3 *db = pParse->db;
109 zColl = p->pTab->aCol[j].zColl;
110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111 pExpr->pColl = pColl;
113 break;
115 if( op!=TK_CAST && op!=TK_UPLUS ){
116 break;
118 p = p->pLeft;
120 if( sqlite3CheckCollSeq(pParse, pColl) ){
121 pColl = 0;
123 return pColl;
127 ** pExpr is an operand of a comparison operator. aff2 is the
128 ** type affinity of the other operand. This routine returns the
129 ** type affinity that should be used for the comparison operator.
131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132 char aff1 = sqlite3ExprAffinity(pExpr);
133 if( aff1 && aff2 ){
134 /* Both sides of the comparison are columns. If one has numeric
135 ** affinity, use that. Otherwise use no affinity.
137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138 return SQLITE_AFF_NUMERIC;
139 }else{
140 return SQLITE_AFF_NONE;
142 }else if( !aff1 && !aff2 ){
143 /* Neither side of the comparison is a column. Compare the
144 ** results directly.
146 return SQLITE_AFF_NONE;
147 }else{
148 /* One side is a column, the other is not. Use the columns affinity. */
149 assert( aff1==0 || aff2==0 );
150 return (aff1 + aff2);
155 ** pExpr is a comparison operator. Return the type affinity that should
156 ** be applied to both operands prior to doing the comparison.
158 static char comparisonAffinity(Expr *pExpr){
159 char aff;
160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163 assert( pExpr->pLeft );
164 aff = sqlite3ExprAffinity(pExpr->pLeft);
165 if( pExpr->pRight ){
166 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169 }else if( !aff ){
170 aff = SQLITE_AFF_NONE;
172 return aff;
176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177 ** idx_affinity is the affinity of an indexed column. Return true
178 ** if the index with affinity idx_affinity may be used to implement
179 ** the comparison in pExpr.
181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182 char aff = comparisonAffinity(pExpr);
183 switch( aff ){
184 case SQLITE_AFF_NONE:
185 return 1;
186 case SQLITE_AFF_TEXT:
187 return idx_affinity==SQLITE_AFF_TEXT;
188 default:
189 return sqlite3IsNumericAffinity(idx_affinity);
194 ** Return the P5 value that should be used for a binary comparison
195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200 return aff;
204 ** Return a pointer to the collation sequence that should be used by
205 ** a binary comparison operator comparing pLeft and pRight.
207 ** If the left hand expression has a collating sequence type, then it is
208 ** used. Otherwise the collation sequence for the right hand expression
209 ** is used, or the default (BINARY) if neither expression has a collating
210 ** type.
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered.
215 CollSeq *sqlite3BinaryCompareCollSeq(
216 Parse *pParse,
217 Expr *pLeft,
218 Expr *pRight
220 CollSeq *pColl;
221 assert( pLeft );
222 if( pLeft->flags & EP_ExpCollate ){
223 assert( pLeft->pColl );
224 pColl = pLeft->pColl;
225 }else if( pRight && pRight->flags & EP_ExpCollate ){
226 assert( pRight->pColl );
227 pColl = pRight->pColl;
228 }else{
229 pColl = sqlite3ExprCollSeq(pParse, pLeft);
230 if( !pColl ){
231 pColl = sqlite3ExprCollSeq(pParse, pRight);
234 return pColl;
238 ** Generate code for a comparison operator.
240 static int codeCompare(
241 Parse *pParse, /* The parsing (and code generating) context */
242 Expr *pLeft, /* The left operand */
243 Expr *pRight, /* The right operand */
244 int opcode, /* The comparison opcode */
245 int in1, int in2, /* Register holding operands */
246 int dest, /* Jump here if true. */
247 int jumpIfNull /* If true, jump if either operand is NULL */
249 int p5;
250 int addr;
251 CollSeq *p4;
253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256 (void*)p4, P4_COLLSEQ);
257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258 return addr;
261 #if SQLITE_MAX_EXPR_DEPTH>0
263 ** Check that argument nHeight is less than or equal to the maximum
264 ** expression depth allowed. If it is not, leave an error message in
265 ** pParse.
267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268 int rc = SQLITE_OK;
269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270 if( nHeight>mxHeight ){
271 sqlite3ErrorMsg(pParse,
272 "Expression tree is too large (maximum depth %d)", mxHeight
274 rc = SQLITE_ERROR;
276 return rc;
279 /* The following three functions, heightOfExpr(), heightOfExprList()
280 ** and heightOfSelect(), are used to determine the maximum height
281 ** of any expression tree referenced by the structure passed as the
282 ** first argument.
284 ** If this maximum height is greater than the current value pointed
285 ** to by pnHeight, the second parameter, then set *pnHeight to that
286 ** value.
288 static void heightOfExpr(Expr *p, int *pnHeight){
289 if( p ){
290 if( p->nHeight>*pnHeight ){
291 *pnHeight = p->nHeight;
295 static void heightOfExprList(ExprList *p, int *pnHeight){
296 if( p ){
297 int i;
298 for(i=0; i<p->nExpr; i++){
299 heightOfExpr(p->a[i].pExpr, pnHeight);
303 static void heightOfSelect(Select *p, int *pnHeight){
304 if( p ){
305 heightOfExpr(p->pWhere, pnHeight);
306 heightOfExpr(p->pHaving, pnHeight);
307 heightOfExpr(p->pLimit, pnHeight);
308 heightOfExpr(p->pOffset, pnHeight);
309 heightOfExprList(p->pEList, pnHeight);
310 heightOfExprList(p->pGroupBy, pnHeight);
311 heightOfExprList(p->pOrderBy, pnHeight);
312 heightOfSelect(p->pPrior, pnHeight);
317 ** Set the Expr.nHeight variable in the structure passed as an
318 ** argument. An expression with no children, Expr.pList or
319 ** Expr.pSelect member has a height of 1. Any other expression
320 ** has a height equal to the maximum height of any other
321 ** referenced Expr plus one.
323 static void exprSetHeight(Expr *p){
324 int nHeight = 0;
325 heightOfExpr(p->pLeft, &nHeight);
326 heightOfExpr(p->pRight, &nHeight);
327 if( ExprHasProperty(p, EP_xIsSelect) ){
328 heightOfSelect(p->x.pSelect, &nHeight);
329 }else{
330 heightOfExprList(p->x.pList, &nHeight);
332 p->nHeight = nHeight + 1;
336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
337 ** the height is greater than the maximum allowed expression depth,
338 ** leave an error in pParse.
340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341 exprSetHeight(p);
342 sqlite3ExprCheckHeight(pParse, p->nHeight);
346 ** Return the maximum height of any expression tree referenced
347 ** by the select statement passed as an argument.
349 int sqlite3SelectExprHeight(Select *p){
350 int nHeight = 0;
351 heightOfSelect(p, &nHeight);
352 return nHeight;
354 #else
355 #define exprSetHeight(y)
356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
359 ** This routine is the core allocator for Expr nodes.
361 ** Construct a new expression node and return a pointer to it. Memory
362 ** for this node and for the pToken argument is a single allocation
363 ** obtained from sqlite3DbMalloc(). The calling function
364 ** is responsible for making sure the node eventually gets freed.
366 ** If dequote is true, then the token (if it exists) is dequoted.
367 ** If dequote is false, no dequoting is performance. The deQuote
368 ** parameter is ignored if pToken is NULL or if the token does not
369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
370 ** then the EP_DblQuoted flag is set on the expression node.
372 ** Special case: If op==TK_INTEGER and pToken points to a string that
373 ** can be translated into a 32-bit integer, then the token is not
374 ** stored in u.zToken. Instead, the integer values is written
375 ** into u.iValue and the EP_IntValue flag is set. No extra storage
376 ** is allocated to hold the integer text and the dequote flag is ignored.
378 Expr *sqlite3ExprAlloc(
379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
380 int op, /* Expression opcode */
381 const Token *pToken, /* Token argument. Might be NULL */
382 int dequote /* True to dequote */
384 Expr *pNew;
385 int nExtra = 0;
386 int iValue = 0;
388 if( pToken ){
389 if( op!=TK_INTEGER || pToken->z==0
390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391 nExtra = pToken->n+1;
392 assert( iValue>=0 );
395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396 if( pNew ){
397 pNew->op = (u8)op;
398 pNew->iAgg = -1;
399 if( pToken ){
400 if( nExtra==0 ){
401 pNew->flags |= EP_IntValue;
402 pNew->u.iValue = iValue;
403 }else{
404 int c;
405 pNew->u.zToken = (char*)&pNew[1];
406 assert( pToken->z!=0 || pToken->n==0 );
407 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
408 pNew->u.zToken[pToken->n] = 0;
409 if( dequote && nExtra>=3
410 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
411 sqlite3Dequote(pNew->u.zToken);
412 if( c=='"' ) pNew->flags |= EP_DblQuoted;
416 #if SQLITE_MAX_EXPR_DEPTH>0
417 pNew->nHeight = 1;
418 #endif
420 return pNew;
424 ** Allocate a new expression node from a zero-terminated token that has
425 ** already been dequoted.
427 Expr *sqlite3Expr(
428 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
429 int op, /* Expression opcode */
430 const char *zToken /* Token argument. Might be NULL */
432 Token x;
433 x.z = zToken;
434 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
435 return sqlite3ExprAlloc(db, op, &x, 0);
439 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
441 ** If pRoot==NULL that means that a memory allocation error has occurred.
442 ** In that case, delete the subtrees pLeft and pRight.
444 void sqlite3ExprAttachSubtrees(
445 sqlite3 *db,
446 Expr *pRoot,
447 Expr *pLeft,
448 Expr *pRight
450 if( pRoot==0 ){
451 assert( db->mallocFailed );
452 sqlite3ExprDelete(db, pLeft);
453 sqlite3ExprDelete(db, pRight);
454 }else{
455 if( pRight ){
456 pRoot->pRight = pRight;
457 if( pRight->flags & EP_ExpCollate ){
458 pRoot->flags |= EP_ExpCollate;
459 pRoot->pColl = pRight->pColl;
462 if( pLeft ){
463 pRoot->pLeft = pLeft;
464 if( pLeft->flags & EP_ExpCollate ){
465 pRoot->flags |= EP_ExpCollate;
466 pRoot->pColl = pLeft->pColl;
469 exprSetHeight(pRoot);
474 ** Allocate a Expr node which joins as many as two subtrees.
476 ** One or both of the subtrees can be NULL. Return a pointer to the new
477 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
478 ** free the subtrees and return NULL.
480 Expr *sqlite3PExpr(
481 Parse *pParse, /* Parsing context */
482 int op, /* Expression opcode */
483 Expr *pLeft, /* Left operand */
484 Expr *pRight, /* Right operand */
485 const Token *pToken /* Argument token */
487 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
488 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
489 if( p ) {
490 sqlite3ExprCheckHeight(pParse, p->nHeight);
492 return p;
496 ** Join two expressions using an AND operator. If either expression is
497 ** NULL, then just return the other expression.
499 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
500 if( pLeft==0 ){
501 return pRight;
502 }else if( pRight==0 ){
503 return pLeft;
504 }else{
505 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
506 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
507 return pNew;
512 ** Construct a new expression node for a function with multiple
513 ** arguments.
515 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
516 Expr *pNew;
517 sqlite3 *db = pParse->db;
518 assert( pToken );
519 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
520 if( pNew==0 ){
521 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
522 return 0;
524 pNew->x.pList = pList;
525 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
526 sqlite3ExprSetHeight(pParse, pNew);
527 return pNew;
531 ** Assign a variable number to an expression that encodes a wildcard
532 ** in the original SQL statement.
534 ** Wildcards consisting of a single "?" are assigned the next sequential
535 ** variable number.
537 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
538 ** sure "nnn" is not too be to avoid a denial of service attack when
539 ** the SQL statement comes from an external source.
541 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
542 ** as the previous instance of the same wildcard. Or if this is the first
543 ** instance of the wildcard, the next sequenial variable number is
544 ** assigned.
546 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
547 sqlite3 *db = pParse->db;
548 const char *z;
550 if( pExpr==0 ) return;
551 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
552 z = pExpr->u.zToken;
553 assert( z!=0 );
554 assert( z[0]!=0 );
555 if( z[1]==0 ){
556 /* Wildcard of the form "?". Assign the next variable number */
557 assert( z[0]=='?' );
558 pExpr->iColumn = (ynVar)(++pParse->nVar);
559 }else{
560 ynVar x = 0;
561 u32 n = sqlite3Strlen30(z);
562 if( z[0]=='?' ){
563 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
564 ** use it as the variable number */
565 i64 i;
566 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
567 pExpr->iColumn = x = (ynVar)i;
568 testcase( i==0 );
569 testcase( i==1 );
570 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
571 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
572 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
573 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
574 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
575 x = 0;
577 if( i>pParse->nVar ){
578 pParse->nVar = (int)i;
580 }else{
581 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
582 ** number as the prior appearance of the same name, or if the name
583 ** has never appeared before, reuse the same variable number
585 ynVar i;
586 for(i=0; i<pParse->nzVar; i++){
587 if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){
588 pExpr->iColumn = x = (ynVar)i+1;
589 break;
592 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
594 if( x>0 ){
595 if( x>pParse->nzVar ){
596 char **a;
597 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
598 if( a==0 ) return; /* Error reported through db->mallocFailed */
599 pParse->azVar = a;
600 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
601 pParse->nzVar = x;
603 if( z[0]!='?' || pParse->azVar[x-1]==0 ){
604 sqlite3DbFree(db, pParse->azVar[x-1]);
605 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
609 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
610 sqlite3ErrorMsg(pParse, "too many SQL variables");
615 ** Recursively delete an expression tree.
617 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
618 if( p==0 ) return;
619 /* Sanity check: Assert that the IntValue is non-negative if it exists */
620 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
621 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
622 sqlite3ExprDelete(db, p->pLeft);
623 sqlite3ExprDelete(db, p->pRight);
624 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
625 sqlite3DbFree(db, p->u.zToken);
627 if( ExprHasProperty(p, EP_xIsSelect) ){
628 sqlite3SelectDelete(db, p->x.pSelect);
629 }else{
630 sqlite3ExprListDelete(db, p->x.pList);
633 if( !ExprHasProperty(p, EP_Static) ){
634 sqlite3DbFree(db, p);
639 ** Return the number of bytes allocated for the expression structure
640 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
641 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
643 static int exprStructSize(Expr *p){
644 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
645 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
646 return EXPR_FULLSIZE;
650 ** The dupedExpr*Size() routines each return the number of bytes required
651 ** to store a copy of an expression or expression tree. They differ in
652 ** how much of the tree is measured.
