Merge 'remotes/trunk'
[0ad.git] / source / renderer / TexturedLineRData.cpp
blob6797047cab7c6488ffae1060dacfbeb4c892e9d8
1 /* Copyright (C) 2017 Wildfire Games.
2 * This file is part of 0 A.D.
4 * 0 A.D. is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
9 * 0 A.D. is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
18 #include "precompiled.h"
20 #include "TexturedLineRData.h"
22 #include "graphics/Terrain.h"
23 #include "maths/MathUtil.h"
24 #include "maths/Quaternion.h"
25 #include "renderer/OverlayRenderer.h"
26 #include "renderer/Renderer.h"
27 #include "simulation2/Simulation2.h"
28 #include "simulation2/system/SimContext.h"
29 #include "simulation2/components/ICmpWaterManager.h"
31 /* Note: this implementation uses g_VBMan directly rather than access it through the nicer VertexArray interface,
32 * because it allows you to work with variable amounts of vertices and indices more easily. New code should prefer
33 * to use VertexArray where possible, though. */
35 void CTexturedLineRData::Render(const SOverlayTexturedLine& line, const CShaderProgramPtr& shader)
37 if (!m_VB || !m_VBIndices)
38 return; // might have failed to allocate
40 // -- render main line quad strip ----------------------
42 const int streamFlags = shader->GetStreamFlags();
44 shader->BindTexture(str_baseTex, line.m_TextureBase->GetHandle());
45 shader->BindTexture(str_maskTex, line.m_TextureMask->GetHandle());
46 shader->Uniform(str_objectColor, line.m_Color);
48 GLsizei stride = sizeof(CTexturedLineRData::SVertex);
49 CTexturedLineRData::SVertex* vertexBase = reinterpret_cast<CTexturedLineRData::SVertex*>(m_VB->m_Owner->Bind());
51 if (streamFlags & STREAM_POS)
52 shader->VertexPointer(3, GL_FLOAT, stride, &vertexBase->m_Position[0]);
54 if (streamFlags & STREAM_UV0)
55 shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, stride, &vertexBase->m_UVs[0]);
57 if (streamFlags & STREAM_UV1)
58 shader->TexCoordPointer(GL_TEXTURE1, 2, GL_FLOAT, stride, &vertexBase->m_UVs[0]);
60 u8* indexBase = m_VBIndices->m_Owner->Bind();
62 shader->AssertPointersBound();
63 glDrawElements(GL_TRIANGLES, m_VBIndices->m_Count, GL_UNSIGNED_SHORT, indexBase + sizeof(u16)*m_VBIndices->m_Index);
65 g_Renderer.GetStats().m_DrawCalls++;
66 g_Renderer.GetStats().m_OverlayTris += m_VBIndices->m_Count/3;
69 void CTexturedLineRData::Update(const SOverlayTexturedLine& line)
71 if (m_VB)
73 g_VBMan.Release(m_VB);
74 m_VB = NULL;
76 if (m_VBIndices)
78 g_VBMan.Release(m_VBIndices);
79 m_VBIndices = NULL;
82 if (!line.m_SimContext)
84 debug_warn(L"[TexturedLineRData] No SimContext set for textured overlay line, cannot render (no terrain data)");
85 return;
88 float v = 0.f;
89 std::vector<SVertex> vertices;
90 std::vector<u16> indices;
92 size_t n = line.m_Coords.size() / 2; // number of line points
93 bool closed = line.m_Closed;
95 ENSURE(n >= 2); // minimum needed to avoid errors (also minimum value to make sense, can't draw a line between 1 point)
97 // In each iteration, p1 is the position of vertex i, p0 is i-1, p2 is i+1.
98 // To avoid slightly expensive terrain computations we cycle these around and
99 // recompute p2 at the end of each iteration.
