don't use the bsdsocket library defines since they conflict with structure elements.
[AROS-Contrib.git] / sqlite3 / where.c
blob553de70a25df7a91682e38b2b4256aa87ee8a9b1
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 ** $Id$
21 #include "sqliteInt.h"
24 ** The query generator uses an array of instances of this structure to
25 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
26 ** clause subexpression is separated from the others by an AND operator.
28 ** The idxLeft and idxRight fields are the VDBE cursor numbers for the
29 ** table that contains the column that appears on the left-hand and
30 ** right-hand side of ExprInfo.p. If either side of ExprInfo.p is
31 ** something other than a simple column reference, then idxLeft or
32 ** idxRight are -1.
34 ** It is the VDBE cursor number is the value stored in Expr.iTable
35 ** when Expr.op==TK_COLUMN and the value stored in SrcList.a[].iCursor.
37 ** prereqLeft, prereqRight, and prereqAll record sets of cursor numbers,
38 ** but they do so indirectly. A single ExprMaskSet structure translates
39 ** cursor number into bits and the translated bit is stored in the prereq
40 ** fields. The translation is used in order to maximize the number of
41 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
42 ** spread out over the non-negative integers. For example, the cursor
43 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
44 ** translates these sparse cursor numbers into consecutive integers
45 ** beginning with 0 in order to make the best possible use of the available
46 ** bits in the Bitmask. So, in the example above, the cursor numbers
47 ** would be mapped into integers 0 through 7.
49 ** prereqLeft tells us every VDBE cursor that is referenced on the
50 ** left-hand side of ExprInfo.p. prereqRight does the same for the
51 ** right-hand side of the expression. The following identity always
52 ** holds:
54 ** prereqAll = prereqLeft | prereqRight
56 ** The ExprInfo.indexable field is true if the ExprInfo.p expression
57 ** is of a form that might control an index. Indexable expressions
58 ** look like this:
60 ** <column> <op> <expr>
62 ** Where <column> is a simple column name and <op> is on of the operators
63 ** that allowedOp() recognizes.
65 typedef struct ExprInfo ExprInfo;
66 struct ExprInfo {
67 Expr *p; /* Pointer to the subexpression */
68 u8 indexable; /* True if this subexprssion is usable by an index */
69 short int idxLeft; /* p->pLeft is a column in this table number. -1 if
70 ** p->pLeft is not the column of any table */
71 short int idxRight; /* p->pRight is a column in this table number. -1 if
72 ** p->pRight is not the column of any table */
73 Bitmask prereqLeft; /* Bitmask of tables referenced by p->pLeft */
74 Bitmask prereqRight; /* Bitmask of tables referenced by p->pRight */
75 Bitmask prereqAll; /* Bitmask of tables referenced by p */
79 ** An instance of the following structure keeps track of a mapping
80 ** between VDBE cursor numbers and bits of the bitmasks in ExprInfo.
82 ** The VDBE cursor numbers are small integers contained in
83 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
84 ** clause, the cursor numbers might not begin with 0 and they might
85 ** contain gaps in the numbering sequence. But we want to make maximum
86 ** use of the bits in our bitmasks. This structure provides a mapping
87 ** from the sparse cursor numbers into consecutive integers beginning
88 ** with 0.
90 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
91 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
93 ** For example, if the WHERE clause expression used these VDBE
94 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
95 ** would map those cursor numbers into bits 0 through 5.
97 ** Note that the mapping is not necessarily ordered. In the example
98 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
99 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
100 ** does not really matter. What is important is that sparse cursor
101 ** numbers all get mapped into bit numbers that begin with 0 and contain
102 ** no gaps.
104 typedef struct ExprMaskSet ExprMaskSet;
105 struct ExprMaskSet {
106 int n; /* Number of assigned cursor values */
107 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
111 ** Determine the number of elements in an array.
113 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
116 ** This routine identifies subexpressions in the WHERE clause where
117 ** each subexpression is separate by the AND operator. aSlot is
118 ** filled with pointers to the subexpressions. For example:
120 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
121 ** \________/ \_______________/ \________________/
122 ** slot[0] slot[1] slot[2]
124 ** The original WHERE clause in pExpr is unaltered. All this routine
125 ** does is make aSlot[] entries point to substructure within pExpr.
127 ** aSlot[] is an array of subexpressions structures. There are nSlot
128 ** spaces left in this array. This routine finds as many AND-separated
129 ** subexpressions as it can and puts pointers to those subexpressions
130 ** into aSlot[] entries. The return value is the number of slots filled.
132 static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
133 int cnt = 0;
134 if( pExpr==0 || nSlot<1 ) return 0;
135 if( nSlot==1 || pExpr->op!=TK_AND ){
136 aSlot[0].p = pExpr;
137 return 1;
139 if( pExpr->pLeft->op!=TK_AND ){
140 aSlot[0].p = pExpr->pLeft;
141 cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
142 }else{
143 cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
144 cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
146 return cnt;
150 ** Initialize an expression mask set
152 #define initMaskSet(P) memset(P, 0, sizeof(*P))
155 ** Return the bitmask for the given cursor number. Return 0 if
156 ** iCursor is not in the set.
158 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
159 int i;
160 for(i=0; i<pMaskSet->n; i++){
161 if( pMaskSet->ix[i]==iCursor ){
162 return ((Bitmask)1)<<i;
165 return 0;
169 ** Create a new mask for cursor iCursor.
171 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
172 if( pMaskSet->n<ARRAYSIZE(pMaskSet->ix) ){
173 pMaskSet->ix[pMaskSet->n++] = iCursor;
178 ** Destroy an expression mask set
180 #define freeMaskSet(P) /* NO-OP */
183 ** This routine walks (recursively) an expression tree and generates
184 ** a bitmask indicating which tables are used in that expression
185 ** tree.
187 ** In order for this routine to work, the calling function must have
188 ** previously invoked sqlite3ExprResolveNames() on the expression. See
189 ** the header comment on that routine for additional information.
190 ** The sqlite3ExprResolveNames() routines looks for column names and
191 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
192 ** the VDBE cursor number of the table.
