Build it.
[AROS-Contrib.git] / gc / reclaim.c
blob48db1e292a37100f486d17aa9cce54a03bf4c526
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 #include <stdio.h>
18 #include "private/gc_priv.h"
20 signed_word GC_mem_found = 0;
21 /* Number of words of memory reclaimed */
23 #if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
24 word GC_fl_builder_count = 0;
25 /* Number of threads currently building free lists without */
26 /* holding GC lock. It is not safe to collect if this is */
27 /* nonzero. */
28 #endif /* PARALLEL_MARK */
30 static void report_leak(p, sz)
31 ptr_t p;
32 word sz;
34 if (HDR(p) -> hb_obj_kind == PTRFREE) {
35 GC_err_printf0("Leaked atomic object at ");
36 } else {
37 GC_err_printf0("Leaked composite object at ");
39 GC_print_heap_obj(p);
40 GC_err_printf0("\n");
43 # define FOUND_FREE(hblk, word_no) \
44 { \
45 report_leak((ptr_t)hblk + WORDS_TO_BYTES(word_no), \
46 HDR(hblk) -> hb_sz); \
50 * reclaim phase
56 * Test whether a block is completely empty, i.e. contains no marked
57 * objects. This does not require the block to be in physical
58 * memory.
61 GC_bool GC_block_empty(hhdr)
62 register hdr * hhdr;
64 /* We treat hb_marks as an array of words here, even if it is */
65 /* actually an array of bytes. Since we only check for zero, there */
66 /* are no endian-ness issues. */
67 register word *p = (word *)(&(hhdr -> hb_marks[0]));
68 register word * plim =
69 (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
70 while (p < plim) {
71 if (*p++) return(FALSE);
73 return(TRUE);
76 /* The following functions sometimes return a DONT_KNOW value. */
77 #define DONT_KNOW 2
79 #ifdef SMALL_CONFIG
80 # define GC_block_nearly_full1(hhdr, pat1) DONT_KNOW
81 # define GC_block_nearly_full3(hhdr, pat1, pat2) DONT_KNOW
82 # define GC_block_nearly_full(hhdr) DONT_KNOW
83 #endif
85 #if !defined(SMALL_CONFIG) && defined(USE_MARK_BYTES)
87 # define GC_block_nearly_full1(hhdr, pat1) GC_block_nearly_full(hhdr)
88 # define GC_block_nearly_full3(hhdr, pat1, pat2) GC_block_nearly_full(hhdr)
91 GC_bool GC_block_nearly_full(hhdr)
92 register hdr * hhdr;
94 /* We again treat hb_marks as an array of words, even though it */
95 /* isn't. We first sum up all the words, resulting in a word */
96 /* containing 4 or 8 separate partial sums. */
97 /* We then sum the bytes in the word of partial sums. */
98 /* This is still endian independant. This fails if the partial */
99 /* sums can overflow. */
100 # if (BYTES_TO_WORDS(MARK_BITS_SZ)) >= 256
101 --> potential overflow; fix the code
102 # endif
103 register word *p = (word *)(&(hhdr -> hb_marks[0]));
104 register word * plim =
105 (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
106 word sum_vector = 0;
107 unsigned sum;
108 while (p < plim) {
109 sum_vector += *p;
110 ++p;
112 sum = 0;
113 while (sum_vector > 0) {
114 sum += sum_vector & 0xff;
115 sum_vector >>= 8;
117 return (sum > BYTES_TO_WORDS(7*HBLKSIZE/8)/(hhdr -> hb_sz));
119 #endif /* USE_MARK_BYTES */
121 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
124 * Test whether nearly all of the mark words consist of the same
125 * repeating pattern.
127 #define FULL_THRESHOLD (MARK_BITS_SZ/16)
129 GC_bool GC_block_nearly_full1(hhdr, pat1)
130 hdr *hhdr;
131 word pat1;
133 unsigned i;
134 unsigned misses = 0;
135 GC_ASSERT((MARK_BITS_SZ & 1) == 0);
136 for (i = 0; i < MARK_BITS_SZ; ++i) {
137 if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
138 if (++misses > FULL_THRESHOLD) return FALSE;
141 return TRUE;
145 * Test whether the same repeating 3 word pattern occurs in nearly
146 * all the mark bit slots.
