winejoystick: Fix a crash on accessing a CFArray past its end due to an off-by-one...
[wine/multimedia.git] / dlls / oleaut32 / vartype.c
blob607d1a2de2c941f260bf449c5df70afd839873fa
1 /*
2 * Low level variant functions
4 * Copyright 2003 Jon Griffiths
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
21 #define COBJMACROS
22 #define NONAMELESSUNION
23 #define NONAMELESSSTRUCT
25 #include "wine/debug.h"
26 #include "wine/unicode.h"
27 #include "winbase.h"
28 #include "winuser.h"
29 #include "winnt.h"
30 #include "variant.h"
31 #include "resource.h"
33 WINE_DEFAULT_DEBUG_CHANNEL(variant);
35 extern HMODULE hProxyDll DECLSPEC_HIDDEN;
37 #define CY_MULTIPLIER 10000 /* 4 dp of precision */
38 #define CY_MULTIPLIER_F 10000.0
39 #define CY_HALF (CY_MULTIPLIER/2) /* 0.5 */
40 #define CY_HALF_F (CY_MULTIPLIER_F/2.0)
42 static const WCHAR szFloatFormatW[] = { '%','.','7','G','\0' };
43 static const WCHAR szDoubleFormatW[] = { '%','.','1','5','G','\0' };
45 /* Copy data from one variant to another. */
46 static inline void VARIANT_CopyData(const VARIANT *srcVar, VARTYPE vt, void *pOut)
48 switch (vt)
50 case VT_I1:
51 case VT_UI1: memcpy(pOut, &V_UI1(srcVar), sizeof(BYTE)); break;
52 case VT_BOOL:
53 case VT_I2:
54 case VT_UI2: memcpy(pOut, &V_UI2(srcVar), sizeof(SHORT)); break;
55 case VT_R4:
56 case VT_INT:
57 case VT_I4:
58 case VT_UINT:
59 case VT_UI4: memcpy(pOut, &V_UI4(srcVar), sizeof (LONG)); break;
60 case VT_R8:
61 case VT_DATE:
62 case VT_CY:
63 case VT_I8:
64 case VT_UI8: memcpy(pOut, &V_UI8(srcVar), sizeof (LONG64)); break;
65 case VT_INT_PTR: memcpy(pOut, &V_INT_PTR(srcVar), sizeof (INT_PTR)); break;
66 case VT_DECIMAL: memcpy(pOut, &V_DECIMAL(srcVar), sizeof (DECIMAL)); break;
67 case VT_BSTR: memcpy(pOut, &V_BSTR(srcVar), sizeof(BSTR)); break;
68 default:
69 FIXME("VT_ type %d unhandled, please report!\n", vt);
73 /* Macro to inline conversion from a float or double to any integer type,
74 * rounding according to the 'dutch' convention.
76 #define VARIANT_DutchRound(typ, value, res) do { \
77 double whole = value < 0 ? ceil(value) : floor(value); \
78 double fract = value - whole; \
79 if (fract > 0.5) res = (typ)whole + (typ)1; \
80 else if (fract == 0.5) { typ is_odd = (typ)whole & 1; res = whole + is_odd; } \
81 else if (fract >= 0.0) res = (typ)whole; \
82 else if (fract == -0.5) { typ is_odd = (typ)whole & 1; res = whole - is_odd; } \
83 else if (fract > -0.5) res = (typ)whole; \
84 else res = (typ)whole - (typ)1; \
85 } while(0)
88 /* Coerce VT_BSTR to a numeric type */
89 static HRESULT VARIANT_NumberFromBstr(OLECHAR* pStrIn, LCID lcid, ULONG ulFlags,
90 void* pOut, VARTYPE vt)
92 VARIANTARG dstVar;
93 HRESULT hRet;
94 NUMPARSE np;
95 BYTE rgb[1024];
97 /* Use VarParseNumFromStr/VarNumFromParseNum as MSDN indicates */
98 np.cDig = sizeof(rgb) / sizeof(BYTE);
99 np.dwInFlags = NUMPRS_STD;
101 hRet = VarParseNumFromStr(pStrIn, lcid, ulFlags, &np, rgb);
103 if (SUCCEEDED(hRet))
105 /* 1 << vt gives us the VTBIT constant for the destination number type */
106 hRet = VarNumFromParseNum(&np, rgb, 1 << vt, &dstVar);
107 if (SUCCEEDED(hRet))
108 VARIANT_CopyData(&dstVar, vt, pOut);
110 return hRet;
113 /* Coerce VT_DISPATCH to another type */
114 static HRESULT VARIANT_FromDisp(IDispatch* pdispIn, LCID lcid, void* pOut,
115 VARTYPE vt, DWORD dwFlags)
117 static DISPPARAMS emptyParams = { NULL, NULL, 0, 0 };
118 VARIANTARG srcVar, dstVar;
119 HRESULT hRet;
121 if (!pdispIn)
122 return DISP_E_BADVARTYPE;
124 /* Get the default 'value' property from the IDispatch */
125 VariantInit(&srcVar);
126 hRet = IDispatch_Invoke(pdispIn, DISPID_VALUE, &IID_NULL, lcid, DISPATCH_PROPERTYGET,
127 &emptyParams, &srcVar, NULL, NULL);
129 if (SUCCEEDED(hRet))
131 /* Convert the property to the requested type */
132 V_VT(&dstVar) = VT_EMPTY;
133 hRet = VariantChangeTypeEx(&dstVar, &srcVar, lcid, dwFlags, vt);
134 VariantClear(&srcVar);
136 if (SUCCEEDED(hRet))
138 VARIANT_CopyData(&dstVar, vt, pOut);
139 VariantClear(&srcVar);
142 else
143 hRet = DISP_E_TYPEMISMATCH;
144 return hRet;
147 /* Inline return type */
148 #define RETTYP static inline HRESULT
151 /* Simple compiler cast from one type to another */
152 #define SIMPLE(dest, src, func) RETTYP _##func(src in, dest* out) { \
153 *out = in; return S_OK; }
155 /* Compiler cast where input cannot be negative */
156 #define NEGTST(dest, src, func) RETTYP _##func(src in, dest* out) { \
157 if (in < 0) return DISP_E_OVERFLOW; *out = in; return S_OK; }
159 /* Compiler cast where input cannot be > some number */
160 #define POSTST(dest, src, func, tst) RETTYP _##func(src in, dest* out) { \
161 if (in > (dest)tst) return DISP_E_OVERFLOW; *out = in; return S_OK; }
163 /* Compiler cast where input cannot be < some number or >= some other number */
164 #define BOTHTST(dest, src, func, lo, hi) RETTYP _##func(src in, dest* out) { \
165 if (in < (dest)lo || in > hi) return DISP_E_OVERFLOW; *out = in; return S_OK; }
167 /* I1 */
168 POSTST(signed char, BYTE, VarI1FromUI1, I1_MAX)
169 BOTHTST(signed char, SHORT, VarI1FromI2, I1_MIN, I1_MAX)
170 BOTHTST(signed char, LONG, VarI1FromI4, I1_MIN, I1_MAX)
171 SIMPLE(signed char, VARIANT_BOOL, VarI1FromBool)
172 POSTST(signed char, USHORT, VarI1FromUI2, I1_MAX)
173 POSTST(signed char, ULONG, VarI1FromUI4, I1_MAX)
174 BOTHTST(signed char, LONG64, VarI1FromI8, I1_MIN, I1_MAX)
175 POSTST(signed char, ULONG64, VarI1FromUI8, I1_MAX)
177 /* UI1 */
178 BOTHTST(BYTE, SHORT, VarUI1FromI2, UI1_MIN, UI1_MAX)
179 SIMPLE(BYTE, VARIANT_BOOL, VarUI1FromBool)
180 NEGTST(BYTE, signed char, VarUI1FromI1)
181 POSTST(BYTE, USHORT, VarUI1FromUI2, UI1_MAX)
182 BOTHTST(BYTE, LONG, VarUI1FromI4, UI1_MIN, UI1_MAX)
183 POSTST(BYTE, ULONG, VarUI1FromUI4, UI1_MAX)
184 BOTHTST(BYTE, LONG64, VarUI1FromI8, UI1_MIN, UI1_MAX)
185 POSTST(BYTE, ULONG64, VarUI1FromUI8, UI1_MAX)
187 /* I2 */
188 SIMPLE(SHORT, BYTE, VarI2FromUI1)
189 BOTHTST(SHORT, LONG, VarI2FromI4, I2_MIN, I2_MAX)
190 SIMPLE(SHORT, VARIANT_BOOL, VarI2FromBool)
191 SIMPLE(SHORT, signed char, VarI2FromI1)
192 POSTST(SHORT, USHORT, VarI2FromUI2, I2_MAX)
193 POSTST(SHORT, ULONG, VarI2FromUI4, I2_MAX)
194 BOTHTST(SHORT, LONG64, VarI2FromI8, I2_MIN, I2_MAX)
195 POSTST(SHORT, ULONG64, VarI2FromUI8, I2_MAX)
197 /* UI2 */
198 SIMPLE(USHORT, BYTE, VarUI2FromUI1)
199 NEGTST(USHORT, SHORT, VarUI2FromI2)
200 BOTHTST(USHORT, LONG, VarUI2FromI4, UI2_MIN, UI2_MAX)
201 SIMPLE(USHORT, VARIANT_BOOL, VarUI2FromBool)
202 NEGTST(USHORT, signed char, VarUI2FromI1)
203 POSTST(USHORT, ULONG, VarUI2FromUI4, UI2_MAX)
204 BOTHTST(USHORT, LONG64, VarUI2FromI8, UI2_MIN, UI2_MAX)
205 POSTST(USHORT, ULONG64, VarUI2FromUI8, UI2_MAX)
207 /* I4 */
208 SIMPLE(LONG, BYTE, VarI4FromUI1)
209 SIMPLE(LONG, SHORT, VarI4FromI2)
210 SIMPLE(LONG, VARIANT_BOOL, VarI4FromBool)
211 SIMPLE(LONG, signed char, VarI4FromI1)
212 SIMPLE(LONG, USHORT, VarI4FromUI2)
213 POSTST(LONG, ULONG, VarI4FromUI4, I4_MAX)
214 BOTHTST(LONG, LONG64, VarI4FromI8, I4_MIN, I4_MAX)
215 POSTST(LONG, ULONG64, VarI4FromUI8, I4_MAX)
217 /* UI4 */
218 SIMPLE(ULONG, BYTE, VarUI4FromUI1)
219 NEGTST(ULONG, SHORT, VarUI4FromI2)
220 NEGTST(ULONG, LONG, VarUI4FromI4)