194 static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
195 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
196 Bitmask mask = 0;
197 if( p==0 ) return 0;
198 if( p->op==TK_COLUMN ){
199 mask = getMask(pMaskSet, p->iTable);
200 return mask;
202 mask = exprTableUsage(pMaskSet, p->pRight);
203 mask |= exprTableUsage(pMaskSet, p->pLeft);
204 mask |= exprListTableUsage(pMaskSet, p->pList);
205 if( p->pSelect ){
206 Select *pS = p->pSelect;
207 mask |= exprListTableUsage(pMaskSet, pS->pEList);
208 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
209 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
210 mask |= exprTableUsage(pMaskSet, pS->pWhere);
211 mask |= exprTableUsage(pMaskSet, pS->pHaving);
213 return mask;
215 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
216 int i;
217 Bitmask mask = 0;
218 if( pList ){
219 for(i=0; i<pList->nExpr; i++){
220 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
223 return mask;
227 ** Return TRUE if the given operator is one of the operators that is
228 ** allowed for an indexable WHERE clause term. The allowed operators are
229 ** "=", "<", ">", "<=", ">=", and "IN".
231 static int allowedOp(int op){
232 assert( TK_GT==TK_LE-1 && TK_LE==TK_LT-1 && TK_LT==TK_GE-1 && TK_EQ==TK_GT-1);
233 return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
237 ** Swap two objects of type T.
239 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
242 ** Return the index in the SrcList that uses cursor iCur. If iCur is
243 ** used by the first entry in SrcList return 0. If iCur is used by
244 ** the second entry return 1. And so forth.
246 ** SrcList is the set of tables in the FROM clause in the order that
247 ** they will be processed. The value returned here gives us an index
248 ** of which tables will be processed first.
250 static int tableOrder(SrcList *pList, int iCur){
251 int i;
252 struct SrcList_item *pItem;
253 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
254 if( pItem->iCursor==iCur ) return i;
256 return -1;
260 ** The input to this routine is an ExprInfo structure with only the
261 ** "p" field filled in. The job of this routine is to analyze the
262 ** subexpression and populate all the other fields of the ExprInfo
263 ** structure.
265 static void exprAnalyze(SrcList *pSrc, ExprMaskSet *pMaskSet, ExprInfo *pInfo){
266 Expr *pExpr = pInfo->p;
267 pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
268 pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
269 pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
270 pInfo->indexable = 0;
271 pInfo->idxLeft = -1;
272 pInfo->idxRight = -1;
273 if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
274 if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
275 pInfo->idxRight = pExpr->pRight->iTable;
276 pInfo->indexable = 1;
278 if( pExpr->pLeft->op==TK_COLUMN ){
279 pInfo->idxLeft = pExpr->pLeft->iTable;
280 pInfo->indexable = 1;
283 if( pInfo->indexable ){
284 assert( pInfo->idxLeft!=pInfo->idxRight );
286 /* We want the expression to be of the form "X = expr", not "expr = X".
287 ** So flip it over if necessary. If the expression is "X = Y", then
288 ** we want Y to come from an earlier table than X.
290 ** The collating sequence rule is to always choose the left expression.
291 ** So if we do a flip, we also have to move the collating sequence.
293 if( tableOrder(pSrc,pInfo->idxLeft)<tableOrder(pSrc,pInfo->idxRight) ){
294 assert( pExpr->op!=TK_IN );
295 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
296 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
297 if( pExpr->op>=TK_GT ){
298 assert( TK_LT==TK_GT+2 );
299 assert( TK_GE==TK_LE+2 );
300 assert( TK_GT>TK_EQ );
301 assert( TK_GT<TK_LE );
302 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
303 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
305 SWAP(unsigned, pInfo->prereqLeft, pInfo->prereqRight);
306 SWAP(short int, pInfo->idxLeft, pInfo->idxRight);
313 ** This routine decides if pIdx can be used to satisfy the ORDER BY
314 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
315 ** ORDER BY clause, this routine returns 0.
317 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
318 ** left-most table in the FROM clause of that same SELECT statement and
319 ** the table has a cursor number of "base". pIdx is an index on pTab.
321 ** nEqCol is the number of columns of pIdx that are used as equality
322 ** constraints. Any of these columns may be missing from the ORDER BY
323 ** clause and the match can still be a success.
325 ** If the index is UNIQUE, then the ORDER BY clause is allowed to have
326 ** additional terms past the end of the index and the match will still
327 ** be a success.
329 ** All terms of the ORDER BY that match against the index must be either
330 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
331 ** index do not need to satisfy this constraint.) The *pbRev value is
332 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
333 ** the ORDER BY clause is all ASC.
335 static int isSortingIndex(
336 Parse *pParse, /* Parsing context */
337 Index *pIdx, /* The index we are testing */
338 Table *pTab, /* The table to be sorted */
339 int base, /* Cursor number for pTab */
340 ExprList *pOrderBy, /* The ORDER BY clause */
341 int nEqCol, /* Number of index columns with == constraints */
342 int *pbRev /* Set to 1 if ORDER BY is DESC */
344 int i, j; /* Loop counters */
345 int sortOrder; /* Which direction we are sorting */
346 int nTerm; /* Number of ORDER BY terms */
347 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
348 sqlite3 *db = pParse->db;
350 assert( pOrderBy!=0 );
351 nTerm = pOrderBy->nExpr;
352 assert( nTerm>0 );
354 /* Match terms of the ORDER BY clause against columns of
355 ** the index.
357 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
358 Expr *pExpr; /* The expression of the ORDER BY pTerm */
359 CollSeq *pColl; /* The collating sequence of pExpr */
361 pExpr = pTerm->pExpr;
362 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
363 /* Can not use an index sort on anything that is not a column in the
364 ** left-most table of the FROM clause */
365 return 0;
367 pColl = sqlite3ExprCollSeq(pParse, pExpr);
368 if( !pColl ) pColl = db->pDfltColl;
369 if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
370 /* Term j of the ORDER BY clause does not match column i of the index */
371 if( i<nEqCol ){
372 /* If an index column that is constrained by == fails to match an
373 ** ORDER BY term, that is OK. Just ignore that column of the index
375 continue;
376 }else{
377 /* If an index column fails to match and is not constrained by ==
378 ** then the index cannot satisfy the ORDER BY constraint.
