Build scalosgfx.library with actual defs.h
[AROS-Contrib.git] / sqlite3 / pager.c
blob892757406f95fe00935bfa27f5233807c96f07c0
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This is the implementation of the page cache subsystem or "pager".
13 **
14 ** The pager is used to access a database disk file. It implements
15 ** atomic commit and rollback through the use of a journal file that
16 ** is separate from the database file. The pager also implements file
17 ** locking to prevent two processes from writing the same database
18 ** file simultaneously, or one process from reading the database while
19 ** another is writing.
21 ** @(#) $Id$
23 #ifndef SQLITE_OMIT_DISKIO
24 #include "sqliteInt.h"
25 #include "os.h"
26 #include "pager.h"
27 #include <assert.h>
28 #include <string.h>
31 ** Macros for troubleshooting. Normally turned off
33 #if 0
34 #define TRACE1(X) sqlite3DebugPrintf(X)
35 #define TRACE2(X,Y) sqlite3DebugPrintf(X,Y)
36 #define TRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
37 #define TRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
38 #define TRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
39 #else
40 #define TRACE1(X)
41 #define TRACE2(X,Y)
42 #define TRACE3(X,Y,Z)
43 #define TRACE4(X,Y,Z,W)
44 #define TRACE5(X,Y,Z,W,V)
45 #endif
48 ** The following two macros are used within the TRACEX() macros above
49 ** to print out file-descriptors. They are required so that tracing
50 ** can be turned on when using both the regular os_unix.c and os_test.c
51 ** backends.
53 ** PAGERID() takes a pointer to a Pager struct as it's argument. The
54 ** associated file-descriptor is returned. FILEHANDLEID() takes an OsFile
55 ** struct as it's argument.
57 #ifdef OS_TEST
58 #define PAGERID(p) (p->fd->fd.h)
59 #define FILEHANDLEID(fd) (fd->fd.h)
60 #else
61 #define PAGERID(p) (p->fd.h)
62 #define FILEHANDLEID(fd) (fd.h)
63 #endif
66 ** The page cache as a whole is always in one of the following
67 ** states:
69 ** PAGER_UNLOCK The page cache is not currently reading or
70 ** writing the database file. There is no
71 ** data held in memory. This is the initial
72 ** state.
74 ** PAGER_SHARED The page cache is reading the database.
75 ** Writing is not permitted. There can be
76 ** multiple readers accessing the same database
77 ** file at the same time.
79 ** PAGER_RESERVED This process has reserved the database for writing
80 ** but has not yet made any changes. Only one process
81 ** at a time can reserve the database. The original
82 ** database file has not been modified so other
83 ** processes may still be reading the on-disk
84 ** database file.
86 ** PAGER_EXCLUSIVE The page cache is writing the database.
87 ** Access is exclusive. No other processes or
88 ** threads can be reading or writing while one
89 ** process is writing.
91 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
92 ** after all dirty pages have been written to the
93 ** database file and the file has been synced to
94 ** disk. All that remains to do is to remove the
95 ** journal file and the transaction will be
96 ** committed.
98 ** The page cache comes up in PAGER_UNLOCK. The first time a
99 ** sqlite3pager_get() occurs, the state transitions to PAGER_SHARED.
100 ** After all pages have been released using sqlite_page_unref(),
101 ** the state transitions back to PAGER_UNLOCK. The first time
102 ** that sqlite3pager_write() is called, the state transitions to
103 ** PAGER_RESERVED. (Note that sqlite_page_write() can only be
104 ** called on an outstanding page which means that the pager must
105 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
106 ** The transition to PAGER_EXCLUSIVE occurs when before any changes
107 ** are made to the database file. After an sqlite3pager_rollback()
108 ** or sqlite_pager_commit(), the state goes back to PAGER_SHARED.
110 #define PAGER_UNLOCK 0
111 #define PAGER_SHARED 1 /* same as SHARED_LOCK */
112 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
113 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
114 #define PAGER_SYNCED 5
117 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
118 ** then failed attempts to get a reserved lock will invoke the busy callback.
119 ** This is off by default. To see why, consider the following scenario:
121 ** Suppose thread A already has a shared lock and wants a reserved lock.
122 ** Thread B already has a reserved lock and wants an exclusive lock. If
123 ** both threads are using their busy callbacks, it might be a long time
124 ** be for one of the threads give up and allows the other to proceed.
125 ** But if the thread trying to get the reserved lock gives up quickly
126 ** (if it never invokes its busy callback) then the contention will be
127 ** resolved quickly.
129 #ifndef SQLITE_BUSY_RESERVED_LOCK
130 # define SQLITE_BUSY_RESERVED_LOCK 0
131 #endif
134 ** This macro rounds values up so that if the value is an address it
135 ** is guaranteed to be an address that is aligned to an 8-byte boundary.
137 #define FORCE_ALIGNMENT(X) (((X)+7)&~7)
140 ** Each in-memory image of a page begins with the following header.
141 ** This header is only visible to this pager module. The client
142 ** code that calls pager sees only the data that follows the header.
144 ** Client code should call sqlite3pager_write() on a page prior to making
145 ** any modifications to that page. The first time sqlite3pager_write()
146 ** is called, the original page contents are written into the rollback
147 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
148 ** the journal page has made it onto the disk surface, PgHdr.needSync
149 ** is cleared. The modified page cannot be written back into the original
150 ** database file until the journal pages has been synced to disk and the
151 ** PgHdr.needSync has been cleared.
153 ** The PgHdr.dirty flag is set when sqlite3pager_write() is called and
154 ** is cleared again when the page content is written back to the original
155 ** database file.
157 typedef struct PgHdr PgHdr;
158 struct PgHdr {
159 Pager *pPager; /* The pager to which this page belongs */
160 Pgno pgno; /* The page number for this page */
161 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
162 PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
163 PgHdr *pNextAll; /* A list of all pages */
164 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
165 u8 inJournal; /* TRUE if has been written to journal */
166 u8 inStmt; /* TRUE if in the statement subjournal */
167 u8 dirty; /* TRUE if we need to write back changes */
168 u8 needSync; /* Sync journal before writing this page */
169 u8 alwaysRollback; /* Disable dont_rollback() for this page */
170 short int nRef; /* Number of users of this page */
171 PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */
172 #ifdef SQLITE_CHECK_PAGES
173 u32 pageHash;
174 #endif
175 /* pPager->pageSize bytes of page data follow this header */
176 /* Pager.nExtra bytes of local data follow the page data */
180 ** For an in-memory only database, some extra information is recorded about
181 ** each page so that changes can be rolled back. (Journal files are not
182 ** used for in-memory databases.) The following information is added to
183 ** the end of every EXTRA block for in-memory databases.
185 ** This information could have been added directly to the PgHdr structure.
186 ** But then it would take up an extra 8 bytes of storage on every PgHdr
187 ** even for disk-based databases. Splitting it out saves 8 bytes. This
188 ** is only a savings of 0.8% but those percentages add up.
190 typedef struct PgHistory PgHistory;
191 struct PgHistory {
192 u8 *pOrig; /* Original page text. Restore to this on a full rollback */
193 u8 *pStmt; /* Text as it was at the beginning of the current statement */
197 ** A macro used for invoking the codec if there is one
199 #ifdef SQLITE_HAS_CODEC
200 # define CODEC(P,D,N,X) if( P->xCodec ){ P->xCodec(P->pCodecArg,D,N,X); }
201 #else
202 # define CODEC(P,D,N,X)
203 #endif
206 ** Convert a pointer to a PgHdr into a pointer to its data
207 ** and back again.
209 #define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
210 #define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
211 #define PGHDR_TO_EXTRA(G,P) ((void*)&((char*)(&(G)[1]))[(P)->pageSize])
212 #define PGHDR_TO_HIST(P,PGR) \
213 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->pageSize+(PGR)->nExtra])
216 ** How big to make the hash table used for locating in-memory pages
217 ** by page number. This macro looks a little silly, but is evaluated
218 ** at compile-time, not run-time (at least for gcc this is true).
220 #define N_PG_HASH (\
221 (MAX_PAGES>1024)?2048: \
222 (MAX_PAGES>512)?1024: \
223 (MAX_PAGES>256)?512: \
224 (MAX_PAGES>128)?256: \
225 (MAX_PAGES>64)?128:64 \
229 ** Hash a page number
231 #define pager_hash(PN) ((PN)&(N_PG_HASH-1))
234 ** A open page cache is an instance of the following structure.
236 struct Pager {
237 u8 journalOpen; /* True if journal file descriptors is valid */
238 u8 journalStarted; /* True if header of journal is synced */
239 u8 useJournal; /* Use a rollback journal on this file */
240 u8 noReadlock; /* Do not bother to obtain readlocks */
241 u8 stmtOpen; /* True if the statement subjournal is open */
242 u8 stmtInUse; /* True we are in a statement subtransaction */
243 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
244 u8 noSync; /* Do not sync the journal if true */
245 u8 fullSync; /* Do extra syncs of the journal for robustness */
246 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
247 u8 errMask; /* One of several kinds of errors */
248 u8 tempFile; /* zFilename is a temporary file */
249 u8 readOnly; /* True for a read-only database */
250 u8 needSync; /* True if an fsync() is needed on the journal */
251 u8 dirtyCache; /* True if cached pages have changed */
252 u8 alwaysRollback; /* Disable dont_rollback() for all pages */
253 u8 memDb; /* True to inhibit all file I/O */
254 u8 setMaster; /* True if a m-j name has been written to jrnl */
255 int dbSize; /* Number of pages in the file */
256 int origDbSize; /* dbSize before the current change */
257 int stmtSize; /* Size of database (in pages) at stmt_begin() */
258 int nRec; /* Number of pages written to the journal */
259 u32 cksumInit; /* Quasi-random value added to every checksum */
260 int stmtNRec; /* Number of records in stmt subjournal */
261 int nExtra; /* Add this many bytes to each in-memory page */
262 int pageSize; /* Number of bytes in a page */
263 int nPage; /* Total number of in-memory pages */
264 int nMaxPage; /* High water mark of nPage */
265 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
266 int mxPage; /* Maximum number of pages to hold in cache */
267 u8 *aInJournal; /* One bit for each page in the database file */
268 u8 *aInStmt; /* One bit for each page in the database */
269 char *zFilename; /* Name of the database file */
270 char *zJournal; /* Name of the journal file */
271 char *zDirectory; /* Directory hold database and journal files */
272 OsFile fd, jfd; /* File descriptors for database and journal */
273 OsFile stfd; /* File descriptor for the statement subjournal*/
274 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
275 PgHdr *pFirst, *pLast; /* List of free pages */
276 PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
277 PgHdr *pAll; /* List of all pages */
278 PgHdr *pStmt; /* List of pages in the statement subjournal */
279 i64 journalOff; /* Current byte offset in the journal file */
280 i64 journalHdr; /* Byte offset to previous journal header */
281 i64 stmtHdrOff; /* First journal header written this statement */
282 i64 stmtCksum; /* cksumInit when statement was started */
283 i64 stmtJSize; /* Size of journal at stmt_begin() */
284 int sectorSize; /* Assumed sector size during rollback */
285 #ifdef SQLITE_TEST
286 int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */
287 int nRead,nWrite; /* Database pages read/written */
288 #endif
289 void (*xDestructor)(void*,int); /* Call this routine when freeing pages */
290 void (*xReiniter)(void*,int); /* Call this routine when reloading pages */
291 void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
292 void *pCodecArg; /* First argument to xCodec() */
293 PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number to PgHdr */
297 ** If SQLITE_TEST is defined then increment the variable given in
298 ** the argument
300 #ifdef SQLITE_TEST
301 # define TEST_INCR(x) x++
302 #else
303 # define TEST_INCR(x)
304 #endif
307 ** These are bits that can be set in Pager.errMask.
309 #define PAGER_ERR_FULL 0x01 /* a write() failed */
310 #define PAGER_ERR_MEM 0x02 /* malloc() failed */
311 #define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */
312 #define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */
313 #define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */
316 ** Journal files begin with the following magic string. The data
317 ** was obtained from /dev/random. It is used only as a sanity check.
319 ** Since version 2.8.0, the journal format contains additional sanity
320 ** checking information. If the power fails while the journal is begin
321 ** written, semi-random garbage data might appear in the journal
322 ** file after power is restored. If an attempt is then made
323 ** to roll the journal back, the database could be corrupted. The additional
324 ** sanity checking data is an attempt to discover the garbage in the
325 ** journal and ignore it.
327 ** The sanity checking information for the new journal format consists
328 ** of a 32-bit checksum on each page of data. The checksum covers both
329 ** the page number and the pPager->pageSize bytes of data for the page.
330 ** This cksum is initialized to a 32-bit random value that appears in the
331 ** journal file right after the header. The random initializer is important,
332 ** because garbage data that appears at the end of a journal is likely
333 ** data that was once in other files that have now been deleted. If the
334 ** garbage data came from an obsolete journal file, the checksums might
335 ** be correct. But by initializing the checksum to random value which
336 ** is different for every journal, we minimize that risk.
338 static const unsigned char aJournalMagic[] = {
339 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
343 ** The size of the header and of each page in the journal is determined
344 ** by the following macros.
346 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
349 ** The journal header size for this pager. In the future, this could be
350 ** set to some value read from the disk controller. The important
351 ** characteristic is that it is the same size as a disk sector.
353 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
356 ** The macro MEMDB is true if we are dealing with an in-memory database.
357 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
358 ** the value of MEMDB will be a constant and the compiler will optimize
359 ** out code that would never execute.
361 #ifdef SQLITE_OMIT_MEMORYDB
362 # define MEMDB 0
363 #else
364 # define MEMDB pPager->memDb
365 #endif
368 ** The default size of a disk sector
370 #define PAGER_SECTOR_SIZE 512
373 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
374 ** reserved for working around a windows/posix incompatibility). It is
375 ** used in the journal to signify that the remainder of the journal file
376 ** is devoted to storing a master journal name - there are no more pages to
377 ** roll back. See comments for function writeMasterJournal() for details.
379 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
380 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
383 ** The maximum legal page number is (2^31 - 1).
385 #define PAGER_MAX_PGNO 2147483647
388 ** Enable reference count tracking (for debugging) here:
390 #ifdef SQLITE_DEBUG
391 int pager3_refinfo_enable = 0;
392 static void pager_refinfo(PgHdr *p){
393 static int cnt = 0;
394 if( !pager3_refinfo_enable ) return;
395 sqlite3DebugPrintf(
396 "REFCNT: %4d addr=%p nRef=%d\n",
397 p->pgno, PGHDR_TO_DATA(p), p->nRef
399 cnt++; /* Something to set a breakpoint on */
401 # define REFINFO(X) pager_refinfo(X)
402 #else
403 # define REFINFO(X)
404 #endif
407 ** Read a 32-bit integer from the given file descriptor. Store the integer
408 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an
409 ** error code is something goes wrong.
411 ** All values are stored on disk as big-endian.
413 static int read32bits(OsFile *fd, u32 *pRes){
414 u32 res;
415 int rc;
416 rc = sqlite3OsRead(fd, &res, sizeof(res));
417 if( rc==SQLITE_OK ){
418 unsigned char ac[4];
419 memcpy(ac, &res, 4);
420 res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
422 *pRes = res;
423 return rc;
427 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
428 ** on success or an error code is something goes wrong.
430 static int write32bits(OsFile *fd, u32 val){
431 unsigned char ac[4];
432 ac[0] = (val>>24) & 0xff;
433 ac[1] = (val>>16) & 0xff;
434 ac[2] = (val>>8) & 0xff;
435 ac[3] = val & 0xff;
436 return sqlite3OsWrite(fd, ac, 4);
440 ** Write the 32-bit integer 'val' into the page identified by page header
441 ** 'p' at offset 'offset'.