654 ** dupedExprStructSize() Size of only the Expr structure
655 ** dupedExprNodeSize() Size of Expr + space for token
656 ** dupedExprSize() Expr + token + subtree components
658 ***************************************************************************
660 ** The dupedExprStructSize() function returns two values OR-ed together:
661 ** (1) the space required for a copy of the Expr structure only and
662 ** (2) the EP_xxx flags that indicate what the structure size should be.
663 ** The return values is always one of:
665 ** EXPR_FULLSIZE
666 ** EXPR_REDUCEDSIZE | EP_Reduced
667 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
669 ** The size of the structure can be found by masking the return value
670 ** of this routine with 0xfff. The flags can be found by masking the
671 ** return value with EP_Reduced|EP_TokenOnly.
673 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
674 ** (unreduced) Expr objects as they or originally constructed by the parser.
675 ** During expression analysis, extra information is computed and moved into
676 ** later parts of teh Expr object and that extra information might get chopped
677 ** off if the expression is reduced. Note also that it does not work to
678 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
679 ** to reduce a pristine expression tree from the parser. The implementation
680 ** of dupedExprStructSize() contain multiple assert() statements that attempt
681 ** to enforce this constraint.
683 static int dupedExprStructSize(Expr *p, int flags){
684 int nSize;
685 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
686 if( 0==(flags&EXPRDUP_REDUCE) ){
687 nSize = EXPR_FULLSIZE;
688 }else{
689 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
690 assert( !ExprHasProperty(p, EP_FromJoin) );
691 assert( (p->flags2 & EP2_MallocedToken)==0 );
692 assert( (p->flags2 & EP2_Irreducible)==0 );
693 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
694 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
695 }else{
696 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
699 return nSize;
703 ** This function returns the space in bytes required to store the copy
704 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
705 ** string is defined.)
707 static int dupedExprNodeSize(Expr *p, int flags){
708 int nByte = dupedExprStructSize(p, flags) & 0xfff;
709 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
710 nByte += sqlite3Strlen30(p->u.zToken)+1;
712 return ROUND8(nByte);
716 ** Return the number of bytes required to create a duplicate of the
717 ** expression passed as the first argument. The second argument is a
718 ** mask containing EXPRDUP_XXX flags.
720 ** The value returned includes space to create a copy of the Expr struct
721 ** itself and the buffer referred to by Expr.u.zToken, if any.
723 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
724 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
725 ** and Expr.pRight variables (but not for any structures pointed to or
726 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
728 static int dupedExprSize(Expr *p, int flags){
729 int nByte = 0;
730 if( p ){
731 nByte = dupedExprNodeSize(p, flags);
732 if( flags&EXPRDUP_REDUCE ){
733 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
736 return nByte;
740 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
741 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
742 ** to store the copy of expression p, the copies of p->u.zToken
743 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
744 ** if any. Before returning, *pzBuffer is set to the first byte passed the
745 ** portion of the buffer copied into by this function.
747 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
748 Expr *pNew = 0; /* Value to return */
749 if( p ){
750 const int isReduced = (flags&EXPRDUP_REDUCE);
751 u8 *zAlloc;
752 u32 staticFlag = 0;
754 assert( pzBuffer==0 || isReduced );
756 /* Figure out where to write the new Expr structure. */
757 if( pzBuffer ){
758 zAlloc = *pzBuffer;
759 staticFlag = EP_Static;
760 }else{
761 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
763 pNew = (Expr *)zAlloc;
765 if( pNew ){
766 /* Set nNewSize to the size allocated for the structure pointed to
767 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
768 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
769 ** by the copy of the p->u.zToken string (if any).
771 const unsigned nStructSize = dupedExprStructSize(p, flags);
772 const int nNewSize = nStructSize & 0xfff;
773 int nToken;
774 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
775 nToken = sqlite3Strlen30(p->u.zToken) + 1;
776 }else{
777 nToken = 0;
779 if( isReduced ){
780 assert( ExprHasProperty(p, EP_Reduced)==0 );
781 memcpy(zAlloc, p, nNewSize);
782 }else{
783 int nSize = exprStructSize(p);
784 memcpy(zAlloc, p, nSize);
785 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
788 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
789 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
790 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
791 pNew->flags |= staticFlag;
793 /* Copy the p->u.zToken string, if any. */
794 if( nToken ){
795 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
796 memcpy(zToken, p->u.zToken, nToken);
799 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
800 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
801 if( ExprHasProperty(p, EP_xIsSelect) ){
802 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
803 }else{
804 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
808 /* Fill in pNew->pLeft and pNew->pRight. */
809 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
810 zAlloc += dupedExprNodeSize(p, flags);
811 if( ExprHasProperty(pNew, EP_Reduced) ){
812 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
813 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
815 if( pzBuffer ){
816 *pzBuffer = zAlloc;
818 }else{
819 pNew->flags2 = 0;
820 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
821 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
822 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
828 return pNew;
832 ** The following group of routines make deep copies of expressions,
833 ** expression lists, ID lists, and select statements. The copies can
834 ** be deleted (by being passed to their respective ...Delete() routines)
835 ** without effecting the originals.
837 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
838 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
839 ** by subsequent calls to sqlite*ListAppend() routines.
841 ** Any tables that the SrcList might point to are not duplicated.
843 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
844 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
845 ** truncated version of the usual Expr structure that will be stored as
846 ** part of the in-memory representation of the database schema.
848 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
849 return exprDup(db, p, flags, 0);
851 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
852 ExprList *pNew;
853 struct ExprList_item *pItem, *pOldItem;
854 int i;
855 if( p==0 ) return 0;
856 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
857 if( pNew==0 ) return 0;
858 pNew->iECursor = 0;
859 pNew->nExpr = pNew->nAlloc = p->nExpr;
860 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
861 if( pItem==0 ){
862 sqlite3DbFree(db, pNew);
863 return 0;
865 pOldItem = p->a;
866 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
867 Expr *pOldExpr = pOldItem->pExpr;
868 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
869 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
870 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
871 pItem->sortOrder = pOldItem->sortOrder;
872 pItem->done = 0;
873 pItem->iOrderByCol = pOldItem->iOrderByCol;
874 pItem->iAlias = pOldItem->iAlias;
876 return pNew;
880 ** If cursors, triggers, views and subqueries are all omitted from
881 ** the build, then none of the following routines, except for
882 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
883 ** called with a NULL argument.
885 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
886 || !defined(SQLITE_OMIT_SUBQUERY)
887 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
888 SrcList *pNew;
889 int i;
890 int nByte;
891 if( p==0 ) return 0;
892 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
893 pNew = sqlite3DbMallocRaw(db, nByte );
894 if( pNew==0 ) return 0;
895 pNew->nSrc = pNew->nAlloc = p->nSrc;
896 for(i=0; i<p->nSrc; i++){
897 struct SrcList_item *pNewItem = &pNew->a[i];
898 struct SrcList_item *pOldItem = &p->a[i];
899 Table *pTab;
900 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
901 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
902 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
903 pNewItem->jointype = pOldItem->jointype;
904 pNewItem->iCursor = pOldItem->iCursor;
905 pNewItem->addrFillSub = pOldItem->addrFillSub;
906 pNewItem->regReturn = pOldItem->regReturn;
907 pNewItem->isCorrelated = pOldItem->isCorrelated;
908 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
909 pNewItem->notIndexed = pOldItem->notIndexed;
910 pNewItem->pIndex = pOldItem->pIndex;
911 pTab = pNewItem->pTab = pOldItem->pTab;
912 if( pTab ){
913 pTab->nRef++;
915 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
916 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
917 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
918 pNewItem->colUsed = pOldItem->colUsed;
920 return pNew;
922 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
923 IdList *pNew;
924 int i;
925 if( p==0 ) return 0;
926 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
927 if( pNew==0 ) return 0;
928 pNew->nId = pNew->nAlloc = p->nId;
929 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
930 if( pNew->a==0 ){
931 sqlite3DbFree(db, pNew);
932 return 0;
934 for(i=0; i<p->nId; i++){
935 struct IdList_item *pNewItem = &pNew->a[i];
936 struct IdList_item *pOldItem = &p->a[i];
937 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
938 pNewItem->idx = pOldItem->idx;
940 return pNew;
942 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
943 Select *pNew, *pPrior;
944 if( p==0 ) return 0;
945 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
946 if( pNew==0 ) return 0;
947 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
948 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
949 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
950 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
951 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
952 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
953 pNew->op = p->op;
954 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
955 if( pPrior ) pPrior->pNext = pNew;
956 pNew->pNext = 0;
957 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
958 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
959 pNew->iLimit = 0;
960 pNew->iOffset = 0;
961 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
962 pNew->pRightmost = 0;
963 pNew->addrOpenEphm[0] = -1;
964 pNew->addrOpenEphm[1] = -1;
965 pNew->addrOpenEphm[2] = -1;
966 return pNew;
968 #else
969 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
970 assert( p==0 );
971 return 0;
973 #endif
977 ** Add a new element to the end of an expression list. If pList is
978 ** initially NULL, then create a new expression list.
980 ** If a memory allocation error occurs, the entire list is freed and
981 ** NULL is returned. If non-NULL is returned, then it is guaranteed
982 ** that the new entry was successfully appended.
984 ExprList *sqlite3ExprListAppend(
985 Parse *pParse, /* Parsing context */
986 ExprList *pList, /* List to which to append. Might be NULL */
987 Expr *pExpr /* Expression to be appended. Might be NULL */
989 sqlite3 *db = pParse->db;
990 if( pList==0 ){
991 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
992 if( pList==0 ){
993 goto no_mem;
995 assert( pList->nAlloc==0 );
997 if( pList->nAlloc<=pList->nExpr ){
998 struct ExprList_item *a;
999 int n = pList->nAlloc*2 + 4;
1000 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
1001 if( a==0 ){
1002 goto no_mem;
1004 pList->a = a;
1005 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1007 assert( pList->a!=0 );
1008 if( 1 ){
1009 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1010 memset(pItem, 0, sizeof(*pItem));
1011 pItem->pExpr = pExpr;
1013 return pList;
1015 no_mem:
1016 /* Avoid leaking memory if malloc has failed. */
1017 sqlite3ExprDelete(db, pExpr);
1018 sqlite3ExprListDelete(db, pList);
1019 return 0;
1023 ** Set the ExprList.a[].zName element of the most recently added item
1024 ** on the expression list.
1026 ** pList might be NULL following an OOM error. But pName should never be
1027 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1028 ** is set.
1030 void sqlite3ExprListSetName(
1031 Parse *pParse, /* Parsing context */
1032 ExprList *pList, /* List to which to add the span. */
1033 Token *pName, /* Name to be added */
1034 int dequote /* True to cause the name to be dequoted */
1036 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1037 if( pList ){
1038 struct ExprList_item *pItem;
1039 assert( pList->nExpr>0 );
1040 pItem = &pList->a[pList->nExpr-1];
1041 assert( pItem->zName==0 );
1042 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1043 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1048 ** Set the ExprList.a[].zSpan element of the most recently added item
1049 ** on the expression list.
1051 ** pList might be NULL following an OOM error. But pSpan should never be
1052 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1053 ** is set.
1055 void sqlite3ExprListSetSpan(
1056 Parse *pParse, /* Parsing context */
1057 ExprList *pList, /* List to which to add the span. */
1058 ExprSpan *pSpan /* The span to be added */
1060 sqlite3 *db = pParse->db;
1061 assert( pList!=0 || db->mallocFailed!=0 );
1062 if( pList ){
1063 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1064 assert( pList->nExpr>0 );
1065 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1066 sqlite3DbFree(db, pItem->zSpan);
1067 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1068 (int)(pSpan->zEnd - pSpan->zStart));
1073 ** If the expression list pEList contains more than iLimit elements,
1074 ** leave an error message in pParse.
1076 void sqlite3ExprListCheckLength(
1077 Parse *pParse,
1078 ExprList *pEList,
1079 const char *zObject
1081 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1082 testcase( pEList && pEList->nExpr==mx );
1083 testcase( pEList && pEList->nExpr==mx+1 );
1084 if( pEList && pEList->nExpr>mx ){
1085 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1090 ** Delete an entire expression list.
1092 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1093 int i;
1094 struct ExprList_item *pItem;
1095 if( pList==0 ) return;
1096 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1097 assert( pList->nExpr<=pList->nAlloc );
1098 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1099 sqlite3ExprDelete(db, pItem->pExpr);
1100 sqlite3DbFree(db, pItem->zName);
1101 sqlite3DbFree(db, pItem->zSpan);
1103 sqlite3DbFree(db, pList->a);
1104 sqlite3DbFree(db, pList);
1108 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1109 ** to an integer. These routines are checking an expression to see
1110 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
1111 ** not constant.
1113 ** These callback routines are used to implement the following:
1115 ** sqlite3ExprIsConstant()
1116 ** sqlite3ExprIsConstantNotJoin()
1117 ** sqlite3ExprIsConstantOrFunction()
1120 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1122 /* If pWalker->u.i is 3 then any term of the expression that comes from
1123 ** the ON or USING clauses of a join disqualifies the expression
1124 ** from being considered constant. */
1125 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1126 pWalker->u.i = 0;
1127 return WRC_Abort;
1130 switch( pExpr->op ){
1131 /* Consider functions to be constant if all their arguments are constant
1132 ** and pWalker->u.i==2 */
1133 case TK_FUNCTION:
1134 if( pWalker->u.i==2 ) return 0;
1135 /* Fall through */
1136 case TK_ID:
1137 case TK_COLUMN:
1138 case TK_AGG_FUNCTION:
1139 case TK_AGG_COLUMN:
1140 testcase( pExpr->op==TK_ID );
1141 testcase( pExpr->op==TK_COLUMN );
1142 testcase( pExpr->op==TK_AGG_FUNCTION );
1143 testcase( pExpr->op==TK_AGG_COLUMN );
1144 pWalker->u.i = 0;
1145 return WRC_Abort;
1146 default:
1147 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1148 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1149 return WRC_Continue;
1152 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1153 UNUSED_PARAMETER(NotUsed);
1154 pWalker->u.i = 0;
1155 return WRC_Abort;
1157 static int exprIsConst(Expr *p, int initFlag){
1158 Walker w;
1159 w.u.i = initFlag;
1160 w.xExprCallback = exprNodeIsConstant;
1161 w.xSelectCallback = selectNodeIsConstant;
1162 sqlite3WalkExpr(&w, p);
1163 return w.u.i;
1167 ** Walk an expression tree. Return 1 if the expression is constant
1168 ** and 0 if it involves variables or function calls.