380 return 0;
383 if( i>nEqCol ){
384 if( pTerm->sortOrder!=sortOrder ){
385 /* Indices can only be used if all ORDER BY terms past the
386 ** equality constraints are all either DESC or ASC. */
387 return 0;
389 }else{
390 sortOrder = pTerm->sortOrder;
392 j++;
393 pTerm++;
396 /* The index can be used for sorting if all terms of the ORDER BY clause
397 ** or covered or if we ran out of index columns and the it is a UNIQUE
398 ** index.
400 if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
401 *pbRev = sortOrder==SQLITE_SO_DESC;
402 return 1;
404 return 0;
408 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
409 ** by sorting in order of ROWID. Return true if so and set *pbRev to be
410 ** true for reverse ROWID and false for forward ROWID order.
412 static int sortableByRowid(
413 int base, /* Cursor number for table to be sorted */
414 ExprList *pOrderBy, /* The ORDER BY clause */
415 int *pbRev /* Set to 1 if ORDER BY is DESC */
417 Expr *p;
419 assert( pOrderBy!=0 );
420 assert( pOrderBy->nExpr>0 );
421 p = pOrderBy->a[0].pExpr;
422 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
423 *pbRev = pOrderBy->a[0].sortOrder;
424 return 1;
426 return 0;
431 ** Disable a term in the WHERE clause. Except, do not disable the term
432 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
433 ** or USING clause of that join.
435 ** Consider the term t2.z='ok' in the following queries:
437 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
438 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
439 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
441 ** The t2.z='ok' is disabled in the in (2) because it originates
442 ** in the ON clause. The term is disabled in (3) because it is not part
443 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
445 ** Disabling a term causes that term to not be tested in the inner loop
446 ** of the join. Disabling is an optimization. We would get the correct
447 ** results if nothing were ever disabled, but joins might run a little
448 ** slower. The trick is to disable as much as we can without disabling
449 ** too much. If we disabled in (1), we'd get the wrong answer.
450 ** See ticket #813.
452 static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
453 Expr *pExpr = *ppExpr;
454 if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
455 *ppExpr = 0;
460 ** Generate code that builds a probe for an index. Details:
462 ** * Check the top nColumn entries on the stack. If any
463 ** of those entries are NULL, jump immediately to brk,
464 ** which is the loop exit, since no index entry will match
465 ** if any part of the key is NULL.
467 ** * Construct a probe entry from the top nColumn entries in
468 ** the stack with affinities appropriate for index pIdx.
470 static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
471 sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
472 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
473 sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
474 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
475 sqlite3IndexAffinityStr(v, pIdx);
479 ** Generate code for an equality term of the WHERE clause. An equality
480 ** term can be either X=expr or X IN (...). pTerm is the X.
482 static void codeEqualityTerm(
483 Parse *pParse, /* The parsing context */
484 ExprInfo *pTerm, /* The term of the WHERE clause to be coded */
485 int brk, /* Jump here to abandon the loop */
486 WhereLevel *pLevel /* When level of the FROM clause we are working on */
488 Expr *pX = pTerm->p;
489 if( pX->op!=TK_IN ){
490 assert( pX->op==TK_EQ );
491 sqlite3ExprCode(pParse, pX->pRight);
492 #ifndef SQLITE_OMIT_SUBQUERY
493 }else{
494 int iTab;
495 Vdbe *v = pParse->pVdbe;
497 sqlite3CodeSubselect(pParse, pX);
498 iTab = pX->iTable;
499 sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
500 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
501 pLevel->inP2 = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
502 pLevel->inOp = OP_Next;
503 pLevel->inP1 = iTab;
504 #endif
506 disableTerm(pLevel, &pTerm->p);
510 ** The number of bits in a Bitmask
512 #define BMS (sizeof(Bitmask)*8-1)
516 ** Generate the beginning of the loop used for WHERE clause processing.
517 ** The return value is a pointer to an opaque structure that contains
518 ** information needed to terminate the loop. Later, the calling routine
519 ** should invoke sqlite3WhereEnd() with the return value of this function
520 ** in order to complete the WHERE clause processing.
522 ** If an error occurs, this routine returns NULL.
524 ** The basic idea is to do a nested loop, one loop for each table in
525 ** the FROM clause of a select. (INSERT and UPDATE statements are the
526 ** same as a SELECT with only a single table in the FROM clause.) For
527 ** example, if the SQL is this:
529 ** SELECT * FROM t1, t2, t3 WHERE ...;
531 ** Then the code generated is conceptually like the following:
533 ** foreach row1 in t1 do \ Code generated
534 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
535 ** foreach row3 in t3 do /
536 ** ...
537 ** end \ Code generated
538 ** end |-- by sqlite3WhereEnd()
539 ** end /
541 ** There are Btree cursors associated with each table. t1 uses cursor
542 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
543 ** And so forth. This routine generates code to open those VDBE cursors
544 ** and sqlite3WhereEnd() generates the code to close them.
546 ** The code that sqlite3WhereBegin() generates leaves the cursors named
547 ** in pTabList pointing at their appropriate entries. The [...] code
548 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
549 ** data from the various tables of the loop.
551 ** If the WHERE clause is empty, the foreach loops must each scan their
552 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
553 ** the tables have indices and there are terms in the WHERE clause that
554 ** refer to those indices, a complete table scan can be avoided and the
555 ** code will run much faster. Most of the work of this routine is checking
556 ** to see if there are indices that can be used to speed up the loop.