443 static void store32bits(u32 val, PgHdr *p, int offset){
444 unsigned char *ac;
445 ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
446 ac[0] = (val>>24) & 0xff;
447 ac[1] = (val>>16) & 0xff;
448 ac[2] = (val>>8) & 0xff;
449 ac[3] = val & 0xff;
453 ** Read a 32-bit integer at offset 'offset' from the page identified by
454 ** page header 'p'.
456 static u32 retrieve32bits(PgHdr *p, int offset){
457 unsigned char *ac;
458 ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
459 return (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
464 ** Convert the bits in the pPager->errMask into an approprate
465 ** return code.
467 static int pager_errcode(Pager *pPager){
468 int rc = SQLITE_OK;
469 if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL;
470 if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR;
471 if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL;
472 if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM;
473 if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
474 return rc;
477 #ifdef SQLITE_CHECK_PAGES
479 ** Return a 32-bit hash of the page data for pPage.
481 static u32 pager_pagehash(PgHdr *pPage){
482 u32 hash = 0;
483 int i;
484 unsigned char *pData = (unsigned char *)PGHDR_TO_DATA(pPage);
485 for(i=0; i<pPage->pPager->pageSize; i++){
486 hash = (hash+i)^pData[i];
488 return hash;
492 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
493 ** is defined, and NDEBUG is not defined, an assert() statement checks
494 ** that the page is either dirty or still matches the calculated page-hash.
496 #define CHECK_PAGE(x) checkPage(x)
497 static void checkPage(PgHdr *pPg){
498 Pager *pPager = pPg->pPager;
499 assert( !pPg->pageHash || pPager->errMask || MEMDB || pPg->dirty ||
500 pPg->pageHash==pager_pagehash(pPg) );
503 #else
504 #define CHECK_PAGE(x)
505 #endif
508 ** When this is called the journal file for pager pPager must be open.
509 ** The master journal file name is read from the end of the file and
510 ** written into memory obtained from sqliteMalloc(). *pzMaster is
511 ** set to point at the memory and SQLITE_OK returned. The caller must
512 ** sqliteFree() *pzMaster.
514 ** If no master journal file name is present *pzMaster is set to 0 and
515 ** SQLITE_OK returned.
517 static int readMasterJournal(OsFile *pJrnl, char **pzMaster){
518 int rc;
519 u32 len;
520 i64 szJ;
521 u32 cksum;
522 int i;
523 unsigned char aMagic[8]; /* A buffer to hold the magic header */
525 *pzMaster = 0;
527 rc = sqlite3OsFileSize(pJrnl, &szJ);
528 if( rc!=SQLITE_OK || szJ<16 ) return rc;
530 rc = sqlite3OsSeek(pJrnl, szJ-16);
531 if( rc!=SQLITE_OK ) return rc;
533 rc = read32bits(pJrnl, &len);
534 if( rc!=SQLITE_OK ) return rc;
536 rc = read32bits(pJrnl, &cksum);
537 if( rc!=SQLITE_OK ) return rc;
539 rc = sqlite3OsRead(pJrnl, aMagic, 8);
540 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
542 rc = sqlite3OsSeek(pJrnl, szJ-16-len);
543 if( rc!=SQLITE_OK ) return rc;
545 *pzMaster = (char *)sqliteMalloc(len+1);
546 if( !*pzMaster ){
547 return SQLITE_NOMEM;
549 rc = sqlite3OsRead(pJrnl, *pzMaster, len);
550 if( rc!=SQLITE_OK ){
551 sqliteFree(*pzMaster);
552 *pzMaster = 0;
553 return rc;
556 /* See if the checksum matches the master journal name */
557 for(i=0; i<len; i++){
558 cksum -= (*pzMaster)[i];
560 if( cksum ){
561 /* If the checksum doesn't add up, then one or more of the disk sectors
562 ** containing the master journal filename is corrupted. This means
563 ** definitely roll back, so just return SQLITE_OK and report a (nul)
564 ** master-journal filename.
566 sqliteFree(*pzMaster);
567 *pzMaster = 0;
568 }else{
569 (*pzMaster)[len] = '\0';
572 return SQLITE_OK;
576 ** Seek the journal file descriptor to the next sector boundary where a
577 ** journal header may be read or written. Pager.journalOff is updated with
578 ** the new seek offset.
580 ** i.e for a sector size of 512:
582 ** Input Offset Output Offset
583 ** ---------------------------------------
584 ** 0 0
585 ** 512 512
586 ** 100 512
587 ** 2000 2048
590 static int seekJournalHdr(Pager *pPager){
591 i64 offset = 0;
592 i64 c = pPager->journalOff;
593 if( c ){
594 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
596 assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
597 assert( offset>=c );
598 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
599 pPager->journalOff = offset;
600 return sqlite3OsSeek(&pPager->jfd, pPager->journalOff);
604 ** The journal file must be open when this routine is called. A journal
605 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
606 ** current location.
608 ** The format for the journal header is as follows:
609 ** - 8 bytes: Magic identifying journal format.
610 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
611 ** - 4 bytes: Random number used for page hash.
612 ** - 4 bytes: Initial database page count.
613 ** - 4 bytes: Sector size used by the process that wrote this journal.
615 ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
617 static int writeJournalHdr(Pager *pPager){
619 int rc = seekJournalHdr(pPager);
620 if( rc ) return rc;
622 pPager->journalHdr = pPager->journalOff;
623 if( pPager->stmtHdrOff==0 ){
624 pPager->stmtHdrOff = pPager->journalHdr;
626 pPager->journalOff += JOURNAL_HDR_SZ(pPager);
628 /* FIX ME:
630 ** Possibly for a pager not in no-sync mode, the journal magic should not
631 ** be written until nRec is filled in as part of next syncJournal().
633 ** Actually maybe the whole journal header should be delayed until that
634 ** point. Think about this.
636 rc = sqlite3OsWrite(&pPager->jfd, aJournalMagic, sizeof(aJournalMagic));
638 if( rc==SQLITE_OK ){
639 /* The nRec Field. 0xFFFFFFFF for no-sync journals. */
640 rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
642 if( rc==SQLITE_OK ){
643 /* The random check-hash initialiser */
644 sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
645 rc = write32bits(&pPager->jfd, pPager->cksumInit);
647 if( rc==SQLITE_OK ){
648 /* The initial database size */
649 rc = write32bits(&pPager->jfd, pPager->dbSize);
651 if( rc==SQLITE_OK ){
652 /* The assumed sector size for this process */
653 rc = write32bits(&pPager->jfd, pPager->sectorSize);
656 /* The journal header has been written successfully. Seek the journal
657 ** file descriptor to the end of the journal header sector.
659 if( rc==SQLITE_OK ){
660 sqlite3OsSeek(&pPager->jfd, pPager->journalOff-1);
661 rc = sqlite3OsWrite(&pPager->jfd, "\000", 1);
663 return rc;
667 ** The journal file must be open when this is called. A journal header file
668 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
669 ** file. See comments above function writeJournalHdr() for a description of
670 ** the journal header format.
672 ** If the header is read successfully, *nRec is set to the number of
673 ** page records following this header and *dbSize is set to the size of the
674 ** database before the transaction began, in pages. Also, pPager->cksumInit
675 ** is set to the value read from the journal header. SQLITE_OK is returned
676 ** in this case.
678 ** If the journal header file appears to be corrupted, SQLITE_DONE is
679 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
680 ** cannot be read from the journal file an error code is returned.
682 static int readJournalHdr(
683 Pager *pPager,
684 i64 journalSize,
685 u32 *pNRec,
686 u32 *pDbSize
688 int rc;
689 unsigned char aMagic[8]; /* A buffer to hold the magic header */
691 rc = seekJournalHdr(pPager);
692 if( rc ) return rc;
694 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
695 return SQLITE_DONE;
698 rc = sqlite3OsRead(&pPager->jfd, aMagic, sizeof(aMagic));
699 if( rc ) return rc;
701 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
702 return SQLITE_DONE;
705 rc = read32bits(&pPager->jfd, pNRec);
706 if( rc ) return rc;
708 rc = read32bits(&pPager->jfd, &pPager->cksumInit);
709 if( rc ) return rc;
711 rc = read32bits(&pPager->jfd, pDbSize);
712 if( rc ) return rc;
714 /* Update the assumed sector-size to match the value used by
715 ** the process that created this journal. If this journal was
716 ** created by a process other than this one, then this routine
717 ** is being called from within pager_playback(). The local value
718 ** of Pager.sectorSize is restored at the end of that routine.
720 rc = read32bits(&pPager->jfd, (u32 *)&pPager->sectorSize);
721 if( rc ) return rc;
723 pPager->journalOff += JOURNAL_HDR_SZ(pPager);
724 rc = sqlite3OsSeek(&pPager->jfd, pPager->journalOff);
725 return rc;
730 ** Write the supplied master journal name into the journal file for pager
731 ** pPager at the current location. The master journal name must be the last
732 ** thing written to a journal file. If the pager is in full-sync mode, the
733 ** journal file descriptor is advanced to the next sector boundary before
734 ** anything is written. The format is:
736 ** + 4 bytes: PAGER_MJ_PGNO.
737 ** + N bytes: length of master journal name.
738 ** + 4 bytes: N
739 ** + 4 bytes: Master journal name checksum.
740 ** + 8 bytes: aJournalMagic[].
742 ** The master journal page checksum is the sum of the bytes in the master
743 ** journal name.
745 static int writeMasterJournal(Pager *pPager, const char *zMaster){
746 int rc;
747 int len;
748 int i;
749 u32 cksum = 0;
751 if( !zMaster || pPager->setMaster) return SQLITE_OK;
752 pPager->setMaster = 1;
754 len = strlen(zMaster);
755 for(i=0; i<len; i++){
756 cksum += zMaster[i];
759 /* If in full-sync mode, advance to the next disk sector before writing
760 ** the master journal name. This is in case the previous page written to
761 ** the journal has already been synced.
763 if( pPager->fullSync ){
764 rc = seekJournalHdr(pPager);
765 if( rc!=SQLITE_OK ) return rc;
767 pPager->journalOff += (len+20);
769 rc = write32bits(&pPager->jfd, PAGER_MJ_PGNO(pPager));
770 if( rc!=SQLITE_OK ) return rc;
772 rc = sqlite3OsWrite(&pPager->jfd, zMaster, len);
773 if( rc!=SQLITE_OK ) return rc;
775 rc = write32bits(&pPager->jfd, len);
776 if( rc!=SQLITE_OK ) return rc;
778 rc = write32bits(&pPager->jfd, cksum);
779 if( rc!=SQLITE_OK ) return rc;
781 rc = sqlite3OsWrite(&pPager->jfd, aJournalMagic, sizeof(aJournalMagic));
782 pPager->needSync = 1;
783 return rc;
787 ** Add or remove a page from the list of all pages that are in the
788 ** statement journal.
790 ** The Pager keeps a separate list of pages that are currently in
791 ** the statement journal. This helps the sqlite3pager_stmt_commit()
792 ** routine run MUCH faster for the common case where there are many
793 ** pages in memory but only a few are in the statement journal.
795 static void page_add_to_stmt_list(PgHdr *pPg){
796 Pager *pPager = pPg->pPager;
797 if( pPg->inStmt ) return;
798 assert( pPg->pPrevStmt==0 && pPg->pNextStmt==0 );
799 pPg->pPrevStmt = 0;
800 if( pPager->pStmt ){
801 pPager->pStmt->pPrevStmt = pPg;
803 pPg->pNextStmt = pPager->pStmt;
804 pPager->pStmt = pPg;
805 pPg->inStmt = 1;
807 static void page_remove_from_stmt_list(PgHdr *pPg){
808 if( !pPg->inStmt ) return;
809 if( pPg->pPrevStmt ){
810 assert( pPg->pPrevStmt->pNextStmt==pPg );
811 pPg->pPrevStmt->pNextStmt = pPg->pNextStmt;
812 }else{
813 assert( pPg->pPager->pStmt==pPg );
814 pPg->pPager->pStmt = pPg->pNextStmt;
816 if( pPg->pNextStmt ){
817 assert( pPg->pNextStmt->pPrevStmt==pPg );
818 pPg->pNextStmt->pPrevStmt = pPg->pPrevStmt;
820 pPg->pNextStmt = 0;
821 pPg->pPrevStmt = 0;
822 pPg->inStmt = 0;
826 ** Find a page in the hash table given its page number. Return
827 ** a pointer to the page or NULL if not found.
829 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
830 PgHdr *p = pPager->aHash[pager_hash(pgno)];
831 while( p && p->pgno!=pgno ){
832 p = p->pNextHash;
834 return p;
838 ** Unlock the database and clear the in-memory cache. This routine
839 ** sets the state of the pager back to what it was when it was first
840 ** opened. Any outstanding pages are invalidated and subsequent attempts
841 ** to access those pages will likely result in a coredump.
843 static void pager_reset(Pager *pPager){
844 PgHdr *pPg, *pNext;
845 if( pPager->errMask ) return;
846 for(pPg=pPager->pAll; pPg; pPg=pNext){
847 pNext = pPg->pNextAll;
848 sqliteFree(pPg);
850 pPager->pFirst = 0;
851 pPager->pFirstSynced = 0;
852 pPager->pLast = 0;
853 pPager->pAll = 0;
854 memset(pPager->aHash, 0, sizeof(pPager->aHash));
855 pPager->nPage = 0;
856 if( pPager->state>=PAGER_RESERVED ){
857 sqlite3pager_rollback(pPager);
859 sqlite3OsUnlock(&pPager->fd, NO_LOCK);
860 pPager->state = PAGER_UNLOCK;
861 pPager->dbSize = -1;
862 pPager->nRef = 0;
863 assert( pPager->journalOpen==0 );
867 ** This function is used to reset the pager after a malloc() failure. This
868 ** doesn't work with in-memory databases. If a malloc() fails when an
869 ** in-memory database is in use it is not possible to recover.
871 ** If a transaction or statement transaction is active, it is rolled back.
873 ** It is an error to call this function if any pages are in use.
875 #ifndef SQLITE_OMIT_GLOBALRECOVER
876 int sqlite3pager_reset(Pager *pPager){
877 if( pPager ){
878 if( pPager->nRef || MEMDB ){
879 return SQLITE_ERROR;
881 pPager->errMask &= ~(PAGER_ERR_MEM);
882 pager_reset(pPager);
884 return SQLITE_OK;
886 #endif
890 ** When this routine is called, the pager has the journal file open and
891 ** a RESERVED or EXCLUSIVE lock on the database. This routine releases
892 ** the database lock and acquires a SHARED lock in its place. The journal
893 ** file is deleted and closed.
895 ** TODO: Consider keeping the journal file open for temporary databases.
896 ** This might give a performance improvement on windows where opening
897 ** a file is an expensive operation.
899 static int pager_unwritelock(Pager *pPager){
900 PgHdr *pPg;
901 int rc;
902 assert( !MEMDB );
903 if( pPager->state<PAGER_RESERVED ){
904 return SQLITE_OK;
906 sqlite3pager_stmt_commit(pPager);
907 if( pPager->stmtOpen ){
908 sqlite3OsClose(&pPager->stfd);
909 pPager->stmtOpen = 0;
911 if( pPager->journalOpen ){
912 sqlite3OsClose(&pPager->jfd);
913 pPager->journalOpen = 0;
914 sqlite3OsDelete(pPager->zJournal);
915 sqliteFree( pPager->aInJournal );
916 pPager->aInJournal = 0;
917 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
918 pPg->inJournal = 0;
919 pPg->dirty = 0;
920 pPg->needSync = 0;
921 #ifdef SQLITE_CHECK_PAGES
922 pPg->pageHash = pager_pagehash(pPg);
923 #endif
925 pPager->dirtyCache = 0;
926 pPager->nRec = 0;
927 }else{
928 assert( pPager->aInJournal==0 );
929 assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
931 rc = sqlite3OsUnlock(&pPager->fd, SHARED_LOCK);
932 pPager->state = PAGER_SHARED;
933 pPager->origDbSize = 0;
934 pPager->setMaster = 0;
935 return rc;
939 ** Compute and return a checksum for the page of data.