1170 ** For the purposes of this function, a double-quoted string (ex: "abc")
1171 ** is considered a variable but a single-quoted string (ex: 'abc') is
1172 ** a constant.
1174 int sqlite3ExprIsConstant(Expr *p){
1175 return exprIsConst(p, 1);
1179 ** Walk an expression tree. Return 1 if the expression is constant
1180 ** that does no originate from the ON or USING clauses of a join.
1181 ** Return 0 if it involves variables or function calls or terms from
1182 ** an ON or USING clause.
1184 int sqlite3ExprIsConstantNotJoin(Expr *p){
1185 return exprIsConst(p, 3);
1189 ** Walk an expression tree. Return 1 if the expression is constant
1190 ** or a function call with constant arguments. Return and 0 if there
1191 ** are any variables.
1193 ** For the purposes of this function, a double-quoted string (ex: "abc")
1194 ** is considered a variable but a single-quoted string (ex: 'abc') is
1195 ** a constant.
1197 int sqlite3ExprIsConstantOrFunction(Expr *p){
1198 return exprIsConst(p, 2);
1202 ** If the expression p codes a constant integer that is small enough
1203 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1204 ** in *pValue. If the expression is not an integer or if it is too big
1205 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1207 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1208 int rc = 0;
1210 /* If an expression is an integer literal that fits in a signed 32-bit
1211 ** integer, then the EP_IntValue flag will have already been set */
1212 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1213 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1215 if( p->flags & EP_IntValue ){
1216 *pValue = p->u.iValue;
1217 return 1;
1219 switch( p->op ){
1220 case TK_UPLUS: {
1221 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1222 break;
1224 case TK_UMINUS: {
1225 int v;
1226 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1227 *pValue = -v;
1228 rc = 1;
1230 break;
1232 default: break;
1234 return rc;
1238 ** Return FALSE if there is no chance that the expression can be NULL.
1240 ** If the expression might be NULL or if the expression is too complex
1241 ** to tell return TRUE.
1243 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1244 ** when we know that a value cannot be NULL. Hence, a false positive
1245 ** (returning TRUE when in fact the expression can never be NULL) might
1246 ** be a small performance hit but is otherwise harmless. On the other
1247 ** hand, a false negative (returning FALSE when the result could be NULL)
1248 ** will likely result in an incorrect answer. So when in doubt, return
1249 ** TRUE.
1251 int sqlite3ExprCanBeNull(const Expr *p){
1252 u8 op;
1253 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1254 op = p->op;
1255 if( op==TK_REGISTER ) op = p->op2;
1256 switch( op ){
1257 case TK_INTEGER:
1258 case TK_STRING:
1259 case TK_FLOAT:
1260 case TK_BLOB:
1261 return 0;
1262 default:
1263 return 1;
1268 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1269 ** to location iDest if the value in iReg is NULL. The value in iReg
1270 ** was computed by pExpr. If we can look at pExpr at compile-time and
1271 ** determine that it can never generate a NULL, then the OP_IsNull operation
1272 ** can be omitted.
1274 void sqlite3ExprCodeIsNullJump(
1275 Vdbe *v, /* The VDBE under construction */
1276 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
1277 int iReg, /* Test the value in this register for NULL */
1278 int iDest /* Jump here if the value is null */
1280 if( sqlite3ExprCanBeNull(pExpr) ){
1281 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1286 ** Return TRUE if the given expression is a constant which would be
1287 ** unchanged by OP_Affinity with the affinity given in the second
1288 ** argument.
1290 ** This routine is used to determine if the OP_Affinity operation
1291 ** can be omitted. When in doubt return FALSE. A false negative
1292 ** is harmless. A false positive, however, can result in the wrong
1293 ** answer.
1295 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1296 u8 op;
1297 if( aff==SQLITE_AFF_NONE ) return 1;
1298 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1299 op = p->op;
1300 if( op==TK_REGISTER ) op = p->op2;
1301 switch( op ){
1302 case TK_INTEGER: {
1303 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1305 case TK_FLOAT: {
1306 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1308 case TK_STRING: {
1309 return aff==SQLITE_AFF_TEXT;
1311 case TK_BLOB: {
1312 return 1;
1314 case TK_COLUMN: {
1315 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
1316 return p->iColumn<0
1317 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1319 default: {
1320 return 0;
1326 ** Return TRUE if the given string is a row-id column name.
1328 int sqlite3IsRowid(const char *z){
1329 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1330 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1331 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1332 return 0;
1336 ** Return true if we are able to the IN operator optimization on a
1337 ** query of the form
1339 ** x IN (SELECT ...)
1341 ** Where the SELECT... clause is as specified by the parameter to this
1342 ** routine.
1344 ** The Select object passed in has already been preprocessed and no
1345 ** errors have been found.
1347 #ifndef SQLITE_OMIT_SUBQUERY
1348 static int isCandidateForInOpt(Select *p){
1349 SrcList *pSrc;
1350 ExprList *pEList;
1351 Table *pTab;
1352 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1353 if( p->pPrior ) return 0; /* Not a compound SELECT */
1354 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1355 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1356 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1357 return 0; /* No DISTINCT keyword and no aggregate functions */
1359 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
1360 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1361 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
1362 if( p->pWhere ) return 0; /* Has no WHERE clause */
1363 pSrc = p->pSrc;
1364 assert( pSrc!=0 );
1365 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
1366 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
1367 pTab = pSrc->a[0].pTab;
1368 if( NEVER(pTab==0) ) return 0;
1369 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1370 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1371 pEList = p->pEList;
1372 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1373 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1374 return 1;
1376 #endif /* SQLITE_OMIT_SUBQUERY */
1379 ** Code an OP_Once instruction and allocate space for its flag. Return the
1380 ** address of the new instruction.
1382 int sqlite3CodeOnce(Parse *pParse){
1383 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1384 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1388 ** This function is used by the implementation of the IN (...) operator.
1389 ** It's job is to find or create a b-tree structure that may be used
1390 ** either to test for membership of the (...) set or to iterate through
1391 ** its members, skipping duplicates.
1393 ** The index of the cursor opened on the b-tree (database table, database index
1394 ** or ephermal table) is stored in pX->iTable before this function returns.
1395 ** The returned value of this function indicates the b-tree type, as follows:
1397 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1398 ** IN_INDEX_INDEX - The cursor was opened on a database index.
1399 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1400 ** populated epheremal table.
1402 ** An existing b-tree may only be used if the SELECT is of the simple
1403 ** form:
1405 ** SELECT <column> FROM <table>
1407 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1408 ** through the set members, skipping any duplicates. In this case an
1409 ** epheremal table must be used unless the selected <column> is guaranteed
1410 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1411 ** has a UNIQUE constraint or UNIQUE index.
1413 ** If the prNotFound parameter is not 0, then the b-tree will be used
1414 ** for fast set membership tests. In this case an epheremal table must
1415 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1416 ** be found with <column> as its left-most column.
1418 ** When the b-tree is being used for membership tests, the calling function
1419 ** needs to know whether or not the structure contains an SQL NULL
1420 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1421 ** If there is any chance that the (...) might contain a NULL value at
1422 ** runtime, then a register is allocated and the register number written
1423 ** to *prNotFound. If there is no chance that the (...) contains a
1424 ** NULL value, then *prNotFound is left unchanged.
1426 ** If a register is allocated and its location stored in *prNotFound, then
1427 ** its initial value is NULL. If the (...) does not remain constant
1428 ** for the duration of the query (i.e. the SELECT within the (...)
1429 ** is a correlated subquery) then the value of the allocated register is
1430 ** reset to NULL each time the subquery is rerun. This allows the
1431 ** caller to use vdbe code equivalent to the following:
1433 ** if( register==NULL ){
1434 ** has_null = <test if data structure contains null>
1435 ** register = 1
1436 ** }
1438 ** in order to avoid running the <test if data structure contains null>
1439 ** test more often than is necessary.
1441 #ifndef SQLITE_OMIT_SUBQUERY
1442 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1443 Select *p; /* SELECT to the right of IN operator */
1444 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1445 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1446 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
1447 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1449 assert( pX->op==TK_IN );
1451 /* Check to see if an existing table or index can be used to
1452 ** satisfy the query. This is preferable to generating a new
1453 ** ephemeral table.
1455 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1456 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1457 sqlite3 *db = pParse->db; /* Database connection */
1458 Table *pTab; /* Table <table>. */
1459 Expr *pExpr; /* Expression <column> */
1460 int iCol; /* Index of column <column> */
1461 int iDb; /* Database idx for pTab */
1463 assert( p ); /* Because of isCandidateForInOpt(p) */
1464 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
1465 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1466 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
1467 pTab = p->pSrc->a[0].pTab;
1468 pExpr = p->pEList->a[0].pExpr;
1469 iCol = pExpr->iColumn;
1471 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1472 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1473 sqlite3CodeVerifySchema(pParse, iDb);
1474 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1476 /* This function is only called from two places. In both cases the vdbe
1477 ** has already been allocated. So assume sqlite3GetVdbe() is always
1478 ** successful here.
1480 assert(v);
1481 if( iCol<0 ){
1482 int iAddr;
1484 iAddr = sqlite3CodeOnce(pParse);
1486 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1487 eType = IN_INDEX_ROWID;
1489 sqlite3VdbeJumpHere(v, iAddr);
1490 }else{
1491 Index *pIdx; /* Iterator variable */
1493 /* The collation sequence used by the comparison. If an index is to
1494 ** be used in place of a temp-table, it must be ordered according
1495 ** to this collation sequence. */
1496 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1498 /* Check that the affinity that will be used to perform the
1499 ** comparison is the same as the affinity of the column. If
1500 ** it is not, it is not possible to use any index.
1502 char aff = comparisonAffinity(pX);
1503 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1505 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1506 if( (pIdx->aiColumn[0]==iCol)
1507 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1508 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1510 int iAddr;
1511 char *pKey;
1513 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1514 iAddr = sqlite3CodeOnce(pParse);
1516 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1517 pKey,P4_KEYINFO_HANDOFF);
1518 VdbeComment((v, "%s", pIdx->zName));
1519 eType = IN_INDEX_INDEX;
1521 sqlite3VdbeJumpHere(v, iAddr);
1522 if( prNotFound && !pTab->aCol[iCol].notNull ){
1523 *prNotFound = ++pParse->nMem;
1524 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1531 if( eType==0 ){
1532 /* Could not found an existing table or index to use as the RHS b-tree.
1533 ** We will have to generate an ephemeral table to do the job.
1535 double savedNQueryLoop = pParse->nQueryLoop;
1536 int rMayHaveNull = 0;
1537 eType = IN_INDEX_EPH;
1538 if( prNotFound ){
1539 *prNotFound = rMayHaveNull = ++pParse->nMem;
1540 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1541 }else{
1542 testcase( pParse->nQueryLoop>(double)1 );
1543 pParse->nQueryLoop = (double)1;
1544 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1545 eType = IN_INDEX_ROWID;
1548 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1549 pParse->nQueryLoop = savedNQueryLoop;
1550 }else{
1551 pX->iTable = iTab;
1553 return eType;
1555 #endif
1558 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1559 ** or IN operators. Examples:
1561 ** (SELECT a FROM b) -- subquery
1562 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1563 ** x IN (4,5,11) -- IN operator with list on right-hand side
1564 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1566 ** The pExpr parameter describes the expression that contains the IN
1567 ** operator or subquery.
1569 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1570 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1571 ** to some integer key column of a table B-Tree. In this case, use an
1572 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1573 ** (slower) variable length keys B-Tree.
1575 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1576 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1577 ** Furthermore, the IN is in a WHERE clause and that we really want
1578 ** to iterate over the RHS of the IN operator in order to quickly locate
1579 ** all corresponding LHS elements. All this routine does is initialize
1580 ** the register given by rMayHaveNull to NULL. Calling routines will take
1581 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1583 ** If rMayHaveNull is zero, that means that the subquery is being used
1584 ** for membership testing only. There is no need to initialize any
1585 ** registers to indicate the presense or absence of NULLs on the RHS.
1587 ** For a SELECT or EXISTS operator, return the register that holds the
1588 ** result. For IN operators or if an error occurs, the return value is 0.
1590 #ifndef SQLITE_OMIT_SUBQUERY
1591 int sqlite3CodeSubselect(
1592 Parse *pParse, /* Parsing context */
1593 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1594 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
1595 int isRowid /* If true, LHS of IN operator is a rowid */
1597 int testAddr = -1; /* One-time test address */
1598 int rReg = 0; /* Register storing resulting */
1599 Vdbe *v = sqlite3GetVdbe(pParse);
1600 if( NEVER(v==0) ) return 0;
1601 sqlite3ExprCachePush(pParse);
1603 /* This code must be run in its entirety every time it is encountered
1604 ** if any of the following is true:
1606 ** * The right-hand side is a correlated subquery
1607 ** * The right-hand side is an expression list containing variables
1608 ** * We are inside a trigger
1610 ** If all of the above are false, then we can run this code just once
1611 ** save the results, and reuse the same result on subsequent invocations.
1613 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
1614 testAddr = sqlite3CodeOnce(pParse);
1617 #ifndef SQLITE_OMIT_EXPLAIN
1618 if( pParse->explain==2 ){
1619 char *zMsg = sqlite3MPrintf(
1620 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1621 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1623 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1625 #endif
1627 switch( pExpr->op ){
1628 case TK_IN: {
1629 char affinity; /* Affinity of the LHS of the IN */
1630 KeyInfo keyInfo; /* Keyinfo for the generated table */
1631 int addr; /* Address of OP_OpenEphemeral instruction */
1632 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1634 if( rMayHaveNull ){
1635 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1638 affinity = sqlite3ExprAffinity(pLeft);
1640 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1641 ** expression it is handled the same way. An ephemeral table is
1642 ** filled with single-field index keys representing the results
1643 ** from the SELECT or the <exprlist>.
