Merge 'remotes/trunk'
[0ad.git] / source / collada / Decompose.cpp
blob0fa9231c079e37f3f9da794051bbf32a5c209037
1 /* Copyright (C) 2018 Wildfire Games.
2 * This file is part of 0 A.D.
4 * 0 A.D. is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
9 * 0 A.D. is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
18 #include "precompiled.h"
20 #ifdef _MSC_VER
21 # pragma warning(disable: 4244 4305 4127 4701)
22 #endif
24 /**** Decompose.c ****/
25 /* Ken Shoemake, 1993 */
26 #include <math.h>
27 #include "Decompose.h"
29 /******* Matrix Preliminaries *******/
31 /** Fill out 3x3 matrix to 4x4 **/
32 #define mat_pad(A) (A[W][X]=A[X][W]=A[W][Y]=A[Y][W]=A[W][Z]=A[Z][W]=0,A[W][W]=1)
34 /** Copy nxn matrix A to C using "gets" for assignment **/
35 #define mat_copy(C,gets,A,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
36 C[i][j] gets (A[i][j]);}
38 /** Copy transpose of nxn matrix A to C using "gets" for assignment **/
39 #define mat_tpose(AT,gets,A,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
40 AT[i][j] gets (A[j][i]);}
42 /** Assign nxn matrix C the element-wise combination of A and B using "op" **/
43 #define mat_binop(C,gets,A,op,B,n) {for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j)\
44 C[i][j] gets (A[i][j]) op (B[i][j]);}
46 /** Multiply the upper left 3x3 parts of A and B to get AB **/
47 void mat_mult(HMatrix A, HMatrix B, HMatrix AB)
49 int i, j;
50 for (i=0; i<3; i++) for (j=0; j<3; j++)
51 AB[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j] + A[i][2]*B[2][j];
54 /** Return dot product of length 3 vectors va and vb **/
55 float vdot(float *va, float *vb)
57 return (va[0]*vb[0] + va[1]*vb[1] + va[2]*vb[2]);
60 /** Set v to cross product of length 3 vectors va and vb **/
61 void vcross(float *va, float *vb, float *v)
63 v[0] = va[1]*vb[2] - va[2]*vb[1];
64 v[1] = va[2]*vb[0] - va[0]*vb[2];
65 v[2] = va[0]*vb[1] - va[1]*vb[0];
68 /** Set MadjT to transpose of inverse of M times determinant of M **/
69 void adjoint_transpose(HMatrix M, HMatrix MadjT)
71 vcross(M[1], M[2], MadjT[0]);
72 vcross(M[2], M[0], MadjT[1]);
73 vcross(M[0], M[1], MadjT[2]);
76 /******* Quaternion Preliminaries *******/
78 /* Construct a (possibly non-unit) quaternion from real components. */
79 Quat Qt_(float x, float y, float z, float w)
81 Quat qq;
82 qq.x = x; qq.y = y; qq.z = z; qq.w = w;
83 return (qq);
86 /* Return conjugate of quaternion. */
87 Quat Qt_Conj(Quat q)
89 Quat qq;
90 qq.x = -q.x; qq.y = -q.y; qq.z = -q.z; qq.w = q.w;
91 return (qq);
94 /* Return quaternion product qL * qR. Note: order is important!
95 * To combine rotations, use the product Mul(qSecond, qFirst),
96 * which gives the effect of rotating by qFirst then qSecond. */
97 Quat Qt_Mul(Quat qL, Quat qR)
99 Quat qq;
100 qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
101 qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
102 qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
103 qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
104 return (qq);
107 /* Return product of quaternion q by scalar w. */
108 Quat Qt_Scale(Quat q, float w)
110 Quat qq;
111 qq.w = q.w*w; qq.x = q.x*w; qq.y = q.y*w; qq.z = q.z*w;
112 return (qq);
115 /* Construct a unit quaternion from rotation matrix. Assumes matrix is
116 * used to multiply column vector on the left: vnew = mat vold. Works
117 * correctly for right-handed coordinate system and right-handed rotations.