941 ** This is not a real checksum. It is really just the sum of the
942 ** random initial value and the page number. We experimented with
943 ** a checksum of the entire data, but that was found to be too slow.
945 ** Note that the page number is stored at the beginning of data and
946 ** the checksum is stored at the end. This is important. If journal
947 ** corruption occurs due to a power failure, the most likely scenario
948 ** is that one end or the other of the record will be changed. It is
949 ** much less likely that the two ends of the journal record will be
950 ** correct and the middle be corrupt. Thus, this "checksum" scheme,
951 ** though fast and simple, catches the mostly likely kind of corruption.
953 ** FIX ME: Consider adding every 200th (or so) byte of the data to the
954 ** checksum. That way if a single page spans 3 or more disk sectors and
955 ** only the middle sector is corrupt, we will still have a reasonable
956 ** chance of failing the checksum and thus detecting the problem.
958 static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
959 u32 cksum = pPager->cksumInit;
960 int i = pPager->pageSize-200;
961 while( i>0 ){
962 cksum += aData[i];
963 i -= 200;
965 return cksum;
969 ** Read a single page from the journal file opened on file descriptor
970 ** jfd. Playback this one page.
972 ** If useCksum==0 it means this journal does not use checksums. Checksums
973 ** are not used in statement journals because statement journals do not
974 ** need to survive power failures.
976 static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int useCksum){
977 int rc;
978 PgHdr *pPg; /* An existing page in the cache */
979 Pgno pgno; /* The page number of a page in journal */
980 u32 cksum; /* Checksum used for sanity checking */
981 u8 aData[SQLITE_MAX_PAGE_SIZE]; /* Temp storage for a page */
983 /* useCksum should be true for the main journal and false for
984 ** statement journals. Verify that this is always the case
986 assert( jfd == (useCksum ? &pPager->jfd : &pPager->stfd) );
989 rc = read32bits(jfd, &pgno);
990 if( rc!=SQLITE_OK ) return rc;
991 rc = sqlite3OsRead(jfd, &aData, pPager->pageSize);
992 if( rc!=SQLITE_OK ) return rc;
993 pPager->journalOff += pPager->pageSize + 4;
995 /* Sanity checking on the page. This is more important that I originally
996 ** thought. If a power failure occurs while the journal is being written,
997 ** it could cause invalid data to be written into the journal. We need to
998 ** detect this invalid data (with high probability) and ignore it.
1000 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
1001 return SQLITE_DONE;
1003 if( pgno>(unsigned)pPager->dbSize ){
1004 return SQLITE_OK;
1006 if( useCksum ){
1007 rc = read32bits(jfd, &cksum);
1008 if( rc ) return rc;
1009 pPager->journalOff += 4;
1010 if( pager_cksum(pPager, pgno, aData)!=cksum ){
1011 return SQLITE_DONE;
1015 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
1017 /* If the pager is in RESERVED state, then there must be a copy of this
1018 ** page in the pager cache. In this case just update the pager cache,
1019 ** not the database file. The page is left marked dirty in this case.
1021 ** If in EXCLUSIVE state, then we update the pager cache if it exists
1022 ** and the main file. The page is then marked not dirty.
1024 ** Ticket #1171: The statement journal might contain page content that is
1025 ** different from the page content at the start of the transaction.
1026 ** This occurs when a page is changed prior to the start of a statement
1027 ** then changed again within the statement. When rolling back such a
1028 ** statement we must not write to the original database unless we know
1029 ** for certain that original page contents are in the main rollback
1030 ** journal. Otherwise, if a full ROLLBACK occurs after the statement
1031 ** rollback the full ROLLBACK will not restore the page to its original
1032 ** content. Two conditions must be met before writing to the database
1033 ** files. (1) the database must be locked. (2) we know that the original
1034 ** page content is in the main journal either because the page is not in
1035 ** cache or else it is marked as needSync==0.
1037 pPg = pager_lookup(pPager, pgno);
1038 assert( pPager->state>=PAGER_EXCLUSIVE || pPg!=0 );
1039 TRACE3("PLAYBACK %d page %d\n", PAGERID(pPager), pgno);
1040 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
1041 sqlite3OsSeek(&pPager->fd, (pgno-1)*(i64)pPager->pageSize);
1042 rc = sqlite3OsWrite(&pPager->fd, aData, pPager->pageSize);
1043 if( pPg ) pPg->dirty = 0;
1045 if( pPg ){
1046 /* No page should ever be explicitly rolled back that is in use, except
1047 ** for page 1 which is held in use in order to keep the lock on the
1048 ** database active. However such a page may be rolled back as a result
1049 ** of an internal error resulting in an automatic call to
1050 ** sqlite3pager_rollback().
1052 void *pData;
1053 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
1054 pData = PGHDR_TO_DATA(pPg);
1055 memcpy(pData, aData, pPager->pageSize);
1056 if( pPager->xDestructor ){ /*** FIX ME: Should this be xReinit? ***/
1057 pPager->xDestructor(pData, pPager->pageSize);
1059 #ifdef SQLITE_CHECK_PAGES
1060 pPg->pageHash = pager_pagehash(pPg);
1061 #endif
1062 CODEC(pPager, pData, pPg->pgno, 3);
1064 return rc;
1068 ** Parameter zMaster is the name of a master journal file. A single journal
1069 ** file that referred to the master journal file has just been rolled back.
1070 ** This routine checks if it is possible to delete the master journal file,
1071 ** and does so if it is.
1073 ** The master journal file contains the names of all child journals.
1074 ** To tell if a master journal can be deleted, check to each of the
1075 ** children. If all children are either missing or do not refer to
1076 ** a different master journal, then this master journal can be deleted.
1078 static int pager_delmaster(const char *zMaster){
1079 int rc;
1080 int master_open = 0;
1081 OsFile master;
1082 char *zMasterJournal = 0; /* Contents of master journal file */
1083 i64 nMasterJournal; /* Size of master journal file */
1085 /* Open the master journal file exclusively in case some other process
1086 ** is running this routine also. Not that it makes too much difference.
1088 memset(&master, 0, sizeof(master));
1089 rc = sqlite3OsOpenReadOnly(zMaster, &master);
1090 if( rc!=SQLITE_OK ) goto delmaster_out;
1091 master_open = 1;
1092 rc = sqlite3OsFileSize(&master, &nMasterJournal);
1093 if( rc!=SQLITE_OK ) goto delmaster_out;
1095 if( nMasterJournal>0 ){
1096 char *zJournal;
1097 char *zMasterPtr = 0;
1099 /* Load the entire master journal file into space obtained from
1100 ** sqliteMalloc() and pointed to by zMasterJournal.
1102 zMasterJournal = (char *)sqliteMalloc(nMasterJournal);
1103 if( !zMasterJournal ){
1104 rc = SQLITE_NOMEM;
1105 goto delmaster_out;
1107 rc = sqlite3OsRead(&master, zMasterJournal, nMasterJournal);
1108 if( rc!=SQLITE_OK ) goto delmaster_out;
1110 zJournal = zMasterJournal;
1111 while( (zJournal-zMasterJournal)<nMasterJournal ){
1112 if( sqlite3OsFileExists(zJournal) ){
1113 /* One of the journals pointed to by the master journal exists.
1114 ** Open it and check if it points at the master journal. If
1115 ** so, return without deleting the master journal file.
1117 OsFile journal;
1118 int c;
1120 memset(&journal, 0, sizeof(journal));
1121 rc = sqlite3OsOpenReadOnly(zJournal, &journal);
1122 if( rc!=SQLITE_OK ){
1123 goto delmaster_out;
1126 rc = readMasterJournal(&journal, &zMasterPtr);
1127 sqlite3OsClose(&journal);
1128 if( rc!=SQLITE_OK ){
1129 goto delmaster_out;
1132 c = zMasterPtr!=0 && strcmp(zMasterPtr, zMaster)==0;
1133 sqliteFree(zMasterPtr);
1134 if( c ){
1135 /* We have a match. Do not delete the master journal file. */
1136 goto delmaster_out;
1139 zJournal += (strlen(zJournal)+1);
1143 sqlite3OsDelete(zMaster);
1145 delmaster_out:
1146 if( zMasterJournal ){
1147 sqliteFree(zMasterJournal);
1149 if( master_open ){
1150 sqlite3OsClose(&master);
1152 return rc;
1156 ** Make every page in the cache agree with what is on disk. In other words,
1157 ** reread the disk to reset the state of the cache.
1159 ** This routine is called after a rollback in which some of the dirty cache
1160 ** pages had never been written out to disk. We need to roll back the
1161 ** cache content and the easiest way to do that is to reread the old content
1162 ** back from the disk.
1164 static int pager_reload_cache(Pager *pPager){
1165 PgHdr *pPg;
1166 int rc = SQLITE_OK;
1167 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
1168 char zBuf[SQLITE_MAX_PAGE_SIZE];
1169 if( !pPg->dirty ) continue;
1170 if( (int)pPg->pgno <= pPager->origDbSize ){
1171 sqlite3OsSeek(&pPager->fd, pPager->pageSize*(i64)(pPg->pgno-1));
1172 rc = sqlite3OsRead(&pPager->fd, zBuf, pPager->pageSize);
1173 TRACE3("REFETCH %d page %d\n", PAGERID(pPager), pPg->pgno);
1174 if( rc ) break;
1175 CODEC(pPager, zBuf, pPg->pgno, 2);
1176 }else{
1177 memset(zBuf, 0, pPager->pageSize);
1179 if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), pPager->pageSize) ){
1180 memcpy(PGHDR_TO_DATA(pPg), zBuf, pPager->pageSize);
1181 if( pPager->xReiniter ){
1182 pPager->xReiniter(PGHDR_TO_DATA(pPg), pPager->pageSize);
1183 }else{
1184 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
1187 pPg->needSync = 0;
1188 pPg->dirty = 0;
1189 #ifdef SQLITE_CHECK_PAGES
1190 pPg->pageHash = pager_pagehash(pPg);
1191 #endif
1193 return rc;
1197 ** Truncate the main file of the given pager to the number of pages
1198 ** indicated.
1200 static int pager_truncate(Pager *pPager, int nPage){
1201 assert( pPager->state>=PAGER_EXCLUSIVE );
1202 return sqlite3OsTruncate(&pPager->fd, pPager->pageSize*(i64)nPage);
1206 ** Playback the journal and thus restore the database file to
1207 ** the state it was in before we started making changes.
1209 ** The journal file format is as follows:
1211 ** (1) 8 byte prefix. A copy of aJournalMagic[].
1212 ** (2) 4 byte big-endian integer which is the number of valid page records
1213 ** in the journal. If this value is 0xffffffff, then compute the
1214 ** number of page records from the journal size.
1215 ** (3) 4 byte big-endian integer which is the initial value for the
1216 ** sanity checksum.
1217 ** (4) 4 byte integer which is the number of pages to truncate the
1218 ** database to during a rollback.
1219 ** (5) 4 byte integer which is the number of bytes in the master journal
1220 ** name. The value may be zero (indicate that there is no master
1221 ** journal.)
1222 ** (6) N bytes of the master journal name. The name will be nul-terminated
1223 ** and might be shorter than the value read from (5). If the first byte
1224 ** of the name is \000 then there is no master journal. The master
1225 ** journal name is stored in UTF-8.
1226 ** (7) Zero or more pages instances, each as follows:
1227 ** + 4 byte page number.
1228 ** + pPager->pageSize bytes of data.
1229 ** + 4 byte checksum
1231 ** When we speak of the journal header, we mean the first 6 items above.
1232 ** Each entry in the journal is an instance of the 7th item.
1234 ** Call the value from the second bullet "nRec". nRec is the number of
1235 ** valid page entries in the journal. In most cases, you can compute the
1236 ** value of nRec from the size of the journal file. But if a power
1237 ** failure occurred while the journal was being written, it could be the
1238 ** case that the size of the journal file had already been increased but
1239 ** the extra entries had not yet made it safely to disk. In such a case,
1240 ** the value of nRec computed from the file size would be too large. For
1241 ** that reason, we always use the nRec value in the header.
1243 ** If the nRec value is 0xffffffff it means that nRec should be computed
1244 ** from the file size. This value is used when the user selects the
1245 ** no-sync option for the journal. A power failure could lead to corruption
1246 ** in this case. But for things like temporary table (which will be
1247 ** deleted when the power is restored) we don't care.
1249 ** If the file opened as the journal file is not a well-formed
1250 ** journal file then all pages up to the first corrupted page are rolled
1251 ** back (or no pages if the journal header is corrupted). The journal file
1252 ** is then deleted and SQLITE_OK returned, just as if no corruption had
1253 ** been encountered.
1255 ** If an I/O or malloc() error occurs, the journal-file is not deleted
1256 ** and an error code is returned.
1258 static int pager_playback(Pager *pPager){
1259 i64 szJ; /* Size of the journal file in bytes */
1260 u32 nRec; /* Number of Records in the journal */
1261 int i; /* Loop counter */
1262 Pgno mxPg = 0; /* Size of the original file in pages */
1263 int rc; /* Result code of a subroutine */
1264 char *zMaster = 0; /* Name of master journal file if any */
1266 /* Figure out how many records are in the journal. Abort early if
1267 ** the journal is empty.
1269 assert( pPager->journalOpen );
1270 rc = sqlite3OsFileSize(&pPager->jfd, &szJ);
1271 if( rc!=SQLITE_OK ){
1272 goto end_playback;
1275 /* Read the master journal name from the journal, if it is present.
1276 ** If a master journal file name is specified, but the file is not
1277 ** present on disk, then the journal is not hot and does not need to be
1278 ** played back.
1280 rc = readMasterJournal(&pPager->jfd, &zMaster);
1281 assert( rc!=SQLITE_DONE );
1282 if( rc!=SQLITE_OK || (zMaster && !sqlite3OsFileExists(zMaster)) ){
1283 sqliteFree(zMaster);
1284 zMaster = 0;
1285 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
1286 goto end_playback;
1288 sqlite3OsSeek(&pPager->jfd, 0);
1289 pPager->journalOff = 0;
1291 /* This loop terminates either when the readJournalHdr() call returns
1292 ** SQLITE_DONE or an IO error occurs. */
1293 while( 1 ){
1295 /* Read the next journal header from the journal file. If there are
1296 ** not enough bytes left in the journal file for a complete header, or
1297 ** it is corrupted, then a process must of failed while writing it.
1298 ** This indicates nothing more needs to be rolled back.
1300 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
1301 if( rc!=SQLITE_OK ){
1302 if( rc==SQLITE_DONE ){
1303 rc = SQLITE_OK;
1305 goto end_playback;
1308 /* If nRec is 0xffffffff, then this journal was created by a process
1309 ** working in no-sync mode. This means that the rest of the journal
1310 ** file consists of pages, there are no more journal headers. Compute
1311 ** the value of nRec based on this assumption.
1313 if( nRec==0xffffffff ){
1314 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
1315 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
1318 /* If this is the first header read from the journal, truncate the
1319 ** database file back to it's original size.
1321 if( pPager->state>=PAGER_EXCLUSIVE &&
1322 pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
1323 assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
1324 rc = pager_truncate(pPager, mxPg);
1325 if( rc!=SQLITE_OK ){
1326 goto end_playback;
1328 pPager->dbSize = mxPg;
1331 /* rc = sqlite3OsSeek(&pPager->jfd, JOURNAL_HDR_SZ(pPager)); */
1332 if( rc!=SQLITE_OK ) goto end_playback;
1334 /* Copy original pages out of the journal and back into the database file.