221 SIMPLE(ULONG, VARIANT_BOOL, VarUI4FromBool)
222 NEGTST(ULONG, signed char, VarUI4FromI1)
223 SIMPLE(ULONG, USHORT, VarUI4FromUI2)
224 BOTHTST(ULONG, LONG64, VarUI4FromI8, UI4_MIN, UI4_MAX)
225 POSTST(ULONG, ULONG64, VarUI4FromUI8, UI4_MAX)
227 /* I8 */
228 SIMPLE(LONG64, BYTE, VarI8FromUI1)
229 SIMPLE(LONG64, SHORT, VarI8FromI2)
230 SIMPLE(LONG64, signed char, VarI8FromI1)
231 SIMPLE(LONG64, USHORT, VarI8FromUI2)
232 SIMPLE(LONG64, ULONG, VarI8FromUI4)
233 POSTST(LONG64, ULONG64, VarI8FromUI8, I8_MAX)
235 /* UI8 */
236 SIMPLE(ULONG64, BYTE, VarUI8FromUI1)
237 NEGTST(ULONG64, SHORT, VarUI8FromI2)
238 NEGTST(ULONG64, signed char, VarUI8FromI1)
239 SIMPLE(ULONG64, USHORT, VarUI8FromUI2)
240 SIMPLE(ULONG64, ULONG, VarUI8FromUI4)
241 NEGTST(ULONG64, LONG64, VarUI8FromI8)
243 /* R4 (float) */
244 SIMPLE(float, BYTE, VarR4FromUI1)
245 SIMPLE(float, SHORT, VarR4FromI2)
246 SIMPLE(float, signed char, VarR4FromI1)
247 SIMPLE(float, USHORT, VarR4FromUI2)
248 SIMPLE(float, LONG, VarR4FromI4)
249 SIMPLE(float, ULONG, VarR4FromUI4)
250 SIMPLE(float, LONG64, VarR4FromI8)
251 SIMPLE(float, ULONG64, VarR4FromUI8)
253 /* R8 (double) */
254 SIMPLE(double, BYTE, VarR8FromUI1)
255 SIMPLE(double, SHORT, VarR8FromI2)
256 SIMPLE(double, float, VarR8FromR4)
257 RETTYP _VarR8FromCy(CY i, double* o) { *o = (double)i.int64 / CY_MULTIPLIER_F; return S_OK; }
258 SIMPLE(double, DATE, VarR8FromDate)
259 SIMPLE(double, signed char, VarR8FromI1)
260 SIMPLE(double, USHORT, VarR8FromUI2)
261 SIMPLE(double, LONG, VarR8FromI4)
262 SIMPLE(double, ULONG, VarR8FromUI4)
263 SIMPLE(double, LONG64, VarR8FromI8)
264 SIMPLE(double, ULONG64, VarR8FromUI8)
267 /* I1
270 /************************************************************************
271 * VarI1FromUI1 (OLEAUT32.244)
273 * Convert a VT_UI1 to a VT_I1.
275 * PARAMS
276 * bIn [I] Source
277 * pcOut [O] Destination
279 * RETURNS
280 * Success: S_OK.
281 * Failure: E_INVALIDARG, if the source value is invalid
282 * DISP_E_OVERFLOW, if the value will not fit in the destination
284 HRESULT WINAPI VarI1FromUI1(BYTE bIn, signed char* pcOut)
286 return _VarI1FromUI1(bIn, pcOut);
289 /************************************************************************
290 * VarI1FromI2 (OLEAUT32.245)
292 * Convert a VT_I2 to a VT_I1.
294 * PARAMS
295 * sIn [I] Source
296 * pcOut [O] Destination
298 * RETURNS
299 * Success: S_OK.
300 * Failure: E_INVALIDARG, if the source value is invalid
301 * DISP_E_OVERFLOW, if the value will not fit in the destination
303 HRESULT WINAPI VarI1FromI2(SHORT sIn, signed char* pcOut)
305 return _VarI1FromI2(sIn, pcOut);
308 /************************************************************************
309 * VarI1FromI4 (OLEAUT32.246)
311 * Convert a VT_I4 to a VT_I1.
313 * PARAMS
314 * iIn [I] Source
315 * pcOut [O] Destination
317 * RETURNS
318 * Success: S_OK.
319 * Failure: E_INVALIDARG, if the source value is invalid
320 * DISP_E_OVERFLOW, if the value will not fit in the destination
322 HRESULT WINAPI VarI1FromI4(LONG iIn, signed char* pcOut)
324 return _VarI1FromI4(iIn, pcOut);
327 /************************************************************************
328 * VarI1FromR4 (OLEAUT32.247)
330 * Convert a VT_R4 to a VT_I1.
332 * PARAMS
333 * fltIn [I] Source
334 * pcOut [O] Destination
336 * RETURNS
337 * Success: S_OK.
338 * Failure: E_INVALIDARG, if the source value is invalid
339 * DISP_E_OVERFLOW, if the value will not fit in the destination
341 HRESULT WINAPI VarI1FromR4(FLOAT fltIn, signed char* pcOut)
343 return VarI1FromR8(fltIn, pcOut);
346 /************************************************************************
347 * VarI1FromR8 (OLEAUT32.248)
349 * Convert a VT_R8 to a VT_I1.
351 * PARAMS
352 * dblIn [I] Source
353 * pcOut [O] Destination
355 * RETURNS
356 * Success: S_OK.
357 * Failure: E_INVALIDARG, if the source value is invalid
358 * DISP_E_OVERFLOW, if the value will not fit in the destination
360 * NOTES
361 * See VarI8FromR8() for details concerning rounding.
363 HRESULT WINAPI VarI1FromR8(double dblIn, signed char* pcOut)
365 if (dblIn < I1_MIN - 0.5 || dblIn >= I1_MAX + 0.5)
366 return DISP_E_OVERFLOW;
367 VARIANT_DutchRound(CHAR, dblIn, *pcOut);
368 return S_OK;
371 /************************************************************************
372 * VarI1FromDate (OLEAUT32.249)
374 * Convert a VT_DATE to a VT_I1.
376 * PARAMS
377 * dateIn [I] Source
378 * pcOut [O] Destination
380 * RETURNS
381 * Success: S_OK.
382 * Failure: E_INVALIDARG, if the source value is invalid
383 * DISP_E_OVERFLOW, if the value will not fit in the destination
385 HRESULT WINAPI VarI1FromDate(DATE dateIn, signed char* pcOut)
387 return VarI1FromR8(dateIn, pcOut);
390 /************************************************************************
391 * VarI1FromCy (OLEAUT32.250)
393 * Convert a VT_CY to a VT_I1.
395 * PARAMS
396 * cyIn [I] Source
397 * pcOut [O] Destination
399 * RETURNS
400 * Success: S_OK.
401 * Failure: E_INVALIDARG, if the source value is invalid
402 * DISP_E_OVERFLOW, if the value will not fit in the destination
404 HRESULT WINAPI VarI1FromCy(CY cyIn, signed char* pcOut)
406 LONG i = I1_MAX + 1;
408 VarI4FromCy(cyIn, &i);
409 return _VarI1FromI4(i, pcOut);
412 /************************************************************************
413 * VarI1FromStr (OLEAUT32.251)
415 * Convert a VT_BSTR to a VT_I1.
417 * PARAMS
418 * strIn [I] Source
419 * lcid [I] LCID for the conversion
420 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
421 * pcOut [O] Destination
423 * RETURNS
424 * Success: S_OK.
425 * Failure: E_INVALIDARG, if the source value is invalid
426 * DISP_E_OVERFLOW, if the value will not fit in the destination
427 * DISP_E_TYPEMISMATCH, if the type cannot be converted
429 HRESULT WINAPI VarI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, signed char* pcOut)
431 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pcOut, VT_I1);
434 /************************************************************************
435 * VarI1FromDisp (OLEAUT32.252)
437 * Convert a VT_DISPATCH to a VT_I1.
439 * PARAMS
440 * pdispIn [I] Source
441 * lcid [I] LCID for conversion
442 * pcOut [O] Destination
444 * RETURNS
445 * Success: S_OK.
446 * Failure: E_INVALIDARG, if the source value is invalid
447 * DISP_E_OVERFLOW, if the value will not fit in the destination
448 * DISP_E_TYPEMISMATCH, if the type cannot be converted
450 HRESULT WINAPI VarI1FromDisp(IDispatch* pdispIn, LCID lcid, signed char* pcOut)
452 return VARIANT_FromDisp(pdispIn, lcid, pcOut, VT_I1, 0);
455 /************************************************************************
456 * VarI1FromBool (OLEAUT32.253)
458 * Convert a VT_BOOL to a VT_I1.
460 * PARAMS
461 * boolIn [I] Source
462 * pcOut [O] Destination
464 * RETURNS
465 * S_OK.
467 HRESULT WINAPI VarI1FromBool(VARIANT_BOOL boolIn, signed char* pcOut)
469 return _VarI1FromBool(boolIn, pcOut);
472 /************************************************************************
473 * VarI1FromUI2 (OLEAUT32.254)
475 * Convert a VT_UI2 to a VT_I1.
477 * PARAMS
478 * usIn [I] Source
479 * pcOut [O] Destination
481 * RETURNS
482 * Success: S_OK.