1645 ** If the 'x' expression is a column value, or the SELECT...
1646 ** statement returns a column value, then the affinity of that
1647 ** column is used to build the index keys. If both 'x' and the
1648 ** SELECT... statement are columns, then numeric affinity is used
1649 ** if either column has NUMERIC or INTEGER affinity. If neither
1650 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1651 ** is used.
1653 pExpr->iTable = pParse->nTab++;
1654 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1655 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1656 memset(&keyInfo, 0, sizeof(keyInfo));
1657 keyInfo.nField = 1;
1659 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1660 /* Case 1: expr IN (SELECT ...)
1662 ** Generate code to write the results of the select into the temporary
1663 ** table allocated and opened above.
1665 SelectDest dest;
1666 ExprList *pEList;
1668 assert( !isRowid );
1669 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1670 dest.affinity = (u8)affinity;
1671 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1672 pExpr->x.pSelect->iLimit = 0;
1673 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1674 return 0;
1676 pEList = pExpr->x.pSelect->pEList;
1677 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1678 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1679 pEList->a[0].pExpr);
1681 }else if( ALWAYS(pExpr->x.pList!=0) ){
1682 /* Case 2: expr IN (exprlist)
1684 ** For each expression, build an index key from the evaluation and
1685 ** store it in the temporary table. If <expr> is a column, then use
1686 ** that columns affinity when building index keys. If <expr> is not
1687 ** a column, use numeric affinity.
1689 int i;
1690 ExprList *pList = pExpr->x.pList;
1691 struct ExprList_item *pItem;
1692 int r1, r2, r3;
1694 if( !affinity ){
1695 affinity = SQLITE_AFF_NONE;
1697 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1699 /* Loop through each expression in <exprlist>. */
1700 r1 = sqlite3GetTempReg(pParse);
1701 r2 = sqlite3GetTempReg(pParse);
1702 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1703 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1704 Expr *pE2 = pItem->pExpr;
1705 int iValToIns;
1707 /* If the expression is not constant then we will need to
1708 ** disable the test that was generated above that makes sure
1709 ** this code only executes once. Because for a non-constant
1710 ** expression we need to rerun this code each time.
1712 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1713 sqlite3VdbeChangeToNoop(v, testAddr);
1714 testAddr = -1;
1717 /* Evaluate the expression and insert it into the temp table */
1718 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1719 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1720 }else{
1721 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1722 if( isRowid ){
1723 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1724 sqlite3VdbeCurrentAddr(v)+2);
1725 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1726 }else{
1727 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1728 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1729 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1733 sqlite3ReleaseTempReg(pParse, r1);
1734 sqlite3ReleaseTempReg(pParse, r2);
1736 if( !isRowid ){
1737 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1739 break;
1742 case TK_EXISTS:
1743 case TK_SELECT:
1744 default: {
1745 /* If this has to be a scalar SELECT. Generate code to put the
1746 ** value of this select in a memory cell and record the number
1747 ** of the memory cell in iColumn. If this is an EXISTS, write
1748 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1749 ** and record that memory cell in iColumn.
1751 Select *pSel; /* SELECT statement to encode */
1752 SelectDest dest; /* How to deal with SELECt result */
1754 testcase( pExpr->op==TK_EXISTS );
1755 testcase( pExpr->op==TK_SELECT );
1756 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1758 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1759 pSel = pExpr->x.pSelect;
1760 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1761 if( pExpr->op==TK_SELECT ){
1762 dest.eDest = SRT_Mem;
1763 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1764 VdbeComment((v, "Init subquery result"));
1765 }else{
1766 dest.eDest = SRT_Exists;
1767 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1768 VdbeComment((v, "Init EXISTS result"));
1770 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1771 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1772 &sqlite3IntTokens[1]);
1773 pSel->iLimit = 0;
1774 if( sqlite3Select(pParse, pSel, &dest) ){
1775 return 0;
1777 rReg = dest.iParm;
1778 ExprSetIrreducible(pExpr);
1779 break;
1783 if( testAddr>=0 ){
1784 sqlite3VdbeJumpHere(v, testAddr);
1786 sqlite3ExprCachePop(pParse, 1);
1788 return rReg;
1790 #endif /* SQLITE_OMIT_SUBQUERY */
1792 #ifndef SQLITE_OMIT_SUBQUERY
1794 ** Generate code for an IN expression.
1796 ** x IN (SELECT ...)
1797 ** x IN (value, value, ...)
1799 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
1800 ** is an array of zero or more values. The expression is true if the LHS is
1801 ** contained within the RHS. The value of the expression is unknown (NULL)
1802 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1803 ** RHS contains one or more NULL values.
1805 ** This routine generates code will jump to destIfFalse if the LHS is not
1806 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
1807 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
1808 ** within the RHS then fall through.
1810 static void sqlite3ExprCodeIN(
1811 Parse *pParse, /* Parsing and code generating context */
1812 Expr *pExpr, /* The IN expression */
1813 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
1814 int destIfNull /* Jump here if the results are unknown due to NULLs */
1816 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
1817 char affinity; /* Comparison affinity to use */
1818 int eType; /* Type of the RHS */
1819 int r1; /* Temporary use register */
1820 Vdbe *v; /* Statement under construction */
1822 /* Compute the RHS. After this step, the table with cursor
1823 ** pExpr->iTable will contains the values that make up the RHS.
1825 v = pParse->pVdbe;
1826 assert( v!=0 ); /* OOM detected prior to this routine */
1827 VdbeNoopComment((v, "begin IN expr"));
1828 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1830 /* Figure out the affinity to use to create a key from the results
1831 ** of the expression. affinityStr stores a static string suitable for
1832 ** P4 of OP_MakeRecord.
1834 affinity = comparisonAffinity(pExpr);
1836 /* Code the LHS, the <expr> from "<expr> IN (...)".
1838 sqlite3ExprCachePush(pParse);
1839 r1 = sqlite3GetTempReg(pParse);
1840 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1842 /* If the LHS is NULL, then the result is either false or NULL depending
1843 ** on whether the RHS is empty or not, respectively.
1845 if( destIfNull==destIfFalse ){
1846 /* Shortcut for the common case where the false and NULL outcomes are
1847 ** the same. */
1848 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1849 }else{
1850 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1851 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1852 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1853 sqlite3VdbeJumpHere(v, addr1);
1856 if( eType==IN_INDEX_ROWID ){
1857 /* In this case, the RHS is the ROWID of table b-tree
1859 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1860 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1861 }else{
1862 /* In this case, the RHS is an index b-tree.
1864 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1866 /* If the set membership test fails, then the result of the
1867 ** "x IN (...)" expression must be either 0 or NULL. If the set
1868 ** contains no NULL values, then the result is 0. If the set
1869 ** contains one or more NULL values, then the result of the
1870 ** expression is also NULL.
1872 if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1873 /* This branch runs if it is known at compile time that the RHS
1874 ** cannot contain NULL values. This happens as the result
1875 ** of a "NOT NULL" constraint in the database schema.
1877 ** Also run this branch if NULL is equivalent to FALSE
1878 ** for this particular IN operator.
1880 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1882 }else{
1883 /* In this branch, the RHS of the IN might contain a NULL and
1884 ** the presence of a NULL on the RHS makes a difference in the
1885 ** outcome.
1887 int j1, j2, j3;
1889 /* First check to see if the LHS is contained in the RHS. If so,
1890 ** then the presence of NULLs in the RHS does not matter, so jump
1891 ** over all of the code that follows.
1893 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1895 /* Here we begin generating code that runs if the LHS is not
1896 ** contained within the RHS. Generate additional code that
1897 ** tests the RHS for NULLs. If the RHS contains a NULL then
1898 ** jump to destIfNull. If there are no NULLs in the RHS then
1899 ** jump to destIfFalse.
1901 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1902 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1903 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1904 sqlite3VdbeJumpHere(v, j3);
1905 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1906 sqlite3VdbeJumpHere(v, j2);
1908 /* Jump to the appropriate target depending on whether or not
1909 ** the RHS contains a NULL
1911 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1912 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1914 /* The OP_Found at the top of this branch jumps here when true,
1915 ** causing the overall IN expression evaluation to fall through.
1917 sqlite3VdbeJumpHere(v, j1);
1920 sqlite3ReleaseTempReg(pParse, r1);
1921 sqlite3ExprCachePop(pParse, 1);
1922 VdbeComment((v, "end IN expr"));
1924 #endif /* SQLITE_OMIT_SUBQUERY */
1927 ** Duplicate an 8-byte value
1929 static char *dup8bytes(Vdbe *v, const char *in){
1930 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1931 if( out ){
1932 memcpy(out, in, 8);
1934 return out;
1937 #ifndef SQLITE_OMIT_FLOATING_POINT
1939 ** Generate an instruction that will put the floating point
1940 ** value described by z[0..n-1] into register iMem.
1942 ** The z[] string will probably not be zero-terminated. But the
1943 ** z[n] character is guaranteed to be something that does not look
1944 ** like the continuation of the number.
1946 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1947 if( ALWAYS(z!=0) ){
1948 double value;
1949 char *zV;
1950 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1951 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1952 if( negateFlag ) value = -value;
1953 zV = dup8bytes(v, (char*)&value);
1954 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1957 #endif
1961 ** Generate an instruction that will put the integer describe by
1962 ** text z[0..n-1] into register iMem.
1964 ** Expr.u.zToken is always UTF8 and zero-terminated.
1966 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1967 Vdbe *v = pParse->pVdbe;
1968 if( pExpr->flags & EP_IntValue ){
1969 int i = pExpr->u.iValue;
1970 assert( i>=0 );
1971 if( negFlag ) i = -i;
1972 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1973 }else{
1974 int c;
1975 i64 value;
1976 const char *z = pExpr->u.zToken;
1977 assert( z!=0 );
1978 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1979 if( c==0 || (c==2 && negFlag) ){
1980 char *zV;
1981 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1982 zV = dup8bytes(v, (char*)&value);
1983 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1984 }else{
1985 #ifdef SQLITE_OMIT_FLOATING_POINT
1986 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1987 #else
1988 codeReal(v, z, negFlag, iMem);
1989 #endif
1995 ** Clear a cache entry.
1997 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1998 if( p->tempReg ){
1999 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2000 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2002 p->tempReg = 0;
2008 ** Record in the column cache that a particular column from a
2009 ** particular table is stored in a particular register.
2011 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2012 int i;
2013 int minLru;
2014 int idxLru;
2015 struct yColCache *p;
2017 assert( iReg>0 ); /* Register numbers are always positive */
2018 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
2020 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2021 ** for testing only - to verify that SQLite always gets the same answer
2022 ** with and without the column cache.
2024 if( pParse->db->flags & SQLITE_ColumnCache ) return;
2026 /* First replace any existing entry.
2028 ** Actually, the way the column cache is currently used, we are guaranteed
2029 ** that the object will never already be in cache. Verify this guarantee.
2031 #ifndef NDEBUG
2032 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2033 #if 0 /* This code wold remove the entry from the cache if it existed */
2034 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2035 cacheEntryClear(pParse, p);
2036 p->iLevel = pParse->iCacheLevel;
2037 p->iReg = iReg;
2038 p->lru = pParse->iCacheCnt++;
2039 return;
2041 #endif
2042 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2044 #endif
2046 /* Find an empty slot and replace it */
2047 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2048 if( p->iReg==0 ){
2049 p->iLevel = pParse->iCacheLevel;
2050 p->iTable = iTab;
2051 p->iColumn = iCol;
2052 p->iReg = iReg;
2053 p->tempReg = 0;
2054 p->lru = pParse->iCacheCnt++;
2055 return;
2059 /* Replace the last recently used */
2060 minLru = 0x7fffffff;
2061 idxLru = -1;
2062 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2063 if( p->lru<minLru ){
2064 idxLru = i;
2065 minLru = p->lru;
2068 if( ALWAYS(idxLru>=0) ){
2069 p = &pParse->aColCache[idxLru];
2070 p->iLevel = pParse->iCacheLevel;
2071 p->iTable = iTab;
2072 p->iColumn = iCol;
2073 p->iReg = iReg;
2074 p->tempReg = 0;
2075 p->lru = pParse->iCacheCnt++;
2076 return;
2081 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2082 ** Purge the range of registers from the column cache.
2084 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2085 int i;
2086 int iLast = iReg + nReg - 1;
2087 struct yColCache *p;
2088 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2089 int r = p->iReg;
2090 if( r>=iReg && r<=iLast ){
2091 cacheEntryClear(pParse, p);
2092 p->iReg = 0;
2098 ** Remember the current column cache context. Any new entries added
2099 ** added to the column cache after this call are removed when the
2100 ** corresponding pop occurs.
2102 void sqlite3ExprCachePush(Parse *pParse){
2103 pParse->iCacheLevel++;
2107 ** Remove from the column cache any entries that were added since the
2108 ** the previous N Push operations. In other words, restore the cache
2109 ** to the state it was in N Pushes ago.
2111 void sqlite3ExprCachePop(Parse *pParse, int N){
2112 int i;
2113 struct yColCache *p;
2114 assert( N>0 );
2115 assert( pParse->iCacheLevel>=N );
2116 pParse->iCacheLevel -= N;
2117 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2118 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2119 cacheEntryClear(pParse, p);
2120 p->iReg = 0;
2126 ** When a cached column is reused, make sure that its register is
2127 ** no longer available as a temp register. ticket #3879: that same
2128 ** register might be in the cache in multiple places, so be sure to
2129 ** get them all.
2131 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2132 int i;
2133 struct yColCache *p;
2134 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2135 if( p->iReg==iReg ){
2136 p->tempReg = 0;
2142 ** Generate code to extract the value of the iCol-th column of a table.
2144 void sqlite3ExprCodeGetColumnOfTable(
2145 Vdbe *v, /* The VDBE under construction */
2146 Table *pTab, /* The table containing the value */
2147 int iTabCur, /* The cursor for this table */
2148 int iCol, /* Index of the column to extract */
2149 int regOut /* Extract the valud into this register */
2151 if( iCol<0 || iCol==pTab->iPKey ){
2152 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2153 }else{
2154 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2155 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2157 if( iCol>=0 ){
2158 sqlite3ColumnDefault(v, pTab, iCol, regOut);
2163 ** Generate code that will extract the iColumn-th column from
2164 ** table pTab and store the column value in a register. An effort
2165 ** is made to store the column value in register iReg, but this is
2166 ** not guaranteed. The location of the column value is returned.