1336 for(i=0; i<nRec; i++){
1337 rc = pager_playback_one_page(pPager, &pPager->jfd, 1);
1338 if( rc!=SQLITE_OK ){
1339 if( rc==SQLITE_DONE ){
1340 rc = SQLITE_OK;
1341 pPager->journalOff = szJ;
1342 break;
1343 }else{
1344 goto end_playback;
1350 /* Pages that have been written to the journal but never synced
1351 ** where not restored by the loop above. We have to restore those
1352 ** pages by reading them back from the original database.
1354 assert( rc==SQLITE_OK );
1355 pager_reload_cache(pPager);
1357 end_playback:
1358 if( rc==SQLITE_OK ){
1359 rc = pager_unwritelock(pPager);
1361 if( zMaster ){
1362 /* If there was a master journal and this routine will return true,
1363 ** see if it is possible to delete the master journal.
1365 if( rc==SQLITE_OK ){
1366 rc = pager_delmaster(zMaster);
1368 sqliteFree(zMaster);
1371 /* The Pager.sectorSize variable may have been updated while rolling
1372 ** back a journal created by a process with a different PAGER_SECTOR_SIZE
1373 ** value. Reset it to the correct value for this process.
1375 pPager->sectorSize = PAGER_SECTOR_SIZE;
1376 return rc;
1380 ** Playback the statement journal.
1382 ** This is similar to playing back the transaction journal but with
1383 ** a few extra twists.
1385 ** (1) The number of pages in the database file at the start of
1386 ** the statement is stored in pPager->stmtSize, not in the
1387 ** journal file itself.
1389 ** (2) In addition to playing back the statement journal, also
1390 ** playback all pages of the transaction journal beginning
1391 ** at offset pPager->stmtJSize.
1393 static int pager_stmt_playback(Pager *pPager){
1394 i64 szJ; /* Size of the full journal */
1395 i64 hdrOff;
1396 int nRec; /* Number of Records */
1397 int i; /* Loop counter */
1398 int rc;
1400 szJ = pPager->journalOff;
1401 #ifndef NDEBUG
1403 i64 os_szJ;
1404 rc = sqlite3OsFileSize(&pPager->jfd, &os_szJ);
1405 if( rc!=SQLITE_OK ) return rc;
1406 assert( szJ==os_szJ );
1408 #endif
1410 /* Set hdrOff to be the offset to the first journal header written
1411 ** this statement transaction, or the end of the file if no journal
1412 ** header was written.
1414 hdrOff = pPager->stmtHdrOff;
1415 assert( pPager->fullSync || !hdrOff );
1416 if( !hdrOff ){
1417 hdrOff = szJ;
1420 /* Truncate the database back to its original size.
1422 if( pPager->state>=PAGER_EXCLUSIVE ){
1423 rc = pager_truncate(pPager, pPager->stmtSize);
1425 pPager->dbSize = pPager->stmtSize;
1427 /* Figure out how many records are in the statement journal.
1429 assert( pPager->stmtInUse && pPager->journalOpen );
1430 sqlite3OsSeek(&pPager->stfd, 0);
1431 nRec = pPager->stmtNRec;
1433 /* Copy original pages out of the statement journal and back into the
1434 ** database file. Note that the statement journal omits checksums from
1435 ** each record since power-failure recovery is not important to statement
1436 ** journals.
1438 for(i=nRec-1; i>=0; i--){
1439 rc = pager_playback_one_page(pPager, &pPager->stfd, 0);
1440 assert( rc!=SQLITE_DONE );
1441 if( rc!=SQLITE_OK ) goto end_stmt_playback;
1444 /* Now roll some pages back from the transaction journal. Pager.stmtJSize
1445 ** was the size of the journal file when this statement was started, so
1446 ** everything after that needs to be rolled back, either into the
1447 ** database, the memory cache, or both.
1449 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
1450 ** of the first journal header written during this statement transaction.
1452 rc = sqlite3OsSeek(&pPager->jfd, pPager->stmtJSize);
1453 if( rc!=SQLITE_OK ){
1454 goto end_stmt_playback;
1456 pPager->journalOff = pPager->stmtJSize;
1457 pPager->cksumInit = pPager->stmtCksum;
1458 assert( JOURNAL_HDR_SZ(pPager)<(pPager->pageSize+8) );
1459 while( pPager->journalOff <= (hdrOff-(pPager->pageSize+8)) ){
1460 rc = pager_playback_one_page(pPager, &pPager->jfd, 1);
1461 assert( rc!=SQLITE_DONE );
1462 if( rc!=SQLITE_OK ) goto end_stmt_playback;
1465 while( pPager->journalOff < szJ ){
1466 u32 nRec;
1467 u32 dummy;
1468 rc = readJournalHdr(pPager, szJ, &nRec, &dummy);
1469 if( rc!=SQLITE_OK ){
1470 assert( rc!=SQLITE_DONE );
1471 goto end_stmt_playback;
1473 if( nRec==0 ){
1474 nRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
1476 for(i=nRec-1; i>=0 && pPager->journalOff < szJ; i--){
1477 rc = pager_playback_one_page(pPager, &pPager->jfd, 1);
1478 assert( rc!=SQLITE_DONE );
1479 if( rc!=SQLITE_OK ) goto end_stmt_playback;
1483 pPager->journalOff = szJ;
1485 end_stmt_playback:
1486 if( rc!=SQLITE_OK ){
1487 pPager->errMask |= PAGER_ERR_CORRUPT;
1488 rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */
1489 }else{
1490 pPager->journalOff = szJ;
1491 /* pager_reload_cache(pPager); */
1493 return rc;
1497 ** Change the maximum number of in-memory pages that are allowed.
1499 void sqlite3pager_set_cachesize(Pager *pPager, int mxPage){
1500 if( mxPage>10 ){
1501 pPager->mxPage = mxPage;
1502 }else{
1503 pPager->mxPage = 10;
1508 ** Adjust the robustness of the database to damage due to OS crashes
1509 ** or power failures by changing the number of syncs()s when writing
1510 ** the rollback journal. There are three levels:
1512 ** OFF sqlite3OsSync() is never called. This is the default
1513 ** for temporary and transient files.
1515 ** NORMAL The journal is synced once before writes begin on the
1516 ** database. This is normally adequate protection, but
1517 ** it is theoretically possible, though very unlikely,
1518 ** that an inopertune power failure could leave the journal
1519 ** in a state which would cause damage to the database
1520 ** when it is rolled back.
1522 ** FULL The journal is synced twice before writes begin on the
1523 ** database (with some additional information - the nRec field
1524 ** of the journal header - being written in between the two
1525 ** syncs). If we assume that writing a
1526 ** single disk sector is atomic, then this mode provides
1527 ** assurance that the journal will not be corrupted to the
1528 ** point of causing damage to the database during rollback.
1530 ** Numeric values associated with these states are OFF==1, NORMAL=2,
1531 ** and FULL=3.
1533 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
1534 void sqlite3pager_set_safety_level(Pager *pPager, int level){
1535 pPager->noSync = level==1 || pPager->tempFile;
1536 pPager->fullSync = level==3 && !pPager->tempFile;
1537 if( pPager->noSync ) pPager->needSync = 0;
1539 #endif
1542 ** The following global variable is incremented whenever the library
1543 ** attempts to open a temporary file. This information is used for
1544 ** testing and analysis only.
1546 int sqlite3_opentemp_count = 0;
1549 ** Open a temporary file. Write the name of the file into zFile
1550 ** (zFile must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write
1551 ** the file descriptor into *fd. Return SQLITE_OK on success or some
1552 ** other error code if we fail.
1554 ** The OS will automatically delete the temporary file when it is
1555 ** closed.
1557 static int sqlite3pager_opentemp(char *zFile, OsFile *fd){
1558 int cnt = 8;
1559 int rc;
1560 sqlite3_opentemp_count++; /* Used for testing and analysis only */
1562 cnt--;
1563 sqlite3OsTempFileName(zFile);
1564 rc = sqlite3OsOpenExclusive(zFile, fd, 1);
1565 }while( cnt>0 && rc!=SQLITE_OK && rc!=SQLITE_NOMEM );
1566 return rc;
1570 ** Create a new page cache and put a pointer to the page cache in *ppPager.
1571 ** The file to be cached need not exist. The file is not locked until
1572 ** the first call to sqlite3pager_get() and is only held open until the
1573 ** last page is released using sqlite3pager_unref().
1575 ** If zFilename is NULL then a randomly-named temporary file is created
1576 ** and used as the file to be cached. The file will be deleted
1577 ** automatically when it is closed.
1579 ** If zFilename is ":memory:" then all information is held in cache.
1580 ** It is never written to disk. This can be used to implement an
1581 ** in-memory database.
1583 int sqlite3pager_open(
1584 Pager **ppPager, /* Return the Pager structure here */
1585 const char *zFilename, /* Name of the database file to open */
1586 int nExtra, /* Extra bytes append to each in-memory page */
1587 int flags /* flags controlling this file */
1589 Pager *pPager;
1590 char *zFullPathname = 0;
1591 int nameLen;
1592 OsFile fd;
1593 int rc = SQLITE_OK;
1594 int i;
1595 int tempFile = 0;
1596 int memDb = 0;
1597 int readOnly = 0;
1598 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
1599 int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
1600 char zTemp[SQLITE_TEMPNAME_SIZE];
1602 *ppPager = 0;
1603 memset(&fd, 0, sizeof(fd));
1604 if( sqlite3_malloc_failed ){
1605 return SQLITE_NOMEM;
1607 if( zFilename && zFilename[0] ){
1608 #ifndef SQLITE_OMIT_MEMORYDB
1609 if( strcmp(zFilename,":memory:")==0 ){
1610 memDb = 1;
1611 zFullPathname = sqliteStrDup("");
1612 rc = SQLITE_OK;
1613 }else
1614 #endif
1616 zFullPathname = sqlite3OsFullPathname(zFilename);
1617 if( zFullPathname ){
1618 rc = sqlite3OsOpenReadWrite(zFullPathname, &fd, &readOnly);
1621 }else{
1622 rc = sqlite3pager_opentemp(zTemp, &fd);
1623 zFilename = zTemp;
1624 zFullPathname = sqlite3OsFullPathname(zFilename);
1625 if( rc==SQLITE_OK ){
1626 tempFile = 1;
1629 if( !zFullPathname ){
1630 sqlite3OsClose(&fd);
1631 return SQLITE_NOMEM;
1633 if( rc!=SQLITE_OK ){
1634 sqlite3OsClose(&fd);
1635 sqliteFree(zFullPathname);
1636 return rc;
1638 nameLen = strlen(zFullPathname);
1639 pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
1640 if( pPager==0 ){
1641 sqlite3OsClose(&fd);
1642 sqliteFree(zFullPathname);
1643 return SQLITE_NOMEM;
1645 TRACE3("OPEN %d %s\n", FILEHANDLEID(fd), zFullPathname);
1646 pPager->zFilename = (char*)&pPager[1];
1647 pPager->zDirectory = &pPager->zFilename[nameLen+1];
1648 pPager->zJournal = &pPager->zDirectory[nameLen+1];
1649 strcpy(pPager->zFilename, zFullPathname);
1650 strcpy(pPager->zDirectory, zFullPathname);
1651 for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
1652 if( i>0 ) pPager->zDirectory[i-1] = 0;
1653 strcpy(pPager->zJournal, zFullPathname);
1654 sqliteFree(zFullPathname);
1655 strcpy(&pPager->zJournal[nameLen], "-journal");
1656 pPager->fd = fd;
1657 #if OS_UNIX
1658 pPager->fd.pPager = pPager;
1659 #endif
1660 pPager->journalOpen = 0;
1661 pPager->useJournal = useJournal && !memDb;
1662 pPager->noReadlock = noReadlock && readOnly;
1663 pPager->stmtOpen = 0;
1664 pPager->stmtInUse = 0;
1665 pPager->nRef = 0;
1666 pPager->dbSize = memDb-1;
1667 pPager->pageSize = SQLITE_DEFAULT_PAGE_SIZE;
1668 pPager->stmtSize = 0;
1669 pPager->stmtJSize = 0;
1670 pPager->nPage = 0;
1671 pPager->nMaxPage = 0;
1672 pPager->mxPage = 100;
1673 pPager->state = PAGER_UNLOCK;
1674 pPager->errMask = 0;
1675 pPager->tempFile = tempFile;
1676 pPager->memDb = memDb;
1677 pPager->readOnly = readOnly;
1678 pPager->needSync = 0;
1679 pPager->noSync = pPager->tempFile || !useJournal;
1680 pPager->fullSync = (pPager->noSync?0:1);
1681 pPager->pFirst = 0;
1682 pPager->pFirstSynced = 0;
1683 pPager->pLast = 0;
1684 pPager->nExtra = FORCE_ALIGNMENT(nExtra);
1685 pPager->sectorSize = PAGER_SECTOR_SIZE;
1686 pPager->pBusyHandler = 0;
1687 memset(pPager->aHash, 0, sizeof(pPager->aHash));
1688 *ppPager = pPager;
1689 return SQLITE_OK;
1693 ** Set the busy handler function.
1695 void sqlite3pager_set_busyhandler(Pager *pPager, BusyHandler *pBusyHandler){
1696 pPager->pBusyHandler = pBusyHandler;
1700 ** Set the destructor for this pager. If not NULL, the destructor is called
1701 ** when the reference count on each page reaches zero. The destructor can
1702 ** be used to clean up information in the extra segment appended to each page.
1704 ** The destructor is not called as a result sqlite3pager_close().
1705 ** Destructors are only called by sqlite3pager_unref().
1707 void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){
1708 pPager->xDestructor = xDesc;
1712 ** Set the reinitializer for this pager. If not NULL, the reinitializer
1713 ** is called when the content of a page in cache is restored to its original
1714 ** value as a result of a rollback. The callback gives higher-level code
1715 ** an opportunity to restore the EXTRA section to agree with the restored
1716 ** page data.
1718 void sqlite3pager_set_reiniter(Pager *pPager, void (*xReinit)(void*,int)){
1719 pPager->xReiniter = xReinit;
1723 ** Set the page size. Return the new size. If the suggest new page
1724 ** size is inappropriate, then an alternative page size is selected
1725 ** and returned.
1727 int sqlite3pager_set_pagesize(Pager *pPager, int pageSize){
1728 assert( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE );
1729 if( !pPager->memDb ){
1730 pPager->pageSize = pageSize;
1732 return pPager->pageSize;
1736 ** Read the first N bytes from the beginning of the file into memory
1737 ** that pDest points to. No error checking is done.
1739 void sqlite3pager_read_fileheader(Pager *pPager, int N, unsigned char *pDest){
1740 memset(pDest, 0, N);
1741 if( MEMDB==0 ){
1742 sqlite3OsSeek(&pPager->fd, 0);
1743 sqlite3OsRead(&pPager->fd, pDest, N);
1748 ** Return the total number of pages in the disk file associated with
1749 ** pPager.
1751 int sqlite3pager_pagecount(Pager *pPager){
1752 i64 n;
1753 assert( pPager!=0 );
1754 if( pPager->dbSize>=0 ){
1755 return pPager->dbSize;
1757 if( sqlite3OsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
1758 pPager->errMask |= PAGER_ERR_DISK;
1759 return 0;
1761 n /= pPager->pageSize;
1762 if( !MEMDB && n==PENDING_BYTE/pPager->pageSize ){
1763 n++;
1765 if( pPager->state!=PAGER_UNLOCK ){
1766 pPager->dbSize = n;
1768 return n;
1772 ** Forward declaration
1774 static int syncJournal(Pager*);
1778 ** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate
1779 ** that the page is not part of any hash chain. This is required because the
1780 ** sqlite3pager_movepage() routine can leave a page in the
1781 ** pNextFree/pPrevFree list that is not a part of any hash-chain.