147 * This is used as a heuristic, so we're a bit sloppy and ignore
148 * the last one or two words.
150 GC_bool GC_block_nearly_full3(hhdr, pat1, pat2, pat3)
151 hdr *hhdr;
152 word pat1, pat2, pat3;
154 unsigned i;
155 unsigned misses = 0;
157 if (MARK_BITS_SZ < 4) {
158 return DONT_KNOW;
160 for (i = 0; i < MARK_BITS_SZ - 2; i += 3) {
161 if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
162 if (++misses > FULL_THRESHOLD) return FALSE;
164 if ((hhdr -> hb_marks[i+1] | ~pat2) != ONES) {
165 if (++misses > FULL_THRESHOLD) return FALSE;
167 if ((hhdr -> hb_marks[i+2] | ~pat3) != ONES) {
168 if (++misses > FULL_THRESHOLD) return FALSE;
171 return TRUE;
174 /* Check whether a small object block is nearly full by looking at only */
175 /* the mark bits. */
176 /* We manually precomputed the mark bit patterns that need to be */
177 /* checked for, and we give up on the ones that are unlikely to occur, */
178 /* or have period > 3. */
179 /* This would be a lot easier with a mark bit per object instead of per */
180 /* word, but that would rewuire computing object numbers in the mark */
181 /* loop, which would require different data structures ... */
182 GC_bool GC_block_nearly_full(hhdr)
183 hdr *hhdr;
185 int sz = hhdr -> hb_sz;
187 # if CPP_WORDSZ != 32 && CPP_WORDSZ != 64
188 return DONT_KNOW; /* Shouldn't be used in any standard config. */
189 # endif
190 # if CPP_WORDSZ == 32
191 switch(sz) {
192 case 1:
193 return GC_block_nearly_full1(hhdr, 0xffffffffl);
194 case 2:
195 return GC_block_nearly_full1(hhdr, 0x55555555l);
196 case 4:
197 return GC_block_nearly_full1(hhdr, 0x11111111l);
198 case 6:
199 return GC_block_nearly_full3(hhdr, 0x41041041l,
200 0x10410410l,
201 0x04104104l);
202 case 8:
203 return GC_block_nearly_full1(hhdr, 0x01010101l);
204 case 12:
205 return GC_block_nearly_full3(hhdr, 0x01001001l,
206 0x10010010l,
207 0x00100100l);
208 case 16:
209 return GC_block_nearly_full1(hhdr, 0x00010001l);
210 case 32:
211 return GC_block_nearly_full1(hhdr, 0x00000001l);
212 default:
213 return DONT_KNOW;
215 # endif
216 # if CPP_WORDSZ == 64
217 switch(sz) {
218 case 1:
219 return GC_block_nearly_full1(hhdr, 0xffffffffffffffffl);
220 case 2:
221 return GC_block_nearly_full1(hhdr, 0x5555555555555555l);
222 case 4:
223 return GC_block_nearly_full1(hhdr, 0x1111111111111111l);
224 case 6:
225 return GC_block_nearly_full3(hhdr, 0x1041041041041041l,
226 0x4104104104104104l,
227 0x0410410410410410l);
228 case 8:
229 return GC_block_nearly_full1(hhdr, 0x0101010101010101l);
230 case 12:
231 return GC_block_nearly_full3(hhdr, 0x1001001001001001l,
232 0x0100100100100100l,
233 0x0010010010010010l);
234 case 16:
235 return GC_block_nearly_full1(hhdr, 0x0001000100010001l);
236 case 32:
237 return GC_block_nearly_full1(hhdr, 0x0000000100000001l);
238 default:
239 return DONT_KNOW;
241 # endif
243 #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
245 /* We keep track of reclaimed memory if we are either asked to, or */
246 /* we are using the parallel marker. In the latter case, we assume */
247 /* that most allocation goes through GC_malloc_many for scalability. */
248 /* GC_malloc_many needs the count anyway. */
249 # if defined(GATHERSTATS) || defined(PARALLEL_MARK)
250 # define INCR_WORDS(sz) n_words_found += (sz)
251 # define COUNT_PARAM , count
252 # define COUNT_ARG , count
253 # define COUNT_DECL signed_word * count;
254 # define NWORDS_DECL signed_word n_words_found = 0;
255 # define COUNT_UPDATE *count += n_words_found;
256 # define MEM_FOUND_ADDR , &GC_mem_found
257 # else
258 # define INCR_WORDS(sz)
259 # define COUNT_PARAM
260 # define COUNT_ARG
261 # define COUNT_DECL
262 # define NWORDS_DECL
263 # define COUNT_UPDATE
264 # define MEM_FOUND_ADDR
265 # endif
267 * Restore unmarked small objects in h of size sz to the object
268 * free list. Returns the new list.