483 * Failure: E_INVALIDARG, if the source value is invalid
484 * DISP_E_OVERFLOW, if the value will not fit in the destination
486 HRESULT WINAPI VarI1FromUI2(USHORT usIn, signed char* pcOut)
488 return _VarI1FromUI2(usIn, pcOut);
491 /************************************************************************
492 * VarI1FromUI4 (OLEAUT32.255)
494 * Convert a VT_UI4 to a VT_I1.
496 * PARAMS
497 * ulIn [I] Source
498 * pcOut [O] Destination
500 * RETURNS
501 * Success: S_OK.
502 * Failure: E_INVALIDARG, if the source value is invalid
503 * DISP_E_OVERFLOW, if the value will not fit in the destination
504 * DISP_E_TYPEMISMATCH, if the type cannot be converted
506 HRESULT WINAPI VarI1FromUI4(ULONG ulIn, signed char* pcOut)
508 return _VarI1FromUI4(ulIn, pcOut);
511 /************************************************************************
512 * VarI1FromDec (OLEAUT32.256)
514 * Convert a VT_DECIMAL to a VT_I1.
516 * PARAMS
517 * pDecIn [I] Source
518 * pcOut [O] Destination
520 * RETURNS
521 * Success: S_OK.
522 * Failure: E_INVALIDARG, if the source value is invalid
523 * DISP_E_OVERFLOW, if the value will not fit in the destination
525 HRESULT WINAPI VarI1FromDec(DECIMAL *pdecIn, signed char* pcOut)
527 LONG64 i64;
528 HRESULT hRet;
530 hRet = VarI8FromDec(pdecIn, &i64);
532 if (SUCCEEDED(hRet))
533 hRet = _VarI1FromI8(i64, pcOut);
534 return hRet;
537 /************************************************************************
538 * VarI1FromI8 (OLEAUT32.376)
540 * Convert a VT_I8 to a VT_I1.
542 * PARAMS
543 * llIn [I] Source
544 * pcOut [O] Destination
546 * RETURNS
547 * Success: S_OK.
548 * Failure: E_INVALIDARG, if the source value is invalid
549 * DISP_E_OVERFLOW, if the value will not fit in the destination
551 HRESULT WINAPI VarI1FromI8(LONG64 llIn, signed char* pcOut)
553 return _VarI1FromI8(llIn, pcOut);
556 /************************************************************************
557 * VarI1FromUI8 (OLEAUT32.377)
559 * Convert a VT_UI8 to a VT_I1.
561 * PARAMS
562 * ullIn [I] Source
563 * pcOut [O] Destination
565 * RETURNS
566 * Success: S_OK.
567 * Failure: E_INVALIDARG, if the source value is invalid
568 * DISP_E_OVERFLOW, if the value will not fit in the destination
570 HRESULT WINAPI VarI1FromUI8(ULONG64 ullIn, signed char* pcOut)
572 return _VarI1FromUI8(ullIn, pcOut);
575 /* UI1
578 /************************************************************************
579 * VarUI1FromI2 (OLEAUT32.130)
581 * Convert a VT_I2 to a VT_UI1.
583 * PARAMS
584 * sIn [I] Source
585 * pbOut [O] Destination
587 * RETURNS
588 * Success: S_OK.
589 * Failure: E_INVALIDARG, if the source value is invalid
590 * DISP_E_OVERFLOW, if the value will not fit in the destination
592 HRESULT WINAPI VarUI1FromI2(SHORT sIn, BYTE* pbOut)
594 return _VarUI1FromI2(sIn, pbOut);
597 /************************************************************************
598 * VarUI1FromI4 (OLEAUT32.131)
600 * Convert a VT_I4 to a VT_UI1.
602 * PARAMS
603 * iIn [I] Source
604 * pbOut [O] Destination
606 * RETURNS
607 * Success: S_OK.
608 * Failure: E_INVALIDARG, if the source value is invalid
609 * DISP_E_OVERFLOW, if the value will not fit in the destination
611 HRESULT WINAPI VarUI1FromI4(LONG iIn, BYTE* pbOut)
613 return _VarUI1FromI4(iIn, pbOut);
616 /************************************************************************
617 * VarUI1FromR4 (OLEAUT32.132)
619 * Convert a VT_R4 to a VT_UI1.
621 * PARAMS
622 * fltIn [I] Source
623 * pbOut [O] Destination
625 * RETURNS
626 * Success: S_OK.
627 * Failure: E_INVALIDARG, if the source value is invalid
628 * DISP_E_OVERFLOW, if the value will not fit in the destination
629 * DISP_E_TYPEMISMATCH, if the type cannot be converted
631 HRESULT WINAPI VarUI1FromR4(FLOAT fltIn, BYTE* pbOut)
633 return VarUI1FromR8(fltIn, pbOut);
636 /************************************************************************
637 * VarUI1FromR8 (OLEAUT32.133)
639 * Convert a VT_R8 to a VT_UI1.
641 * PARAMS
642 * dblIn [I] Source
643 * pbOut [O] Destination
645 * RETURNS
646 * Success: S_OK.
647 * Failure: E_INVALIDARG, if the source value is invalid
648 * DISP_E_OVERFLOW, if the value will not fit in the destination
650 * NOTES
651 * See VarI8FromR8() for details concerning rounding.
653 HRESULT WINAPI VarUI1FromR8(double dblIn, BYTE* pbOut)
655 if (dblIn < -0.5 || dblIn >= UI1_MAX + 0.5)
656 return DISP_E_OVERFLOW;
657 VARIANT_DutchRound(BYTE, dblIn, *pbOut);
658 return S_OK;
661 /************************************************************************
662 * VarUI1FromCy (OLEAUT32.134)
664 * Convert a VT_CY to a VT_UI1.
666 * PARAMS
667 * cyIn [I] Source
668 * pbOut [O] Destination
670 * RETURNS
671 * Success: S_OK.
672 * Failure: E_INVALIDARG, if the source value is invalid
673 * DISP_E_OVERFLOW, if the value will not fit in the destination
675 * NOTES
676 * Negative values >= -5000 will be converted to 0.
678 HRESULT WINAPI VarUI1FromCy(CY cyIn, BYTE* pbOut)
680 ULONG i = UI1_MAX + 1;
682 VarUI4FromCy(cyIn, &i);
683 return _VarUI1FromUI4(i, pbOut);
686 /************************************************************************
687 * VarUI1FromDate (OLEAUT32.135)
689 * Convert a VT_DATE to a VT_UI1.
691 * PARAMS
692 * dateIn [I] Source
693 * pbOut [O] Destination
695 * RETURNS
696 * Success: S_OK.
697 * Failure: E_INVALIDARG, if the source value is invalid
698 * DISP_E_OVERFLOW, if the value will not fit in the destination
700 HRESULT WINAPI VarUI1FromDate(DATE dateIn, BYTE* pbOut)
702 return VarUI1FromR8(dateIn, pbOut);
705 /************************************************************************
706 * VarUI1FromStr (OLEAUT32.136)
708 * Convert a VT_BSTR to a VT_UI1.
710 * PARAMS
711 * strIn [I] Source
712 * lcid [I] LCID for the conversion
713 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
714 * pbOut [O] Destination
716 * RETURNS
717 * Success: S_OK.
718 * Failure: E_INVALIDARG, if the source value is invalid
719 * DISP_E_OVERFLOW, if the value will not fit in the destination
720 * DISP_E_TYPEMISMATCH, if the type cannot be converted
722 HRESULT WINAPI VarUI1FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, BYTE* pbOut)
724 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pbOut, VT_UI1);
727 /************************************************************************
728 * VarUI1FromDisp (OLEAUT32.137)
730 * Convert a VT_DISPATCH to a VT_UI1.
732 * PARAMS
733 * pdispIn [I] Source
734 * lcid [I] LCID for conversion
735 * pbOut [O] Destination
737 * RETURNS
738 * Success: S_OK.
739 * Failure: E_INVALIDARG, if the source value is invalid
740 * DISP_E_OVERFLOW, if the value will not fit in the destination
741 * DISP_E_TYPEMISMATCH, if the type cannot be converted
743 HRESULT WINAPI VarUI1FromDisp(IDispatch* pdispIn, LCID lcid, BYTE* pbOut)
745 return VARIANT_FromDisp(pdispIn, lcid, pbOut, VT_UI1, 0);
748 /************************************************************************
749 * VarUI1FromBool (OLEAUT32.138)
751 * Convert a VT_BOOL to a VT_UI1.
753 * PARAMS
754 * boolIn [I] Source
755 * pbOut [O] Destination
757 * RETURNS
758 * S_OK.
760 HRESULT WINAPI VarUI1FromBool(VARIANT_BOOL boolIn, BYTE* pbOut)
762 return _VarUI1FromBool(boolIn, pbOut);
765 /************************************************************************
766 * VarUI1FromI1 (OLEAUT32.237)
768 * Convert a VT_I1 to a VT_UI1.
770 * PARAMS
771 * cIn [I] Source
772 * pbOut [O] Destination
774 * RETURNS
775 * Success: S_OK.
776 * Failure: E_INVALIDARG, if the source value is invalid
777 * DISP_E_OVERFLOW, if the value will not fit in the destination
779 HRESULT WINAPI VarUI1FromI1(signed char cIn, BYTE* pbOut)
781 return _VarUI1FromI1(cIn, pbOut);
784 /************************************************************************
785 * VarUI1FromUI2 (OLEAUT32.238)
787 * Convert a VT_UI2 to a VT_UI1.
789 * PARAMS
790 * usIn [I] Source
791 * pbOut [O] Destination
793 * RETURNS
794 * Success: S_OK.
795 * Failure: E_INVALIDARG, if the source value is invalid
796 * DISP_E_OVERFLOW, if the value will not fit in the destination
798 HRESULT WINAPI VarUI1FromUI2(USHORT usIn, BYTE* pbOut)
800 return _VarUI1FromUI2(usIn, pbOut);
803 /************************************************************************
804 * VarUI1FromUI4 (OLEAUT32.239)
806 * Convert a VT_UI4 to a VT_UI1.