1783 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
1784 if( pPg->pgno==0 ){
1785 /* If the page number is zero, then this page is not in any hash chain. */
1786 return;
1788 if( pPg->pNextHash ){
1789 pPg->pNextHash->pPrevHash = pPg->pPrevHash;
1791 if( pPg->pPrevHash ){
1792 assert( pPager->aHash[pager_hash(pPg->pgno)]!=pPg );
1793 pPg->pPrevHash->pNextHash = pPg->pNextHash;
1794 }else{
1795 int h = pager_hash(pPg->pgno);
1796 assert( pPager->aHash[h]==pPg );
1797 pPager->aHash[h] = pPg->pNextHash;
1800 pPg->pgno = 0;
1801 pPg->pNextHash = pPg->pPrevHash = 0;
1805 ** Unlink a page from the free list (the list of all pages where nRef==0)
1806 ** and from its hash collision chain.
1808 static void unlinkPage(PgHdr *pPg){
1809 Pager *pPager = pPg->pPager;
1811 /* Keep the pFirstSynced pointer pointing at the first synchronized page */
1812 if( pPg==pPager->pFirstSynced ){
1813 PgHdr *p = pPg->pNextFree;
1814 while( p && p->needSync ){ p = p->pNextFree; }
1815 pPager->pFirstSynced = p;
1818 /* Unlink from the freelist */
1819 if( pPg->pPrevFree ){
1820 pPg->pPrevFree->pNextFree = pPg->pNextFree;
1821 }else{
1822 assert( pPager->pFirst==pPg );
1823 pPager->pFirst = pPg->pNextFree;
1825 if( pPg->pNextFree ){
1826 pPg->pNextFree->pPrevFree = pPg->pPrevFree;
1827 }else{
1828 assert( pPager->pLast==pPg );
1829 pPager->pLast = pPg->pPrevFree;
1831 pPg->pNextFree = pPg->pPrevFree = 0;
1833 /* Unlink from the pgno hash table */
1834 unlinkHashChain(pPager, pPg);
1837 #ifndef SQLITE_OMIT_MEMORYDB
1839 ** This routine is used to truncate an in-memory database. Delete
1840 ** all pages whose pgno is larger than pPager->dbSize and is unreferenced.
1841 ** Referenced pages larger than pPager->dbSize are zeroed.
1843 static void memoryTruncate(Pager *pPager){
1844 PgHdr *pPg;
1845 PgHdr **ppPg;
1846 int dbSize = pPager->dbSize;
1848 ppPg = &pPager->pAll;
1849 while( (pPg = *ppPg)!=0 ){
1850 if( pPg->pgno<=dbSize ){
1851 ppPg = &pPg->pNextAll;
1852 }else if( pPg->nRef>0 ){
1853 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
1854 ppPg = &pPg->pNextAll;
1855 }else{
1856 *ppPg = pPg->pNextAll;
1857 unlinkPage(pPg);
1858 sqliteFree(pPg);
1859 pPager->nPage--;
1863 #else
1864 #define memoryTruncate(p)
1865 #endif
1868 ** Try to obtain a lock on a file. Invoke the busy callback if the lock
1869 ** is currently not available. Repeate until the busy callback returns
1870 ** false or until the lock succeeds.
1872 ** Return SQLITE_OK on success and an error code if we cannot obtain
1873 ** the lock.
1875 static int pager_wait_on_lock(Pager *pPager, int locktype){
1876 int rc;
1877 assert( PAGER_SHARED==SHARED_LOCK );
1878 assert( PAGER_RESERVED==RESERVED_LOCK );
1879 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
1880 if( pPager->state>=locktype ){
1881 rc = SQLITE_OK;
1882 }else{
1883 int busy = 1;
1884 BusyHandler *pH;
1885 do {
1886 rc = sqlite3OsLock(&pPager->fd, locktype);
1887 }while( rc==SQLITE_BUSY &&
1888 (pH = pPager->pBusyHandler)!=0 &&
1889 pH->xFunc && pH->xFunc(pH->pArg, busy++)
1891 if( rc==SQLITE_OK ){
1892 pPager->state = locktype;
1895 return rc;
1899 ** Truncate the file to the number of pages specified.
1901 int sqlite3pager_truncate(Pager *pPager, Pgno nPage){
1902 int rc;
1903 sqlite3pager_pagecount(pPager);
1904 if( pPager->errMask!=0 ){
1905 rc = pager_errcode(pPager);
1906 return rc;
1908 if( nPage>=(unsigned)pPager->dbSize ){
1909 return SQLITE_OK;
1911 if( MEMDB ){
1912 pPager->dbSize = nPage;
1913 memoryTruncate(pPager);
1914 return SQLITE_OK;
1916 rc = syncJournal(pPager);
1917 if( rc!=SQLITE_OK ){
1918 return rc;
1921 /* Get an exclusive lock on the database before truncating. */
1922 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
1923 if( rc!=SQLITE_OK ){
1924 return rc;
1927 rc = pager_truncate(pPager, nPage);
1928 if( rc==SQLITE_OK ){
1929 pPager->dbSize = nPage;
1931 return rc;
1935 ** Shutdown the page cache. Free all memory and close all files.
1937 ** If a transaction was in progress when this routine is called, that
1938 ** transaction is rolled back. All outstanding pages are invalidated
1939 ** and their memory is freed. Any attempt to use a page associated
1940 ** with this page cache after this function returns will likely
1941 ** result in a coredump.
1943 int sqlite3pager_close(Pager *pPager){
1944 PgHdr *pPg, *pNext;
1945 switch( pPager->state ){
1946 case PAGER_RESERVED:
1947 case PAGER_SYNCED:
1948 case PAGER_EXCLUSIVE: {
1949 /* We ignore any IO errors that occur during the rollback
1950 ** operation. So disable IO error simulation so that testing
1951 ** works more easily.
1953 #if defined(SQLITE_TEST) && (defined(OS_UNIX) || defined(OS_WIN))
1954 extern int sqlite3_io_error_pending;
1955 int ioerr_cnt = sqlite3_io_error_pending;
1956 sqlite3_io_error_pending = -1;
1957 #endif
1958 sqlite3pager_rollback(pPager);
1959 #if defined(SQLITE_TEST) && (defined(OS_UNIX) || defined(OS_WIN))
1960 sqlite3_io_error_pending = ioerr_cnt;
1961 #endif
1962 if( !MEMDB ){
1963 sqlite3OsUnlock(&pPager->fd, NO_LOCK);
1965 assert( pPager->errMask || pPager->journalOpen==0 );
1966 break;
1968 case PAGER_SHARED: {
1969 if( !MEMDB ){
1970 sqlite3OsUnlock(&pPager->fd, NO_LOCK);
1972 break;
1974 default: {
1975 /* Do nothing */
1976 break;
1979 for(pPg=pPager->pAll; pPg; pPg=pNext){
1980 #ifndef NDEBUG
1981 if( MEMDB ){
1982 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
1983 assert( !pPg->alwaysRollback );
1984 assert( !pHist->pOrig );
1985 assert( !pHist->pStmt );
1987 #endif
1988 pNext = pPg->pNextAll;
1989 sqliteFree(pPg);
1991 TRACE2("CLOSE %d\n", PAGERID(pPager));
1992 assert( pPager->errMask || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
1993 if( pPager->journalOpen ){
1994 sqlite3OsClose(&pPager->jfd);
1996 sqliteFree(pPager->aInJournal);
1997 if( pPager->stmtOpen ){
1998 sqlite3OsClose(&pPager->stfd);
2000 sqlite3OsClose(&pPager->fd);
2001 /* Temp files are automatically deleted by the OS
2002 ** if( pPager->tempFile ){
2003 ** sqlite3OsDelete(pPager->zFilename);
2004 ** }
2007 sqliteFree(pPager);
2008 return SQLITE_OK;
2012 ** Return the page number for the given page data.
2014 Pgno sqlite3pager_pagenumber(void *pData){
2015 PgHdr *p = DATA_TO_PGHDR(pData);
2016 return p->pgno;
2020 ** The page_ref() function increments the reference count for a page.
2021 ** If the page is currently on the freelist (the reference count is zero) then
2022 ** remove it from the freelist.
2024 ** For non-test systems, page_ref() is a macro that calls _page_ref()
2025 ** online of the reference count is zero. For test systems, page_ref()
2026 ** is a real function so that we can set breakpoints and trace it.
2028 static void _page_ref(PgHdr *pPg){
2029 if( pPg->nRef==0 ){
2030 /* The page is currently on the freelist. Remove it. */
2031 if( pPg==pPg->pPager->pFirstSynced ){
2032 PgHdr *p = pPg->pNextFree;
2033 while( p && p->needSync ){ p = p->pNextFree; }
2034 pPg->pPager->pFirstSynced = p;
2036 if( pPg->pPrevFree ){
2037 pPg->pPrevFree->pNextFree = pPg->pNextFree;
2038 }else{
2039 pPg->pPager->pFirst = pPg->pNextFree;
2041 if( pPg->pNextFree ){
2042 pPg->pNextFree->pPrevFree = pPg->pPrevFree;
2043 }else{
2044 pPg->pPager->pLast = pPg->pPrevFree;
2046 pPg->pPager->nRef++;
2048 pPg->nRef++;
2049 REFINFO(pPg);
2051 #ifdef SQLITE_DEBUG
2052 static void page_ref(PgHdr *pPg){
2053 if( pPg->nRef==0 ){
2054 _page_ref(pPg);
2055 }else{
2056 pPg->nRef++;
2057 REFINFO(pPg);
2060 #else
2061 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
2062 #endif
2065 ** Increment the reference count for a page. The input pointer is
2066 ** a reference to the page data.
2068 int sqlite3pager_ref(void *pData){
2069 PgHdr *pPg = DATA_TO_PGHDR(pData);
2070 page_ref(pPg);
2071 return SQLITE_OK;
2075 ** Sync the journal. In other words, make sure all the pages that have
2076 ** been written to the journal have actually reached the surface of the
2077 ** disk. It is not safe to modify the original database file until after
2078 ** the journal has been synced. If the original database is modified before
2079 ** the journal is synced and a power failure occurs, the unsynced journal
2080 ** data would be lost and we would be unable to completely rollback the
2081 ** database changes. Database corruption would occur.
2083 ** This routine also updates the nRec field in the header of the journal.
2084 ** (See comments on the pager_playback() routine for additional information.)
2085 ** If the sync mode is FULL, two syncs will occur. First the whole journal
2086 ** is synced, then the nRec field is updated, then a second sync occurs.
2088 ** For temporary databases, we do not care if we are able to rollback
2089 ** after a power failure, so sync occurs.
2091 ** This routine clears the needSync field of every page current held in
2092 ** memory.
2094 static int syncJournal(Pager *pPager){
2095 PgHdr *pPg;
2096 int rc = SQLITE_OK;
2098 /* Sync the journal before modifying the main database
2099 ** (assuming there is a journal and it needs to be synced.)
2101 if( pPager->needSync ){
2102 if( !pPager->tempFile ){
2103 assert( pPager->journalOpen );
2104 /* assert( !pPager->noSync ); // noSync might be set if synchronous
2105 ** was turned off after the transaction was started. Ticket #615 */
2106 #ifndef NDEBUG
2108 /* Make sure the pPager->nRec counter we are keeping agrees
2109 ** with the nRec computed from the size of the journal file.
2111 i64 jSz;
2112 rc = sqlite3OsFileSize(&pPager->jfd, &jSz);
2113 if( rc!=0 ) return rc;
2114 assert( pPager->journalOff==jSz );
2116 #endif
2118 /* Write the nRec value into the journal file header. If in
2119 ** full-synchronous mode, sync the journal first. This ensures that
2120 ** all data has really hit the disk before nRec is updated to mark
2121 ** it as a candidate for rollback.
2123 if( pPager->fullSync ){
2124 TRACE2("SYNC journal of %d\n", PAGERID(pPager));
2125 rc = sqlite3OsSync(&pPager->jfd);
2126 if( rc!=0 ) return rc;
2128 sqlite3OsSeek(&pPager->jfd, pPager->journalHdr + sizeof(aJournalMagic));
2129 rc = write32bits(&pPager->jfd, pPager->nRec);
2130 if( rc ) return rc;
2132 sqlite3OsSeek(&pPager->jfd, pPager->journalOff);
2134 TRACE2("SYNC journal of %d\n", PAGERID(pPager));
2135 rc = sqlite3OsSync(&pPager->jfd);
2136 if( rc!=0 ) return rc;
2137 pPager->journalStarted = 1;
2139 pPager->needSync = 0;
2141 /* Erase the needSync flag from every page.
2143 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2144 pPg->needSync = 0;
2146 pPager->pFirstSynced = pPager->pFirst;
2149 #ifndef NDEBUG
2150 /* If the Pager.needSync flag is clear then the PgHdr.needSync
2151 ** flag must also be clear for all pages. Verify that this
2152 ** invariant is true.
2154 else{
2155 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2156 assert( pPg->needSync==0 );
2158 assert( pPager->pFirstSynced==pPager->pFirst );
2160 #endif
2162 return rc;
2166 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write
2167 ** every one of those pages out to the database file and mark them all
2168 ** as clean.
2170 static int pager_write_pagelist(PgHdr *pList){
2171 Pager *pPager;
2172 int rc;
2174 if( pList==0 ) return SQLITE_OK;
2175 pPager = pList->pPager;
2177 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
2178 ** database file. If there is already an EXCLUSIVE lock, the following
2179 ** calls to sqlite3OsLock() are no-ops.
2181 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
2182 ** through an intermediate state PENDING. A PENDING lock prevents new
2183 ** readers from attaching to the database but is unsufficient for us to
2184 ** write. The idea of a PENDING lock is to prevent new readers from
2185 ** coming in while we wait for existing readers to clear.
2187 ** While the pager is in the RESERVED state, the original database file
2188 ** is unchanged and we can rollback without having to playback the
2189 ** journal into the original database file. Once we transition to
2190 ** EXCLUSIVE, it means the database file has been changed and any rollback
2191 ** will require a journal playback.
2193 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2194 if( rc!=SQLITE_OK ){
2195 return rc;
2198 while( pList ){
2199 assert( pList->dirty );
2200 sqlite3OsSeek(&pPager->fd, (pList->pgno-1)*(i64)pPager->pageSize);
2201 /* If there are dirty pages in the page cache with page numbers greater
2202 ** than Pager.dbSize, this means sqlite3pager_truncate() was called to
2203 ** make the file smaller (presumably by auto-vacuum code). Do not write
2204 ** any such pages to the file.
2206 if( pList->pgno<=pPager->dbSize ){
2207 CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
2208 TRACE3("STORE %d page %d\n", PAGERID(pPager), pList->pgno);
2209 rc = sqlite3OsWrite(&pPager->fd, PGHDR_TO_DATA(pList), pPager->pageSize);
2210 CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
2211 TEST_INCR(pPager->nWrite);
2213 #ifndef NDEBUG
2214 else{
2215 TRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
2217 #endif
2218 if( rc ) return rc;
2219 pList->dirty = 0;
2220 #ifdef SQLITE_CHECK_PAGES
2221 pList->pageHash = pager_pagehash(pList);
2222 #endif
2223 pList = pList->pDirty;
2225 return SQLITE_OK;
2229 ** Collect every dirty page into a dirty list and
2230 ** return a pointer to the head of that list. All pages are
2231 ** collected even if they are still in use.
2233 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
2234 PgHdr *p, *pList;
2235 pList = 0;
2236 for(p=pPager->pAll; p; p=p->pNextAll){
2237 if( p->dirty ){
2238 p->pDirty = pList;
2239 pList = p;
2242 return pList;
2246 ** Return TRUE if there is a hot journal on the given pager.