269 * Clears unmarked objects.
271 /*ARGSUSED*/
272 ptr_t GC_reclaim_clear(hbp, hhdr, sz, list COUNT_PARAM)
273 register struct hblk *hbp; /* ptr to current heap block */
274 register hdr * hhdr;
275 register ptr_t list;
276 register word sz;
277 COUNT_DECL
279 register int word_no;
280 register word *p, *q, *plim;
281 NWORDS_DECL
283 GC_ASSERT(hhdr == GC_find_header((ptr_t)hbp));
284 p = (word *)(hbp->hb_body);
285 word_no = 0;
286 plim = (word *)((((word)hbp) + HBLKSIZE)
287 - WORDS_TO_BYTES(sz));
289 /* go through all words in block */
290 while( p <= plim ) {
291 if( mark_bit_from_hdr(hhdr, word_no) ) {
292 p += sz;
293 } else {
294 INCR_WORDS(sz);
295 /* object is available - put on list */
296 obj_link(p) = list;
297 list = ((ptr_t)p);
298 /* Clear object, advance p to next object in the process */
299 q = p + sz;
300 # ifdef USE_MARK_BYTES
301 GC_ASSERT(!(sz & 1)
302 && !((word)p & (2 * sizeof(word) - 1)));
303 p[1] = 0;
304 p += 2;
305 while (p < q) {
306 CLEAR_DOUBLE(p);
307 p += 2;
309 # else
310 p++; /* Skip link field */
311 while (p < q) {
312 *p++ = 0;
314 # endif
316 word_no += sz;
318 COUNT_UPDATE
319 return(list);
322 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
325 * A special case for 2 word composite objects (e.g. cons cells):
327 /*ARGSUSED*/
328 ptr_t GC_reclaim_clear2(hbp, hhdr, list COUNT_PARAM)
329 register struct hblk *hbp; /* ptr to current heap block */
330 hdr * hhdr;
331 register ptr_t list;
332 COUNT_DECL
334 register word * mark_word_addr = &(hhdr->hb_marks[0]);
335 register word *p, *plim;
336 register word mark_word;
337 register int i;
338 NWORDS_DECL
339 # define DO_OBJ(start_displ) \
340 if (!(mark_word & ((word)1 << start_displ))) { \
341 p[start_displ] = (word)list; \
342 list = (ptr_t)(p+start_displ); \
343 p[start_displ+1] = 0; \
344 INCR_WORDS(2); \
347 p = (word *)(hbp->hb_body);
348 plim = (word *)(((word)hbp) + HBLKSIZE);
350 /* go through all words in block */
351 while( p < plim ) {
352 mark_word = *mark_word_addr++;
353 for (i = 0; i < WORDSZ; i += 8) {
354 DO_OBJ(0);
355 DO_OBJ(2);
356 DO_OBJ(4);
357 DO_OBJ(6);
358 p += 8;
359 mark_word >>= 8;
362 COUNT_UPDATE
363 return(list);
364 # undef DO_OBJ
368 * Another special case for 4 word composite objects:
370 /*ARGSUSED*/
371 ptr_t GC_reclaim_clear4(hbp, hhdr, list COUNT_PARAM)
372 register struct hblk *hbp; /* ptr to current heap block */
373 hdr * hhdr;
374 register ptr_t list;
375 COUNT_DECL
377 register word * mark_word_addr = &(hhdr->hb_marks[0]);
378 register word *p, *plim;
379 register word mark_word;
380 NWORDS_DECL
381 # define DO_OBJ(start_displ) \
382 if (!(mark_word & ((word)1 << start_displ))) { \