808 * PARAMS
809 * ulIn [I] Source
810 * pbOut [O] Destination
812 * RETURNS
813 * Success: S_OK.
814 * Failure: E_INVALIDARG, if the source value is invalid
815 * DISP_E_OVERFLOW, if the value will not fit in the destination
817 HRESULT WINAPI VarUI1FromUI4(ULONG ulIn, BYTE* pbOut)
819 return _VarUI1FromUI4(ulIn, pbOut);
822 /************************************************************************
823 * VarUI1FromDec (OLEAUT32.240)
825 * Convert a VT_DECIMAL to a VT_UI1.
827 * PARAMS
828 * pDecIn [I] Source
829 * pbOut [O] Destination
831 * RETURNS
832 * Success: S_OK.
833 * Failure: E_INVALIDARG, if the source value is invalid
834 * DISP_E_OVERFLOW, if the value will not fit in the destination
836 HRESULT WINAPI VarUI1FromDec(DECIMAL *pdecIn, BYTE* pbOut)
838 LONG64 i64;
839 HRESULT hRet;
841 hRet = VarI8FromDec(pdecIn, &i64);
843 if (SUCCEEDED(hRet))
844 hRet = _VarUI1FromI8(i64, pbOut);
845 return hRet;
848 /************************************************************************
849 * VarUI1FromI8 (OLEAUT32.372)
851 * Convert a VT_I8 to a VT_UI1.
853 * PARAMS
854 * llIn [I] Source
855 * pbOut [O] Destination
857 * RETURNS
858 * Success: S_OK.
859 * Failure: E_INVALIDARG, if the source value is invalid
860 * DISP_E_OVERFLOW, if the value will not fit in the destination
862 HRESULT WINAPI VarUI1FromI8(LONG64 llIn, BYTE* pbOut)
864 return _VarUI1FromI8(llIn, pbOut);
867 /************************************************************************
868 * VarUI1FromUI8 (OLEAUT32.373)
870 * Convert a VT_UI8 to a VT_UI1.
872 * PARAMS
873 * ullIn [I] Source
874 * pbOut [O] Destination
876 * RETURNS
877 * Success: S_OK.
878 * Failure: E_INVALIDARG, if the source value is invalid
879 * DISP_E_OVERFLOW, if the value will not fit in the destination
881 HRESULT WINAPI VarUI1FromUI8(ULONG64 ullIn, BYTE* pbOut)
883 return _VarUI1FromUI8(ullIn, pbOut);
887 /* I2
890 /************************************************************************
891 * VarI2FromUI1 (OLEAUT32.48)
893 * Convert a VT_UI2 to a VT_I2.
895 * PARAMS
896 * bIn [I] Source
897 * psOut [O] Destination
899 * RETURNS
900 * S_OK.
902 HRESULT WINAPI VarI2FromUI1(BYTE bIn, SHORT* psOut)
904 return _VarI2FromUI1(bIn, psOut);
907 /************************************************************************
908 * VarI2FromI4 (OLEAUT32.49)
910 * Convert a VT_I4 to a VT_I2.
912 * PARAMS
913 * iIn [I] Source
914 * psOut [O] Destination
916 * RETURNS
917 * Success: S_OK.
918 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
920 HRESULT WINAPI VarI2FromI4(LONG iIn, SHORT* psOut)
922 return _VarI2FromI4(iIn, psOut);
925 /************************************************************************
926 * VarI2FromR4 (OLEAUT32.50)
928 * Convert a VT_R4 to a VT_I2.
930 * PARAMS
931 * fltIn [I] Source
932 * psOut [O] Destination
934 * RETURNS
935 * Success: S_OK.
936 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
938 HRESULT WINAPI VarI2FromR4(FLOAT fltIn, SHORT* psOut)
940 return VarI2FromR8(fltIn, psOut);
943 /************************************************************************
944 * VarI2FromR8 (OLEAUT32.51)
946 * Convert a VT_R8 to a VT_I2.
948 * PARAMS
949 * dblIn [I] Source
950 * psOut [O] Destination
952 * RETURNS
953 * Success: S_OK.
954 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
956 * NOTES
957 * See VarI8FromR8() for details concerning rounding.
959 HRESULT WINAPI VarI2FromR8(double dblIn, SHORT* psOut)
961 if (dblIn < I2_MIN - 0.5 || dblIn >= I2_MAX + 0.5)
962 return DISP_E_OVERFLOW;
963 VARIANT_DutchRound(SHORT, dblIn, *psOut);
964 return S_OK;
967 /************************************************************************
968 * VarI2FromCy (OLEAUT32.52)
970 * Convert a VT_CY to a VT_I2.
972 * PARAMS
973 * cyIn [I] Source
974 * psOut [O] Destination
976 * RETURNS
977 * Success: S_OK.
978 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
980 HRESULT WINAPI VarI2FromCy(CY cyIn, SHORT* psOut)
982 LONG i = I2_MAX + 1;
984 VarI4FromCy(cyIn, &i);
985 return _VarI2FromI4(i, psOut);
988 /************************************************************************
989 * VarI2FromDate (OLEAUT32.53)
991 * Convert a VT_DATE to a VT_I2.
993 * PARAMS
994 * dateIn [I] Source
995 * psOut [O] Destination
997 * RETURNS
998 * Success: S_OK.
999 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1001 HRESULT WINAPI VarI2FromDate(DATE dateIn, SHORT* psOut)
1003 return VarI2FromR8(dateIn, psOut);
1006 /************************************************************************
1007 * VarI2FromStr (OLEAUT32.54)
1009 * Convert a VT_BSTR to a VT_I2.
1011 * PARAMS
1012 * strIn [I] Source
1013 * lcid [I] LCID for the conversion
1014 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1015 * psOut [O] Destination
1017 * RETURNS
1018 * Success: S_OK.
1019 * Failure: E_INVALIDARG, if any parameter is invalid
1020 * DISP_E_OVERFLOW, if the value will not fit in the destination
1021 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1023 HRESULT WINAPI VarI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, SHORT* psOut)
1025 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, psOut, VT_I2);
1028 /************************************************************************
1029 * VarI2FromDisp (OLEAUT32.55)
1031 * Convert a VT_DISPATCH to a VT_I2.
1033 * PARAMS
1034 * pdispIn [I] Source
1035 * lcid [I] LCID for conversion
1036 * psOut [O] Destination
1038 * RETURNS
1039 * Success: S_OK.
1040 * Failure: E_INVALIDARG, if pdispIn is invalid,
1041 * DISP_E_OVERFLOW, if the value will not fit in the destination,
1042 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1044 HRESULT WINAPI VarI2FromDisp(IDispatch* pdispIn, LCID lcid, SHORT* psOut)
1046 return VARIANT_FromDisp(pdispIn, lcid, psOut, VT_I2, 0);
1049 /************************************************************************
1050 * VarI2FromBool (OLEAUT32.56)
1052 * Convert a VT_BOOL to a VT_I2.
1054 * PARAMS
1055 * boolIn [I] Source
1056 * psOut [O] Destination
1058 * RETURNS
1059 * S_OK.
1061 HRESULT WINAPI VarI2FromBool(VARIANT_BOOL boolIn, SHORT* psOut)
1063 return _VarI2FromBool(boolIn, psOut);
1066 /************************************************************************
1067 * VarI2FromI1 (OLEAUT32.205)
1069 * Convert a VT_I1 to a VT_I2.
1071 * PARAMS
1072 * cIn [I] Source
1073 * psOut [O] Destination
1075 * RETURNS
1076 * S_OK.
1078 HRESULT WINAPI VarI2FromI1(signed char cIn, SHORT* psOut)
1080 return _VarI2FromI1(cIn, psOut);
1083 /************************************************************************
1084 * VarI2FromUI2 (OLEAUT32.206)
1086 * Convert a VT_UI2 to a VT_I2.
1088 * PARAMS
1089 * usIn [I] Source
1090 * psOut [O] Destination
1092 * RETURNS
1093 * Success: S_OK.
1094 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1096 HRESULT WINAPI VarI2FromUI2(USHORT usIn, SHORT* psOut)
1098 return _VarI2FromUI2(usIn, psOut);
1101 /************************************************************************
1102 * VarI2FromUI4 (OLEAUT32.207)
1104 * Convert a VT_UI4 to a VT_I2.
1106 * PARAMS
1107 * ulIn [I] Source
1108 * psOut [O] Destination
1110 * RETURNS
1111 * Success: S_OK.
1112 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1114 HRESULT WINAPI VarI2FromUI4(ULONG ulIn, SHORT* psOut)
1116 return _VarI2FromUI4(ulIn, psOut);
1119 /************************************************************************
1120 * VarI2FromDec (OLEAUT32.208)
1122 * Convert a VT_DECIMAL to a VT_I2.
1124 * PARAMS
1125 * pDecIn [I] Source
1126 * psOut [O] Destination
1128 * RETURNS
1129 * Success: S_OK.
1130 * Failure: E_INVALIDARG, if the source value is invalid
1131 * DISP_E_OVERFLOW, if the value will not fit in the destination
1133 HRESULT WINAPI VarI2FromDec(DECIMAL *pdecIn, SHORT* psOut)
1135 LONG64 i64;
1136 HRESULT hRet;
1138 hRet = VarI8FromDec(pdecIn, &i64);
1140 if (SUCCEEDED(hRet))
1141 hRet = _VarI2FromI8(i64, psOut);
1142 return hRet;
1145 /************************************************************************
1146 * VarI2FromI8 (OLEAUT32.346)
1148 * Convert a VT_I8 to a VT_I2.
1150 * PARAMS
1151 * llIn [I] Source
1152 * psOut [O] Destination
1154 * RETURNS
1155 * Success: S_OK.
1156 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1158 HRESULT WINAPI VarI2FromI8(LONG64 llIn, SHORT* psOut)
1160 return _VarI2FromI8(llIn, psOut);
1163 /************************************************************************
1164 * VarI2FromUI8 (OLEAUT32.347)
1166 * Convert a VT_UI8 to a VT_I2.