101 CVector3D p0;
102 CVector3D p1(line.m_Coords[0], 0, line.m_Coords[1]);
103 CVector3D p2(line.m_Coords[2], 0, line.m_Coords[3]);
105 if (closed)
106 // grab the ending point so as to close the loop
107 p0 = CVector3D(line.m_Coords[(n-1)*2], 0, line.m_Coords[(n-1)*2+1]);
108 else
109 // we don't want to loop around and use the direction towards the other end of the line, so create an artificial p0 that
110 // extends the p2 -> p1 direction, and use that point instead
111 p0 = p1 + (p1 - p2);
113 bool p1floating = false;
114 bool p2floating = false;
116 // Compute terrain heights, clamped to the water height (and remember whether
117 // each point was floating on water, for normal computation later)
119 // TODO: if we ever support more than one water level per map, recompute this per point
120 CmpPtr<ICmpWaterManager> cmpWaterManager(*line.m_SimContext, SYSTEM_ENTITY);
121 float w = cmpWaterManager ? cmpWaterManager->GetExactWaterLevel(p0.X, p0.Z) : 0.f;
123 const CTerrain& terrain = line.m_SimContext->GetTerrain();
125 p0.Y = terrain.GetExactGroundLevel(p0.X, p0.Z);
126 if (p0.Y < w)
127 p0.Y = w;
129 p1.Y = terrain.GetExactGroundLevel(p1.X, p1.Z);
130 if (p1.Y < w)
132 p1.Y = w;
133 p1floating = true;
136 p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
137 if (p2.Y < w)
139 p2.Y = w;
140 p2floating = true;
143 for (size_t i = 0; i < n; ++i)
145 // For vertex i, compute bisector of lines (i-1)..(i) and (i)..(i+1)
146 // perpendicular to terrain normal
148 // Normal is vertical if on water, else computed from terrain
149 CVector3D norm;
150 if (p1floating)
151 norm = CVector3D(0, 1, 0);
152 else
153 norm = terrain.CalcExactNormal(p1.X, p1.Z);
155 CVector3D b = ((p1 - p0).Normalized() + (p2 - p1).Normalized()).Cross(norm);
157 // Adjust bisector length to match the line thickness, along the line's width
158 float l = b.Dot((p2 - p1).Normalized().Cross(norm));
159 if (fabs(l) > 0.000001f) // avoid unlikely divide-by-zero
160 b *= line.m_Thickness / l;
162 // Push vertices and indices for each quad in GL_TRIANGLES order. The two triangles of each quad are indexed using
163 // the winding orders (BR, BL, TR) and (TR, BL, TL) (where BR is bottom-right of this iteration's quad, TR top-right etc).
164 SVertex vertex1(p1 + b + norm*OverlayRenderer::OVERLAY_VOFFSET, 0.f, v);
165 SVertex vertex2(p1 - b + norm*OverlayRenderer::OVERLAY_VOFFSET, 1.f, v);
166 vertices.push_back(vertex1);
167 vertices.push_back(vertex2);
169 u16 index1 = vertices.size() - 2; // index of vertex1 in this iteration (TR of this quad)
170 u16 index2 = vertices.size() - 1; // index of the vertex2 in this iteration (TL of this quad)
172 if (i == 0)
174 // initial two vertices to continue building triangles from (n must be >= 2 for this to work)
175 indices.push_back(index1);
176 indices.push_back(index2);
178 else
180 u16 index1Prev = vertices.size() - 4; // index of the vertex1 in the previous iteration (BR of this quad)
181 u16 index2Prev = vertices.size() - 3; // index of the vertex2 in the previous iteration (BL of this quad)
182 ENSURE(index1Prev < vertices.size());
183 ENSURE(index2Prev < vertices.size());
184 // Add two corner points from last iteration and join with one of our own corners to create triangle 1
185 // (don't need to do this if i == 1 because i == 0 are the first two ones, they don't need to be copied)
186 if (i > 1)
188 indices.push_back(index1Prev);
189 indices.push_back(index2Prev);
191 indices.push_back(index1); // complete triangle 1
193 // create triangle 2, specifying the adjacent side's vertices in the opposite order from triangle 1
194 indices.push_back(index1);
195 indices.push_back(index2Prev);
196 indices.push_back(index2);
199 // alternate V coordinate for debugging
200 v = 1 - v;
202 // cycle the p's and compute the new p2
203 p0 = p1;
204 p1 = p2;
205 p1floating = p2floating;
207 // if in closed mode, wrap around the coordinate array for p2 -- otherwise, extend linearly
208 if (!closed && i == n-2)
209 // next iteration is the last point of the line, so create an artificial p2 that extends the p0 -> p1 direction
210 p2 = p1 + (p1 - p0);
211 else
212 p2 = CVector3D(line.m_Coords[((i+2) % n)*2], 0, line.m_Coords[((i+2) % n)*2+1]);
214 p2.Y = terrain.GetExactGroundLevel(p2.X, p2.Z);
215 if (p2.Y < w)
217 p2.Y = w;
218 p2floating = true;
220 else
221 p2floating = false;
224 if (closed)
226 // close the path
227 if (n % 2 == 0)
229 indices.push_back(vertices.size()-2);
230 indices.push_back(vertices.size()-1);
231 indices.push_back(0);
233 indices.push_back(0);
234 indices.push_back(vertices.size()-1);
235 indices.push_back(1);
237 else
239 // add two vertices to have the good UVs for the last quad
240 SVertex vertex1(vertices[0].m_Position, 0.f, 1.f);
241 SVertex vertex2(vertices[1].m_Position, 1.f, 1.f);
242 vertices.push_back(vertex1);
243 vertices.push_back(vertex2);
245 indices.push_back(vertices.size()-4);
246 indices.push_back(vertices.size()-3);
247 indices.push_back(vertices.size()-2);
249 indices.push_back(vertices.size()-2);
250 indices.push_back(vertices.size()-3);
251 indices.push_back(vertices.size()-1);
254 else
256 // Create start and end caps. On either end, this is done by taking the centroid between the last and second-to-last pair of
257 // vertices that was generated along the path (i.e. the vertex1's and vertex2's from above), taking a directional vector
258 // between them, and drawing the line cap in the plane given by the two butt-end corner points plus said vector.