2247 ** A hot journal is one that needs to be played back.
2249 ** If the current size of the database file is 0 but a journal file
2250 ** exists, that is probably an old journal left over from a prior
2251 ** database with the same name. Just delete the journal.
2253 static int hasHotJournal(Pager *pPager){
2254 if( !pPager->useJournal ) return 0;
2255 if( !sqlite3OsFileExists(pPager->zJournal) ) return 0;
2256 if( sqlite3OsCheckReservedLock(&pPager->fd) ) return 0;
2257 if( sqlite3pager_pagecount(pPager)==0 ){
2258 sqlite3OsDelete(pPager->zJournal);
2259 return 0;
2260 }else{
2261 return 1;
2266 ** Acquire a page.
2268 ** A read lock on the disk file is obtained when the first page is acquired.
2269 ** This read lock is dropped when the last page is released.
2271 ** A _get works for any page number greater than 0. If the database
2272 ** file is smaller than the requested page, then no actual disk
2273 ** read occurs and the memory image of the page is initialized to
2274 ** all zeros. The extra data appended to a page is always initialized
2275 ** to zeros the first time a page is loaded into memory.
2277 ** The acquisition might fail for several reasons. In all cases,
2278 ** an appropriate error code is returned and *ppPage is set to NULL.
2280 ** See also sqlite3pager_lookup(). Both this routine and _lookup() attempt
2281 ** to find a page in the in-memory cache first. If the page is not already
2282 ** in memory, this routine goes to disk to read it in whereas _lookup()
2283 ** just returns 0. This routine acquires a read-lock the first time it
2284 ** has to go to disk, and could also playback an old journal if necessary.
2285 ** Since _lookup() never goes to disk, it never has to deal with locks
2286 ** or journal files.
2288 int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage){
2289 PgHdr *pPg;
2290 int rc;
2292 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
2293 ** number greater than this, or zero, is requested.
2295 if( pgno>PAGER_MAX_PGNO || pgno==0 ){
2296 return SQLITE_CORRUPT;
2299 /* Make sure we have not hit any critical errors.
2301 assert( pPager!=0 );
2302 *ppPage = 0;
2303 if( pPager->errMask & ~(PAGER_ERR_FULL) ){
2304 return pager_errcode(pPager);
2307 /* If this is the first page accessed, then get a SHARED lock
2308 ** on the database file.
2310 if( pPager->nRef==0 && !MEMDB ){
2311 if( !pPager->noReadlock ){
2312 rc = pager_wait_on_lock(pPager, SHARED_LOCK);
2313 if( rc!=SQLITE_OK ){
2314 return rc;
2318 /* If a journal file exists, and there is no RESERVED lock on the
2319 ** database file, then it either needs to be played back or deleted.
2321 if( hasHotJournal(pPager) ){
2322 int rc;
2324 /* Get an EXCLUSIVE lock on the database file. At this point it is
2325 ** important that a RESERVED lock is not obtained on the way to the
2326 ** EXCLUSIVE lock. If it were, another process might open the
2327 ** database file, detect the RESERVED lock, and conclude that the
2328 ** database is safe to read while this process is still rolling it
2329 ** back.
2331 ** Because the intermediate RESERVED lock is not requested, the
2332 ** second process will get to this point in the code and fail to
2333 ** obtain it's own EXCLUSIVE lock on the database file.
2335 rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK);
2336 if( rc!=SQLITE_OK ){
2337 sqlite3OsUnlock(&pPager->fd, NO_LOCK);
2338 pPager->state = PAGER_UNLOCK;
2339 return rc;
2341 pPager->state = PAGER_EXCLUSIVE;
2343 /* Open the journal for reading only. Return SQLITE_BUSY if
2344 ** we are unable to open the journal file.
2346 ** The journal file does not need to be locked itself. The
2347 ** journal file is never open unless the main database file holds
2348 ** a write lock, so there is never any chance of two or more
2349 ** processes opening the journal at the same time.
2351 rc = sqlite3OsOpenReadOnly(pPager->zJournal, &pPager->jfd);
2352 if( rc!=SQLITE_OK ){
2353 sqlite3OsUnlock(&pPager->fd, NO_LOCK);
2354 pPager->state = PAGER_UNLOCK;
2355 return SQLITE_BUSY;
2357 pPager->journalOpen = 1;
2358 pPager->journalStarted = 0;
2359 pPager->journalOff = 0;
2360 pPager->setMaster = 0;
2361 pPager->journalHdr = 0;
2363 /* Playback and delete the journal. Drop the database write
2364 ** lock and reacquire the read lock.
2366 rc = pager_playback(pPager);
2367 if( rc!=SQLITE_OK ){
2368 return rc;
2371 pPg = 0;
2372 }else{
2373 /* Search for page in cache */
2374 pPg = pager_lookup(pPager, pgno);
2375 if( MEMDB && pPager->state==PAGER_UNLOCK ){
2376 pPager->state = PAGER_SHARED;
2379 if( pPg==0 ){
2380 /* The requested page is not in the page cache. */
2381 int h;
2382 TEST_INCR(pPager->nMiss);
2383 if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || MEMDB ){
2384 /* Create a new page */
2385 pPg = sqliteMallocRaw( sizeof(*pPg) + pPager->pageSize
2386 + sizeof(u32) + pPager->nExtra
2387 + MEMDB*sizeof(PgHistory) );
2388 if( pPg==0 ){
2389 pPager->errMask |= PAGER_ERR_MEM;
2390 return SQLITE_NOMEM;
2392 memset(pPg, 0, sizeof(*pPg));
2393 if( MEMDB ){
2394 memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory));
2396 pPg->pPager = pPager;
2397 pPg->pNextAll = pPager->pAll;
2398 pPager->pAll = pPg;
2399 pPager->nPage++;
2400 if( pPager->nPage>pPager->nMaxPage ){
2401 assert( pPager->nMaxPage==(pPager->nPage-1) );
2402 pPager->nMaxPage++;
2404 }else{
2405 /* Find a page to recycle. Try to locate a page that does not
2406 ** require us to do an fsync() on the journal.
2408 pPg = pPager->pFirstSynced;
2410 /* If we could not find a page that does not require an fsync()
2411 ** on the journal file then fsync the journal file. This is a
2412 ** very slow operation, so we work hard to avoid it. But sometimes
2413 ** it can't be helped.
2415 if( pPg==0 ){
2416 int rc = syncJournal(pPager);
2417 if( rc!=0 ){
2418 sqlite3pager_rollback(pPager);
2419 return SQLITE_IOERR;
2421 if( pPager->fullSync ){
2422 /* If in full-sync mode, write a new journal header into the
2423 ** journal file. This is done to avoid ever modifying a journal
2424 ** header that is involved in the rollback of pages that have
2425 ** already been written to the database (in case the header is
2426 ** trashed when the nRec field is updated).
2428 pPager->nRec = 0;
2429 assert( pPager->journalOff > 0 );
2430 rc = writeJournalHdr(pPager);
2431 if( rc!=0 ){
2432 sqlite3pager_rollback(pPager);
2433 return SQLITE_IOERR;
2436 pPg = pPager->pFirst;
2438 assert( pPg->nRef==0 );
2440 /* Write the page to the database file if it is dirty.
2442 if( pPg->dirty ){
2443 assert( pPg->needSync==0 );
2444 pPg->pDirty = 0;
2445 rc = pager_write_pagelist( pPg );
2446 if( rc!=SQLITE_OK ){
2447 sqlite3pager_rollback(pPager);
2448 return SQLITE_IOERR;
2451 assert( pPg->dirty==0 );
2453 /* If the page we are recycling is marked as alwaysRollback, then
2454 ** set the global alwaysRollback flag, thus disabling the
2455 ** sqlite_dont_rollback() optimization for the rest of this transaction.
2456 ** It is necessary to do this because the page marked alwaysRollback
2457 ** might be reloaded at a later time but at that point we won't remember
2458 ** that is was marked alwaysRollback. This means that all pages must
2459 ** be marked as alwaysRollback from here on out.
2461 if( pPg->alwaysRollback ){
2462 pPager->alwaysRollback = 1;
2465 /* Unlink the old page from the free list and the hash table
2467 unlinkPage(pPg);
2468 TEST_INCR(pPager->nOvfl);
2470 pPg->pgno = pgno;
2471 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
2472 sqlite3CheckMemory(pPager->aInJournal, pgno/8);
2473 assert( pPager->journalOpen );
2474 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
2475 pPg->needSync = 0;
2476 }else{
2477 pPg->inJournal = 0;
2478 pPg->needSync = 0;
2480 if( pPager->aInStmt && (int)pgno<=pPager->stmtSize
2481 && (pPager->aInStmt[pgno/8] & (1<<(pgno&7)))!=0 ){
2482 page_add_to_stmt_list(pPg);
2483 }else{
2484 page_remove_from_stmt_list(pPg);
2486 pPg->dirty = 0;
2487 pPg->nRef = 1;
2488 REFINFO(pPg);
2489 pPager->nRef++;
2490 h = pager_hash(pgno);
2491 pPg->pNextHash = pPager->aHash[h];
2492 pPager->aHash[h] = pPg;
2493 if( pPg->pNextHash ){
2494 assert( pPg->pNextHash->pPrevHash==0 );
2495 pPg->pNextHash->pPrevHash = pPg;
2497 if( pPager->nExtra>0 ){
2498 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
2500 if( pPager->errMask!=0 ){
2501 sqlite3pager_unref(PGHDR_TO_DATA(pPg));
2502 rc = pager_errcode(pPager);
2503 return rc;
2505 if( sqlite3pager_pagecount(pPager)<(int)pgno ){
2506 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
2507 }else{
2508 int rc;
2509 assert( MEMDB==0 );
2510 sqlite3OsSeek(&pPager->fd, (pgno-1)*(i64)pPager->pageSize);
2511 rc = sqlite3OsRead(&pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize);
2512 TRACE3("FETCH %d page %d\n", PAGERID(pPager), pPg->pgno);
2513 CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
2514 if( rc!=SQLITE_OK ){
2515 i64 fileSize;
2516 if( sqlite3OsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
2517 || fileSize>=pgno*pPager->pageSize ){
2518 sqlite3pager_unref(PGHDR_TO_DATA(pPg));
2519 return rc;
2520 }else{
2521 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
2523 }else{
2524 TEST_INCR(pPager->nRead);
2527 #ifdef SQLITE_CHECK_PAGES
2528 pPg->pageHash = pager_pagehash(pPg);
2529 #endif
2530 }else{
2531 /* The requested page is in the page cache. */
2532 TEST_INCR(pPager->nHit);
2533 page_ref(pPg);
2535 *ppPage = PGHDR_TO_DATA(pPg);
2536 return SQLITE_OK;
2540 ** Acquire a page if it is already in the in-memory cache. Do
2541 ** not read the page from disk. Return a pointer to the page,
2542 ** or 0 if the page is not in cache.
2544 ** See also sqlite3pager_get(). The difference between this routine
2545 ** and sqlite3pager_get() is that _get() will go to the disk and read
2546 ** in the page if the page is not already in cache. This routine
2547 ** returns NULL if the page is not in cache or if a disk I/O error
2548 ** has ever happened.
2550 void *sqlite3pager_lookup(Pager *pPager, Pgno pgno){
2551 PgHdr *pPg;
2553 assert( pPager!=0 );
2554 assert( pgno!=0 );
2555 if( pPager->errMask & ~(PAGER_ERR_FULL) ){
2556 return 0;
2558 pPg = pager_lookup(pPager, pgno);
2559 if( pPg==0 ) return 0;
2560 page_ref(pPg);
2561 return PGHDR_TO_DATA(pPg);
2565 ** Release a page.
2567 ** If the number of references to the page drop to zero, then the
2568 ** page is added to the LRU list. When all references to all pages
2569 ** are released, a rollback occurs and the lock on the database is
2570 ** removed.
2572 int sqlite3pager_unref(void *pData){
2573 PgHdr *pPg;
2575 /* Decrement the reference count for this page
2577 pPg = DATA_TO_PGHDR(pData);
2578 assert( pPg->nRef>0 );
2579 pPg->nRef--;
2580 REFINFO(pPg);
2582 CHECK_PAGE(pPg);
2584 /* When the number of references to a page reach 0, call the
2585 ** destructor and add the page to the freelist.
2587 if( pPg->nRef==0 ){
2588 Pager *pPager;
2589 pPager = pPg->pPager;
2590 pPg->pNextFree = 0;
2591 pPg->pPrevFree = pPager->pLast;
2592 pPager->pLast = pPg;
2593 if( pPg->pPrevFree ){
2594 pPg->pPrevFree->pNextFree = pPg;
2595 }else{
2596 pPager->pFirst = pPg;
2598 if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
2599 pPager->pFirstSynced = pPg;
2601 if( pPager->xDestructor ){
2602 pPager->xDestructor(pData, pPager->pageSize);
2605 /* When all pages reach the freelist, drop the read lock from
2606 ** the database file.
2608 pPager->nRef--;
2609 assert( pPager->nRef>=0 );
2610 if( pPager->nRef==0 && !MEMDB ){
2611 pager_reset(pPager);
2614 return SQLITE_OK;
2618 ** Create a journal file for pPager. There should already be a RESERVED
2619 ** or EXCLUSIVE lock on the database file when this routine is called.
2621 ** Return SQLITE_OK if everything. Return an error code and release the
2622 ** write lock if anything goes wrong.
2624 static int pager_open_journal(Pager *pPager){
2625 int rc;
2626 assert( !MEMDB );
2627 assert( pPager->state>=PAGER_RESERVED );
2628 assert( pPager->journalOpen==0 );
2629 assert( pPager->useJournal );
2630 assert( pPager->aInJournal==0 );
2631 sqlite3pager_pagecount(pPager);
2632 pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
2633 if( pPager->aInJournal==0 ){
2634 rc = SQLITE_NOMEM;
2635 goto failed_to_open_journal;
2637 rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
2638 pPager->journalOff = 0;
2639 pPager->setMaster = 0;
2640 pPager->journalHdr = 0;
2641 if( rc!=SQLITE_OK ){
2642 goto failed_to_open_journal;
2644 SET_FULLSYNC(pPager->jfd, pPager->fullSync);
2645 SET_FULLSYNC(pPager->fd, pPager->fullSync);
2646 sqlite3OsOpenDirectory(pPager->zDirectory, &pPager->jfd);
2647 pPager->journalOpen = 1;
2648 pPager->journalStarted = 0;
2649 pPager->needSync = 0;
2650 pPager->alwaysRollback = 0;
2651 pPager->nRec = 0;
2652 if( pPager->errMask!=0 ){
2653 rc = pager_errcode(pPager);
2654 goto failed_to_open_journal;
2656 pPager->origDbSize = pPager->dbSize;
2658 rc = writeJournalHdr(pPager);
2660 if( pPager->stmtAutoopen && rc==SQLITE_OK ){
2661 rc = sqlite3pager_stmt_begin(pPager);
2663 if( rc!=SQLITE_OK ){
2664 rc = pager_unwritelock(pPager);
2665 if( rc==SQLITE_OK ){
2666 rc = SQLITE_FULL;
2669 return rc;
2671 failed_to_open_journal:
2672 sqliteFree(pPager->aInJournal);
2673 pPager->aInJournal = 0;
2674 sqlite3OsUnlock(&pPager->fd, NO_LOCK);
2675 pPager->state = PAGER_UNLOCK;
2676 return rc;
2680 ** Acquire a write-lock on the database. The lock is removed when
2681 ** the any of the following happen:
2683 ** * sqlite3pager_commit() is called.
2684 ** * sqlite3pager_rollback() is called.
2685 ** * sqlite3pager_close() is called.