1168 * PARAMS
1169 * ullIn [I] Source
1170 * psOut [O] Destination
1172 * RETURNS
1173 * Success: S_OK.
1174 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1176 HRESULT WINAPI VarI2FromUI8(ULONG64 ullIn, SHORT* psOut)
1178 return _VarI2FromUI8(ullIn, psOut);
1181 /* UI2
1184 /************************************************************************
1185 * VarUI2FromUI1 (OLEAUT32.257)
1187 * Convert a VT_UI1 to a VT_UI2.
1189 * PARAMS
1190 * bIn [I] Source
1191 * pusOut [O] Destination
1193 * RETURNS
1194 * S_OK.
1196 HRESULT WINAPI VarUI2FromUI1(BYTE bIn, USHORT* pusOut)
1198 return _VarUI2FromUI1(bIn, pusOut);
1201 /************************************************************************
1202 * VarUI2FromI2 (OLEAUT32.258)
1204 * Convert a VT_I2 to a VT_UI2.
1206 * PARAMS
1207 * sIn [I] Source
1208 * pusOut [O] Destination
1210 * RETURNS
1211 * Success: S_OK.
1212 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1214 HRESULT WINAPI VarUI2FromI2(SHORT sIn, USHORT* pusOut)
1216 return _VarUI2FromI2(sIn, pusOut);
1219 /************************************************************************
1220 * VarUI2FromI4 (OLEAUT32.259)
1222 * Convert a VT_I4 to a VT_UI2.
1224 * PARAMS
1225 * iIn [I] Source
1226 * pusOut [O] Destination
1228 * RETURNS
1229 * Success: S_OK.
1230 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1232 HRESULT WINAPI VarUI2FromI4(LONG iIn, USHORT* pusOut)
1234 return _VarUI2FromI4(iIn, pusOut);
1237 /************************************************************************
1238 * VarUI2FromR4 (OLEAUT32.260)
1240 * Convert a VT_R4 to a VT_UI2.
1242 * PARAMS
1243 * fltIn [I] Source
1244 * pusOut [O] Destination
1246 * RETURNS
1247 * Success: S_OK.
1248 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1250 HRESULT WINAPI VarUI2FromR4(FLOAT fltIn, USHORT* pusOut)
1252 return VarUI2FromR8(fltIn, pusOut);
1255 /************************************************************************
1256 * VarUI2FromR8 (OLEAUT32.261)
1258 * Convert a VT_R8 to a VT_UI2.
1260 * PARAMS
1261 * dblIn [I] Source
1262 * pusOut [O] Destination
1264 * RETURNS
1265 * Success: S_OK.
1266 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1268 * NOTES
1269 * See VarI8FromR8() for details concerning rounding.
1271 HRESULT WINAPI VarUI2FromR8(double dblIn, USHORT* pusOut)
1273 if (dblIn < -0.5 || dblIn >= UI2_MAX + 0.5)
1274 return DISP_E_OVERFLOW;
1275 VARIANT_DutchRound(USHORT, dblIn, *pusOut);
1276 return S_OK;
1279 /************************************************************************
1280 * VarUI2FromDate (OLEAUT32.262)
1282 * Convert a VT_DATE to a VT_UI2.
1284 * PARAMS
1285 * dateIn [I] Source
1286 * pusOut [O] Destination
1288 * RETURNS
1289 * Success: S_OK.
1290 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1292 HRESULT WINAPI VarUI2FromDate(DATE dateIn, USHORT* pusOut)
1294 return VarUI2FromR8(dateIn, pusOut);
1297 /************************************************************************
1298 * VarUI2FromCy (OLEAUT32.263)
1300 * Convert a VT_CY to a VT_UI2.
1302 * PARAMS
1303 * cyIn [I] Source
1304 * pusOut [O] Destination
1306 * RETURNS
1307 * Success: S_OK.
1308 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1310 * NOTES
1311 * Negative values >= -5000 will be converted to 0.
1313 HRESULT WINAPI VarUI2FromCy(CY cyIn, USHORT* pusOut)
1315 ULONG i = UI2_MAX + 1;
1317 VarUI4FromCy(cyIn, &i);
1318 return _VarUI2FromUI4(i, pusOut);
1321 /************************************************************************
1322 * VarUI2FromStr (OLEAUT32.264)
1324 * Convert a VT_BSTR to a VT_UI2.
1326 * PARAMS
1327 * strIn [I] Source
1328 * lcid [I] LCID for the conversion
1329 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1330 * pusOut [O] Destination
1332 * RETURNS
1333 * Success: S_OK.
1334 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1335 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1337 HRESULT WINAPI VarUI2FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, USHORT* pusOut)
1339 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pusOut, VT_UI2);
1342 /************************************************************************
1343 * VarUI2FromDisp (OLEAUT32.265)
1345 * Convert a VT_DISPATCH to a VT_UI2.
1347 * PARAMS
1348 * pdispIn [I] Source
1349 * lcid [I] LCID for conversion
1350 * pusOut [O] Destination
1352 * RETURNS
1353 * Success: S_OK.
1354 * Failure: E_INVALIDARG, if the source value is invalid
1355 * DISP_E_OVERFLOW, if the value will not fit in the destination
1356 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1358 HRESULT WINAPI VarUI2FromDisp(IDispatch* pdispIn, LCID lcid, USHORT* pusOut)
1360 return VARIANT_FromDisp(pdispIn, lcid, pusOut, VT_UI2, 0);
1363 /************************************************************************
1364 * VarUI2FromBool (OLEAUT32.266)
1366 * Convert a VT_BOOL to a VT_UI2.
1368 * PARAMS
1369 * boolIn [I] Source
1370 * pusOut [O] Destination
1372 * RETURNS
1373 * S_OK.
1375 HRESULT WINAPI VarUI2FromBool(VARIANT_BOOL boolIn, USHORT* pusOut)
1377 return _VarUI2FromBool(boolIn, pusOut);
1380 /************************************************************************
1381 * VarUI2FromI1 (OLEAUT32.267)
1383 * Convert a VT_I1 to a VT_UI2.
1385 * PARAMS
1386 * cIn [I] Source
1387 * pusOut [O] Destination
1389 * RETURNS
1390 * Success: S_OK.
1391 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1393 HRESULT WINAPI VarUI2FromI1(signed char cIn, USHORT* pusOut)
1395 return _VarUI2FromI1(cIn, pusOut);
1398 /************************************************************************
1399 * VarUI2FromUI4 (OLEAUT32.268)
1401 * Convert a VT_UI4 to a VT_UI2.
1403 * PARAMS
1404 * ulIn [I] Source
1405 * pusOut [O] Destination
1407 * RETURNS
1408 * Success: S_OK.
1409 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1411 HRESULT WINAPI VarUI2FromUI4(ULONG ulIn, USHORT* pusOut)
1413 return _VarUI2FromUI4(ulIn, pusOut);
1416 /************************************************************************
1417 * VarUI2FromDec (OLEAUT32.269)
1419 * Convert a VT_DECIMAL to a VT_UI2.
1421 * PARAMS
1422 * pDecIn [I] Source
1423 * pusOut [O] Destination
1425 * RETURNS
1426 * Success: S_OK.
1427 * Failure: E_INVALIDARG, if the source value is invalid
1428 * DISP_E_OVERFLOW, if the value will not fit in the destination
1430 HRESULT WINAPI VarUI2FromDec(DECIMAL *pdecIn, USHORT* pusOut)
1432 LONG64 i64;
1433 HRESULT hRet;
1435 hRet = VarI8FromDec(pdecIn, &i64);
1437 if (SUCCEEDED(hRet))
1438 hRet = _VarUI2FromI8(i64, pusOut);
1439 return hRet;
1442 /************************************************************************
1443 * VarUI2FromI8 (OLEAUT32.378)
1445 * Convert a VT_I8 to a VT_UI2.
1447 * PARAMS
1448 * llIn [I] Source
1449 * pusOut [O] Destination
1451 * RETURNS
1452 * Success: S_OK.
1453 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1455 HRESULT WINAPI VarUI2FromI8(LONG64 llIn, USHORT* pusOut)
1457 return _VarUI2FromI8(llIn, pusOut);
1460 /************************************************************************
1461 * VarUI2FromUI8 (OLEAUT32.379)
1463 * Convert a VT_UI8 to a VT_UI2.
1465 * PARAMS
1466 * ullIn [I] Source
1467 * pusOut [O] Destination
1469 * RETURNS
1470 * Success: S_OK.
1471 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1473 HRESULT WINAPI VarUI2FromUI8(ULONG64 ullIn, USHORT* pusOut)
1475 return _VarUI2FromUI8(ullIn, pusOut);
1478 /* I4
1481 /************************************************************************
1482 * VarI4FromUI1 (OLEAUT32.58)
1484 * Convert a VT_UI1 to a VT_I4.
1486 * PARAMS
1487 * bIn [I] Source
1488 * piOut [O] Destination
1490 * RETURNS
1491 * S_OK.
1493 HRESULT WINAPI VarI4FromUI1(BYTE bIn, LONG *piOut)
1495 return _VarI4FromUI1(bIn, piOut);
1498 /************************************************************************
1499 * VarI4FromI2 (OLEAUT32.59)
1501 * Convert a VT_I2 to a VT_I4.
1503 * PARAMS
1504 * sIn [I] Source
1505 * piOut [O] Destination
1507 * RETURNS
1508 * Success: S_OK.
1509 * Failure: E_INVALIDARG, if the source value is invalid
1510 * DISP_E_OVERFLOW, if the value will not fit in the destination
1512 HRESULT WINAPI VarI4FromI2(SHORT sIn, LONG *piOut)
1514 return _VarI4FromI2(sIn, piOut);
1517 /************************************************************************
1518 * VarI4FromR4 (OLEAUT32.60)
1520 * Convert a VT_R4 to a VT_I4.
1522 * PARAMS
1523 * fltIn [I] Source
1524 * piOut [O] Destination
1526 * RETURNS
1527 * Success: S_OK.