118 * Translation and perspective components ignored. */
119 Quat Qt_FromMatrix(HMatrix mat)
121 /* This algorithm avoids near-zero divides by looking for a large component
122 * - first w, then x, y, or z. When the trace is greater than zero,
123 * |w| is greater than 1/2, which is as small as a largest component can be.
124 * Otherwise, the largest diagonal entry corresponds to the largest of |x|,
125 * |y|, or |z|, one of which must be larger than |w|, and at least 1/2. */
126 Quat qu;
127 double tr, s;
129 tr = mat[X][X] + mat[Y][Y]+ mat[Z][Z];
130 if (tr >= 0.0) {
131 s = sqrt(tr + mat[W][W]);
132 qu.w = s*0.5;
133 s = 0.5 / s;
134 qu.x = (mat[Z][Y] - mat[Y][Z]) * s;
135 qu.y = (mat[X][Z] - mat[Z][X]) * s;
136 qu.z = (mat[Y][X] - mat[X][Y]) * s;
137 } else {
138 int h = X;
139 if (mat[Y][Y] > mat[X][X]) h = Y;
140 if (mat[Z][Z] > mat[h][h]) h = Z;
141 switch (h) {
142 #define caseMacro(i,j,k,I,J,K) \
143 case I:\
144 s = sqrt( (mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W] );\
145 qu.i = s*0.5;\
146 s = 0.5 / s;\
147 qu.j = (mat[I][J] + mat[J][I]) * s;\
148 qu.k = (mat[K][I] + mat[I][K]) * s;\
149 qu.w = (mat[K][J] - mat[J][K]) * s;\
150 break
151 caseMacro(x,y,z,X,Y,Z);
152 caseMacro(y,z,x,Y,Z,X);
153 caseMacro(z,x,y,Z,X,Y);
156 if (mat[W][W] != 1.0) qu = Qt_Scale(qu, 1/sqrt(mat[W][W]));
157 return (qu);
159 /******* Decomp Auxiliaries *******/
161 static HMatrix mat_id = {{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}};
163 /** Compute either the 1 or infinity norm of M, depending on tpose **/
164 float mat_norm(HMatrix M, int tpose)
166 int i;
167 float sum, max;
168 max = 0.0;
169 for (i=0; i<3; i++) {
170 if (tpose) sum = fabs(M[0][i])+fabs(M[1][i])+fabs(M[2][i]);
171 else sum = fabs(M[i][0])+fabs(M[i][1])+fabs(M[i][2]);
172 if (max<sum) max = sum;
174 return max;
177 float norm_inf(HMatrix M) {return mat_norm(M, 0);}
178 float norm_one(HMatrix M) {return mat_norm(M, 1);}
180 /** Return index of column of M containing maximum abs entry, or -1 if M=0 **/
181 int find_max_col(HMatrix M)
183 float abs, max;
184 int i, j, col;
185 max = 0.0; col = -1;
186 for (i=0; i<3; i++) for (j=0; j<3; j++) {
187 abs = M[i][j]; if (abs<0.0) abs = -abs;
188 if (abs>max) {max = abs; col = j;}
190 return col;
193 /** Setup u for Household reflection to zero all v components but first **/
194 void make_reflector(float *v, float *u)
196 float s = sqrt(vdot(v, v));
197 u[0] = v[0]; u[1] = v[1];
198 u[2] = v[2] + ((v[2]<0.0) ? -s : s);