383 p[start_displ] = (word)list; \
384 list = (ptr_t)(p+start_displ); \
385 p[start_displ+1] = 0; \
386 CLEAR_DOUBLE(p + start_displ + 2); \
387 INCR_WORDS(4); \
390 p = (word *)(hbp->hb_body);
391 plim = (word *)(((word)hbp) + HBLKSIZE);
393 /* go through all words in block */
394 while( p < plim ) {
395 mark_word = *mark_word_addr++;
396 DO_OBJ(0);
397 DO_OBJ(4);
398 DO_OBJ(8);
399 DO_OBJ(12);
400 DO_OBJ(16);
401 DO_OBJ(20);
402 DO_OBJ(24);
403 DO_OBJ(28);
404 # if CPP_WORDSZ == 64
405 DO_OBJ(32);
406 DO_OBJ(36);
407 DO_OBJ(40);
408 DO_OBJ(44);
409 DO_OBJ(48);
410 DO_OBJ(52);
411 DO_OBJ(56);
412 DO_OBJ(60);
413 # endif
414 p += WORDSZ;
416 COUNT_UPDATE
417 return(list);
418 # undef DO_OBJ
421 #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
423 /* The same thing, but don't clear objects: */
424 /*ARGSUSED*/
425 ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_PARAM)
426 register struct hblk *hbp; /* ptr to current heap block */
427 register hdr * hhdr;
428 register ptr_t list;
429 register word sz;
430 COUNT_DECL
432 register int word_no = 0;
433 register word *p, *plim;
434 NWORDS_DECL
436 p = (word *)(hbp->hb_body);
437 plim = (word *)((((word)hbp) + HBLKSIZE)
438 - WORDS_TO_BYTES(sz));
440 /* go through all words in block */
441 while( p <= plim ) {
442 if( !mark_bit_from_hdr(hhdr, word_no) ) {
443 INCR_WORDS(sz);
444 /* object is available - put on list */
445 obj_link(p) = list;
446 list = ((ptr_t)p);
448 p += sz;
449 word_no += sz;
451 COUNT_UPDATE
452 return(list);
455 /* Don't really reclaim objects, just check for unmarked ones: */
456 /*ARGSUSED*/
457 void GC_reclaim_check(hbp, hhdr, sz)
458 register struct hblk *hbp; /* ptr to current heap block */
459 register hdr * hhdr;
460 register word sz;
462 register int word_no = 0;
463 register word *p, *plim;
464 # ifdef GATHERSTATS
465 register int n_words_found = 0;
466 # endif
468 p = (word *)(hbp->hb_body);
469 plim = (word *)((((word)hbp) + HBLKSIZE)
470 - WORDS_TO_BYTES(sz));
472 /* go through all words in block */
473 while( p <= plim ) {
474 if( !mark_bit_from_hdr(hhdr, word_no) ) {
475 FOUND_FREE(hbp, word_no);
477 p += sz;
478 word_no += sz;
482 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
484 * Another special case for 2 word atomic objects:
486 /*ARGSUSED*/
487 ptr_t GC_reclaim_uninit2(hbp, hhdr, list COUNT_PARAM)
488 register struct hblk *hbp; /* ptr to current heap block */
489 hdr * hhdr;
490 register ptr_t list;
491 COUNT_DECL
493 register word * mark_word_addr = &(hhdr->hb_marks[0]);
494 register word *p, *plim;
495 register word mark_word;
496 register int i;
497 NWORDS_DECL
498 # define DO_OBJ(start_displ) \
499 if (!(mark_word & ((word)1 << start_displ))) { \