2168 ** There must be an open cursor to pTab in iTable when this routine
2169 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2171 int sqlite3ExprCodeGetColumn(
2172 Parse *pParse, /* Parsing and code generating context */
2173 Table *pTab, /* Description of the table we are reading from */
2174 int iColumn, /* Index of the table column */
2175 int iTable, /* The cursor pointing to the table */
2176 int iReg /* Store results here */
2178 Vdbe *v = pParse->pVdbe;
2179 int i;
2180 struct yColCache *p;
2182 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2183 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2184 p->lru = pParse->iCacheCnt++;
2185 sqlite3ExprCachePinRegister(pParse, p->iReg);
2186 return p->iReg;
2189 assert( v!=0 );
2190 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2191 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2192 return iReg;
2196 ** Clear all column cache entries.
2198 void sqlite3ExprCacheClear(Parse *pParse){
2199 int i;
2200 struct yColCache *p;
2202 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2203 if( p->iReg ){
2204 cacheEntryClear(pParse, p);
2205 p->iReg = 0;
2211 ** Record the fact that an affinity change has occurred on iCount
2212 ** registers starting with iStart.
2214 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2215 sqlite3ExprCacheRemove(pParse, iStart, iCount);
2219 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2220 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2222 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2223 int i;
2224 struct yColCache *p;
2225 if( NEVER(iFrom==iTo) ) return;
2226 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2227 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2228 int x = p->iReg;
2229 if( x>=iFrom && x<iFrom+nReg ){
2230 p->iReg += iTo-iFrom;
2236 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2237 ** over to iTo..iTo+nReg-1.
2239 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2240 int i;
2241 if( NEVER(iFrom==iTo) ) return;
2242 for(i=0; i<nReg; i++){
2243 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2247 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2249 ** Return true if any register in the range iFrom..iTo (inclusive)
2250 ** is used as part of the column cache.
2252 ** This routine is used within assert() and testcase() macros only
2253 ** and does not appear in a normal build.
2255 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2256 int i;
2257 struct yColCache *p;
2258 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2259 int r = p->iReg;
2260 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
2262 return 0;
2264 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2267 ** Generate code into the current Vdbe to evaluate the given
2268 ** expression. Attempt to store the results in register "target".
2269 ** Return the register where results are stored.
2271 ** With this routine, there is no guarantee that results will
2272 ** be stored in target. The result might be stored in some other
2273 ** register if it is convenient to do so. The calling function
2274 ** must check the return code and move the results to the desired
2275 ** register.
2277 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2278 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2279 int op; /* The opcode being coded */
2280 int inReg = target; /* Results stored in register inReg */
2281 int regFree1 = 0; /* If non-zero free this temporary register */
2282 int regFree2 = 0; /* If non-zero free this temporary register */
2283 int r1, r2, r3, r4; /* Various register numbers */
2284 sqlite3 *db = pParse->db; /* The database connection */
2286 assert( target>0 && target<=pParse->nMem );
2287 if( v==0 ){
2288 assert( pParse->db->mallocFailed );
2289 return 0;
2292 if( pExpr==0 ){
2293 op = TK_NULL;
2294 }else{
2295 op = pExpr->op;
2297 switch( op ){
2298 case TK_AGG_COLUMN: {
2299 AggInfo *pAggInfo = pExpr->pAggInfo;
2300 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2301 if( !pAggInfo->directMode ){
2302 assert( pCol->iMem>0 );
2303 inReg = pCol->iMem;
2304 break;
2305 }else if( pAggInfo->useSortingIdx ){
2306 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2307 pCol->iSorterColumn, target);
2308 break;
2310 /* Otherwise, fall thru into the TK_COLUMN case */
2312 case TK_COLUMN: {
2313 if( pExpr->iTable<0 ){
2314 /* This only happens when coding check constraints */
2315 assert( pParse->ckBase>0 );
2316 inReg = pExpr->iColumn + pParse->ckBase;
2317 }else{
2318 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2319 pExpr->iColumn, pExpr->iTable, target);
2321 break;
2323 case TK_INTEGER: {
2324 codeInteger(pParse, pExpr, 0, target);
2325 break;
2327 #ifndef SQLITE_OMIT_FLOATING_POINT
2328 case TK_FLOAT: {
2329 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2330 codeReal(v, pExpr->u.zToken, 0, target);
2331 break;
2333 #endif
2334 case TK_STRING: {
2335 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2336 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2337 break;
2339 case TK_NULL: {
2340 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2341 break;
2343 #ifndef SQLITE_OMIT_BLOB_LITERAL
2344 case TK_BLOB: {
2345 int n;
2346 const char *z;
2347 char *zBlob;
2348 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2349 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2350 assert( pExpr->u.zToken[1]=='\'' );
2351 z = &pExpr->u.zToken[2];
2352 n = sqlite3Strlen30(z) - 1;
2353 assert( z[n]=='\'' );
2354 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2355 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2356 break;
2358 #endif
2359 case TK_VARIABLE: {
2360 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2361 assert( pExpr->u.zToken!=0 );
2362 assert( pExpr->u.zToken[0]!=0 );
2363 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2364 if( pExpr->u.zToken[1]!=0 ){
2365 assert( pExpr->u.zToken[0]=='?'
2366 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2367 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2369 break;
2371 case TK_REGISTER: {
2372 inReg = pExpr->iTable;
2373 break;
2375 case TK_AS: {
2376 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2377 break;
2379 #ifndef SQLITE_OMIT_CAST
2380 case TK_CAST: {
2381 /* Expressions of the form: CAST(pLeft AS token) */
2382 int aff, to_op;
2383 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2384 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2385 aff = sqlite3AffinityType(pExpr->u.zToken);
2386 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2387 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
2388 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
2389 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2390 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
2391 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
2392 testcase( to_op==OP_ToText );
2393 testcase( to_op==OP_ToBlob );
2394 testcase( to_op==OP_ToNumeric );
2395 testcase( to_op==OP_ToInt );
2396 testcase( to_op==OP_ToReal );
2397 if( inReg!=target ){
2398 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2399 inReg = target;
2401 sqlite3VdbeAddOp1(v, to_op, inReg);
2402 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2403 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2404 break;
2406 #endif /* SQLITE_OMIT_CAST */
2407 case TK_LT:
2408 case TK_LE:
2409 case TK_GT:
2410 case TK_GE:
2411 case TK_NE:
2412 case TK_EQ: {
2413 assert( TK_LT==OP_Lt );
2414 assert( TK_LE==OP_Le );
2415 assert( TK_GT==OP_Gt );
2416 assert( TK_GE==OP_Ge );
2417 assert( TK_EQ==OP_Eq );
2418 assert( TK_NE==OP_Ne );
2419 testcase( op==TK_LT );
2420 testcase( op==TK_LE );
2421 testcase( op==TK_GT );
2422 testcase( op==TK_GE );
2423 testcase( op==TK_EQ );
2424 testcase( op==TK_NE );
2425 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2426 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2427 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2428 r1, r2, inReg, SQLITE_STOREP2);
2429 testcase( regFree1==0 );
2430 testcase( regFree2==0 );
2431 break;
2433 case TK_IS:
2434 case TK_ISNOT: {
2435 testcase( op==TK_IS );
2436 testcase( op==TK_ISNOT );
2437 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2438 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2439 op = (op==TK_IS) ? TK_EQ : TK_NE;
2440 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2441 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2442 testcase( regFree1==0 );
2443 testcase( regFree2==0 );
2444 break;
2446 case TK_AND:
2447 case TK_OR:
2448 case TK_PLUS:
2449 case TK_STAR:
2450 case TK_MINUS:
2451 case TK_REM:
2452 case TK_BITAND:
2453 case TK_BITOR:
2454 case TK_SLASH:
2455 case TK_LSHIFT:
2456 case TK_RSHIFT:
2457 case TK_CONCAT: {
2458 assert( TK_AND==OP_And );
2459 assert( TK_OR==OP_Or );
2460 assert( TK_PLUS==OP_Add );
2461 assert( TK_MINUS==OP_Subtract );
2462 assert( TK_REM==OP_Remainder );
2463 assert( TK_BITAND==OP_BitAnd );
2464 assert( TK_BITOR==OP_BitOr );
2465 assert( TK_SLASH==OP_Divide );
2466 assert( TK_LSHIFT==OP_ShiftLeft );
2467 assert( TK_RSHIFT==OP_ShiftRight );
2468 assert( TK_CONCAT==OP_Concat );
2469 testcase( op==TK_AND );
2470 testcase( op==TK_OR );
2471 testcase( op==TK_PLUS );
2472 testcase( op==TK_MINUS );
2473 testcase( op==TK_REM );
2474 testcase( op==TK_BITAND );
2475 testcase( op==TK_BITOR );
2476 testcase( op==TK_SLASH );
2477 testcase( op==TK_LSHIFT );
2478 testcase( op==TK_RSHIFT );
2479 testcase( op==TK_CONCAT );
2480 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2481 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2482 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2483 testcase( regFree1==0 );
2484 testcase( regFree2==0 );
2485 break;
2487 case TK_UMINUS: {
2488 Expr *pLeft = pExpr->pLeft;
2489 assert( pLeft );
2490 if( pLeft->op==TK_INTEGER ){
2491 codeInteger(pParse, pLeft, 1, target);
2492 #ifndef SQLITE_OMIT_FLOATING_POINT
2493 }else if( pLeft->op==TK_FLOAT ){
2494 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2495 codeReal(v, pLeft->u.zToken, 1, target);
2496 #endif
2497 }else{
2498 regFree1 = r1 = sqlite3GetTempReg(pParse);
2499 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2500 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2501 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2502 testcase( regFree2==0 );
2504 inReg = target;
2505 break;
2507 case TK_BITNOT:
2508 case TK_NOT: {
2509 assert( TK_BITNOT==OP_BitNot );
2510 assert( TK_NOT==OP_Not );
2511 testcase( op==TK_BITNOT );
2512 testcase( op==TK_NOT );
2513 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2514 testcase( regFree1==0 );
2515 inReg = target;
2516 sqlite3VdbeAddOp2(v, op, r1, inReg);
2517 break;
2519 case TK_ISNULL:
2520 case TK_NOTNULL: {
2521 int addr;
2522 assert( TK_ISNULL==OP_IsNull );
2523 assert( TK_NOTNULL==OP_NotNull );
2524 testcase( op==TK_ISNULL );
2525 testcase( op==TK_NOTNULL );
2526 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2527 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2528 testcase( regFree1==0 );
2529 addr = sqlite3VdbeAddOp1(v, op, r1);
2530 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2531 sqlite3VdbeJumpHere(v, addr);
2532 break;
2534 case TK_AGG_FUNCTION: {
2535 AggInfo *pInfo = pExpr->pAggInfo;
2536 if( pInfo==0 ){
2537 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2538 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2539 }else{
2540 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2542 break;
2544 case TK_CONST_FUNC:
2545 case TK_FUNCTION: {
2546 ExprList *pFarg; /* List of function arguments */
2547 int nFarg; /* Number of function arguments */
2548 FuncDef *pDef; /* The function definition object */
2549 int nId; /* Length of the function name in bytes */
2550 const char *zId; /* The function name */
2551 int constMask = 0; /* Mask of function arguments that are constant */
2552 int i; /* Loop counter */
2553 u8 enc = ENC(db); /* The text encoding used by this database */
2554 CollSeq *pColl = 0; /* A collating sequence */
2556 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2557 testcase( op==TK_CONST_FUNC );
2558 testcase( op==TK_FUNCTION );
2559 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2560 pFarg = 0;
2561 }else{
2562 pFarg = pExpr->x.pList;
2564 nFarg = pFarg ? pFarg->nExpr : 0;
2565 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2566 zId = pExpr->u.zToken;
2567 nId = sqlite3Strlen30(zId);
2568 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2569 if( pDef==0 ){
2570 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2571 break;
2574 /* Attempt a direct implementation of the built-in COALESCE() and
2575 ** IFNULL() functions. This avoids unnecessary evalation of
2576 ** arguments past the first non-NULL argument.
2578 if( pDef->flags & SQLITE_FUNC_COALESCE ){
2579 int endCoalesce = sqlite3VdbeMakeLabel(v);
2580 assert( nFarg>=2 );
2581 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2582 for(i=1; i<nFarg; i++){
2583 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2584 sqlite3ExprCacheRemove(pParse, target, 1);
2585 sqlite3ExprCachePush(pParse);
2586 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2587 sqlite3ExprCachePop(pParse, 1);
2589 sqlite3VdbeResolveLabel(v, endCoalesce);
2590 break;
2594 if( pFarg ){
2595 r1 = sqlite3GetTempRange(pParse, nFarg);
2596 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2597 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2598 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
2599 }else{
2600 r1 = 0;
2602 #ifndef SQLITE_OMIT_VIRTUALTABLE
2603 /* Possibly overload the function if the first argument is
2604 ** a virtual table column.
2606 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2607 ** second argument, not the first, as the argument to test to
2608 ** see if it is a column in a virtual table. This is done because
2609 ** the left operand of infix functions (the operand we want to
2610 ** control overloading) ends up as the second argument to the
2611 ** function. The expression "A glob B" is equivalent to
2612 ** "glob(B,A). We want to use the A in "A glob B" to test
2613 ** for function overloading. But we use the B term in "glob(B,A)".
2615 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2616 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2617 }else if( nFarg>0 ){
2618 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2620 #endif
2621 for(i=0; i<nFarg; i++){
2622 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2623 constMask |= (1<<i);
2625 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2626 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2629 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2630 if( !pColl ) pColl = db->pDfltColl;
2631 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2633 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2634 (char*)pDef, P4_FUNCDEF);
2635 sqlite3VdbeChangeP5(v, (u8)nFarg);
2636 if( nFarg ){
2637 sqlite3ReleaseTempRange(pParse, r1, nFarg);
2639 break;
2641 #ifndef SQLITE_OMIT_SUBQUERY
2642 case TK_EXISTS:
2643 case TK_SELECT: {
2644 testcase( op==TK_EXISTS );
2645 testcase( op==TK_SELECT );
2646 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2647 break;
2649 case TK_IN: {
2650 int destIfFalse = sqlite3VdbeMakeLabel(v);
2651 int destIfNull = sqlite3VdbeMakeLabel(v);
2652 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2653 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2654 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2655 sqlite3VdbeResolveLabel(v, destIfFalse);
2656 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2657 sqlite3VdbeResolveLabel(v, destIfNull);
2658 break;
2660 #endif /* SQLITE_OMIT_SUBQUERY */
2664 ** x BETWEEN y AND z
2666 ** This is equivalent to
2668 ** x>=y AND x<=z
2670 ** X is stored in pExpr->pLeft.