558 ** Terms of the WHERE clause are also used to limit which rows actually
559 ** make it to the "..." in the middle of the loop. After each "foreach",
560 ** terms of the WHERE clause that use only terms in that loop and outer
561 ** loops are evaluated and if false a jump is made around all subsequent
562 ** inner loops (or around the "..." if the test occurs within the inner-
563 ** most loop)
565 ** OUTER JOINS
567 ** An outer join of tables t1 and t2 is conceptally coded as follows:
569 ** foreach row1 in t1 do
570 ** flag = 0
571 ** foreach row2 in t2 do
572 ** start:
573 ** ...
574 ** flag = 1
575 ** end
576 ** if flag==0 then
577 ** move the row2 cursor to a null row
578 ** goto start
579 ** fi
580 ** end
582 ** ORDER BY CLAUSE PROCESSING
584 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
585 ** if there is one. If there is no ORDER BY clause or if this routine
586 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
588 ** If an index can be used so that the natural output order of the table
589 ** scan is correct for the ORDER BY clause, then that index is used and
590 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
591 ** unnecessary sort of the result set if an index appropriate for the
592 ** ORDER BY clause already exists.
594 ** If the where clause loops cannot be arranged to provide the correct
595 ** output order, then the *ppOrderBy is unchanged.
597 WhereInfo *sqlite3WhereBegin(
598 Parse *pParse, /* The parser context */
599 SrcList *pTabList, /* A list of all tables to be scanned */
600 Expr *pWhere, /* The WHERE clause */
601 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
603 int i; /* Loop counter */
604 WhereInfo *pWInfo; /* Will become the return value of this function */
605 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
606 int brk, cont = 0; /* Addresses used during code generation */
607 int nExpr; /* Number of subexpressions in the WHERE clause */
608 Bitmask loopMask; /* One bit set for each outer loop */
609 ExprInfo *pTerm; /* A single term in the WHERE clause; ptr to aExpr[] */
610 ExprMaskSet maskSet; /* The expression mask set */
611 int iDirectEq[BMS]; /* Term of the form ROWID==X for the N-th table */
612 int iDirectLt[BMS]; /* Term of the form ROWID<X or ROWID<=X */
613 int iDirectGt[BMS]; /* Term of the form ROWID>X or ROWID>=X */
614 ExprInfo aExpr[101]; /* The WHERE clause is divided into these terms */
615 struct SrcList_item *pTabItem; /* A single entry from pTabList */
616 WhereLevel *pLevel; /* A single level in the pWInfo list */
618 /* The number of terms in the FROM clause is limited by the number of
619 ** bits in a Bitmask
621 if( pTabList->nSrc>sizeof(Bitmask)*8 ){
622 sqlite3ErrorMsg(pParse, "at most %d tables in a join",
623 sizeof(Bitmask)*8);
624 return 0;
627 /* Split the WHERE clause into separate subexpressions where each
628 ** subexpression is separated by an AND operator. If the aExpr[]
629 ** array fills up, the last entry might point to an expression which
630 ** contains additional unfactored AND operators.
632 initMaskSet(&maskSet);
633 memset(aExpr, 0, sizeof(aExpr));
634 nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
635 if( nExpr==ARRAYSIZE(aExpr) ){
636 sqlite3ErrorMsg(pParse, "WHERE clause too complex - no more "
637 "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
638 return 0;
641 /* Allocate and initialize the WhereInfo structure that will become the
642 ** return value.
644 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
645 if( sqlite3_malloc_failed ){
646 sqliteFree(pWInfo); /* Avoid leaking memory when malloc fails */
647 return 0;
649 pWInfo->pParse = pParse;
650 pWInfo->pTabList = pTabList;
651 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
653 /* Special case: a WHERE clause that is constant. Evaluate the
654 ** expression and either jump over all of the code or fall thru.
656 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
657 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
658 pWhere = 0;
661 /* Analyze all of the subexpressions.
663 for(i=0; i<pTabList->nSrc; i++){
664 createMask(&maskSet, pTabList->a[i].iCursor);
666 for(pTerm=aExpr, i=0; i<nExpr; i++, pTerm++){
667 exprAnalyze(pTabList, &maskSet, pTerm);
670 /* Figure out what index to use (if any) for each nested loop.
671 ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
672 ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
673 ** loop.
675 ** If terms exist that use the ROWID of any table, then set the
676 ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
677 ** to the index of the term containing the ROWID. We always prefer
678 ** to use a ROWID which can directly access a table rather than an
679 ** index which requires reading an index first to get the rowid then
680 ** doing a second read of the actual database table.
682 ** Actually, if there are more than 32 tables in the join, only the
683 ** first 32 tables are candidates for indices. This is (again) due
684 ** to the limit of 32 bits in an integer bitmask.
686 loopMask = 0;
687 pTabItem = pTabList->a;
688 pLevel = pWInfo->a;
689 for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++,pTabItem++,pLevel++){
690 int j;
691 int iCur = pTabItem->iCursor; /* The cursor for this table */
692 Bitmask mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
693 Table *pTab = pTabItem->pTab;
694 Index *pIdx;
695 Index *pBestIdx = 0;
696 int bestScore = 0;
697 int bestRev = 0;
699 /* Check to see if there is an expression that uses only the
700 ** ROWID field of this table. For terms of the form ROWID==expr
701 ** set iDirectEq[i] to the index of the term. For terms of the
702 ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
703 ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
705 ** (Added:) Treat ROWID IN expr like ROWID=expr.
707 pLevel->iIdxCur = -1;
708 iDirectEq[i] = -1;
709 iDirectLt[i] = -1;
710 iDirectGt[i] = -1;
711 for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
712 Expr *pX = pTerm->p;
713 if( pTerm->idxLeft==iCur && pX->pLeft->iColumn<0
714 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
715 switch( pX->op ){
716 case TK_IN:
717 case TK_EQ: iDirectEq[i] = j; break;
718 case TK_LE:
719 case TK_LT: iDirectLt[i] = j; break;
720 case TK_GE:
721 case TK_GT: iDirectGt[i] = j; break;
726 /* If we found a term that tests ROWID with == or IN, that term
727 ** will be used to locate the rows in the database table. There
728 ** is not need to continue into the code below that looks for
729 ** an index. We will always use the ROWID over an index.