259 std::vector<u16> capIndices;
260 std::vector<SVertex> capVertices;
262 // create end cap
263 CreateLineCap(
264 line,
265 // the order of these vertices is important here, swapping them produces caps at the wrong side
266 vertices[vertices.size()-2].m_Position, // top-right vertex of last quad
267 vertices[vertices.size()-1].m_Position, // top-left vertex of last quad
268 // directional vector between centroids of last vertex pair and second-to-last vertex pair
269 (Centroid(vertices[vertices.size()-2], vertices[vertices.size()-1]) - Centroid(vertices[vertices.size()-4], vertices[vertices.size()-3])).Normalized(),
270 line.m_EndCapType,
271 capVertices,
272 capIndices
275 for (unsigned i = 0; i < capIndices.size(); i++)
276 capIndices[i] += vertices.size();
278 vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
279 indices.insert(indices.end(), capIndices.begin(), capIndices.end());
281 capIndices.clear();
282 capVertices.clear();
284 // create start cap
285 CreateLineCap(
286 line,
287 // the order of these vertices is important here, swapping them produces caps at the wrong side
288 vertices[1].m_Position,
289 vertices[0].m_Position,
290 // directional vector between centroids of first vertex pair and second vertex pair
291 (Centroid(vertices[1], vertices[0]) - Centroid(vertices[3], vertices[2])).Normalized(),
292 line.m_StartCapType,
293 capVertices,
294 capIndices
297 for (unsigned i = 0; i < capIndices.size(); i++)
298 capIndices[i] += vertices.size();
300 vertices.insert(vertices.end(), capVertices.begin(), capVertices.end());
301 indices.insert(indices.end(), capIndices.begin(), capIndices.end());
304 ENSURE(indices.size() % 3 == 0); // GL_TRIANGLES indices, so must be multiple of 3
306 m_VB = g_VBMan.Allocate(sizeof(SVertex), vertices.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER);
307 if (m_VB) // allocation might fail (e.g. due to too many vertices)
309 m_VB->m_Owner->UpdateChunkVertices(m_VB, &vertices[0]); // copy data into VBO
311 for (size_t k = 0; k < indices.size(); ++k)
312 indices[k] += m_VB->m_Index;
314 m_VBIndices = g_VBMan.Allocate(sizeof(u16), indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER);
315 if (m_VBIndices)
316 m_VBIndices->m_Owner->UpdateChunkVertices(m_VBIndices, &indices[0]);
321 void CTexturedLineRData::CreateLineCap(const SOverlayTexturedLine& line, const CVector3D& corner1, const CVector3D& corner2,
322 const CVector3D& lineDirectionNormal, SOverlayTexturedLine::LineCapType endCapType, std::vector<SVertex>& verticesOut,
323 std::vector<u16>& indicesOut)
325 if (endCapType == SOverlayTexturedLine::LINECAP_FLAT)
326 return; // no action needed, this is the default
328 // When not in closed mode, we've created artificial points for the start- and endpoints that extend the line in the
329 // direction of the first and the last segment, respectively. Thus, we know both the start and endpoints have perpendicular
330 // butt endings, i.e. the end corner vertices on either side of the line extend perpendicularly from the segment direction.
331 // That is to say, when viewed from the top, we will have something like
332 // .
333 // this: and not like this: /|
334 // ----+ / |
335 // | / .
336 // | /
337 // ----+ /
340 int roundCapPoints = 8; // amount of points to sample along the semicircle for rounded caps (including corner points)
341 float radius = line.m_Thickness;
343 CVector3D centerPoint = (corner1 + corner2) * 0.5f;
344 SVertex centerVertex(centerPoint, 0.5f, 0.5f);
345 u16 indexOffset = verticesOut.size(); // index offset in verticesOut from where we start adding our vertices
347 switch (endCapType)
349 case SOverlayTexturedLine::LINECAP_SHARP:
351 roundCapPoints = 3; // creates only one point directly ahead
352 radius *= 1.5f; // make it a bit sharper (note that we don't use the radius for the butt-end corner points so it should be ok)
353 centerVertex.m_UVs[0] = 0.480f; // slight visual correction to make the texture match up better at the corner points
355 FALLTHROUGH;
356 case SOverlayTexturedLine::LINECAP_ROUND:
358 // Draw a rounded line cap in the 3D plane of the line specified by the two corner points and the normal vector of the
359 // line's direction. The terrain normal at the centroid between the two corner points is perpendicular to this plane.