2671 ** Y is stored in pExpr->pList->a[0].pExpr.
2672 ** Z is stored in pExpr->pList->a[1].pExpr.
2674 case TK_BETWEEN: {
2675 Expr *pLeft = pExpr->pLeft;
2676 struct ExprList_item *pLItem = pExpr->x.pList->a;
2677 Expr *pRight = pLItem->pExpr;
2679 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2680 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2681 testcase( regFree1==0 );
2682 testcase( regFree2==0 );
2683 r3 = sqlite3GetTempReg(pParse);
2684 r4 = sqlite3GetTempReg(pParse);
2685 codeCompare(pParse, pLeft, pRight, OP_Ge,
2686 r1, r2, r3, SQLITE_STOREP2);
2687 pLItem++;
2688 pRight = pLItem->pExpr;
2689 sqlite3ReleaseTempReg(pParse, regFree2);
2690 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2691 testcase( regFree2==0 );
2692 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2693 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2694 sqlite3ReleaseTempReg(pParse, r3);
2695 sqlite3ReleaseTempReg(pParse, r4);
2696 break;
2698 case TK_UPLUS: {
2699 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2700 break;
2703 case TK_TRIGGER: {
2704 /* If the opcode is TK_TRIGGER, then the expression is a reference
2705 ** to a column in the new.* or old.* pseudo-tables available to
2706 ** trigger programs. In this case Expr.iTable is set to 1 for the
2707 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2708 ** is set to the column of the pseudo-table to read, or to -1 to
2709 ** read the rowid field.
2711 ** The expression is implemented using an OP_Param opcode. The p1
2712 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2713 ** to reference another column of the old.* pseudo-table, where
2714 ** i is the index of the column. For a new.rowid reference, p1 is
2715 ** set to (n+1), where n is the number of columns in each pseudo-table.
2716 ** For a reference to any other column in the new.* pseudo-table, p1
2717 ** is set to (n+2+i), where n and i are as defined previously. For
2718 ** example, if the table on which triggers are being fired is
2719 ** declared as:
2721 ** CREATE TABLE t1(a, b);
2723 ** Then p1 is interpreted as follows:
2725 ** p1==0 -> old.rowid p1==3 -> new.rowid
2726 ** p1==1 -> old.a p1==4 -> new.a
2727 ** p1==2 -> old.b p1==5 -> new.b
2729 Table *pTab = pExpr->pTab;
2730 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2732 assert( pExpr->iTable==0 || pExpr->iTable==1 );
2733 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2734 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2735 assert( p1>=0 && p1<(pTab->nCol*2+2) );
2737 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2738 VdbeComment((v, "%s.%s -> $%d",
2739 (pExpr->iTable ? "new" : "old"),
2740 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2741 target
2744 #ifndef SQLITE_OMIT_FLOATING_POINT
2745 /* If the column has REAL affinity, it may currently be stored as an
2746 ** integer. Use OP_RealAffinity to make sure it is really real. */
2747 if( pExpr->iColumn>=0
2748 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2750 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2752 #endif
2753 break;
2758 ** Form A:
2759 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2761 ** Form B:
2762 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2764 ** Form A is can be transformed into the equivalent form B as follows:
2765 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2766 ** WHEN x=eN THEN rN ELSE y END
2768 ** X (if it exists) is in pExpr->pLeft.
2769 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2770 ** ELSE clause and no other term matches, then the result of the
2771 ** exprssion is NULL.
2772 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2774 ** The result of the expression is the Ri for the first matching Ei,
2775 ** or if there is no matching Ei, the ELSE term Y, or if there is
2776 ** no ELSE term, NULL.
2778 default: assert( op==TK_CASE ); {
2779 int endLabel; /* GOTO label for end of CASE stmt */
2780 int nextCase; /* GOTO label for next WHEN clause */
2781 int nExpr; /* 2x number of WHEN terms */
2782 int i; /* Loop counter */
2783 ExprList *pEList; /* List of WHEN terms */
2784 struct ExprList_item *aListelem; /* Array of WHEN terms */
2785 Expr opCompare; /* The X==Ei expression */
2786 Expr cacheX; /* Cached expression X */
2787 Expr *pX; /* The X expression */
2788 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
2789 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2791 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2792 assert((pExpr->x.pList->nExpr % 2) == 0);
2793 assert(pExpr->x.pList->nExpr > 0);
2794 pEList = pExpr->x.pList;
2795 aListelem = pEList->a;
2796 nExpr = pEList->nExpr;
2797 endLabel = sqlite3VdbeMakeLabel(v);
2798 if( (pX = pExpr->pLeft)!=0 ){
2799 cacheX = *pX;
2800 testcase( pX->op==TK_COLUMN );
2801 testcase( pX->op==TK_REGISTER );
2802 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2803 testcase( regFree1==0 );
2804 cacheX.op = TK_REGISTER;
2805 opCompare.op = TK_EQ;
2806 opCompare.pLeft = &cacheX;
2807 pTest = &opCompare;
2808 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2809 ** The value in regFree1 might get SCopy-ed into the file result.
2810 ** So make sure that the regFree1 register is not reused for other
2811 ** purposes and possibly overwritten. */
2812 regFree1 = 0;
2814 for(i=0; i<nExpr; i=i+2){
2815 sqlite3ExprCachePush(pParse);
2816 if( pX ){
2817 assert( pTest!=0 );
2818 opCompare.pRight = aListelem[i].pExpr;
2819 }else{
2820 pTest = aListelem[i].pExpr;
2822 nextCase = sqlite3VdbeMakeLabel(v);
2823 testcase( pTest->op==TK_COLUMN );
2824 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2825 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2826 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2827 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2828 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2829 sqlite3ExprCachePop(pParse, 1);
2830 sqlite3VdbeResolveLabel(v, nextCase);
2832 if( pExpr->pRight ){
2833 sqlite3ExprCachePush(pParse);
2834 sqlite3ExprCode(pParse, pExpr->pRight, target);
2835 sqlite3ExprCachePop(pParse, 1);
2836 }else{
2837 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2839 assert( db->mallocFailed || pParse->nErr>0
2840 || pParse->iCacheLevel==iCacheLevel );
2841 sqlite3VdbeResolveLabel(v, endLabel);
2842 break;
2844 #ifndef SQLITE_OMIT_TRIGGER
2845 case TK_RAISE: {
2846 assert( pExpr->affinity==OE_Rollback
2847 || pExpr->affinity==OE_Abort
2848 || pExpr->affinity==OE_Fail
2849 || pExpr->affinity==OE_Ignore
2851 if( !pParse->pTriggerTab ){
2852 sqlite3ErrorMsg(pParse,
2853 "RAISE() may only be used within a trigger-program");
2854 return 0;
2856 if( pExpr->affinity==OE_Abort ){
2857 sqlite3MayAbort(pParse);
2859 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2860 if( pExpr->affinity==OE_Ignore ){
2861 sqlite3VdbeAddOp4(
2862 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2863 }else{
2864 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2867 break;
2869 #endif
2871 sqlite3ReleaseTempReg(pParse, regFree1);
2872 sqlite3ReleaseTempReg(pParse, regFree2);
2873 return inReg;
2877 ** Generate code to evaluate an expression and store the results
2878 ** into a register. Return the register number where the results
2879 ** are stored.
2881 ** If the register is a temporary register that can be deallocated,
2882 ** then write its number into *pReg. If the result register is not
2883 ** a temporary, then set *pReg to zero.
2885 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2886 int r1 = sqlite3GetTempReg(pParse);
2887 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2888 if( r2==r1 ){
2889 *pReg = r1;
2890 }else{
2891 sqlite3ReleaseTempReg(pParse, r1);
2892 *pReg = 0;
2894 return r2;
2898 ** Generate code that will evaluate expression pExpr and store the
2899 ** results in register target. The results are guaranteed to appear
2900 ** in register target.
2902 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2903 int inReg;
2905 assert( target>0 && target<=pParse->nMem );
2906 if( pExpr && pExpr->op==TK_REGISTER ){
2907 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2908 }else{
2909 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2910 assert( pParse->pVdbe || pParse->db->mallocFailed );
2911 if( inReg!=target && pParse->pVdbe ){
2912 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2915 return target;
2919 ** Generate code that evalutes the given expression and puts the result
2920 ** in register target.
2922 ** Also make a copy of the expression results into another "cache" register
2923 ** and modify the expression so that the next time it is evaluated,
2924 ** the result is a copy of the cache register.
2926 ** This routine is used for expressions that are used multiple
2927 ** times. They are evaluated once and the results of the expression
2928 ** are reused.
2930 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2931 Vdbe *v = pParse->pVdbe;
2932 int inReg;
2933 inReg = sqlite3ExprCode(pParse, pExpr, target);
2934 assert( target>0 );
2935 /* This routine is called for terms to INSERT or UPDATE. And the only
2936 ** other place where expressions can be converted into TK_REGISTER is
2937 ** in WHERE clause processing. So as currently implemented, there is
2938 ** no way for a TK_REGISTER to exist here. But it seems prudent to
2939 ** keep the ALWAYS() in case the conditions above change with future
2940 ** modifications or enhancements. */
2941 if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2942 int iMem;
2943 iMem = ++pParse->nMem;
2944 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2945 pExpr->iTable = iMem;
2946 pExpr->op2 = pExpr->op;
2947 pExpr->op = TK_REGISTER;
2949 return inReg;
2952 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2954 ** Generate a human-readable explanation of an expression tree.
2956 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
2957 int op; /* The opcode being coded */
2958 const char *zBinOp = 0; /* Binary operator */
2959 const char *zUniOp = 0; /* Unary operator */
2960 if( pExpr==0 ){
2961 op = TK_NULL;
2962 }else{
2963 op = pExpr->op;
2965 switch( op ){
2966 case TK_AGG_COLUMN: {
2967 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
2968 pExpr->iTable, pExpr->iColumn);
2969 break;
2971 case TK_COLUMN: {
2972 if( pExpr->iTable<0 ){
2973 /* This only happens when coding check constraints */
2974 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
2975 }else{
2976 sqlite3ExplainPrintf(pOut, "{%d:%d}",
2977 pExpr->iTable, pExpr->iColumn);
2979 break;
2981 case TK_INTEGER: {
2982 if( pExpr->flags & EP_IntValue ){
2983 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
2984 }else{
2985 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
2987 break;
2989 #ifndef SQLITE_OMIT_FLOATING_POINT
2990 case TK_FLOAT: {
2991 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
2992 break;
2994 #endif
2995 case TK_STRING: {
2996 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
2997 break;
2999 case TK_NULL: {
3000 sqlite3ExplainPrintf(pOut,"NULL");
3001 break;
3003 #ifndef SQLITE_OMIT_BLOB_LITERAL
3004 case TK_BLOB: {
3005 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3006 break;
3008 #endif
3009 case TK_VARIABLE: {
3010 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3011 pExpr->u.zToken, pExpr->iColumn);
3012 break;
3014 case TK_REGISTER: {
3015 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3016 break;
3018 case TK_AS: {
3019 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3020 break;
3022 #ifndef SQLITE_OMIT_CAST
3023 case TK_CAST: {
3024 /* Expressions of the form: CAST(pLeft AS token) */
3025 const char *zAff = "unk";
3026 switch( sqlite3AffinityType(pExpr->u.zToken) ){
3027 case SQLITE_AFF_TEXT: zAff = "TEXT"; break;
3028 case SQLITE_AFF_NONE: zAff = "NONE"; break;
3029 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break;
3030 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break;
3031 case SQLITE_AFF_REAL: zAff = "REAL"; break;
3033 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3034 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3035 sqlite3ExplainPrintf(pOut, ")");
3036 break;
3038 #endif /* SQLITE_OMIT_CAST */
3039 case TK_LT: zBinOp = "LT"; break;
3040 case TK_LE: zBinOp = "LE"; break;
3041 case TK_GT: zBinOp = "GT"; break;
3042 case TK_GE: zBinOp = "GE"; break;
3043 case TK_NE: zBinOp = "NE"; break;
3044 case TK_EQ: zBinOp = "EQ"; break;
3045 case TK_IS: zBinOp = "IS"; break;
3046 case TK_ISNOT: zBinOp = "ISNOT"; break;
3047 case TK_AND: zBinOp = "AND"; break;
3048 case TK_OR: zBinOp = "OR"; break;
3049 case TK_PLUS: zBinOp = "ADD"; break;
3050 case TK_STAR: zBinOp = "MUL"; break;
3051 case TK_MINUS: zBinOp = "SUB"; break;
3052 case TK_REM: zBinOp = "REM"; break;
3053 case TK_BITAND: zBinOp = "BITAND"; break;
3054 case TK_BITOR: zBinOp = "BITOR"; break;
3055 case TK_SLASH: zBinOp = "DIV"; break;
3056 case TK_LSHIFT: zBinOp = "LSHIFT"; break;
3057 case TK_RSHIFT: zBinOp = "RSHIFT"; break;
3058 case TK_CONCAT: zBinOp = "CONCAT"; break;
3060 case TK_UMINUS: zUniOp = "UMINUS"; break;
3061 case TK_UPLUS: zUniOp = "UPLUS"; break;
3062 case TK_BITNOT: zUniOp = "BITNOT"; break;
3063 case TK_NOT: zUniOp = "NOT"; break;
3064 case TK_ISNULL: zUniOp = "ISNULL"; break;
3065 case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3067 case TK_AGG_FUNCTION:
3068 case TK_CONST_FUNC:
3069 case TK_FUNCTION: {
3070 ExprList *pFarg; /* List of function arguments */
3071 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
3072 pFarg = 0;
3073 }else{
3074 pFarg = pExpr->x.pList;
3076 sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(",
3077 op==TK_AGG_FUNCTION ? "AGG_" : "",
3078 pExpr->u.zToken);
3079 if( pFarg ){
3080 sqlite3ExplainExprList(pOut, pFarg);
3082 sqlite3ExplainPrintf(pOut, ")");
3083 break;
3085 #ifndef SQLITE_OMIT_SUBQUERY
3086 case TK_EXISTS: {
3087 sqlite3ExplainPrintf(pOut, "EXISTS(");
3088 sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3089 sqlite3ExplainPrintf(pOut,")");
3090 break;
3092 case TK_SELECT: {
3093 sqlite3ExplainPrintf(pOut, "(");
3094 sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3095 sqlite3ExplainPrintf(pOut, ")");
3096 break;
3098 case TK_IN: {
3099 sqlite3ExplainPrintf(pOut, "IN(");
3100 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3101 sqlite3ExplainPrintf(pOut, ",");
3102 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3103 sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3104 }else{
3105 sqlite3ExplainExprList(pOut, pExpr->x.pList);
3107 sqlite3ExplainPrintf(pOut, ")");
3108 break;
3110 #endif /* SQLITE_OMIT_SUBQUERY */
3113 ** x BETWEEN y AND z
3115 ** This is equivalent to
3117 ** x>=y AND x<=z
3119 ** X is stored in pExpr->pLeft.