731 if( iDirectEq[i]>=0 ){
732 loopMask |= mask;
733 pLevel->pIdx = 0;
734 continue;
737 /* Do a search for usable indices. Leave pBestIdx pointing to
738 ** the "best" index. pBestIdx is left set to NULL if no indices
739 ** are usable.
741 ** The best index is the one with the highest score. The score
742 ** for the index is determined as follows. For each of the
743 ** left-most terms that is fixed by an equality operator, add
744 ** 32 to the score. The right-most term of the index may be
745 ** constrained by an inequality. Add 4 if for an "x<..." constraint
746 ** and add 8 for an "x>..." constraint. If both constraints
747 ** are present, add 12.
749 ** If the left-most term of the index uses an IN operator
750 ** (ex: "x IN (...)") then add 16 to the score.
752 ** If an index can be used for sorting, add 2 to the score.
753 ** If an index contains all the terms of a table that are ever
754 ** used by any expression in the SQL statement, then add 1 to
755 ** the score.
757 ** This scoring system is designed so that the score can later be
758 ** used to determine how the index is used. If the score&0x1c is 0
759 ** then all constraints are equalities. If score&0x4 is not 0 then
760 ** there is an inequality used as a termination key. (ex: "x<...")
761 ** If score&0x8 is not 0 then there is an inequality used as the
762 ** start key. (ex: "x>..."). A score or 0x10 is the special case
763 ** of an IN operator constraint. (ex: "x IN ...").
765 ** The IN operator (as in "<expr> IN (...)") is treated the same as
766 ** an equality comparison except that it can only be used on the
767 ** left-most column of an index and other terms of the WHERE clause
768 ** cannot be used in conjunction with the IN operator to help satisfy
769 ** other columns of the index.
771 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
772 Bitmask eqMask = 0; /* Index columns covered by an x=... term */
773 Bitmask ltMask = 0; /* Index columns covered by an x<... term */
774 Bitmask gtMask = 0; /* Index columns covered by an x>... term */
775 Bitmask inMask = 0; /* Index columns covered by an x IN .. term */
776 Bitmask m;
777 int nEq, score, bRev = 0;
779 if( pIdx->nColumn>sizeof(eqMask)*8 ){
780 continue; /* Ignore indices with too many columns to analyze */
782 for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
783 Expr *pX = pTerm->p;
784 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
785 if( !pColl && pX->pRight ){
786 pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
788 if( !pColl ){
789 pColl = pParse->db->pDfltColl;
791 if( pTerm->idxLeft==iCur
792 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight ){
793 int iColumn = pX->pLeft->iColumn;
794 int k;
795 char idxaff = iColumn>=0 ? pIdx->pTable->aCol[iColumn].affinity : 0;
796 for(k=0; k<pIdx->nColumn; k++){
797 /* If the collating sequences or affinities don't match,
798 ** ignore this index. */
799 if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
800 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
801 if( pIdx->aiColumn[k]==iColumn ){
802 switch( pX->op ){
803 case TK_IN: {
804 if( k==0 ) inMask |= 1;
805 break;
807 case TK_EQ: {
808 eqMask |= ((Bitmask)1)<<k;
809 break;
811 case TK_LE:
812 case TK_LT: {
813 ltMask |= ((Bitmask)1)<<k;
814 break;
816 case TK_GE:
817 case TK_GT: {
818 gtMask |= ((Bitmask)1)<<k;
819 break;
821 default: {
822 /* CANT_HAPPEN */
823 assert( 0 );
824 break;
827 break;
833 /* The following loop ends with nEq set to the number of columns
834 ** on the left of the index with == constraints.
836 for(nEq=0; nEq<pIdx->nColumn; nEq++){
837 m = (((Bitmask)1)<<(nEq+1))-1;
838 if( (m & eqMask)!=m ) break;
841 /* Begin assemblying the score
843 score = nEq*32; /* Base score is 32 times number of == constraints */
844 m = ((Bitmask)1)<<nEq;
845 if( m & ltMask ) score+=4; /* Increase score for a < constraint */
846 if( m & gtMask ) score+=8; /* Increase score for a > constraint */
847 if( score==0 && inMask ) score = 16; /* Default score for IN constraint */
849 /* Give bonus points if this index can be used for sorting
851 if( i==0 && score!=16 && ppOrderBy && *ppOrderBy ){
852 int base = pTabList->a[0].iCursor;
853 if( isSortingIndex(pParse, pIdx, pTab, base, *ppOrderBy, nEq, &bRev) ){
854 score += 2;
858 /* Check to see if we can get away with using just the index without
859 ** ever reading the table. If that is the case, then add one bonus
860 ** point to the score.
862 if( score && pTabItem->colUsed < (((Bitmask)1)<<(BMS-1)) ){
863 for(m=0, j=0; j<pIdx->nColumn; j++){
864 int x = pIdx->aiColumn[j];
865 if( x<BMS-1 ){
866 m |= ((Bitmask)1)<<x;
869 if( (pTabItem->colUsed & m)==pTabItem->colUsed ){
870 score++;
874 /* If the score for this index is the best we have seen so far, then
875 ** save it
877 if( score>bestScore ){
878 pBestIdx = pIdx;
879 bestScore = score;
880 bestRev = bRev;
883 pLevel->pIdx = pBestIdx;
884 pLevel->score = bestScore;
885 pLevel->bRev = bestRev;
886 loopMask |= mask;
887 if( pBestIdx ){
888 pLevel->iIdxCur = pParse->nTab++;
892 /* Check to see if the ORDER BY clause is or can be satisfied by the
893 ** use of an index on the first table.
895 if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
896 Index *pIdx; /* Index derived from the WHERE clause */
897 Table *pTab; /* Left-most table in the FROM clause */
898 int bRev = 0; /* True to reverse the output order */
899 int iCur; /* Btree-cursor that will be used by pTab */
900 WhereLevel *pLevel0 = &pWInfo->a[0];
902 pTab = pTabList->a[0].pTab;
903 pIdx = pLevel0->pIdx;
904 iCur = pTabList->a[0].iCursor;
905 if( pIdx==0 && sortableByRowid(iCur, *ppOrderBy, &bRev) ){
906 /* The ORDER BY clause specifies ROWID order, which is what we
907 ** were going to be doing anyway...