360 // The way this works is by taking a vector from the corner points' centroid to one of the corner points (which is then
361 // of radius length), and rotate it around the terrain normal vector in that centroid. This will rotate the vector in
362 // the line's plane, producing the desired rounded cap.
364 // To please OpenGL's winding order, this angle needs to be negated depending on whether we start rotating from
365 // the (center -> corner1) or (center -> corner2) vector. For the (center -> corner2) vector, we apparently need to use
366 // the negated angle.
367 float stepAngle = -(float)(M_PI/(roundCapPoints-1));
369 // Push the vertices in triangle fan order (easy to generate GL_TRIANGLES indices for afterwards)
370 // Note that we're manually adding the corner vertices instead of having them be generated by the rotating vector.
371 // This is because we want to support an overly large radius to make the sharp line ending look sharper.
372 verticesOut.push_back(centerVertex);
373 verticesOut.push_back(SVertex(corner2, 0.f, 0.f));
375 // Get the base vector that we will incrementally rotate in the cap plane to produce the radial sample points.
376 // Normally corner2 - centerPoint would suffice for this since it is of radius length, but we want to support custom
377 // radii to support tuning the 'sharpness' of sharp end caps (see above)
378 CVector3D rotationBaseVector = (corner2 - centerPoint).Normalized() * radius;
379 // Calculate the normal vector of the plane in which we're going to be drawing the line cap. This is the vector that
380 // is perpendicular to both baseVector and the 'lineDirectionNormal' vector indicating the direction of the line.
381 // Note that we shouldn't use terrain->CalcExactNormal() here because if the line is being rendered on top of water,
382 // then CalcExactNormal will return the normal vector of the terrain that's underwater (which can be quite funky).
383 CVector3D capPlaneNormal = lineDirectionNormal.Cross(rotationBaseVector).Normalized();
385 for (int i = 1; i < roundCapPoints - 1; ++i)
387 // Rotate the centerPoint -> corner vector by i*stepAngle radians around the cap plane normal at the center point.
388 CQuaternion quatRotation;
389 quatRotation.FromAxisAngle(capPlaneNormal, i * stepAngle);
390 CVector3D worldPos3D = centerPoint + quatRotation.Rotate(rotationBaseVector);
392 // Let v range from 0 to 1 as we move along the semi-circle, keep u fixed at 0 (i.e. curve the left vertical edge
393 // of the texture around the edge of the semicircle)
394 float u = 0.f;
395 float v = clamp((i/(float)(roundCapPoints-1)), 0.f, 1.f); // pos, u, v
396 verticesOut.push_back(SVertex(worldPos3D, u, v));
399 // connect back to the other butt-end corner point to complete the semicircle
400 verticesOut.push_back(SVertex(corner1, 0.f, 1.f));
402 // now push indices in GL_TRIANGLES order; vertices[indexOffset] is the center vertex, vertices[indexOffset + 1] is the
403 // first corner point, then a bunch of radial samples, and then at the end we have the other corner point again. So:
404 for (int i=1; i < roundCapPoints; ++i)
406 indicesOut.push_back(indexOffset); // center vertex
407 indicesOut.push_back(indexOffset + i);
408 indicesOut.push_back(indexOffset + i + 1);
411 break;
413 case SOverlayTexturedLine::LINECAP_SQUARE:
415 // Extend the (corner1 -> corner2) vector along the direction normal and draw a square line ending consisting of
416 // three triangles (sort of like a triangle fan)
417 // NOTE: The order in which the vertices are pushed out determines the visibility, as they
418 // are rendered only one-sided; the wrong order of vertices will make the cap visible only from the bottom.
419 verticesOut.push_back(centerVertex);
420 verticesOut.push_back(SVertex(corner2, 0.f, 0.f));
421 verticesOut.push_back(SVertex(corner2 + (lineDirectionNormal * (line.m_Thickness)), 0.f, 0.33333f)); // extend butt corner point 2 along the normal vector
422 verticesOut.push_back(SVertex(corner1 + (lineDirectionNormal * (line.m_Thickness)), 0.f, 0.66666f)); // extend butt corner point 1 along the normal vector
423 verticesOut.push_back(SVertex(corner1, 0.f, 1.0f)); // push butt corner point 1
425 for (int i=1; i < 4; ++i)
427 indicesOut.push_back(indexOffset); // center point
428 indicesOut.push_back(indexOffset + i);
429 indicesOut.push_back(indexOffset + i + 1);
432 break;
434 default:
435 break;