2686 ** * sqlite3pager_unref() is called to on every outstanding page.
2688 ** The first parameter to this routine is a pointer to any open page of the
2689 ** database file. Nothing changes about the page - it is used merely to
2690 ** acquire a pointer to the Pager structure and as proof that there is
2691 ** already a read-lock on the database.
2693 ** The second parameter indicates how much space in bytes to reserve for a
2694 ** master journal file-name at the start of the journal when it is created.
2696 ** A journal file is opened if this is not a temporary file. For temporary
2697 ** files, the opening of the journal file is deferred until there is an
2698 ** actual need to write to the journal.
2700 ** If the database is already reserved for writing, this routine is a no-op.
2702 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
2703 ** immediately instead of waiting until we try to flush the cache. The
2704 ** exFlag is ignored if a transaction is already active.
2706 int sqlite3pager_begin(void *pData, int exFlag){
2707 PgHdr *pPg = DATA_TO_PGHDR(pData);
2708 Pager *pPager = pPg->pPager;
2709 int rc = SQLITE_OK;
2710 assert( pPg->nRef>0 );
2711 assert( pPager->state!=PAGER_UNLOCK );
2712 if( pPager->state==PAGER_SHARED ){
2713 assert( pPager->aInJournal==0 );
2714 if( MEMDB ){
2715 pPager->state = PAGER_EXCLUSIVE;
2716 pPager->origDbSize = pPager->dbSize;
2717 }else{
2718 rc = sqlite3OsLock(&pPager->fd, RESERVED_LOCK);
2719 if( rc==SQLITE_OK ){
2720 pPager->state = PAGER_RESERVED;
2721 if( exFlag ){
2722 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2725 if( rc!=SQLITE_OK ){
2726 return rc;
2728 pPager->dirtyCache = 0;
2729 TRACE2("TRANSACTION %d\n", PAGERID(pPager));
2730 if( pPager->useJournal && !pPager->tempFile ){
2731 rc = pager_open_journal(pPager);
2735 return rc;
2739 ** Mark a data page as writeable. The page is written into the journal
2740 ** if it is not there already. This routine must be called before making
2741 ** changes to a page.
2743 ** The first time this routine is called, the pager creates a new
2744 ** journal and acquires a RESERVED lock on the database. If the RESERVED
2745 ** lock could not be acquired, this routine returns SQLITE_BUSY. The
2746 ** calling routine must check for that return value and be careful not to
2747 ** change any page data until this routine returns SQLITE_OK.
2749 ** If the journal file could not be written because the disk is full,
2750 ** then this routine returns SQLITE_FULL and does an immediate rollback.
2751 ** All subsequent write attempts also return SQLITE_FULL until there
2752 ** is a call to sqlite3pager_commit() or sqlite3pager_rollback() to
2753 ** reset.
2755 int sqlite3pager_write(void *pData){
2756 PgHdr *pPg = DATA_TO_PGHDR(pData);
2757 Pager *pPager = pPg->pPager;
2758 int rc = SQLITE_OK;
2760 /* Check for errors
2762 if( pPager->errMask ){
2763 return pager_errcode(pPager);
2765 if( pPager->readOnly ){
2766 return SQLITE_PERM;
2769 assert( !pPager->setMaster );
2771 CHECK_PAGE(pPg);
2773 /* Mark the page as dirty. If the page has already been written
2774 ** to the journal then we can return right away.
2776 pPg->dirty = 1;
2777 if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){
2778 pPager->dirtyCache = 1;
2779 }else{
2781 /* If we get this far, it means that the page needs to be
2782 ** written to the transaction journal or the ckeckpoint journal
2783 ** or both.
2785 ** First check to see that the transaction journal exists and
2786 ** create it if it does not.
2788 assert( pPager->state!=PAGER_UNLOCK );
2789 rc = sqlite3pager_begin(pData, 0);
2790 if( rc!=SQLITE_OK ){
2791 return rc;
2793 assert( pPager->state>=PAGER_RESERVED );
2794 if( !pPager->journalOpen && pPager->useJournal ){
2795 rc = pager_open_journal(pPager);
2796 if( rc!=SQLITE_OK ) return rc;
2798 assert( pPager->journalOpen || !pPager->useJournal );
2799 pPager->dirtyCache = 1;
2801 /* The transaction journal now exists and we have a RESERVED or an
2802 ** EXCLUSIVE lock on the main database file. Write the current page to
2803 ** the transaction journal if it is not there already.
2805 if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
2806 if( (int)pPg->pgno <= pPager->origDbSize ){
2807 int szPg;
2808 u32 saved;
2809 if( MEMDB ){
2810 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
2811 TRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
2812 assert( pHist->pOrig==0 );
2813 pHist->pOrig = sqliteMallocRaw( pPager->pageSize );
2814 if( pHist->pOrig ){
2815 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
2817 }else{
2818 u32 cksum;
2819 CODEC(pPager, pData, pPg->pgno, 7);
2820 cksum = pager_cksum(pPager, pPg->pgno, pData);
2821 saved = *(u32*)PGHDR_TO_EXTRA(pPg, pPager);
2822 store32bits(cksum, pPg, pPager->pageSize);
2823 szPg = pPager->pageSize+8;
2824 store32bits(pPg->pgno, pPg, -4);
2825 rc = sqlite3OsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
2826 pPager->journalOff += szPg;
2827 TRACE4("JOURNAL %d page %d needSync=%d\n",
2828 PAGERID(pPager), pPg->pgno, pPg->needSync);
2829 CODEC(pPager, pData, pPg->pgno, 0);
2830 *(u32*)PGHDR_TO_EXTRA(pPg, pPager) = saved;
2831 if( rc!=SQLITE_OK ){
2832 sqlite3pager_rollback(pPager);
2833 pPager->errMask |= PAGER_ERR_FULL;
2834 return rc;
2836 pPager->nRec++;
2837 assert( pPager->aInJournal!=0 );
2838 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
2839 pPg->needSync = !pPager->noSync;
2840 if( pPager->stmtInUse ){
2841 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
2842 page_add_to_stmt_list(pPg);
2845 }else{
2846 pPg->needSync = !pPager->journalStarted && !pPager->noSync;
2847 TRACE4("APPEND %d page %d needSync=%d\n",
2848 PAGERID(pPager), pPg->pgno, pPg->needSync);
2850 if( pPg->needSync ){
2851 pPager->needSync = 1;
2853 pPg->inJournal = 1;
2856 /* If the statement journal is open and the page is not in it,
2857 ** then write the current page to the statement journal. Note that
2858 ** the statement journal format differs from the standard journal format
2859 ** in that it omits the checksums and the header.
2861 if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){
2862 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
2863 if( MEMDB ){
2864 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
2865 assert( pHist->pStmt==0 );
2866 pHist->pStmt = sqliteMallocRaw( pPager->pageSize );
2867 if( pHist->pStmt ){
2868 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
2870 TRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
2871 }else{
2872 store32bits(pPg->pgno, pPg, -4);
2873 CODEC(pPager, pData, pPg->pgno, 7);
2874 rc = sqlite3OsWrite(&pPager->stfd,((char*)pData)-4, pPager->pageSize+4);
2875 TRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
2876 CODEC(pPager, pData, pPg->pgno, 0);
2877 if( rc!=SQLITE_OK ){
2878 sqlite3pager_rollback(pPager);
2879 pPager->errMask |= PAGER_ERR_FULL;
2880 return rc;
2882 pPager->stmtNRec++;
2883 assert( pPager->aInStmt!=0 );
2884 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
2886 page_add_to_stmt_list(pPg);
2890 /* Update the database size and return.
2892 if( pPager->dbSize<(int)pPg->pgno ){
2893 pPager->dbSize = pPg->pgno;
2894 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
2895 pPager->dbSize++;
2898 return rc;
2902 ** Return TRUE if the page given in the argument was previously passed
2903 ** to sqlite3pager_write(). In other words, return TRUE if it is ok
2904 ** to change the content of the page.
2906 int sqlite3pager_iswriteable(void *pData){
2907 PgHdr *pPg = DATA_TO_PGHDR(pData);
2908 return pPg->dirty;
2911 #ifndef SQLITE_OMIT_VACUUM
2913 ** Replace the content of a single page with the information in the third
2914 ** argument.
2916 int sqlite3pager_overwrite(Pager *pPager, Pgno pgno, void *pData){
2917 void *pPage;
2918 int rc;
2920 rc = sqlite3pager_get(pPager, pgno, &pPage);
2921 if( rc==SQLITE_OK ){
2922 rc = sqlite3pager_write(pPage);
2923 if( rc==SQLITE_OK ){
2924 memcpy(pPage, pData, pPager->pageSize);
2926 sqlite3pager_unref(pPage);
2928 return rc;
2930 #endif
2933 ** A call to this routine tells the pager that it is not necessary to
2934 ** write the information on page "pgno" back to the disk, even though
2935 ** that page might be marked as dirty.
2937 ** The overlying software layer calls this routine when all of the data
2938 ** on the given page is unused. The pager marks the page as clean so
2939 ** that it does not get written to disk.
2941 ** Tests show that this optimization, together with the
2942 ** sqlite3pager_dont_rollback() below, more than double the speed
2943 ** of large INSERT operations and quadruple the speed of large DELETEs.
2945 ** When this routine is called, set the alwaysRollback flag to true.
2946 ** Subsequent calls to sqlite3pager_dont_rollback() for the same page
2947 ** will thereafter be ignored. This is necessary to avoid a problem
2948 ** where a page with data is added to the freelist during one part of
2949 ** a transaction then removed from the freelist during a later part
2950 ** of the same transaction and reused for some other purpose. When it
2951 ** is first added to the freelist, this routine is called. When reused,
2952 ** the dont_rollback() routine is called. But because the page contains
2953 ** critical data, we still need to be sure it gets rolled back in spite
2954 ** of the dont_rollback() call.
2956 void sqlite3pager_dont_write(Pager *pPager, Pgno pgno){
2957 PgHdr *pPg;
2959 if( MEMDB ) return;
2961 pPg = pager_lookup(pPager, pgno);
2962 pPg->alwaysRollback = 1;
2963 if( pPg && pPg->dirty ){
2964 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
2965 /* If this pages is the last page in the file and the file has grown
2966 ** during the current transaction, then do NOT mark the page as clean.
2967 ** When the database file grows, we must make sure that the last page
2968 ** gets written at least once so that the disk file will be the correct
2969 ** size. If you do not write this page and the size of the file
2970 ** on the disk ends up being too small, that can lead to database
2971 ** corruption during the next transaction.
2973 }else{
2974 TRACE3("DONT_WRITE page %d of %d\n", pgno, PAGERID(pPager));
2975 pPg->dirty = 0;
2976 #ifdef SQLITE_CHECK_PAGES
2977 pPg->pageHash = pager_pagehash(pPg);
2978 #endif
2984 ** A call to this routine tells the pager that if a rollback occurs,
2985 ** it is not necessary to restore the data on the given page. This
2986 ** means that the pager does not have to record the given page in the
2987 ** rollback journal.
2989 void sqlite3pager_dont_rollback(void *pData){
2990 PgHdr *pPg = DATA_TO_PGHDR(pData);
2991 Pager *pPager = pPg->pPager;
2993 if( pPager->state!=PAGER_EXCLUSIVE || pPager->journalOpen==0 ) return;
2994 if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return;
2995 if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
2996 assert( pPager->aInJournal!=0 );
2997 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
2998 pPg->inJournal = 1;
2999 if( pPager->stmtInUse ){
3000 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
3001 page_add_to_stmt_list(pPg);
3003 TRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
3005 if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){
3006 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
3007 assert( pPager->aInStmt!=0 );
3008 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
3009 page_add_to_stmt_list(pPg);
3014 #ifndef SQLITE_OMIT_MEMORYDB
3016 ** Clear a PgHistory block
3018 static void clearHistory(PgHistory *pHist){
3019 sqliteFree(pHist->pOrig);
3020 sqliteFree(pHist->pStmt);
3021 pHist->pOrig = 0;
3022 pHist->pStmt = 0;
3024 #else
3025 #define clearHistory(x)
3026 #endif
3029 ** Commit all changes to the database and release the write lock.
3031 ** If the commit fails for any reason, a rollback attempt is made
3032 ** and an error code is returned. If the commit worked, SQLITE_OK
3033 ** is returned.
3035 int sqlite3pager_commit(Pager *pPager){
3036 int rc;
3037 PgHdr *pPg;
3039 if( pPager->errMask==PAGER_ERR_FULL ){
3040 rc = sqlite3pager_rollback(pPager);
3041 if( rc==SQLITE_OK ){
3042 rc = SQLITE_FULL;
3044 return rc;
3046 if( pPager->errMask!=0 ){
3047 rc = pager_errcode(pPager);
3048 return rc;
3050 if( pPager->state<PAGER_RESERVED ){
3051 return SQLITE_ERROR;
3053 TRACE2("COMMIT %d\n", PAGERID(pPager));
3054 if( MEMDB ){
3055 pPg = pager_get_all_dirty_pages(pPager);
3056 while( pPg ){
3057 clearHistory(PGHDR_TO_HIST(pPg, pPager));
3058 pPg->dirty = 0;
3059 pPg->inJournal = 0;
3060 pPg->inStmt = 0;
3061 pPg->pPrevStmt = pPg->pNextStmt = 0;
3062 pPg = pPg->pDirty;
3064 #ifndef NDEBUG
3065 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
3066 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
3067 assert( !pPg->alwaysRollback );
3068 assert( !pHist->pOrig );
3069 assert( !pHist->pStmt );
3071 #endif
3072 pPager->pStmt = 0;
3073 pPager->state = PAGER_SHARED;
3074 return SQLITE_OK;
3076 if( pPager->dirtyCache==0 ){
3077 /* Exit early (without doing the time-consuming sqlite3OsSync() calls)
3078 ** if there have been no changes to the database file. */
3079 assert( pPager->needSync==0 );
3080 rc = pager_unwritelock(pPager);
3081 pPager->dbSize = -1;
3082 return rc;
3084 assert( pPager->journalOpen );
3085 rc = sqlite3pager_sync(pPager, 0, 0);
3086 if( rc!=SQLITE_OK ){
3087 goto commit_abort;
3089 rc = pager_unwritelock(pPager);
3090 pPager->dbSize = -1;
3091 return rc;
3093 /* Jump here if anything goes wrong during the commit process.
3095 commit_abort:
3096 sqlite3pager_rollback(pPager);
3097 return rc;
3101 ** Rollback all changes. The database falls back to PAGER_SHARED mode.
3102 ** All in-memory cache pages revert to their original data contents.
3103 ** The journal is deleted.
3105 ** This routine cannot fail unless some other process is not following
3106 ** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
3107 ** process is writing trash into the journal file (SQLITE_CORRUPT) or
3108 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
3109 ** codes are returned for all these occasions. Otherwise,
3110 ** SQLITE_OK is returned.