909 *ppOrderBy = 0;
910 pLevel0->bRev = bRev;
911 }else if( pLevel0->score==16 ){
912 /* If there is already an IN index on the left-most table,
913 ** it will not give the correct sort order.
914 ** So, pretend that no suitable index is found.
916 }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
917 /* If the left-most column is accessed using its ROWID, then do
918 ** not try to sort by index. But do delete the ORDER BY clause
919 ** if it is redundant.
921 }else if( (pLevel0->score&2)!=0 ){
922 /* The index that was selected for searching will cause rows to
923 ** appear in sorted order.
925 *ppOrderBy = 0;
929 /* Open all tables in the pTabList and any indices selected for
930 ** searching those tables.
932 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
933 pLevel = pWInfo->a;
934 for(i=0, pTabItem=pTabList->a; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
935 Table *pTab;
936 Index *pIx;
937 int iIdxCur = pLevel->iIdxCur;
939 pTab = pTabItem->pTab;
940 if( pTab->isTransient || pTab->pSelect ) continue;
941 if( (pLevel->score & 1)==0 ){
942 sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
944 pLevel->iTabCur = pTabItem->iCursor;
945 if( (pIx = pLevel->pIdx)!=0 ){
946 sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
947 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
948 (char*)&pIx->keyInfo, P3_KEYINFO);
950 if( (pLevel->score & 1)!=0 ){
951 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
953 sqlite3CodeVerifySchema(pParse, pTab->iDb);
955 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
957 /* Generate the code to do the search
959 loopMask = 0;
960 pLevel = pWInfo->a;
961 pTabItem = pTabList->a;
962 for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
963 int j, k;
964 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
965 Index *pIdx; /* The index we will be using */
966 int iIdxCur; /* The VDBE cursor for the index */
967 int omitTable; /* True if we use the index only */
969 pIdx = pLevel->pIdx;
970 iIdxCur = pLevel->iIdxCur;
971 pLevel->inOp = OP_Noop;
973 /* Check to see if it is appropriate to omit the use of the table
974 ** here and use its index instead.
976 omitTable = (pLevel->score&1)!=0;
978 /* If this is the right table of a LEFT OUTER JOIN, allocate and
979 ** initialize a memory cell that records if this table matches any
980 ** row of the left table of the join.
982 if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
983 if( !pParse->nMem ) pParse->nMem++;
984 pLevel->iLeftJoin = pParse->nMem++;
985 sqlite3VdbeAddOp(v, OP_Null, 0, 0);
986 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
987 VdbeComment((v, "# init LEFT JOIN no-match flag"));
990 if( i<ARRAYSIZE(iDirectEq) && (k = iDirectEq[i])>=0 ){
991 /* Case 1: We can directly reference a single row using an
992 ** equality comparison against the ROWID field. Or
993 ** we reference multiple rows using a "rowid IN (...)"
994 ** construct.
996 assert( k<nExpr );
997 pTerm = &aExpr[k];
998 assert( pTerm->p!=0 );
999 assert( pTerm->idxLeft==iCur );
1000 assert( omitTable==0 );
1001 brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
1002 codeEqualityTerm(pParse, pTerm, brk, pLevel);
1003 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
1004 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
1005 sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
1006 VdbeComment((v, "pk"));
1007 pLevel->op = OP_Noop;
1008 }else if( pIdx!=0 && pLevel->score>3 && (pLevel->score&0x0c)==0 ){
1009 /* Case 2: There is an index and all terms of the WHERE clause that
1010 ** refer to the index using the "==" or "IN" operators.
1012 int start;
1013 int nColumn = (pLevel->score+16)/32;
1014 brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
1016 /* For each column of the index, find the term of the WHERE clause that
1017 ** constraints that column. If the WHERE clause term is X=expr, then
1018 ** evaluation expr and leave the result on the stack */
1019 for(j=0; j<nColumn; j++){
1020 for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
1021 Expr *pX = pTerm->p;
1022 if( pX==0 ) continue;
1023 if( pTerm->idxLeft==iCur
1024 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
1025 && pX->pLeft->iColumn==pIdx->aiColumn[j]
1026 && (pX->op==TK_EQ || pX->op==TK_IN)
1028 char idxaff = pIdx->pTable->aCol[pX->pLeft->iColumn].affinity;
1029 if( sqlite3IndexAffinityOk(pX, idxaff) ){
1030 codeEqualityTerm(pParse, pTerm, brk, pLevel);
1031 break;
1036 pLevel->iMem = pParse->nMem++;
1037 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
1038 buildIndexProbe(v, nColumn, brk, pIdx);
1039 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
1041 /* Generate code (1) to move to the first matching element of the table.
1042 ** Then generate code (2) that jumps to "brk" after the cursor is past
1043 ** the last matching element of the table. The code (1) is executed
1044 ** once to initialize the search, the code (2) is executed before each
1045 ** iteration of the scan to see if the scan has finished. */
1046 if( pLevel->bRev ){
1047 /* Scan in reverse order */
1048 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
1049 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1050 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
1051 pLevel->op = OP_Prev;
1052 }else{
1053 /* Scan in the forward order */
1054 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
1055 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1056 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
1057 pLevel->op = OP_Next;
1059 sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
1060 sqlite3VdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
1061 if( !omitTable ){
1062 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
1063 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
1065 pLevel->p1 = iIdxCur;
1066 pLevel->p2 = start;
1067 }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
1068 /* Case 3: We have an inequality comparison against the ROWID field.