3120 ** Y is stored in pExpr->pList->a[0].pExpr.
3121 ** Z is stored in pExpr->pList->a[1].pExpr.
3123 case TK_BETWEEN: {
3124 Expr *pX = pExpr->pLeft;
3125 Expr *pY = pExpr->x.pList->a[0].pExpr;
3126 Expr *pZ = pExpr->x.pList->a[1].pExpr;
3127 sqlite3ExplainPrintf(pOut, "BETWEEN(");
3128 sqlite3ExplainExpr(pOut, pX);
3129 sqlite3ExplainPrintf(pOut, ",");
3130 sqlite3ExplainExpr(pOut, pY);
3131 sqlite3ExplainPrintf(pOut, ",");
3132 sqlite3ExplainExpr(pOut, pZ);
3133 sqlite3ExplainPrintf(pOut, ")");
3134 break;
3136 case TK_TRIGGER: {
3137 /* If the opcode is TK_TRIGGER, then the expression is a reference
3138 ** to a column in the new.* or old.* pseudo-tables available to
3139 ** trigger programs. In this case Expr.iTable is set to 1 for the
3140 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3141 ** is set to the column of the pseudo-table to read, or to -1 to
3142 ** read the rowid field.
3144 sqlite3ExplainPrintf(pOut, "%s(%d)",
3145 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3146 break;
3148 case TK_CASE: {
3149 sqlite3ExplainPrintf(pOut, "CASE(");
3150 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3151 sqlite3ExplainPrintf(pOut, ",");
3152 sqlite3ExplainExprList(pOut, pExpr->x.pList);
3153 break;
3155 #ifndef SQLITE_OMIT_TRIGGER
3156 case TK_RAISE: {
3157 const char *zType = "unk";
3158 switch( pExpr->affinity ){
3159 case OE_Rollback: zType = "rollback"; break;
3160 case OE_Abort: zType = "abort"; break;
3161 case OE_Fail: zType = "fail"; break;
3162 case OE_Ignore: zType = "ignore"; break;
3164 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3165 break;
3167 #endif
3169 if( zBinOp ){
3170 sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3171 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3172 sqlite3ExplainPrintf(pOut,",");
3173 sqlite3ExplainExpr(pOut, pExpr->pRight);
3174 sqlite3ExplainPrintf(pOut,")");
3175 }else if( zUniOp ){
3176 sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3177 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3178 sqlite3ExplainPrintf(pOut,")");
3181 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3183 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3185 ** Generate a human-readable explanation of an expression list.
3187 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3188 int i;
3189 if( pList==0 || pList->nExpr==0 ){
3190 sqlite3ExplainPrintf(pOut, "(empty-list)");
3191 return;
3192 }else if( pList->nExpr==1 ){
3193 sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3194 }else{
3195 sqlite3ExplainPush(pOut);
3196 for(i=0; i<pList->nExpr; i++){
3197 sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3198 sqlite3ExplainPush(pOut);
3199 sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3200 sqlite3ExplainPop(pOut);
3201 if( i<pList->nExpr-1 ){
3202 sqlite3ExplainNL(pOut);
3205 sqlite3ExplainPop(pOut);
3208 #endif /* SQLITE_DEBUG */
3211 ** Return TRUE if pExpr is an constant expression that is appropriate
3212 ** for factoring out of a loop. Appropriate expressions are:
3214 ** * Any expression that evaluates to two or more opcodes.
3216 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3217 ** or OP_Variable that does not need to be placed in a
3218 ** specific register.
3220 ** There is no point in factoring out single-instruction constant
3221 ** expressions that need to be placed in a particular register.
3222 ** We could factor them out, but then we would end up adding an
3223 ** OP_SCopy instruction to move the value into the correct register
3224 ** later. We might as well just use the original instruction and
3225 ** avoid the OP_SCopy.
3227 static int isAppropriateForFactoring(Expr *p){
3228 if( !sqlite3ExprIsConstantNotJoin(p) ){
3229 return 0; /* Only constant expressions are appropriate for factoring */
3231 if( (p->flags & EP_FixedDest)==0 ){
3232 return 1; /* Any constant without a fixed destination is appropriate */
3234 while( p->op==TK_UPLUS ) p = p->pLeft;
3235 switch( p->op ){
3236 #ifndef SQLITE_OMIT_BLOB_LITERAL
3237 case TK_BLOB:
3238 #endif
3239 case TK_VARIABLE:
3240 case TK_INTEGER:
3241 case TK_FLOAT:
3242 case TK_NULL:
3243 case TK_STRING: {
3244 testcase( p->op==TK_BLOB );
3245 testcase( p->op==TK_VARIABLE );
3246 testcase( p->op==TK_INTEGER );
3247 testcase( p->op==TK_FLOAT );
3248 testcase( p->op==TK_NULL );
3249 testcase( p->op==TK_STRING );
3250 /* Single-instruction constants with a fixed destination are
3251 ** better done in-line. If we factor them, they will just end
3252 ** up generating an OP_SCopy to move the value to the destination
3253 ** register. */
3254 return 0;
3256 case TK_UMINUS: {
3257 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3258 return 0;
3260 break;
3262 default: {
3263 break;
3266 return 1;
3270 ** If pExpr is a constant expression that is appropriate for
3271 ** factoring out of a loop, then evaluate the expression
3272 ** into a register and convert the expression into a TK_REGISTER
3273 ** expression.
3275 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3276 Parse *pParse = pWalker->pParse;
3277 switch( pExpr->op ){
3278 case TK_IN:
3279 case TK_REGISTER: {
3280 return WRC_Prune;
3282 case TK_FUNCTION:
3283 case TK_AGG_FUNCTION:
3284 case TK_CONST_FUNC: {
3285 /* The arguments to a function have a fixed destination.
3286 ** Mark them this way to avoid generated unneeded OP_SCopy
3287 ** instructions.
3289 ExprList *pList = pExpr->x.pList;
3290 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3291 if( pList ){
3292 int i = pList->nExpr;
3293 struct ExprList_item *pItem = pList->a;
3294 for(; i>0; i--, pItem++){
3295 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3298 break;
3301 if( isAppropriateForFactoring(pExpr) ){
3302 int r1 = ++pParse->nMem;
3303 int r2;
3304 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3305 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3306 pExpr->op2 = pExpr->op;
3307 pExpr->op = TK_REGISTER;
3308 pExpr->iTable = r2;
3309 return WRC_Prune;
3311 return WRC_Continue;
3315 ** Preevaluate constant subexpressions within pExpr and store the
3316 ** results in registers. Modify pExpr so that the constant subexpresions
3317 ** are TK_REGISTER opcodes that refer to the precomputed values.
3319 ** This routine is a no-op if the jump to the cookie-check code has
3320 ** already occur. Since the cookie-check jump is generated prior to
3321 ** any other serious processing, this check ensures that there is no
3322 ** way to accidently bypass the constant initializations.
3324 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3325 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3326 ** interface. This allows test logic to verify that the same answer is
3327 ** obtained for queries regardless of whether or not constants are
3328 ** precomputed into registers or if they are inserted in-line.
3330 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3331 Walker w;
3332 if( pParse->cookieGoto ) return;
3333 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3334 w.xExprCallback = evalConstExpr;
3335 w.xSelectCallback = 0;
3336 w.pParse = pParse;
3337 sqlite3WalkExpr(&w, pExpr);
3342 ** Generate code that pushes the value of every element of the given
3343 ** expression list into a sequence of registers beginning at target.
3345 ** Return the number of elements evaluated.
3347 int sqlite3ExprCodeExprList(
3348 Parse *pParse, /* Parsing context */
3349 ExprList *pList, /* The expression list to be coded */
3350 int target, /* Where to write results */
3351 int doHardCopy /* Make a hard copy of every element */
3353 struct ExprList_item *pItem;
3354 int i, n;
3355 assert( pList!=0 );
3356 assert( target>0 );
3357 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
3358 n = pList->nExpr;
3359 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3360 Expr *pExpr = pItem->pExpr;
3361 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3362 if( inReg!=target+i ){
3363 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3364 inReg, target+i);
3367 return n;
3371 ** Generate code for a BETWEEN operator.
3373 ** x BETWEEN y AND z
3375 ** The above is equivalent to
3377 ** x>=y AND x<=z
3379 ** Code it as such, taking care to do the common subexpression
3380 ** elementation of x.
3382 static void exprCodeBetween(
3383 Parse *pParse, /* Parsing and code generating context */
3384 Expr *pExpr, /* The BETWEEN expression */
3385 int dest, /* Jump here if the jump is taken */
3386 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
3387 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
3389 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
3390 Expr compLeft; /* The x>=y term */
3391 Expr compRight; /* The x<=z term */
3392 Expr exprX; /* The x subexpression */
3393 int regFree1 = 0; /* Temporary use register */
3395 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3396 exprX = *pExpr->pLeft;
3397 exprAnd.op = TK_AND;
3398 exprAnd.pLeft = &compLeft;
3399 exprAnd.pRight = &compRight;
3400 compLeft.op = TK_GE;
3401 compLeft.pLeft = &exprX;
3402 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3403 compRight.op = TK_LE;
3404 compRight.pLeft = &exprX;
3405 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3406 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3407 exprX.op = TK_REGISTER;
3408 if( jumpIfTrue ){
3409 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3410 }else{
3411 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3413 sqlite3ReleaseTempReg(pParse, regFree1);
3415 /* Ensure adequate test coverage */
3416 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3417 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3418 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3419 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3420 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3421 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3422 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3423 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3427 ** Generate code for a boolean expression such that a jump is made
3428 ** to the label "dest" if the expression is true but execution
3429 ** continues straight thru if the expression is false.
3431 ** If the expression evaluates to NULL (neither true nor false), then
3432 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3434 ** This code depends on the fact that certain token values (ex: TK_EQ)
3435 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3436 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3437 ** the make process cause these values to align. Assert()s in the code
3438 ** below verify that the numbers are aligned correctly.
3440 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3441 Vdbe *v = pParse->pVdbe;
3442 int op = 0;
3443 int regFree1 = 0;
3444 int regFree2 = 0;
3445 int r1, r2;
3447 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3448 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3449 if( NEVER(pExpr==0) ) return; /* No way this can happen */
3450 op = pExpr->op;
3451 switch( op ){
3452 case TK_AND: {
3453 int d2 = sqlite3VdbeMakeLabel(v);
3454 testcase( jumpIfNull==0 );
3455 sqlite3ExprCachePush(pParse);
3456 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3457 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3458 sqlite3VdbeResolveLabel(v, d2);
3459 sqlite3ExprCachePop(pParse, 1);
3460 break;
3462 case TK_OR: {
3463 testcase( jumpIfNull==0 );
3464 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3465 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3466 break;
3468 case TK_NOT: {
3469 testcase( jumpIfNull==0 );
3470 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3471 break;
3473 case TK_LT:
3474 case TK_LE:
3475 case TK_GT:
3476 case TK_GE:
3477 case TK_NE:
3478 case TK_EQ: {
3479 assert( TK_LT==OP_Lt );
3480 assert( TK_LE==OP_Le );
3481 assert( TK_GT==OP_Gt );
3482 assert( TK_GE==OP_Ge );
3483 assert( TK_EQ==OP_Eq );
3484 assert( TK_NE==OP_Ne );
3485 testcase( op==TK_LT );
3486 testcase( op==TK_LE );
3487 testcase( op==TK_GT );
3488 testcase( op==TK_GE );
3489 testcase( op==TK_EQ );
3490 testcase( op==TK_NE );
3491 testcase( jumpIfNull==0 );
3492 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3493 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3494 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3495 r1, r2, dest, jumpIfNull);
3496 testcase( regFree1==0 );
3497 testcase( regFree2==0 );
3498 break;
3500 case TK_IS:
3501 case TK_ISNOT: {
3502 testcase( op==TK_IS );
3503 testcase( op==TK_ISNOT );
3504 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3505 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3506 op = (op==TK_IS) ? TK_EQ : TK_NE;
3507 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3508 r1, r2, dest, SQLITE_NULLEQ);
3509 testcase( regFree1==0 );
3510 testcase( regFree2==0 );
3511 break;
3513 case TK_ISNULL:
3514 case TK_NOTNULL: {
3515 assert( TK_ISNULL==OP_IsNull );
3516 assert( TK_NOTNULL==OP_NotNull );
3517 testcase( op==TK_ISNULL );
3518 testcase( op==TK_NOTNULL );
3519 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3520 sqlite3VdbeAddOp2(v, op, r1, dest);
3521 testcase( regFree1==0 );
3522 break;
3524 case TK_BETWEEN: {
3525 testcase( jumpIfNull==0 );
3526 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3527 break;
3529 #ifndef SQLITE_OMIT_SUBQUERY
3530 case TK_IN: {
3531 int destIfFalse = sqlite3VdbeMakeLabel(v);
3532 int destIfNull = jumpIfNull ? dest : destIfFalse;
3533 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3534 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3535 sqlite3VdbeResolveLabel(v, destIfFalse);
3536 break;
3538 #endif
3539 default: {
3540 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3541 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3542 testcase( regFree1==0 );
3543 testcase( jumpIfNull==0 );
3544 break;
3547 sqlite3ReleaseTempReg(pParse, regFree1);
3548 sqlite3ReleaseTempReg(pParse, regFree2);
3552 ** Generate code for a boolean expression such that a jump is made
3553 ** to the label "dest" if the expression is false but execution
3554 ** continues straight thru if the expression is true.