500 p[start_displ] = (word)list; \
501 list = (ptr_t)(p+start_displ); \
502 INCR_WORDS(2); \
505 p = (word *)(hbp->hb_body);
506 plim = (word *)(((word)hbp) + HBLKSIZE);
508 /* go through all words in block */
509 while( p < plim ) {
510 mark_word = *mark_word_addr++;
511 for (i = 0; i < WORDSZ; i += 8) {
512 DO_OBJ(0);
513 DO_OBJ(2);
514 DO_OBJ(4);
515 DO_OBJ(6);
516 p += 8;
517 mark_word >>= 8;
520 COUNT_UPDATE
521 return(list);
522 # undef DO_OBJ
526 * Another special case for 4 word atomic objects:
528 /*ARGSUSED*/
529 ptr_t GC_reclaim_uninit4(hbp, hhdr, list COUNT_PARAM)
530 register struct hblk *hbp; /* ptr to current heap block */
531 hdr * hhdr;
532 register ptr_t list;
533 COUNT_DECL
535 register word * mark_word_addr = &(hhdr->hb_marks[0]);
536 register word *p, *plim;
537 register word mark_word;
538 NWORDS_DECL
539 # define DO_OBJ(start_displ) \
540 if (!(mark_word & ((word)1 << start_displ))) { \
541 p[start_displ] = (word)list; \
542 list = (ptr_t)(p+start_displ); \
543 INCR_WORDS(4); \
546 p = (word *)(hbp->hb_body);
547 plim = (word *)(((word)hbp) + HBLKSIZE);
549 /* go through all words in block */
550 while( p < plim ) {
551 mark_word = *mark_word_addr++;
552 DO_OBJ(0);
553 DO_OBJ(4);
554 DO_OBJ(8);
555 DO_OBJ(12);
556 DO_OBJ(16);
557 DO_OBJ(20);
558 DO_OBJ(24);
559 DO_OBJ(28);
560 # if CPP_WORDSZ == 64
561 DO_OBJ(32);
562 DO_OBJ(36);
563 DO_OBJ(40);
564 DO_OBJ(44);
565 DO_OBJ(48);
566 DO_OBJ(52);
567 DO_OBJ(56);
568 DO_OBJ(60);
569 # endif
570 p += WORDSZ;
572 COUNT_UPDATE
573 return(list);
574 # undef DO_OBJ
577 /* Finally the one word case, which never requires any clearing: */
578 /*ARGSUSED*/
579 ptr_t GC_reclaim1(hbp, hhdr, list COUNT_PARAM)
580 register struct hblk *hbp; /* ptr to current heap block */
581 hdr * hhdr;
582 register ptr_t list;
583 COUNT_DECL
585 register word * mark_word_addr = &(hhdr->hb_marks[0]);
586 register word *p, *plim;
587 register word mark_word;
588 register int i;
589 NWORDS_DECL
590 # define DO_OBJ(start_displ) \
591 if (!(mark_word & ((word)1 << start_displ))) { \
592 p[start_displ] = (word)list; \
593 list = (ptr_t)(p+start_displ); \
594 INCR_WORDS(1); \
597 p = (word *)(hbp->hb_body);
598 plim = (word *)(((word)hbp) + HBLKSIZE);
600 /* go through all words in block */
601 while( p < plim ) {
602 mark_word = *mark_word_addr++;
603 for (i = 0; i < WORDSZ; i += 4) {
604 DO_OBJ(0);
605 DO_OBJ(1);
606 DO_OBJ(2);
607 DO_OBJ(3);
608 p += 4;
609 mark_word >>= 4;
612 COUNT_UPDATE
613 return(list);
614 # undef DO_OBJ
617 #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
620 * Generic procedure to rebuild a free list in hbp.
621 * Also called directly from GC_malloc_many.