3112 int sqlite3pager_rollback(Pager *pPager){
3113 int rc;
3114 TRACE2("ROLLBACK %d\n", PAGERID(pPager));
3115 if( MEMDB ){
3116 PgHdr *p;
3117 for(p=pPager->pAll; p; p=p->pNextAll){
3118 PgHistory *pHist;
3119 assert( !p->alwaysRollback );
3120 if( !p->dirty ){
3121 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
3122 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
3123 continue;
3126 pHist = PGHDR_TO_HIST(p, pPager);
3127 if( pHist->pOrig ){
3128 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
3129 TRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
3130 }else{
3131 TRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
3133 clearHistory(pHist);
3134 p->dirty = 0;
3135 p->inJournal = 0;
3136 p->inStmt = 0;
3137 p->pPrevStmt = p->pNextStmt = 0;
3139 if( pPager->xReiniter ){
3140 pPager->xReiniter(PGHDR_TO_DATA(p), pPager->pageSize);
3144 pPager->pStmt = 0;
3145 pPager->dbSize = pPager->origDbSize;
3146 memoryTruncate(pPager);
3147 pPager->stmtInUse = 0;
3148 pPager->state = PAGER_SHARED;
3149 return SQLITE_OK;
3152 if( !pPager->dirtyCache || !pPager->journalOpen ){
3153 rc = pager_unwritelock(pPager);
3154 pPager->dbSize = -1;
3155 return rc;
3158 if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
3159 if( pPager->state>=PAGER_EXCLUSIVE ){
3160 pager_playback(pPager);
3162 return pager_errcode(pPager);
3164 if( pPager->state==PAGER_RESERVED ){
3165 int rc2;
3166 rc = pager_reload_cache(pPager);
3167 rc2 = pager_unwritelock(pPager);
3168 if( rc==SQLITE_OK ){
3169 rc = rc2;
3171 }else{
3172 rc = pager_playback(pPager);
3174 if( rc!=SQLITE_OK ){
3175 rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */
3176 pPager->errMask |= PAGER_ERR_CORRUPT;
3178 pPager->dbSize = -1;
3179 return rc;
3183 ** Return TRUE if the database file is opened read-only. Return FALSE
3184 ** if the database is (in theory) writable.
3186 int sqlite3pager_isreadonly(Pager *pPager){
3187 return pPager->readOnly;
3191 ** This routine is used for testing and analysis only.
3193 int *sqlite3pager_stats(Pager *pPager){
3194 static int a[11];
3195 a[0] = pPager->nRef;
3196 a[1] = pPager->nPage;
3197 a[2] = pPager->mxPage;
3198 a[3] = pPager->dbSize;
3199 a[4] = pPager->state;
3200 a[5] = pPager->errMask;
3201 #ifdef SQLITE_TEST
3202 a[6] = pPager->nHit;
3203 a[7] = pPager->nMiss;
3204 a[8] = pPager->nOvfl;
3205 a[9] = pPager->nRead;
3206 a[10] = pPager->nWrite;
3207 #endif
3208 return a;
3212 ** Set the statement rollback point.
3214 ** This routine should be called with the transaction journal already
3215 ** open. A new statement journal is created that can be used to rollback
3216 ** changes of a single SQL command within a larger transaction.
3218 int sqlite3pager_stmt_begin(Pager *pPager){
3219 int rc;
3220 char zTemp[SQLITE_TEMPNAME_SIZE];
3221 assert( !pPager->stmtInUse );
3222 assert( pPager->dbSize>=0 );
3223 TRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
3224 if( MEMDB ){
3225 pPager->stmtInUse = 1;
3226 pPager->stmtSize = pPager->dbSize;
3227 return SQLITE_OK;
3229 if( !pPager->journalOpen ){
3230 pPager->stmtAutoopen = 1;
3231 return SQLITE_OK;
3233 assert( pPager->journalOpen );
3234 pPager->aInStmt = sqliteMalloc( pPager->dbSize/8 + 1 );
3235 if( pPager->aInStmt==0 ){
3236 sqlite3OsLock(&pPager->fd, SHARED_LOCK);
3237 return SQLITE_NOMEM;
3239 #ifndef NDEBUG
3240 rc = sqlite3OsFileSize(&pPager->jfd, &pPager->stmtJSize);
3241 if( rc ) goto stmt_begin_failed;
3242 assert( pPager->stmtJSize == pPager->journalOff );
3243 #endif
3244 pPager->stmtJSize = pPager->journalOff;
3245 pPager->stmtSize = pPager->dbSize;
3246 pPager->stmtHdrOff = 0;
3247 pPager->stmtCksum = pPager->cksumInit;
3248 if( !pPager->stmtOpen ){
3249 rc = sqlite3pager_opentemp(zTemp, &pPager->stfd);
3250 if( rc ) goto stmt_begin_failed;
3251 pPager->stmtOpen = 1;
3252 pPager->stmtNRec = 0;
3254 pPager->stmtInUse = 1;
3255 return SQLITE_OK;
3257 stmt_begin_failed:
3258 if( pPager->aInStmt ){
3259 sqliteFree(pPager->aInStmt);
3260 pPager->aInStmt = 0;
3262 return rc;
3266 ** Commit a statement.
3268 int sqlite3pager_stmt_commit(Pager *pPager){
3269 if( pPager->stmtInUse ){
3270 PgHdr *pPg, *pNext;
3271 TRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
3272 if( !MEMDB ){
3273 sqlite3OsSeek(&pPager->stfd, 0);
3274 /* sqlite3OsTruncate(&pPager->stfd, 0); */
3275 sqliteFree( pPager->aInStmt );
3276 pPager->aInStmt = 0;
3278 for(pPg=pPager->pStmt; pPg; pPg=pNext){
3279 pNext = pPg->pNextStmt;
3280 assert( pPg->inStmt );
3281 pPg->inStmt = 0;
3282 pPg->pPrevStmt = pPg->pNextStmt = 0;
3283 if( MEMDB ){
3284 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
3285 sqliteFree(pHist->pStmt);
3286 pHist->pStmt = 0;
3289 pPager->stmtNRec = 0;
3290 pPager->stmtInUse = 0;
3291 pPager->pStmt = 0;
3293 pPager->stmtAutoopen = 0;
3294 return SQLITE_OK;
3298 ** Rollback a statement.
3300 int sqlite3pager_stmt_rollback(Pager *pPager){
3301 int rc;
3302 if( pPager->stmtInUse ){
3303 TRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
3304 if( MEMDB ){
3305 PgHdr *pPg;
3306 for(pPg=pPager->pStmt; pPg; pPg=pPg->pNextStmt){
3307 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
3308 if( pHist->pStmt ){
3309 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
3310 sqliteFree(pHist->pStmt);
3311 pHist->pStmt = 0;
3314 pPager->dbSize = pPager->stmtSize;
3315 memoryTruncate(pPager);
3316 rc = SQLITE_OK;
3317 }else{
3318 rc = pager_stmt_playback(pPager);
3320 sqlite3pager_stmt_commit(pPager);
3321 }else{
3322 rc = SQLITE_OK;
3324 pPager->stmtAutoopen = 0;
3325 return rc;
3329 ** Return the full pathname of the database file.
3331 const char *sqlite3pager_filename(Pager *pPager){
3332 return pPager->zFilename;
3336 ** Return the directory of the database file.
3338 const char *sqlite3pager_dirname(Pager *pPager){
3339 return pPager->zDirectory;
3343 ** Return the full pathname of the journal file.
3345 const char *sqlite3pager_journalname(Pager *pPager){
3346 return pPager->zJournal;
3350 ** Set the codec for this pager
3352 void sqlite3pager_set_codec(
3353 Pager *pPager,
3354 void (*xCodec)(void*,void*,Pgno,int),
3355 void *pCodecArg
3357 pPager->xCodec = xCodec;
3358 pPager->pCodecArg = pCodecArg;
3362 ** This routine is called to increment the database file change-counter,
3363 ** stored at byte 24 of the pager file.
3365 static int pager_incr_changecounter(Pager *pPager){
3366 void *pPage;
3367 PgHdr *pPgHdr;
3368 u32 change_counter;
3369 int rc;
3371 /* Open page 1 of the file for writing. */
3372 rc = sqlite3pager_get(pPager, 1, &pPage);
3373 if( rc!=SQLITE_OK ) return rc;
3374 rc = sqlite3pager_write(pPage);
3375 if( rc!=SQLITE_OK ) return rc;
3377 /* Read the current value at byte 24. */
3378 pPgHdr = DATA_TO_PGHDR(pPage);
3379 change_counter = retrieve32bits(pPgHdr, 24);
3381 /* Increment the value just read and write it back to byte 24. */
3382 change_counter++;
3383 store32bits(change_counter, pPgHdr, 24);
3385 /* Release the page reference. */
3386 sqlite3pager_unref(pPage);
3387 return SQLITE_OK;
3391 ** Sync the database file for the pager pPager. zMaster points to the name
3392 ** of a master journal file that should be written into the individual
3393 ** journal file. zMaster may be NULL, which is interpreted as no master
3394 ** journal (a single database transaction).
3396 ** This routine ensures that the journal is synced, all dirty pages written
3397 ** to the database file and the database file synced. The only thing that
3398 ** remains to commit the transaction is to delete the journal file (or
3399 ** master journal file if specified).
3401 ** Note that if zMaster==NULL, this does not overwrite a previous value
3402 ** passed to an sqlite3pager_sync() call.
3404 ** If parameter nTrunc is non-zero, then the pager file is truncated to
3405 ** nTrunc pages (this is used by auto-vacuum databases).
3407 int sqlite3pager_sync(Pager *pPager, const char *zMaster, Pgno nTrunc){
3408 int rc = SQLITE_OK;
3410 TRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
3411 pPager->zFilename, zMaster, nTrunc);
3413 /* If this is an in-memory db, or no pages have been written to, or this
3414 ** function has already been called, it is a no-op.
3416 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
3417 PgHdr *pPg;
3418 assert( pPager->journalOpen );
3420 /* If a master journal file name has already been written to the
3421 ** journal file, then no sync is required. This happens when it is
3422 ** written, then the process fails to upgrade from a RESERVED to an
3423 ** EXCLUSIVE lock. The next time the process tries to commit the
3424 ** transaction the m-j name will have already been written.
3426 if( !pPager->setMaster ){
3427 rc = pager_incr_changecounter(pPager);
3428 if( rc!=SQLITE_OK ) goto sync_exit;
3429 #ifndef SQLITE_OMIT_AUTOVACUUM
3430 if( nTrunc!=0 ){
3431 /* If this transaction has made the database smaller, then all pages
3432 ** being discarded by the truncation must be written to the journal
3433 ** file.
3435 Pgno i;
3436 void *pPage;
3437 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
3438 if( !(pPager->aInJournal[i/8] & (1<<(i&7))) ){
3439 rc = sqlite3pager_get(pPager, i, &pPage);
3440 if( rc!=SQLITE_OK ) goto sync_exit;
3441 rc = sqlite3pager_write(pPage);
3442 sqlite3pager_unref(pPage);
3443 if( rc!=SQLITE_OK ) goto sync_exit;
3447 #endif
3448 rc = writeMasterJournal(pPager, zMaster);
3449 if( rc!=SQLITE_OK ) goto sync_exit;
3450 rc = syncJournal(pPager);
3451 if( rc!=SQLITE_OK ) goto sync_exit;
3454 #ifndef SQLITE_OMIT_AUTOVACUUM
3455 if( nTrunc!=0 ){
3456 rc = sqlite3pager_truncate(pPager, nTrunc);
3457 if( rc!=SQLITE_OK ) goto sync_exit;
3459 #endif
3461 /* Write all dirty pages to the database file */
3462 pPg = pager_get_all_dirty_pages(pPager);
3463 rc = pager_write_pagelist(pPg);
3464 if( rc!=SQLITE_OK ) goto sync_exit;
3466 /* Sync the database file. */
3467 if( !pPager->noSync ){
3468 rc = sqlite3OsSync(&pPager->fd);
3471 pPager->state = PAGER_SYNCED;
3474 sync_exit:
3475 return rc;
3478 #ifndef SQLITE_OMIT_AUTOVACUUM
3480 ** Move the page identified by pData to location pgno in the file.
3482 ** There must be no references to the current page pgno. If current page
3483 ** pgno is not already in the rollback journal, it is not written there by
3484 ** by this routine. The same applies to the page pData refers to on entry to
3485 ** this routine.
3487 ** References to the page refered to by pData remain valid. Updating any
3488 ** meta-data associated with page pData (i.e. data stored in the nExtra bytes
3489 ** allocated along with the page) is the responsibility of the caller.
3491 ** A transaction must be active when this routine is called. It used to be
3492 ** required that a statement transaction was not active, but this restriction
3493 ** has been removed (CREATE INDEX needs to move a page when a statement
3494 ** transaction is active).
3496 int sqlite3pager_movepage(Pager *pPager, void *pData, Pgno pgno){
3497 PgHdr *pPg = DATA_TO_PGHDR(pData);
3498 PgHdr *pPgOld;
3499 int h;
3500 Pgno needSyncPgno = 0;
3502 assert( pPg->nRef>0 );
3504 TRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
3505 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
3507 if( pPg->needSync ){
3508 needSyncPgno = pPg->pgno;
3509 assert( pPg->inJournal );
3510 assert( pPg->dirty );
3511 assert( pPager->needSync );
3514 /* Unlink pPg from it's hash-chain */
3515 unlinkHashChain(pPager, pPg);
3517 /* If the cache contains a page with page-number pgno, remove it
3518 ** from it's hash chain. Also, if the PgHdr.needSync was set for
3519 ** page pgno before the 'move' operation, it needs to be retained
3520 ** for the page moved there.
3522 pPgOld = pager_lookup(pPager, pgno);
3523 if( pPgOld ){
3524 assert( pPgOld->nRef==0 );
3525 unlinkHashChain(pPager, pPgOld);
3526 pPgOld->dirty = 0;
3527 if( pPgOld->needSync ){
3528 assert( pPgOld->inJournal );
3529 pPg->inJournal = 1;
3530 pPg->needSync = 1;
3531 assert( pPager->needSync );
3535 /* Change the page number for pPg and insert it into the new hash-chain. */
3536 pPg->pgno = pgno;
3537 h = pager_hash(pgno);
3538 if( pPager->aHash[h] ){
3539 assert( pPager->aHash[h]->pPrevHash==0 );
3540 pPager->aHash[h]->pPrevHash = pPg;
3542 pPg->pNextHash = pPager->aHash[h];
3543 pPager->aHash[h] = pPg;
3544 pPg->pPrevHash = 0;
3546 pPg->dirty = 1;
3547 pPager->dirtyCache = 1;
3549 if( needSyncPgno ){
3550 /* If needSyncPgno is non-zero, then the journal file needs to be
3551 ** sync()ed before any data is written to database file page needSyncPgno.
3552 ** Currently, no such page exists in the page-cache and the
3553 ** Pager.aInJournal bit has been set. This needs to be remedied by loading
3554 ** the page into the pager-cache and setting the PgHdr.needSync flag.
3556 ** The sqlite3pager_get() call may cause the journal to sync. So make
3557 ** sure the Pager.needSync flag is set too.
3559 int rc;
3560 void *pNeedSync;
3561 assert( pPager->needSync );
3562 rc = sqlite3pager_get(pPager, needSyncPgno, &pNeedSync);
3563 if( rc!=SQLITE_OK ) return rc;
3564 pPager->needSync = 1;
3565 DATA_TO_PGHDR(pNeedSync)->needSync = 1;
3566 DATA_TO_PGHDR(pNeedSync)->inJournal = 1;
3567 DATA_TO_PGHDR(pNeedSync)->dirty = 1;
3568 sqlite3pager_unref(pNeedSync);
3571 return SQLITE_OK;
3573 #endif
3575 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
3577 ** Return the current state of the file lock for the given pager.
3578 ** The return value is one of NO_LOCK, SHARED_LOCK, RESERVED_LOCK,
3579 ** PENDING_LOCK, or EXCLUSIVE_LOCK.
3581 int sqlite3pager_lockstate(Pager *pPager){
3582 #ifdef OS_TEST
3583 return pPager->fd->fd.locktype;
3584 #else
3585 return pPager->fd.locktype;
3586 #endif
3588 #endif
3590 #ifdef SQLITE_DEBUG
3592 ** Print a listing of all referenced pages and their ref count.
3594 void sqlite3pager_refdump(Pager *pPager){
3595 PgHdr *pPg;
3596 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
3597 if( pPg->nRef<=0 ) continue;
3598 sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
3599 pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
3602 #endif
3604 #endif /* SQLITE_OMIT_DISKIO */