1070 int testOp = OP_Noop;
1071 int start;
1072 int bRev = pLevel->bRev;
1074 assert( omitTable==0 );
1075 brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
1076 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
1077 if( bRev ){
1078 int t = iDirectGt[i];
1079 iDirectGt[i] = iDirectLt[i];
1080 iDirectLt[i] = t;
1082 if( iDirectGt[i]>=0 ){
1083 Expr *pX;
1084 k = iDirectGt[i];
1085 assert( k<nExpr );
1086 pTerm = &aExpr[k];
1087 pX = pTerm->p;
1088 assert( pX!=0 );
1089 assert( pTerm->idxLeft==iCur );
1090 sqlite3ExprCode(pParse, pX->pRight);
1091 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
1092 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
1093 VdbeComment((v, "pk"));
1094 disableTerm(pLevel, &pTerm->p);
1095 }else{
1096 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
1098 if( iDirectLt[i]>=0 ){
1099 Expr *pX;
1100 k = iDirectLt[i];
1101 assert( k<nExpr );
1102 pTerm = &aExpr[k];
1103 pX = pTerm->p;
1104 assert( pX!=0 );
1105 assert( pTerm->idxLeft==iCur );
1106 sqlite3ExprCode(pParse, pX->pRight);
1107 pLevel->iMem = pParse->nMem++;
1108 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1109 if( pX->op==TK_LT || pX->op==TK_GT ){
1110 testOp = bRev ? OP_Le : OP_Ge;
1111 }else{
1112 testOp = bRev ? OP_Lt : OP_Gt;
1114 disableTerm(pLevel, &pTerm->p);
1116 start = sqlite3VdbeCurrentAddr(v);
1117 pLevel->op = bRev ? OP_Prev : OP_Next;
1118 pLevel->p1 = iCur;
1119 pLevel->p2 = start;
1120 if( testOp!=OP_Noop ){
1121 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
1122 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1123 sqlite3VdbeAddOp(v, testOp, 'n', brk);
1125 }else if( pIdx==0 ){
1126 /* Case 4: There is no usable index. We must do a complete
1127 ** scan of the entire database table.
1129 int start;
1130 int opRewind;
1132 assert( omitTable==0 );
1133 brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
1134 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
1135 if( pLevel->bRev ){
1136 opRewind = OP_Last;
1137 pLevel->op = OP_Prev;
1138 }else{
1139 opRewind = OP_Rewind;
1140 pLevel->op = OP_Next;
1142 sqlite3VdbeAddOp(v, opRewind, iCur, brk);
1143 start = sqlite3VdbeCurrentAddr(v);
1144 pLevel->p1 = iCur;
1145 pLevel->p2 = start;
1146 }else{
1147 /* Case 5: The WHERE clause term that refers to the right-most
1148 ** column of the index is an inequality. For example, if
1149 ** the index is on (x,y,z) and the WHERE clause is of the
1150 ** form "x=5 AND y<10" then this case is used. Only the
1151 ** right-most column can be an inequality - the rest must
1152 ** use the "==" operator.
1154 ** This case is also used when there are no WHERE clause
1155 ** constraints but an index is selected anyway, in order
1156 ** to force the output order to conform to an ORDER BY.
1158 int score = pLevel->score;
1159 int nEqColumn = score/32;
1160 int start;
1161 int leFlag=0, geFlag=0;
1162 int testOp;
1164 /* Evaluate the equality constraints
1166 for(j=0; j<nEqColumn; j++){
1167 int iIdxCol = pIdx->aiColumn[j];
1168 for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
1169 Expr *pX = pTerm->p;
1170 if( pX==0 ) continue;
1171 if( pTerm->idxLeft==iCur
1172 && pX->op==TK_EQ
1173 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
1174 && pX->pLeft->iColumn==iIdxCol
1176 sqlite3ExprCode(pParse, pX->pRight);
1177 disableTerm(pLevel, &pTerm->p);
1178 break;
1183 /* Duplicate the equality term values because they will all be
1184 ** used twice: once to make the termination key and once to make the
1185 ** start key.
1187 for(j=0; j<nEqColumn; j++){
1188 sqlite3VdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
1191 /* Labels for the beginning and end of the loop
1193 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
1194 brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
1196 /* Generate the termination key. This is the key value that
1197 ** will end the search. There is no termination key if there
1198 ** are no equality terms and no "X<..." term.
1200 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
1201 ** key computed here really ends up being the start key.
1203 if( (score & 4)!=0 ){
1204 for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
1205 Expr *pX = pTerm->p;
1206 if( pX==0 ) continue;
1207 if( pTerm->idxLeft==iCur
1208 && (pX->op==TK_LT || pX->op==TK_LE)
1209 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
1210 && pX->pLeft->iColumn==pIdx->aiColumn[j]
1212 sqlite3ExprCode(pParse, pX->pRight);
1213 leFlag = pX->op==TK_LE;
1214 disableTerm(pLevel, &pTerm->p);
1215 break;
1218 testOp = OP_IdxGE;
1219 }else{
1220 testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
1221 leFlag = 1;
1223 if( testOp!=OP_Noop ){
1224 int nCol = nEqColumn + ((score & 4)!=0);
1225 pLevel->iMem = pParse->nMem++;
1226 buildIndexProbe(v, nCol, brk, pIdx);
1227 if( pLevel->bRev ){
1228 int op = leFlag ? OP_MoveLe : OP_MoveLt;
1229 sqlite3VdbeAddOp(v, op, iIdxCur, brk);
1230 }else{
1231 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1233 }else if( pLevel->bRev ){
1234 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
1237 /* Generate the start key. This is the key that defines the lower
1238 ** bound on the search. There is no start key if there are no
1239 ** equality terms and if there is no "X>..." term. In
1240 ** that case, generate a "Rewind" instruction in place of the
1241 ** start key search.
1243 ** 2002-Dec-04: In the case of a reverse-order search, the so-called
1244 ** "start" key really ends up being used as the termination key.