623 ptr_t GC_reclaim_generic(hbp, hhdr, sz, init, list COUNT_PARAM)
624 struct hblk *hbp; /* ptr to current heap block */
625 hdr * hhdr;
626 GC_bool init;
627 ptr_t list;
628 word sz;
629 COUNT_DECL
631 ptr_t result = list;
633 GC_ASSERT(GC_find_header((ptr_t)hbp) == hhdr);
634 if (init) {
635 switch(sz) {
636 # if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
637 case 1:
638 /* We now issue the hint even if GC_nearly_full returned */
639 /* DONT_KNOW. */
640 GC_write_hint(hbp);
641 result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
642 break;
643 case 2:
644 GC_write_hint(hbp);
645 result = GC_reclaim_clear2(hbp, hhdr, list COUNT_ARG);
646 break;
647 case 4:
648 GC_write_hint(hbp);
649 result = GC_reclaim_clear4(hbp, hhdr, list COUNT_ARG);
650 break;
651 # endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
652 default:
653 GC_write_hint(hbp);
654 result = GC_reclaim_clear(hbp, hhdr, sz, list COUNT_ARG);
655 break;
657 } else {
658 switch(sz) {
659 # if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
660 case 1:
661 GC_write_hint(hbp);
662 result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
663 break;
664 case 2:
665 GC_write_hint(hbp);
666 result = GC_reclaim_uninit2(hbp, hhdr, list COUNT_ARG);
667 break;
668 case 4:
669 GC_write_hint(hbp);
670 result = GC_reclaim_uninit4(hbp, hhdr, list COUNT_ARG);
671 break;
672 # endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
673 default:
674 GC_write_hint(hbp);
675 result = GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_ARG);
676 break;
679 if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
680 return result;
684 * Restore unmarked small objects in the block pointed to by hbp
685 * to the appropriate object free list.
686 * If entirely empty blocks are to be completely deallocated, then
687 * caller should perform that check.
689 void GC_reclaim_small_nonempty_block(hbp, report_if_found COUNT_PARAM)
690 register struct hblk *hbp; /* ptr to current heap block */
691 int report_if_found; /* Abort if a reclaimable object is found */
692 COUNT_DECL
694 hdr *hhdr = HDR(hbp);
695 word sz = hhdr -> hb_sz;
696 int kind = hhdr -> hb_obj_kind;
697 struct obj_kind * ok = &GC_obj_kinds[kind];
698 ptr_t * flh = &(ok -> ok_freelist[sz]);
700 hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
702 if (report_if_found) {
703 GC_reclaim_check(hbp, hhdr, sz);
704 } else {
705 *flh = GC_reclaim_generic(hbp, hhdr, sz,
706 (ok -> ok_init || GC_debugging_started),
707 *flh MEM_FOUND_ADDR);
712 * Restore an unmarked large object or an entirely empty blocks of small objects
713 * to the heap block free list.
714 * Otherwise enqueue the block for later processing
715 * by GC_reclaim_small_nonempty_block.
716 * If report_if_found is TRUE, then process any block immediately, and
717 * simply report free objects; do not actually reclaim them.