199 s = sqrt(2.0/vdot(u, u));
200 u[0] = u[0]*s; u[1] = u[1]*s; u[2] = u[2]*s;
203 /** Apply Householder reflection represented by u to column vectors of M **/
204 void reflect_cols(HMatrix M, float *u)
206 int i, j;
207 for (i=0; i<3; i++) {
208 float s = u[0]*M[0][i] + u[1]*M[1][i] + u[2]*M[2][i];
209 for (j=0; j<3; j++) M[j][i] -= u[j]*s;
212 /** Apply Householder reflection represented by u to row vectors of M **/
213 void reflect_rows(HMatrix M, float *u)
215 int i, j;
216 for (i=0; i<3; i++) {
217 float s = vdot(u, M[i]);
218 for (j=0; j<3; j++) M[i][j] -= u[j]*s;
222 /** Find orthogonal factor Q of rank 1 (or less) M **/
223 void do_rank1(HMatrix M, HMatrix Q)
225 float v1[3], v2[3], s;
226 int col;
227 mat_copy(Q,=,mat_id,4);
228 /* If rank(M) is 1, we should find a non-zero column in M */
229 col = find_max_col(M);
230 if (col<0) return; /* Rank is 0 */
231 v1[0] = M[0][col]; v1[1] = M[1][col]; v1[2] = M[2][col];
232 make_reflector(v1, v1); reflect_cols(M, v1);
233 v2[0] = M[2][0]; v2[1] = M[2][1]; v2[2] = M[2][2];
234 make_reflector(v2, v2); reflect_rows(M, v2);
235 s = M[2][2];
236 if (s<0.0) Q[2][2] = -1.0;
237 reflect_cols(Q, v1); reflect_rows(Q, v2);
240 /** Find orthogonal factor Q of rank 2 (or less) M using adjoint transpose **/
241 void do_rank2(HMatrix M, HMatrix MadjT, HMatrix Q)
243 float v1[3], v2[3];
244 float w, x, y, z, c, s, d;
245 int col;
246 /* If rank(M) is 2, we should find a non-zero column in MadjT */
247 col = find_max_col(MadjT);
248 if (col<0) {do_rank1(M, Q); return;} /* Rank<2 */
249 v1[0] = MadjT[0][col]; v1[1] = MadjT[1][col]; v1[2] = MadjT[2][col];
250 make_reflector(v1, v1); reflect_cols(M, v1);
251 vcross(M[0], M[1], v2);
252 make_reflector(v2, v2); reflect_rows(M, v2);
253 w = M[0][0]; x = M[0][1]; y = M[1][0]; z = M[1][1];
254 if (w*z>x*y) {
255 c = z+w; s = y-x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
256 Q[0][0] = Q[1][1] = c; Q[0][1] = -(Q[1][0] = s);
257 } else {
258 c = z-w; s = y+x; d = sqrt(c*c+s*s); c = c/d; s = s/d;
259 Q[0][0] = -(Q[1][1] = c); Q[0][1] = Q[1][0] = s;
261 Q[0][2] = Q[2][0] = Q[1][2] = Q[2][1] = 0.0; Q[2][2] = 1.0;
262 reflect_cols(Q, v1); reflect_rows(Q, v2);
266 /******* Polar Decomposition *******/
268 /* Polar Decomposition of 3x3 matrix in 4x4,
269 * M = QS. See Nicholas Higham and Robert S. Schreiber,
270 * Fast Polar Decomposition of An Arbitrary Matrix,
271 * Technical Report 88-942, October 1988,
272 * Department of Computer Science, Cornell University.