1528 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1530 HRESULT WINAPI VarI4FromR4(FLOAT fltIn, LONG *piOut)
1532 return VarI4FromR8(fltIn, piOut);
1535 /************************************************************************
1536 * VarI4FromR8 (OLEAUT32.61)
1538 * Convert a VT_R8 to a VT_I4.
1540 * PARAMS
1541 * dblIn [I] Source
1542 * piOut [O] Destination
1544 * RETURNS
1545 * Success: S_OK.
1546 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1548 * NOTES
1549 * See VarI8FromR8() for details concerning rounding.
1551 HRESULT WINAPI VarI4FromR8(double dblIn, LONG *piOut)
1553 if (dblIn < I4_MIN - 0.5 || dblIn >= I4_MAX + 0.5)
1554 return DISP_E_OVERFLOW;
1555 VARIANT_DutchRound(LONG, dblIn, *piOut);
1556 return S_OK;
1559 /************************************************************************
1560 * VarI4FromCy (OLEAUT32.62)
1562 * Convert a VT_CY to a VT_I4.
1564 * PARAMS
1565 * cyIn [I] Source
1566 * piOut [O] Destination
1568 * RETURNS
1569 * Success: S_OK.
1570 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1572 HRESULT WINAPI VarI4FromCy(CY cyIn, LONG *piOut)
1574 double d = cyIn.int64 / CY_MULTIPLIER_F;
1575 return VarI4FromR8(d, piOut);
1578 /************************************************************************
1579 * VarI4FromDate (OLEAUT32.63)
1581 * Convert a VT_DATE to a VT_I4.
1583 * PARAMS
1584 * dateIn [I] Source
1585 * piOut [O] Destination
1587 * RETURNS
1588 * Success: S_OK.
1589 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1591 HRESULT WINAPI VarI4FromDate(DATE dateIn, LONG *piOut)
1593 return VarI4FromR8(dateIn, piOut);
1596 /************************************************************************
1597 * VarI4FromStr (OLEAUT32.64)
1599 * Convert a VT_BSTR to a VT_I4.
1601 * PARAMS
1602 * strIn [I] Source
1603 * lcid [I] LCID for the conversion
1604 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1605 * piOut [O] Destination
1607 * RETURNS
1608 * Success: S_OK.
1609 * Failure: E_INVALIDARG, if any parameter is invalid
1610 * DISP_E_OVERFLOW, if the value will not fit in the destination
1611 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1613 HRESULT WINAPI VarI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG *piOut)
1615 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, piOut, VT_I4);
1618 /************************************************************************
1619 * VarI4FromDisp (OLEAUT32.65)
1621 * Convert a VT_DISPATCH to a VT_I4.
1623 * PARAMS
1624 * pdispIn [I] Source
1625 * lcid [I] LCID for conversion
1626 * piOut [O] Destination
1628 * RETURNS
1629 * Success: S_OK.
1630 * Failure: E_INVALIDARG, if the source value is invalid
1631 * DISP_E_OVERFLOW, if the value will not fit in the destination
1632 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1634 HRESULT WINAPI VarI4FromDisp(IDispatch* pdispIn, LCID lcid, LONG *piOut)
1636 return VARIANT_FromDisp(pdispIn, lcid, piOut, VT_I4, 0);
1639 /************************************************************************
1640 * VarI4FromBool (OLEAUT32.66)
1642 * Convert a VT_BOOL to a VT_I4.
1644 * PARAMS
1645 * boolIn [I] Source
1646 * piOut [O] Destination
1648 * RETURNS
1649 * S_OK.
1651 HRESULT WINAPI VarI4FromBool(VARIANT_BOOL boolIn, LONG *piOut)
1653 return _VarI4FromBool(boolIn, piOut);
1656 /************************************************************************
1657 * VarI4FromI1 (OLEAUT32.209)
1659 * Convert a VT_I1 to a VT_I4.
1661 * PARAMS
1662 * cIn [I] Source
1663 * piOut [O] Destination
1665 * RETURNS
1666 * S_OK.
1668 HRESULT WINAPI VarI4FromI1(signed char cIn, LONG *piOut)
1670 return _VarI4FromI1(cIn, piOut);
1673 /************************************************************************
1674 * VarI4FromUI2 (OLEAUT32.210)
1676 * Convert a VT_UI2 to a VT_I4.
1678 * PARAMS
1679 * usIn [I] Source
1680 * piOut [O] Destination
1682 * RETURNS
1683 * S_OK.
1685 HRESULT WINAPI VarI4FromUI2(USHORT usIn, LONG *piOut)
1687 return _VarI4FromUI2(usIn, piOut);
1690 /************************************************************************
1691 * VarI4FromUI4 (OLEAUT32.211)
1693 * Convert a VT_UI4 to a VT_I4.
1695 * PARAMS
1696 * ulIn [I] Source
1697 * piOut [O] Destination
1699 * RETURNS
1700 * Success: S_OK.
1701 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1703 HRESULT WINAPI VarI4FromUI4(ULONG ulIn, LONG *piOut)
1705 return _VarI4FromUI4(ulIn, piOut);
1708 /************************************************************************
1709 * VarI4FromDec (OLEAUT32.212)
1711 * Convert a VT_DECIMAL to a VT_I4.
1713 * PARAMS
1714 * pDecIn [I] Source
1715 * piOut [O] Destination
1717 * RETURNS
1718 * Success: S_OK.
1719 * Failure: E_INVALIDARG, if pdecIn is invalid
1720 * DISP_E_OVERFLOW, if the value will not fit in the destination
1722 HRESULT WINAPI VarI4FromDec(DECIMAL *pdecIn, LONG *piOut)
1724 LONG64 i64;
1725 HRESULT hRet;
1727 hRet = VarI8FromDec(pdecIn, &i64);
1729 if (SUCCEEDED(hRet))
1730 hRet = _VarI4FromI8(i64, piOut);
1731 return hRet;
1734 /************************************************************************
1735 * VarI4FromI8 (OLEAUT32.348)
1737 * Convert a VT_I8 to a VT_I4.
1739 * PARAMS
1740 * llIn [I] Source
1741 * piOut [O] Destination
1743 * RETURNS
1744 * Success: S_OK.
1745 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1747 HRESULT WINAPI VarI4FromI8(LONG64 llIn, LONG *piOut)
1749 return _VarI4FromI8(llIn, piOut);
1752 /************************************************************************
1753 * VarI4FromUI8 (OLEAUT32.349)
1755 * Convert a VT_UI8 to a VT_I4.
1757 * PARAMS
1758 * ullIn [I] Source
1759 * piOut [O] Destination
1761 * RETURNS
1762 * Success: S_OK.
1763 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1765 HRESULT WINAPI VarI4FromUI8(ULONG64 ullIn, LONG *piOut)
1767 return _VarI4FromUI8(ullIn, piOut);
1770 /* UI4
1773 /************************************************************************
1774 * VarUI4FromUI1 (OLEAUT32.270)
1776 * Convert a VT_UI1 to a VT_UI4.
1778 * PARAMS
1779 * bIn [I] Source
1780 * pulOut [O] Destination
1782 * RETURNS
1783 * S_OK.
1785 HRESULT WINAPI VarUI4FromUI1(BYTE bIn, ULONG *pulOut)
1787 return _VarUI4FromUI1(bIn, pulOut);
1790 /************************************************************************
1791 * VarUI4FromI2 (OLEAUT32.271)
1793 * Convert a VT_I2 to a VT_UI4.
1795 * PARAMS
1796 * sIn [I] Source
1797 * pulOut [O] Destination
1799 * RETURNS
1800 * Success: S_OK.
1801 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1803 HRESULT WINAPI VarUI4FromI2(SHORT sIn, ULONG *pulOut)
1805 return _VarUI4FromI2(sIn, pulOut);
1808 /************************************************************************
1809 * VarUI4FromI4 (OLEAUT32.272)
1811 * Convert a VT_I4 to a VT_UI4.
1813 * PARAMS
1814 * iIn [I] Source
1815 * pulOut [O] Destination
1817 * RETURNS
1818 * Success: S_OK.
1819 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1821 HRESULT WINAPI VarUI4FromI4(LONG iIn, ULONG *pulOut)
1823 return _VarUI4FromI4(iIn, pulOut);
1826 /************************************************************************
1827 * VarUI4FromR4 (OLEAUT32.273)
1829 * Convert a VT_R4 to a VT_UI4.
1831 * PARAMS
1832 * fltIn [I] Source
1833 * pulOut [O] Destination
1835 * RETURNS
1836 * Success: S_OK.
1837 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1839 HRESULT WINAPI VarUI4FromR4(FLOAT fltIn, ULONG *pulOut)
1841 return VarUI4FromR8(fltIn, pulOut);
1844 /************************************************************************
1845 * VarUI4FromR8 (OLEAUT32.274)
1847 * Convert a VT_R8 to a VT_UI4.
1849 * PARAMS
1850 * dblIn [I] Source
1851 * pulOut [O] Destination
1853 * RETURNS
1854 * Success: S_OK.
1855 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1857 * NOTES
1858 * See VarI8FromR8() for details concerning rounding.
1860 HRESULT WINAPI VarUI4FromR8(double dblIn, ULONG *pulOut)
1862 if (dblIn < -0.5 || dblIn >= UI4_MAX + 0.5)
1863 return DISP_E_OVERFLOW;
1864 VARIANT_DutchRound(ULONG, dblIn, *pulOut);
1865 return S_OK;
1868 /************************************************************************
1869 * VarUI4FromDate (OLEAUT32.275)
1871 * Convert a VT_DATE to a VT_UI4.
1873 * PARAMS
1874 * dateIn [I] Source
1875 * pulOut [O] Destination
1877 * RETURNS
1878 * Success: S_OK.
1879 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1881 HRESULT WINAPI VarUI4FromDate(DATE dateIn, ULONG *pulOut)
1883 return VarUI4FromR8(dateIn, pulOut);
1886 /************************************************************************
1887 * VarUI4FromCy (OLEAUT32.276)
1889 * Convert a VT_CY to a VT_UI4.