719 # if defined(__STDC__) || defined(__cplusplus)
720 void GC_reclaim_block(register struct hblk *hbp, word report_if_found)
721 # else
722 void GC_reclaim_block(hbp, report_if_found)
723 register struct hblk *hbp; /* ptr to current heap block */
724 word report_if_found; /* Abort if a reclaimable object is found */
725 # endif
727 register hdr * hhdr;
728 register word sz; /* size of objects in current block */
729 register struct obj_kind * ok;
730 struct hblk ** rlh;
732 hhdr = HDR(hbp);
733 sz = hhdr -> hb_sz;
734 ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
736 if( sz > MAXOBJSZ ) { /* 1 big object */
737 if( !mark_bit_from_hdr(hhdr, 0) ) {
738 if (report_if_found) {
739 FOUND_FREE(hbp, 0);
740 } else {
741 word blocks = OBJ_SZ_TO_BLOCKS(sz);
742 if (blocks > 1) {
743 GC_large_allocd_bytes -= blocks * HBLKSIZE;
745 # ifdef GATHERSTATS
746 GC_mem_found += sz;
747 # endif
748 GC_freehblk(hbp);
751 } else {
752 GC_bool empty = GC_block_empty(hhdr);
753 if (report_if_found) {
754 GC_reclaim_small_nonempty_block(hbp, (int)report_if_found
755 MEM_FOUND_ADDR);
756 } else if (empty) {
757 # ifdef GATHERSTATS
758 GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);
759 # endif
760 GC_freehblk(hbp);
761 } else if (TRUE != GC_block_nearly_full(hhdr)){
762 /* group of smaller objects, enqueue the real work */
763 rlh = &(ok -> ok_reclaim_list[sz]);
764 hhdr -> hb_next = *rlh;
765 *rlh = hbp;
766 } /* else not worth salvaging. */
767 /* We used to do the nearly_full check later, but we */
768 /* already have the right cache context here. Also */
769 /* doing it here avoids some silly lock contention in */
770 /* GC_malloc_many. */
774 #if !defined(NO_DEBUGGING)
775 /* Routines to gather and print heap block info */
776 /* intended for debugging. Otherwise should be called */
777 /* with lock. */
779 struct Print_stats
781 size_t number_of_blocks;
782 size_t total_bytes;
785 #ifdef USE_MARK_BYTES
787 /* Return the number of set mark bits in the given header */
788 int GC_n_set_marks(hhdr)
789 hdr * hhdr;
791 register int result = 0;
792 register int i;
794 for (i = 0; i < MARK_BITS_SZ; i++) {
795 result += hhdr -> hb_marks[i];
797 return(result);
800 #else
802 /* Number of set bits in a word. Not performance critical. */
803 static int set_bits(n)
804 word n;
806 register word m = n;
807 register int result = 0;
809 while (m > 0) {
810 if (m & 1) result++;
811 m >>= 1;
813 return(result);
816 /* Return the number of set mark bits in the given header */
817 int GC_n_set_marks(hhdr)
818 hdr * hhdr;
820 register int result = 0;
821 register int i;
823 for (i = 0; i < MARK_BITS_SZ; i++) {
824 result += set_bits(hhdr -> hb_marks[i]);
826 return(result);
829 #endif /* !USE_MARK_BYTES */
831 /*ARGSUSED*/
832 # if defined(__STDC__) || defined(__cplusplus)
833 void GC_print_block_descr(struct hblk *h, word dummy)
834 # else
835 void GC_print_block_descr(h, dummy)
836 struct hblk *h;
837 word dummy;
838 # endif
840 register hdr * hhdr = HDR(h);
841 register size_t bytes = WORDS_TO_BYTES(hhdr -> hb_sz);
842 struct Print_stats *ps;
844 GC_printf3("(%lu:%lu,%lu)", (unsigned long)(hhdr -> hb_obj_kind),
845 (unsigned long)bytes,
846 (unsigned long)(GC_n_set_marks(hhdr)));
847 bytes += HBLKSIZE-1;
848 bytes &= ~(HBLKSIZE-1);
850 ps = (struct Print_stats *)dummy;
851 ps->total_bytes += bytes;
852 ps->number_of_blocks++;
855 void GC_print_block_list()
857 struct Print_stats pstats;
859 GC_printf0("(kind(0=ptrfree,1=normal,2=unc.,3=stubborn):size_in_bytes, #_marks_set)\n");
860 pstats.number_of_blocks = 0;
861 pstats.total_bytes = 0;
862 GC_apply_to_all_blocks(GC_print_block_descr, (word)&pstats);
863 GC_printf2("\nblocks = %lu, bytes = %lu\n",
864 (unsigned long)pstats.number_of_blocks,
865 (unsigned long)pstats.total_bytes);
868 #endif /* NO_DEBUGGING */
871 * Perform GC_reclaim_block on the entire heap, after first clearing
872 * small object free lists (if we are not just looking for leaks).