274 float polar_decomp(HMatrix M, HMatrix Q, HMatrix S)
276 #define TOL 1.0e-6
277 HMatrix Mk, MadjTk, Ek;
278 float det, M_one, M_inf, MadjT_one, MadjT_inf, E_one, gamma, g1, g2;
279 mat_tpose(Mk,=,M,3);
280 M_one = norm_one(Mk); M_inf = norm_inf(Mk);
281 do {
282 adjoint_transpose(Mk, MadjTk);
283 det = vdot(Mk[0], MadjTk[0]);
284 if (det==0.0) {do_rank2(Mk, MadjTk, Mk); break;}
285 MadjT_one = norm_one(MadjTk); MadjT_inf = norm_inf(MadjTk);
286 gamma = sqrt(sqrt((MadjT_one*MadjT_inf)/(M_one*M_inf))/fabs(det));
287 g1 = gamma*0.5;
288 g2 = 0.5/(gamma*det);
289 mat_copy(Ek,=,Mk,3);
290 mat_binop(Mk,=,g1*Mk,+,g2*MadjTk,3);
291 mat_copy(Ek,-=,Mk,3);
292 E_one = norm_one(Ek);
293 M_one = norm_one(Mk); M_inf = norm_inf(Mk);
294 } while (E_one>(M_one*TOL));
295 mat_tpose(Q,=,Mk,3); mat_pad(Q);
296 mat_mult(Mk, M, S); mat_pad(S);
297 for (int i = 0; i < 3; i++) for (int j = i; j < 3; j++)
298 S[i][j] = S[j][i] = 0.5*(S[i][j]+S[j][i]);
299 return (det);
318 /******* Spectral Decomposition *******/
320 /* Compute the spectral decomposition of symmetric positive semi-definite S.
321 * Returns rotation in U and scale factors in result, so that if K is a diagonal
322 * matrix of the scale factors, then S = U K (U transpose). Uses Jacobi method.
323 * See Gene H. Golub and Charles F. Van Loan. Matrix Computations. Hopkins 1983.
325 HVect spect_decomp(HMatrix S, HMatrix U)
327 HVect kv;
328 double Diag[3], OffD[3]; /* OffD is off-diag (by omitted index) */
329 double g, h, fabsh, fabsOffDi, t, theta, c, s, tau, ta, OffDq, a, b;
330 static char nxt[] = {Y, Z, X};
331 mat_copy(U, =, mat_id, 4);
332 Diag[X] = S[X][X];
333 Diag[Y] = S[Y][Y];
334 Diag[Z] = S[Z][Z];
335 OffD[X] = S[Y][Z];
336 OffD[Y] = S[Z][X];
337 OffD[Z] = S[X][Y];
338 for (int sweep = 20; sweep > 0; --sweep)
340 float sm = fabs(OffD[X]) + fabs(OffD[Y]) + fabs(OffD[Z]);
341 if (sm == 0.0)
342 break;
343 for (int i = Z; i >= X; --i)
345 int p = nxt[i];
346 int q = nxt[p];
347 fabsOffDi = fabs(OffD[i]);
348 g = 100.0 * fabsOffDi;
349 if (fabsOffDi > 0.0)
351 h = Diag[q] - Diag[p];
352 fabsh = fabs(h);
353 if (fabsh + g == fabsh)
355 t = OffD[i] / h;
357 else
359 theta = 0.5 * h / OffD[i];
360 t = 1.0 / (fabs(theta) + sqrt(theta * theta + 1.0));
361 if (theta < 0.0)
362 t = -t;
364 c = 1.0 / sqrt(t * t + 1.0);
365 s = t * c;
366 tau = s / (c + 1.0);
367 ta = t * OffD[i];
368 OffD[i] = 0.0;
369 Diag[p] -= ta;
370 Diag[q] += ta;
371 OffDq = OffD[q];
372 OffD[q] -= s * (OffD[p] + tau * OffD[q]);
373 OffD[p] += s * (OffDq - tau * OffD[p]);
374 for (int j = Z; j >= X; --j)
376 a = U[j][p];
377 b = U[j][q];
378 U[j][p] -= s * (b + tau * a);
379 U[j][q] += s * (a - tau * b);
384 kv.x = Diag[X];
385 kv.y = Diag[Y];
386 kv.z = Diag[Z];
387 kv.w = 1.0;
388 return kv;
391 /******* Spectral Axis Adjustment *******/
393 /* Given a unit quaternion, q, and a scale vector, k, find a unit quaternion, p,
394 * which permutes the axes and turns freely in the plane of duplicate scale
395 * factors, such that q p has the largest possible w component, i.e. the
396 * smallest possible angle. Permutes k's components to go with q p instead of q.
397 * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition.
398 * Proceedings of Graphics Interface 1992. Details on p. 262-263.