1891 * PARAMS
1892 * cyIn [I] Source
1893 * pulOut [O] Destination
1895 * RETURNS
1896 * Success: S_OK.
1897 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1899 HRESULT WINAPI VarUI4FromCy(CY cyIn, ULONG *pulOut)
1901 double d = cyIn.int64 / CY_MULTIPLIER_F;
1902 return VarUI4FromR8(d, pulOut);
1905 /************************************************************************
1906 * VarUI4FromStr (OLEAUT32.277)
1908 * Convert a VT_BSTR to a VT_UI4.
1910 * PARAMS
1911 * strIn [I] Source
1912 * lcid [I] LCID for the conversion
1913 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
1914 * pulOut [O] Destination
1916 * RETURNS
1917 * Success: S_OK.
1918 * Failure: E_INVALIDARG, if any parameter is invalid
1919 * DISP_E_OVERFLOW, if the value will not fit in the destination
1920 * DISP_E_TYPEMISMATCH, if strIn cannot be converted
1922 HRESULT WINAPI VarUI4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG *pulOut)
1924 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pulOut, VT_UI4);
1927 /************************************************************************
1928 * VarUI4FromDisp (OLEAUT32.278)
1930 * Convert a VT_DISPATCH to a VT_UI4.
1932 * PARAMS
1933 * pdispIn [I] Source
1934 * lcid [I] LCID for conversion
1935 * pulOut [O] Destination
1937 * RETURNS
1938 * Success: S_OK.
1939 * Failure: E_INVALIDARG, if the source value is invalid
1940 * DISP_E_OVERFLOW, if the value will not fit in the destination
1941 * DISP_E_TYPEMISMATCH, if the type cannot be converted
1943 HRESULT WINAPI VarUI4FromDisp(IDispatch* pdispIn, LCID lcid, ULONG *pulOut)
1945 return VARIANT_FromDisp(pdispIn, lcid, pulOut, VT_UI4, 0);
1948 /************************************************************************
1949 * VarUI4FromBool (OLEAUT32.279)
1951 * Convert a VT_BOOL to a VT_UI4.
1953 * PARAMS
1954 * boolIn [I] Source
1955 * pulOut [O] Destination
1957 * RETURNS
1958 * S_OK.
1960 HRESULT WINAPI VarUI4FromBool(VARIANT_BOOL boolIn, ULONG *pulOut)
1962 return _VarUI4FromBool(boolIn, pulOut);
1965 /************************************************************************
1966 * VarUI4FromI1 (OLEAUT32.280)
1968 * Convert a VT_I1 to a VT_UI4.
1970 * PARAMS
1971 * cIn [I] Source
1972 * pulOut [O] Destination
1974 * RETURNS
1975 * Success: S_OK.
1976 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
1978 HRESULT WINAPI VarUI4FromI1(signed char cIn, ULONG *pulOut)
1980 return _VarUI4FromI1(cIn, pulOut);
1983 /************************************************************************
1984 * VarUI4FromUI2 (OLEAUT32.281)
1986 * Convert a VT_UI2 to a VT_UI4.
1988 * PARAMS
1989 * usIn [I] Source
1990 * pulOut [O] Destination
1992 * RETURNS
1993 * S_OK.
1995 HRESULT WINAPI VarUI4FromUI2(USHORT usIn, ULONG *pulOut)
1997 return _VarUI4FromUI2(usIn, pulOut);
2000 /************************************************************************
2001 * VarUI4FromDec (OLEAUT32.282)
2003 * Convert a VT_DECIMAL to a VT_UI4.
2005 * PARAMS
2006 * pDecIn [I] Source
2007 * pulOut [O] Destination
2009 * RETURNS
2010 * Success: S_OK.
2011 * Failure: E_INVALIDARG, if pdecIn is invalid
2012 * DISP_E_OVERFLOW, if the value will not fit in the destination
2014 HRESULT WINAPI VarUI4FromDec(DECIMAL *pdecIn, ULONG *pulOut)
2016 LONG64 i64;
2017 HRESULT hRet;
2019 hRet = VarI8FromDec(pdecIn, &i64);
2021 if (SUCCEEDED(hRet))
2022 hRet = _VarUI4FromI8(i64, pulOut);
2023 return hRet;
2026 /************************************************************************
2027 * VarUI4FromI8 (OLEAUT32.425)
2029 * Convert a VT_I8 to a VT_UI4.
2031 * PARAMS
2032 * llIn [I] Source
2033 * pulOut [O] Destination
2035 * RETURNS
2036 * Success: S_OK.
2037 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2039 HRESULT WINAPI VarUI4FromI8(LONG64 llIn, ULONG *pulOut)
2041 return _VarUI4FromI8(llIn, pulOut);
2044 /************************************************************************
2045 * VarUI4FromUI8 (OLEAUT32.426)
2047 * Convert a VT_UI8 to a VT_UI4.
2049 * PARAMS
2050 * ullIn [I] Source
2051 * pulOut [O] Destination
2053 * RETURNS
2054 * Success: S_OK.
2055 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2057 HRESULT WINAPI VarUI4FromUI8(ULONG64 ullIn, ULONG *pulOut)
2059 return _VarUI4FromUI8(ullIn, pulOut);
2062 /* I8
2065 /************************************************************************
2066 * VarI8FromUI1 (OLEAUT32.333)
2068 * Convert a VT_UI1 to a VT_I8.
2070 * PARAMS
2071 * bIn [I] Source
2072 * pi64Out [O] Destination
2074 * RETURNS
2075 * S_OK.
2077 HRESULT WINAPI VarI8FromUI1(BYTE bIn, LONG64* pi64Out)
2079 return _VarI8FromUI1(bIn, pi64Out);
2083 /************************************************************************
2084 * VarI8FromI2 (OLEAUT32.334)
2086 * Convert a VT_I2 to a VT_I8.
2088 * PARAMS
2089 * sIn [I] Source
2090 * pi64Out [O] Destination
2092 * RETURNS
2093 * S_OK.
2095 HRESULT WINAPI VarI8FromI2(SHORT sIn, LONG64* pi64Out)
2097 return _VarI8FromI2(sIn, pi64Out);
2100 /************************************************************************
2101 * VarI8FromR4 (OLEAUT32.335)
2103 * Convert a VT_R4 to a VT_I8.
2105 * PARAMS
2106 * fltIn [I] Source
2107 * pi64Out [O] Destination
2109 * RETURNS
2110 * Success: S_OK.
2111 * Failure: E_INVALIDARG, if the source value is invalid
2112 * DISP_E_OVERFLOW, if the value will not fit in the destination
2114 HRESULT WINAPI VarI8FromR4(FLOAT fltIn, LONG64* pi64Out)
2116 return VarI8FromR8(fltIn, pi64Out);
2119 /************************************************************************
2120 * VarI8FromR8 (OLEAUT32.336)
2122 * Convert a VT_R8 to a VT_I8.
2124 * PARAMS
2125 * dblIn [I] Source
2126 * pi64Out [O] Destination
2128 * RETURNS
2129 * Success: S_OK.
2130 * Failure: E_INVALIDARG, if the source value is invalid
2131 * DISP_E_OVERFLOW, if the value will not fit in the destination
2133 * NOTES
2134 * Only values that fit into 63 bits are accepted. Due to rounding issues,
2135 * very high or low values will not be accurately converted.
2137 * Numbers are rounded using Dutch rounding, as follows:
2139 *| Fractional Part Sign Direction Example
2140 *| --------------- ---- --------- -------
2141 *| < 0.5 + Down 0.4 -> 0.0
2142 *| < 0.5 - Up -0.4 -> 0.0
2143 *| > 0.5 + Up 0.6 -> 1.0
2144 *| < 0.5 - Up -0.6 -> -1.0
2145 *| = 0.5 + Up/Down Down if even, Up if odd
2146 *| = 0.5 - Up/Down Up if even, Down if odd
2148 * This system is often used in supermarkets.
2150 HRESULT WINAPI VarI8FromR8(double dblIn, LONG64* pi64Out)
2152 if ( dblIn < -4611686018427387904.0 || dblIn >= 4611686018427387904.0)
2153 return DISP_E_OVERFLOW;
2154 VARIANT_DutchRound(LONG64, dblIn, *pi64Out);
2155 return S_OK;
2158 /************************************************************************
2159 * VarI8FromCy (OLEAUT32.337)
2161 * Convert a VT_CY to a VT_I8.
2163 * PARAMS
2164 * cyIn [I] Source
2165 * pi64Out [O] Destination
2167 * RETURNS
2168 * S_OK.
2170 * NOTES
2171 * All negative numbers are rounded down by 1, including those that are
2172 * evenly divisible by 10000 (this is a Win32 bug that Wine mimics).
2173 * Positive numbers are rounded using Dutch rounding: See VarI8FromR8()
2174 * for details.
2176 HRESULT WINAPI VarI8FromCy(CY cyIn, LONG64* pi64Out)
2178 *pi64Out = cyIn.int64 / CY_MULTIPLIER;
2180 if (cyIn.int64 < 0)
2181 (*pi64Out)--; /* Mimic Win32 bug */
2182 else
2184 cyIn.int64 -= *pi64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2186 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pi64Out & 0x1)))
2187 (*pi64Out)++;
2189 return S_OK;
2192 /************************************************************************
2193 * VarI8FromDate (OLEAUT32.338)
2195 * Convert a VT_DATE to a VT_I8.
2197 * PARAMS
2198 * dateIn [I] Source
2199 * pi64Out [O] Destination
2201 * RETURNS
2202 * Success: S_OK.
2203 * Failure: E_INVALIDARG, if the source value is invalid
2204 * DISP_E_OVERFLOW, if the value will not fit in the destination
2205 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2207 HRESULT WINAPI VarI8FromDate(DATE dateIn, LONG64* pi64Out)
2209 return VarI8FromR8(dateIn, pi64Out);
2212 /************************************************************************
2213 * VarI8FromStr (OLEAUT32.339)
2215 * Convert a VT_BSTR to a VT_I8.