874 void GC_start_reclaim(report_if_found)
875 int report_if_found; /* Abort if a GC_reclaimable object is found */
877 int kind;
879 # if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
880 GC_ASSERT(0 == GC_fl_builder_count);
881 # endif
882 /* Clear reclaim- and free-lists */
883 for (kind = 0; kind < GC_n_kinds; kind++) {
884 register ptr_t *fop;
885 register ptr_t *lim;
886 register struct hblk ** rlp;
887 register struct hblk ** rlim;
888 register struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
890 if (rlist == 0) continue; /* This kind not used. */
891 if (!report_if_found) {
892 lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
893 for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
894 *fop = 0;
896 } /* otherwise free list objects are marked, */
897 /* and its safe to leave them */
898 rlim = rlist + MAXOBJSZ+1;
899 for( rlp = rlist; rlp < rlim; rlp++ ) {
900 *rlp = 0;
904 # ifdef PRINTBLOCKS
905 GC_printf0("GC_reclaim: current block sizes:\n");
906 GC_print_block_list();
907 # endif
909 /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
910 /* or enqueue the block for later processing. */
911 GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
913 # ifdef EAGER_SWEEP
914 /* This is a very stupid thing to do. We make it possible anyway, */
915 /* so that you can convince yourself that it really is very stupid. */
916 GC_reclaim_all((GC_stop_func)0, FALSE);
917 # endif
918 # if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
919 GC_ASSERT(0 == GC_fl_builder_count);
920 # endif
925 * Sweep blocks of the indicated object size and kind until either the
926 * appropriate free list is nonempty, or there are no more blocks to
927 * sweep.
929 void GC_continue_reclaim(sz, kind)
930 word sz; /* words */
931 int kind;
933 register hdr * hhdr;
934 register struct hblk * hbp;
935 register struct obj_kind * ok = &(GC_obj_kinds[kind]);
936 struct hblk ** rlh = ok -> ok_reclaim_list;
937 ptr_t *flh = &(ok -> ok_freelist[sz]);
939 if (rlh == 0) return; /* No blocks of this kind. */
940 rlh += sz;
941 while ((hbp = *rlh) != 0) {
942 hhdr = HDR(hbp);
943 *rlh = hhdr -> hb_next;
944 GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
945 if (*flh != 0) break;
950 * Reclaim all small blocks waiting to be reclaimed.
951 * Abort and return FALSE when/if (*stop_func)() returns TRUE.
952 * If this returns TRUE, then it's safe to restart the world
953 * with incorrectly cleared mark bits.
954 * If ignore_old is TRUE, then reclaim only blocks that have been
955 * recently reclaimed, and discard the rest.
956 * Stop_func may be 0.
958 GC_bool GC_reclaim_all(stop_func, ignore_old)
959 GC_stop_func stop_func;
960 GC_bool ignore_old;
962 register word sz;
963 register int kind;
964 register hdr * hhdr;
965 register struct hblk * hbp;
966 register struct obj_kind * ok;
967 struct hblk ** rlp;
968 struct hblk ** rlh;
969 # ifdef PRINTTIMES
970 CLOCK_TYPE start_time;
971 CLOCK_TYPE done_time;
973 GET_TIME(start_time);
974 # endif
976 for (kind = 0; kind < GC_n_kinds; kind++) {
977 ok = &(GC_obj_kinds[kind]);
978 rlp = ok -> ok_reclaim_list;
979 if (rlp == 0) continue;
980 for (sz = 1; sz <= MAXOBJSZ; sz++) {
981 rlh = rlp + sz;
982 while ((hbp = *rlh) != 0) {
983 if (stop_func != (GC_stop_func)0 && (*stop_func)()) {
984 return(FALSE);
986 hhdr = HDR(hbp);
987 *rlh = hhdr -> hb_next;
988 if (!ignore_old || hhdr -> hb_last_reclaimed == GC_gc_no - 1) {
989 /* It's likely we'll need it this time, too */
990 /* It's been touched recently, so this */
991 /* shouldn't trigger paging. */
992 GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
997 # ifdef PRINTTIMES
998 GET_TIME(done_time);
999 GC_printf1("Disposing of reclaim lists took %lu msecs\n",
1000 MS_TIME_DIFF(done_time,start_time));
1001 # endif
1002 return(TRUE);