400 Quat snuggle(Quat q, HVect *k)
402 #define SQRTHALF (0.7071067811865475244)
403 #define sgn(n,v) ((n)?-(v):(v))
404 #define swap(a,i,j) {a[3]=a[i]; a[i]=a[j]; a[j]=a[3];}
405 #define cycle(a,p) if (p) {a[3]=a[0]; a[0]=a[1]; a[1]=a[2]; a[2]=a[3];}\
406 else {a[3]=a[2]; a[2]=a[1]; a[1]=a[0]; a[0]=a[3];}
407 Quat p;
408 float ka[4];
409 int turn = -1;
410 ka[X] = k->x; ka[Y] = k->y; ka[Z] = k->z;
411 if (ka[X]==ka[Y]) {if (ka[X]==ka[Z]) turn = W; else turn = Z;}
412 else {if (ka[X]==ka[Z]) turn = Y; else if (ka[Y]==ka[Z]) turn = X;}
413 if (turn>=0) {
414 Quat qtoz, qp;
415 unsigned neg[3], win;
416 double mag[3], t;
417 static Quat qxtoz = {.0f, static_cast<float>(SQRTHALF), .0f, static_cast<float>(SQRTHALF)};
418 static Quat qytoz = {static_cast<float>(SQRTHALF), .0f, .0f, static_cast<float>(SQRTHALF)};
419 static Quat qppmm = { 0.5, 0.5,-0.5,-0.5};
420 static Quat qpppp = { 0.5, 0.5, 0.5, 0.5};
421 static Quat qmpmm = {-0.5, 0.5,-0.5,-0.5};
422 static Quat qpppm = { 0.5, 0.5, 0.5,-0.5};
423 static Quat q0001 = { 0.0, 0.0, 0.0, 1.0};
424 static Quat q1000 = { 1.0, 0.0, 0.0, 0.0};
425 switch (turn) {
426 default: return (Qt_Conj(q));
427 case X: q = Qt_Mul(q, qtoz = qxtoz); swap(ka,X,Z) break;
428 case Y: q = Qt_Mul(q, qtoz = qytoz); swap(ka,Y,Z) break;
429 case Z: qtoz = q0001; break;
431 q = Qt_Conj(q);
432 mag[0] = (double)q.z*q.z+(double)q.w*q.w-0.5;
433 mag[1] = (double)q.x*q.z-(double)q.y*q.w;
434 mag[2] = (double)q.y*q.z+(double)q.x*q.w;
435 for (int i = 0; i < 3; ++i) if ((neg[i] = (mag[i] < 0.0)) != 0) mag[i] = -mag[i];
436 if (mag[0]>mag[1]) {if (mag[0]>mag[2]) win = 0; else win = 2;}
437 else {if (mag[1]>mag[2]) win = 1; else win = 2;}
438 switch (win) {
439 case 0: if (neg[0]) p = q1000; else p = q0001; break;
440 case 1: if (neg[1]) p = qppmm; else p = qpppp; cycle(ka,0) break;
441 case 2: if (neg[2]) p = qmpmm; else p = qpppm; cycle(ka,1) break;
443 qp = Qt_Mul(q, p);
444 t = sqrt(mag[win]+0.5);
445 p = Qt_Mul(p, Qt_(0.0,0.0,-qp.z/t,qp.w/t));
446 p = Qt_Mul(qtoz, Qt_Conj(p));
447 } else {
448 float qa[4], pa[4];
449 unsigned lo, hi, neg[4], par = 0;
450 double all, big, two;
451 qa[0] = q.x; qa[1] = q.y; qa[2] = q.z; qa[3] = q.w;
452 for (int i = 0; i < 4; ++i) {
453 pa[i] = 0.0;
454 if ((neg[i] = (qa[i]<0.0)) != 0) qa[i] = -qa[i];
455 par ^= neg[i];
457 /* Find two largest components, indices in hi and lo */
458 if (qa[0]>qa[1]) lo = 0; else lo = 1;
459 if (qa[2]>qa[3]) hi = 2; else hi = 3;
460 if (qa[lo]>qa[hi]) {
461 if (qa[lo^1]>qa[hi]) {hi = lo; lo ^= 1;}