1246 if( (score & 8)!=0 ){
1247 for(pTerm=aExpr, k=0; k<nExpr; k++, pTerm++){
1248 Expr *pX = pTerm->p;
1249 if( pX==0 ) continue;
1250 if( pTerm->idxLeft==iCur
1251 && (pX->op==TK_GT || pX->op==TK_GE)
1252 && (pTerm->prereqRight & loopMask)==pTerm->prereqRight
1253 && pX->pLeft->iColumn==pIdx->aiColumn[j]
1255 sqlite3ExprCode(pParse, pX->pRight);
1256 geFlag = pX->op==TK_GE;
1257 disableTerm(pLevel, &pTerm->p);
1258 break;
1261 }else{
1262 geFlag = 1;
1264 if( nEqColumn>0 || (score&8)!=0 ){
1265 int nCol = nEqColumn + ((score&8)!=0);
1266 buildIndexProbe(v, nCol, brk, pIdx);
1267 if( pLevel->bRev ){
1268 pLevel->iMem = pParse->nMem++;
1269 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1270 testOp = OP_IdxLT;
1271 }else{
1272 int op = geFlag ? OP_MoveGe : OP_MoveGt;
1273 sqlite3VdbeAddOp(v, op, iIdxCur, brk);
1275 }else if( pLevel->bRev ){
1276 testOp = OP_Noop;
1277 }else{
1278 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
1281 /* Generate the the top of the loop. If there is a termination
1282 ** key we have to test for that key and abort at the top of the
1283 ** loop.
1285 start = sqlite3VdbeCurrentAddr(v);
1286 if( testOp!=OP_Noop ){
1287 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1288 sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
1289 if( (leFlag && !pLevel->bRev) || (!geFlag && pLevel->bRev) ){
1290 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
1293 sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
1294 sqlite3VdbeAddOp(v, OP_IdxIsNull, nEqColumn + ((score&4)!=0), cont);
1295 if( !omitTable ){
1296 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
1297 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
1300 /* Record the instruction used to terminate the loop.
1302 pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
1303 pLevel->p1 = iIdxCur;
1304 pLevel->p2 = start;
1306 loopMask |= getMask(&maskSet, iCur);
1308 /* Insert code to test every subexpression that can be completely
1309 ** computed using the current set of tables.
1311 for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
1312 if( pTerm->p==0 ) continue;
1313 if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
1314 if( pLevel->iLeftJoin && !ExprHasProperty(pTerm->p,EP_FromJoin) ){
1315 continue;
1317 sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
1318 pTerm->p = 0;
1320 brk = cont;
1322 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1323 ** at least one row of the right table has matched the left table.
1325 if( pLevel->iLeftJoin ){
1326 pLevel->top = sqlite3VdbeCurrentAddr(v);
1327 sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1328 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
1329 VdbeComment((v, "# record LEFT JOIN hit"));
1330 for(pTerm=aExpr, j=0; j<nExpr; j++, pTerm++){
1331 if( pTerm->p==0 ) continue;
1332 if( (pTerm->prereqAll & loopMask)!=pTerm->prereqAll ) continue;
1333 sqlite3ExprIfFalse(pParse, pTerm->p, cont, 1);
1334 pTerm->p = 0;
1338 pWInfo->iContinue = cont;
1339 freeMaskSet(&maskSet);
1340 return pWInfo;
1344 ** Generate the end of the WHERE loop. See comments on
1345 ** sqlite3WhereBegin() for additional information.
1347 void sqlite3WhereEnd(WhereInfo *pWInfo){
1348 Vdbe *v = pWInfo->pParse->pVdbe;
1349 int i;
1350 WhereLevel *pLevel;
1351 SrcList *pTabList = pWInfo->pTabList;
1352 struct SrcList_item *pTabItem;
1354 /* Generate loop termination code.
1356 for(i=pTabList->nSrc-1; i>=0; i--){
1357 pLevel = &pWInfo->a[i];
1358 sqlite3VdbeResolveLabel(v, pLevel->cont);
1359 if( pLevel->op!=OP_Noop ){
1360 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
1362 sqlite3VdbeResolveLabel(v, pLevel->brk);
1363 if( pLevel->inOp!=OP_Noop ){
1364 sqlite3VdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
1366 if( pLevel->iLeftJoin ){
1367 int addr;
1368 addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
1369 sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0));
1370 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
1371 if( pLevel->iIdxCur>=0 ){
1372 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
1374 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
1378 /* The "break" point is here, just past the end of the outer loop.
1379 ** Set it.
1381 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
1383 /* Close all of the cursors that were opend by sqlite3WhereBegin.
1385 pLevel = pWInfo->a;
1386 pTabItem = pTabList->a;
1387 for(i=0; i<pTabList->nSrc; i++, pTabItem++, pLevel++){
1388 Table *pTab = pTabItem->pTab;
1389 assert( pTab!=0 );
1390 if( pTab->isTransient || pTab->pSelect ) continue;
1391 if( (pLevel->score & 1)==0 ){
1392 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
1394 if( pLevel->pIdx!=0 ){
1395 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
1398 /* Make cursor substitutions for cases where we want to use
1399 ** just the index and never reference the table.
1401 ** Calls to the code generator in between sqlite3WhereBegin and
1402 ** sqlite3WhereEnd will have created code that references the table
1403 ** directly. This loop scans all that code looking for opcodes
1404 ** that reference the table and converts them into opcodes that
1405 ** reference the index.
1407 if( pLevel->score & 1 ){
1408 int i, j, last;
1409 VdbeOp *pOp;
1410 Index *pIdx = pLevel->pIdx;
1412 assert( pIdx!=0 );
1413 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
1414 last = sqlite3VdbeCurrentAddr(v);
1415 for(i=pWInfo->iTop; i<last; i++, pOp++){
1416 if( pOp->p1!=pLevel->iTabCur ) continue;
1417 if( pOp->opcode==OP_Column ){
1418 pOp->p1 = pLevel->iIdxCur;
1419 for(j=0; j<pIdx->nColumn; j++){
1420 if( pOp->p2==pIdx->aiColumn[j] ){
1421 pOp->p2 = j;
1422 break;
1425 }else if( pOp->opcode==OP_Rowid ){
1426 pOp->p1 = pLevel->iIdxCur;
1427 pOp->opcode = OP_IdxRowid;
1428 }else if( pOp->opcode==OP_NullRow ){
1429 pOp->opcode = OP_Noop;
1435 /* Final cleanup
1437 sqliteFree(pWInfo);
1438 return;