3556 ** If the expression evaluates to NULL (neither true nor false) then
3557 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3558 ** is 0.
3560 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3561 Vdbe *v = pParse->pVdbe;
3562 int op = 0;
3563 int regFree1 = 0;
3564 int regFree2 = 0;
3565 int r1, r2;
3567 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3568 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3569 if( pExpr==0 ) return;
3571 /* The value of pExpr->op and op are related as follows:
3573 ** pExpr->op op
3574 ** --------- ----------
3575 ** TK_ISNULL OP_NotNull
3576 ** TK_NOTNULL OP_IsNull
3577 ** TK_NE OP_Eq
3578 ** TK_EQ OP_Ne
3579 ** TK_GT OP_Le
3580 ** TK_LE OP_Gt
3581 ** TK_GE OP_Lt
3582 ** TK_LT OP_Ge
3584 ** For other values of pExpr->op, op is undefined and unused.
3585 ** The value of TK_ and OP_ constants are arranged such that we
3586 ** can compute the mapping above using the following expression.
3587 ** Assert()s verify that the computation is correct.
3589 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3591 /* Verify correct alignment of TK_ and OP_ constants
3593 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3594 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3595 assert( pExpr->op!=TK_NE || op==OP_Eq );
3596 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3597 assert( pExpr->op!=TK_LT || op==OP_Ge );
3598 assert( pExpr->op!=TK_LE || op==OP_Gt );
3599 assert( pExpr->op!=TK_GT || op==OP_Le );
3600 assert( pExpr->op!=TK_GE || op==OP_Lt );
3602 switch( pExpr->op ){
3603 case TK_AND: {
3604 testcase( jumpIfNull==0 );
3605 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3606 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3607 break;
3609 case TK_OR: {
3610 int d2 = sqlite3VdbeMakeLabel(v);
3611 testcase( jumpIfNull==0 );
3612 sqlite3ExprCachePush(pParse);
3613 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3614 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3615 sqlite3VdbeResolveLabel(v, d2);
3616 sqlite3ExprCachePop(pParse, 1);
3617 break;
3619 case TK_NOT: {
3620 testcase( jumpIfNull==0 );
3621 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3622 break;
3624 case TK_LT:
3625 case TK_LE:
3626 case TK_GT:
3627 case TK_GE:
3628 case TK_NE:
3629 case TK_EQ: {
3630 testcase( op==TK_LT );
3631 testcase( op==TK_LE );
3632 testcase( op==TK_GT );
3633 testcase( op==TK_GE );
3634 testcase( op==TK_EQ );
3635 testcase( op==TK_NE );
3636 testcase( jumpIfNull==0 );
3637 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3638 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3639 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3640 r1, r2, dest, jumpIfNull);
3641 testcase( regFree1==0 );
3642 testcase( regFree2==0 );
3643 break;
3645 case TK_IS:
3646 case TK_ISNOT: {
3647 testcase( pExpr->op==TK_IS );
3648 testcase( pExpr->op==TK_ISNOT );
3649 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3650 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3651 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3652 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3653 r1, r2, dest, SQLITE_NULLEQ);
3654 testcase( regFree1==0 );
3655 testcase( regFree2==0 );
3656 break;
3658 case TK_ISNULL:
3659 case TK_NOTNULL: {
3660 testcase( op==TK_ISNULL );
3661 testcase( op==TK_NOTNULL );
3662 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3663 sqlite3VdbeAddOp2(v, op, r1, dest);
3664 testcase( regFree1==0 );
3665 break;
3667 case TK_BETWEEN: {
3668 testcase( jumpIfNull==0 );
3669 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3670 break;
3672 #ifndef SQLITE_OMIT_SUBQUERY
3673 case TK_IN: {
3674 if( jumpIfNull ){
3675 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3676 }else{
3677 int destIfNull = sqlite3VdbeMakeLabel(v);
3678 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3679 sqlite3VdbeResolveLabel(v, destIfNull);
3681 break;
3683 #endif
3684 default: {
3685 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3686 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3687 testcase( regFree1==0 );
3688 testcase( jumpIfNull==0 );
3689 break;
3692 sqlite3ReleaseTempReg(pParse, regFree1);
3693 sqlite3ReleaseTempReg(pParse, regFree2);
3697 ** Do a deep comparison of two expression trees. Return 0 if the two
3698 ** expressions are completely identical. Return 1 if they differ only
3699 ** by a COLLATE operator at the top level. Return 2 if there are differences
3700 ** other than the top-level COLLATE operator.
3702 ** Sometimes this routine will return 2 even if the two expressions
3703 ** really are equivalent. If we cannot prove that the expressions are
3704 ** identical, we return 2 just to be safe. So if this routine
3705 ** returns 2, then you do not really know for certain if the two
3706 ** expressions are the same. But if you get a 0 or 1 return, then you
3707 ** can be sure the expressions are the same. In the places where
3708 ** this routine is used, it does not hurt to get an extra 2 - that
3709 ** just might result in some slightly slower code. But returning
3710 ** an incorrect 0 or 1 could lead to a malfunction.
3712 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3713 if( pA==0||pB==0 ){
3714 return pB==pA ? 0 : 2;
3716 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3717 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3718 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3719 return 2;
3721 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3722 if( pA->op!=pB->op ) return 2;
3723 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3724 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3725 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3726 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3727 if( ExprHasProperty(pA, EP_IntValue) ){
3728 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3729 return 2;
3731 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3732 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3733 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3734 return 2;
3737 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3738 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3739 return 0;
3743 ** Compare two ExprList objects. Return 0 if they are identical and
3744 ** non-zero if they differ in any way.
3746 ** This routine might return non-zero for equivalent ExprLists. The
3747 ** only consequence will be disabled optimizations. But this routine
3748 ** must never return 0 if the two ExprList objects are different, or
3749 ** a malfunction will result.
3751 ** Two NULL pointers are considered to be the same. But a NULL pointer
3752 ** always differs from a non-NULL pointer.
3754 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3755 int i;
3756 if( pA==0 && pB==0 ) return 0;
3757 if( pA==0 || pB==0 ) return 1;
3758 if( pA->nExpr!=pB->nExpr ) return 1;
3759 for(i=0; i<pA->nExpr; i++){
3760 Expr *pExprA = pA->a[i].pExpr;
3761 Expr *pExprB = pB->a[i].pExpr;
3762 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3763 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3765 return 0;
3769 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3770 ** the new element. Return a negative number if malloc fails.
3772 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3773 int i;
3774 pInfo->aCol = sqlite3ArrayAllocate(
3776 pInfo->aCol,
3777 sizeof(pInfo->aCol[0]),
3779 &pInfo->nColumn,
3780 &pInfo->nColumnAlloc,
3783 return i;
3787 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3788 ** the new element. Return a negative number if malloc fails.
3790 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3791 int i;
3792 pInfo->aFunc = sqlite3ArrayAllocate(
3793 db,
3794 pInfo->aFunc,
3795 sizeof(pInfo->aFunc[0]),
3797 &pInfo->nFunc,
3798 &pInfo->nFuncAlloc,
3801 return i;
3805 ** This is the xExprCallback for a tree walker. It is used to
3806 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3807 ** for additional information.
3809 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3810 int i;
3811 NameContext *pNC = pWalker->u.pNC;
3812 Parse *pParse = pNC->pParse;
3813 SrcList *pSrcList = pNC->pSrcList;
3814 AggInfo *pAggInfo = pNC->pAggInfo;
3816 switch( pExpr->op ){
3817 case TK_AGG_COLUMN:
3818 case TK_COLUMN: {
3819 testcase( pExpr->op==TK_AGG_COLUMN );
3820 testcase( pExpr->op==TK_COLUMN );
3821 /* Check to see if the column is in one of the tables in the FROM
3822 ** clause of the aggregate query */
3823 if( ALWAYS(pSrcList!=0) ){
3824 struct SrcList_item *pItem = pSrcList->a;
3825 for(i=0; i<pSrcList->nSrc; i++, pItem++){
3826 struct AggInfo_col *pCol;
3827 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3828 if( pExpr->iTable==pItem->iCursor ){
3829 /* If we reach this point, it means that pExpr refers to a table
3830 ** that is in the FROM clause of the aggregate query.
3832 ** Make an entry for the column in pAggInfo->aCol[] if there
3833 ** is not an entry there already.
3835 int k;
3836 pCol = pAggInfo->aCol;
3837 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3838 if( pCol->iTable==pExpr->iTable &&
3839 pCol->iColumn==pExpr->iColumn ){
3840 break;
3843 if( (k>=pAggInfo->nColumn)
3844 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3846 pCol = &pAggInfo->aCol[k];
3847 pCol->pTab = pExpr->pTab;
3848 pCol->iTable = pExpr->iTable;
3849 pCol->iColumn = pExpr->iColumn;
3850 pCol->iMem = ++pParse->nMem;
3851 pCol->iSorterColumn = -1;
3852 pCol->pExpr = pExpr;
3853 if( pAggInfo->pGroupBy ){
3854 int j, n;
3855 ExprList *pGB = pAggInfo->pGroupBy;
3856 struct ExprList_item *pTerm = pGB->a;
3857 n = pGB->nExpr;
3858 for(j=0; j<n; j++, pTerm++){
3859 Expr *pE = pTerm->pExpr;
3860 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3861 pE->iColumn==pExpr->iColumn ){
3862 pCol->iSorterColumn = j;
3863 break;
3867 if( pCol->iSorterColumn<0 ){
3868 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3871 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3872 ** because it was there before or because we just created it).
3873 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3874 ** pAggInfo->aCol[] entry.
3876 ExprSetIrreducible(pExpr);
3877 pExpr->pAggInfo = pAggInfo;
3878 pExpr->op = TK_AGG_COLUMN;
3879 pExpr->iAgg = (i16)k;
3880 break;
3881 } /* endif pExpr->iTable==pItem->iCursor */
3882 } /* end loop over pSrcList */
3884 return WRC_Prune;
3886 case TK_AGG_FUNCTION: {
3887 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3888 ** to be ignored */
3889 if( pNC->nDepth==0 ){
3890 /* Check to see if pExpr is a duplicate of another aggregate
3891 ** function that is already in the pAggInfo structure
3893 struct AggInfo_func *pItem = pAggInfo->aFunc;
3894 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3895 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3896 break;
3899 if( i>=pAggInfo->nFunc ){
3900 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
3902 u8 enc = ENC(pParse->db);
3903 i = addAggInfoFunc(pParse->db, pAggInfo);
3904 if( i>=0 ){
3905 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3906 pItem = &pAggInfo->aFunc[i];
3907 pItem->pExpr = pExpr;
3908 pItem->iMem = ++pParse->nMem;
3909 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3910 pItem->pFunc = sqlite3FindFunction(pParse->db,
3911 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3912 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3913 if( pExpr->flags & EP_Distinct ){
3914 pItem->iDistinct = pParse->nTab++;
3915 }else{
3916 pItem->iDistinct = -1;
3920 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3922 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3923 ExprSetIrreducible(pExpr);
3924 pExpr->iAgg = (i16)i;
3925 pExpr->pAggInfo = pAggInfo;
3926 return WRC_Prune;
3930 return WRC_Continue;
3932 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3933 NameContext *pNC = pWalker->u.pNC;
3934 if( pNC->nDepth==0 ){
3935 pNC->nDepth++;
3936 sqlite3WalkSelect(pWalker, pSelect);
3937 pNC->nDepth--;
3938 return WRC_Prune;
3939 }else{
3940 return WRC_Continue;
3945 ** Analyze the given expression looking for aggregate functions and
3946 ** for variables that need to be added to the pParse->aAgg[] array.
3947 ** Make additional entries to the pParse->aAgg[] array as necessary.
3949 ** This routine should only be called after the expression has been
3950 ** analyzed by sqlite3ResolveExprNames().
3952 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3953 Walker w;
3954 w.xExprCallback = analyzeAggregate;
3955 w.xSelectCallback = analyzeAggregatesInSelect;
3956 w.u.pNC = pNC;
3957 assert( pNC->pSrcList!=0 );
3958 sqlite3WalkExpr(&w, pExpr);
3962 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3963 ** expression list. Return the number of errors.
3965 ** If an error is found, the analysis is cut short.
3967 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3968 struct ExprList_item *pItem;
3969 int i;
3970 if( pList ){
3971 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3972 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3978 ** Allocate a single new register for use to hold some intermediate result.
3980 int sqlite3GetTempReg(Parse *pParse){
3981 if( pParse->nTempReg==0 ){
3982 return ++pParse->nMem;
3984 return pParse->aTempReg[--pParse->nTempReg];
3988 ** Deallocate a register, making available for reuse for some other
3989 ** purpose.
3991 ** If a register is currently being used by the column cache, then
3992 ** the dallocation is deferred until the column cache line that uses
3993 ** the register becomes stale.
3995 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3996 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3997 int i;
3998 struct yColCache *p;
3999 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4000 if( p->iReg==iReg ){
4001 p->tempReg = 1;
4002 return;
4005 pParse->aTempReg[pParse->nTempReg++] = iReg;
4010 ** Allocate or deallocate a block of nReg consecutive registers
4012 int sqlite3GetTempRange(Parse *pParse, int nReg){
4013 int i, n;
4014 i = pParse->iRangeReg;
4015 n = pParse->nRangeReg;
4016 if( nReg<=n ){
4017 assert( !usedAsColumnCache(pParse, i, i+n-1) );
4018 pParse->iRangeReg += nReg;
4019 pParse->nRangeReg -= nReg;
4020 }else{
4021 i = pParse->nMem+1;
4022 pParse->nMem += nReg;
4024 return i;
4026 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4027 sqlite3ExprCacheRemove(pParse, iReg, nReg);
4028 if( nReg>pParse->nRangeReg ){
4029 pParse->nRangeReg = nReg;
4030 pParse->iRangeReg = iReg;
4035 ** Mark all temporary registers as being unavailable for reuse.
4037 void sqlite3ClearTempRegCache(Parse *pParse){
4038 pParse->nTempReg = 0;
4039 pParse->nRangeReg = 0;