462 else {hi ^= lo; lo ^= hi; hi ^= lo;}
463 } else {if (qa[hi^1]>qa[lo]) lo = hi^1;}
464 all = (qa[0]+qa[1]+qa[2]+qa[3])*0.5;
465 two = (qa[hi]+qa[lo])*SQRTHALF;
466 big = qa[hi];
467 if (all>two) {
468 if (all>big) {/*all*/
469 {int i; for (i=0; i<4; i++) pa[i] = sgn(neg[i], 0.5);}
470 cycle(ka,par)
471 } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);}
472 } else {
473 if (two>big) {/*two*/
474 pa[hi] = sgn(neg[hi],SQRTHALF); pa[lo] = sgn(neg[lo], SQRTHALF);
475 if (lo>hi) {hi ^= lo; lo ^= hi; hi ^= lo;}
476 if (hi==W) {hi = "\001\002\000"[lo]; lo = 3-hi-lo;}
477 swap(ka,hi,lo)
478 } else {/*big*/ pa[hi] = sgn(neg[hi],1.0);}
480 p.x = -pa[0]; p.y = -pa[1]; p.z = -pa[2]; p.w = pa[3];
482 k->x = ka[X]; k->y = ka[Y]; k->z = ka[Z];
483 return (p);
496 /******* Decompose Affine Matrix *******/
498 /* Decompose 4x4 affine matrix A as TFRUK(U transpose), where t contains the
499 * translation components, q contains the rotation R, u contains U, k contains
500 * scale factors, and f contains the sign of the determinant.
501 * Assumes A transforms column vectors in right-handed coordinates.
502 * See Ken Shoemake and Tom Duff. Matrix Animation and Polar Decomposition.
503 * Proceedings of Graphics Interface 1992.
505 void decomp_affine(HMatrix A, AffineParts *parts)
507 HMatrix Q, S, U;
508 Quat p;
509 float det;
510 parts->t = Qt_(A[X][W], A[Y][W], A[Z][W], 0);
511 det = polar_decomp(A, Q, S);
512 if (det<0.0) {
513 mat_copy(Q,=,-Q,3);
514 parts->f = -1;
515 } else parts->f = 1;
516 parts->q = Qt_FromMatrix(Q);
517 parts->k = spect_decomp(S, U);
518 parts->u = Qt_FromMatrix(U);
519 p = snuggle(parts->u, &parts->k);
520 parts->u = Qt_Mul(parts->u, p);
523 /******* Invert Affine Decomposition *******/
525 /* Compute inverse of affine decomposition.
527 void invert_affine(AffineParts *parts, AffineParts *inverse)
529 Quat t, p;
530 inverse->f = parts->f;
531 inverse->q = Qt_Conj(parts->q);
532 inverse->u = Qt_Mul(parts->q, parts->u);
533 inverse->k.x = (parts->k.x==0.0) ? 0.0 : 1.0/parts->k.x;
534 inverse->k.y = (parts->k.y==0.0) ? 0.0 : 1.0/parts->k.y;
535 inverse->k.z = (parts->k.z==0.0) ? 0.0 : 1.0/parts->k.z;
536 inverse->k.w = parts->k.w;
537 t = Qt_(-parts->t.x, -parts->t.y, -parts->t.z, 0);
538 t = Qt_Mul(Qt_Conj(inverse->u), Qt_Mul(t, inverse->u));
539 t = Qt_(inverse->k.x*t.x, inverse->k.y*t.y, inverse->k.z*t.z, 0);
540 p = Qt_Mul(inverse->q, inverse->u);
541 t = Qt_Mul(p, Qt_Mul(t, Qt_Conj(p)));
542 inverse->t = (inverse->f>0.0) ? t : Qt_(-t.x, -t.y, -t.z, 0);