2217 * PARAMS
2218 * strIn [I] Source
2219 * lcid [I] LCID for the conversion
2220 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2221 * pi64Out [O] Destination
2223 * RETURNS
2224 * Success: S_OK.
2225 * Failure: E_INVALIDARG, if the source value is invalid
2226 * DISP_E_OVERFLOW, if the value will not fit in the destination
2227 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2229 HRESULT WINAPI VarI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, LONG64* pi64Out)
2231 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pi64Out, VT_I8);
2234 /************************************************************************
2235 * VarI8FromDisp (OLEAUT32.340)
2237 * Convert a VT_DISPATCH to a VT_I8.
2239 * PARAMS
2240 * pdispIn [I] Source
2241 * lcid [I] LCID for conversion
2242 * pi64Out [O] Destination
2244 * RETURNS
2245 * Success: S_OK.
2246 * Failure: E_INVALIDARG, if the source value is invalid
2247 * DISP_E_OVERFLOW, if the value will not fit in the destination
2248 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2250 HRESULT WINAPI VarI8FromDisp(IDispatch* pdispIn, LCID lcid, LONG64* pi64Out)
2252 return VARIANT_FromDisp(pdispIn, lcid, pi64Out, VT_I8, 0);
2255 /************************************************************************
2256 * VarI8FromBool (OLEAUT32.341)
2258 * Convert a VT_BOOL to a VT_I8.
2260 * PARAMS
2261 * boolIn [I] Source
2262 * pi64Out [O] Destination
2264 * RETURNS
2265 * S_OK.
2267 HRESULT WINAPI VarI8FromBool(VARIANT_BOOL boolIn, LONG64* pi64Out)
2269 return VarI8FromI2(boolIn, pi64Out);
2272 /************************************************************************
2273 * VarI8FromI1 (OLEAUT32.342)
2275 * Convert a VT_I1 to a VT_I8.
2277 * PARAMS
2278 * cIn [I] Source
2279 * pi64Out [O] Destination
2281 * RETURNS
2282 * S_OK.
2284 HRESULT WINAPI VarI8FromI1(signed char cIn, LONG64* pi64Out)
2286 return _VarI8FromI1(cIn, pi64Out);
2289 /************************************************************************
2290 * VarI8FromUI2 (OLEAUT32.343)
2292 * Convert a VT_UI2 to a VT_I8.
2294 * PARAMS
2295 * usIn [I] Source
2296 * pi64Out [O] Destination
2298 * RETURNS
2299 * S_OK.
2301 HRESULT WINAPI VarI8FromUI2(USHORT usIn, LONG64* pi64Out)
2303 return _VarI8FromUI2(usIn, pi64Out);
2306 /************************************************************************
2307 * VarI8FromUI4 (OLEAUT32.344)
2309 * Convert a VT_UI4 to a VT_I8.
2311 * PARAMS
2312 * ulIn [I] Source
2313 * pi64Out [O] Destination
2315 * RETURNS
2316 * S_OK.
2318 HRESULT WINAPI VarI8FromUI4(ULONG ulIn, LONG64* pi64Out)
2320 return _VarI8FromUI4(ulIn, pi64Out);
2323 /************************************************************************
2324 * VarI8FromDec (OLEAUT32.345)
2326 * Convert a VT_DECIMAL to a VT_I8.
2328 * PARAMS
2329 * pDecIn [I] Source
2330 * pi64Out [O] Destination
2332 * RETURNS
2333 * Success: S_OK.
2334 * Failure: E_INVALIDARG, if the source value is invalid
2335 * DISP_E_OVERFLOW, if the value will not fit in the destination
2337 HRESULT WINAPI VarI8FromDec(DECIMAL *pdecIn, LONG64* pi64Out)
2339 if (!DEC_SCALE(pdecIn))
2341 /* This decimal is just a 96 bit integer */
2342 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2343 return E_INVALIDARG;
2345 if (DEC_HI32(pdecIn) || DEC_MID32(pdecIn) & 0x80000000)
2346 return DISP_E_OVERFLOW;
2348 if (DEC_SIGN(pdecIn))
2349 *pi64Out = -DEC_LO64(pdecIn);
2350 else
2351 *pi64Out = DEC_LO64(pdecIn);
2352 return S_OK;
2354 else
2356 /* Decimal contains a floating point number */
2357 HRESULT hRet;
2358 double dbl;
2360 hRet = VarR8FromDec(pdecIn, &dbl);
2361 if (SUCCEEDED(hRet))
2362 hRet = VarI8FromR8(dbl, pi64Out);
2363 return hRet;
2367 /************************************************************************
2368 * VarI8FromUI8 (OLEAUT32.427)
2370 * Convert a VT_UI8 to a VT_I8.
2372 * PARAMS
2373 * ullIn [I] Source
2374 * pi64Out [O] Destination
2376 * RETURNS
2377 * Success: S_OK.
2378 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2380 HRESULT WINAPI VarI8FromUI8(ULONG64 ullIn, LONG64* pi64Out)
2382 return _VarI8FromUI8(ullIn, pi64Out);
2385 /* UI8
2388 /************************************************************************
2389 * VarUI8FromI8 (OLEAUT32.428)
2391 * Convert a VT_I8 to a VT_UI8.
2393 * PARAMS
2394 * ulIn [I] Source
2395 * pui64Out [O] Destination
2397 * RETURNS
2398 * Success: S_OK.
2399 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2401 HRESULT WINAPI VarUI8FromI8(LONG64 llIn, ULONG64* pui64Out)
2403 return _VarUI8FromI8(llIn, pui64Out);
2406 /************************************************************************
2407 * VarUI8FromUI1 (OLEAUT32.429)
2409 * Convert a VT_UI1 to a VT_UI8.
2411 * PARAMS
2412 * bIn [I] Source
2413 * pui64Out [O] Destination
2415 * RETURNS
2416 * S_OK.
2418 HRESULT WINAPI VarUI8FromUI1(BYTE bIn, ULONG64* pui64Out)
2420 return _VarUI8FromUI1(bIn, pui64Out);
2423 /************************************************************************
2424 * VarUI8FromI2 (OLEAUT32.430)
2426 * Convert a VT_I2 to a VT_UI8.
2428 * PARAMS
2429 * sIn [I] Source
2430 * pui64Out [O] Destination
2432 * RETURNS
2433 * S_OK.
2435 HRESULT WINAPI VarUI8FromI2(SHORT sIn, ULONG64* pui64Out)
2437 return _VarUI8FromI2(sIn, pui64Out);
2440 /************************************************************************
2441 * VarUI8FromR4 (OLEAUT32.431)
2443 * Convert a VT_R4 to a VT_UI8.
2445 * PARAMS
2446 * fltIn [I] Source
2447 * pui64Out [O] Destination
2449 * RETURNS
2450 * Success: S_OK.
2451 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2453 HRESULT WINAPI VarUI8FromR4(FLOAT fltIn, ULONG64* pui64Out)
2455 return VarUI8FromR8(fltIn, pui64Out);
2458 /************************************************************************
2459 * VarUI8FromR8 (OLEAUT32.432)
2461 * Convert a VT_R8 to a VT_UI8.
2463 * PARAMS
2464 * dblIn [I] Source
2465 * pui64Out [O] Destination
2467 * RETURNS
2468 * Success: S_OK.
2469 * Failure: E_INVALIDARG, if the source value is invalid
2470 * DISP_E_OVERFLOW, if the value will not fit in the destination
2472 * NOTES
2473 * See VarI8FromR8() for details concerning rounding.
2475 HRESULT WINAPI VarUI8FromR8(double dblIn, ULONG64* pui64Out)
2477 if (dblIn < -0.5 || dblIn > 1.844674407370955e19)
2478 return DISP_E_OVERFLOW;
2479 VARIANT_DutchRound(ULONG64, dblIn, *pui64Out);
2480 return S_OK;
2483 /************************************************************************
2484 * VarUI8FromCy (OLEAUT32.433)
2486 * Convert a VT_CY to a VT_UI8.
2488 * PARAMS
2489 * cyIn [I] Source
2490 * pui64Out [O] Destination
2492 * RETURNS
2493 * Success: S_OK.
2494 * Failure: E_INVALIDARG, if the source value is invalid
2495 * DISP_E_OVERFLOW, if the value will not fit in the destination
2497 * NOTES
2498 * Negative values >= -5000 will be converted to 0.
2500 HRESULT WINAPI VarUI8FromCy(CY cyIn, ULONG64* pui64Out)
2502 if (cyIn.int64 < 0)
2504 if (cyIn.int64 < -CY_HALF)
2505 return DISP_E_OVERFLOW;
2506 *pui64Out = 0;
2508 else
2510 *pui64Out = cyIn.int64 / CY_MULTIPLIER;
2512 cyIn.int64 -= *pui64Out * CY_MULTIPLIER; /* cyIn.s.Lo now holds fractional remainder */
2514 if (cyIn.s.Lo > CY_HALF || (cyIn.s.Lo == CY_HALF && (*pui64Out & 0x1)))
2515 (*pui64Out)++;
2517 return S_OK;
2520 /************************************************************************
2521 * VarUI8FromDate (OLEAUT32.434)
2523 * Convert a VT_DATE to a VT_UI8.
2525 * PARAMS
2526 * dateIn [I] Source
2527 * pui64Out [O] Destination
2529 * RETURNS
2530 * Success: S_OK.
2531 * Failure: E_INVALIDARG, if the source value is invalid
2532 * DISP_E_OVERFLOW, if the value will not fit in the destination
2533 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2535 HRESULT WINAPI VarUI8FromDate(DATE dateIn, ULONG64* pui64Out)
2537 return VarUI8FromR8(dateIn, pui64Out);
2540 /************************************************************************
2541 * VarUI8FromStr (OLEAUT32.435)
2543 * Convert a VT_BSTR to a VT_UI8.
2545 * PARAMS
2546 * strIn [I] Source
2547 * lcid [I] LCID for the conversion
2548 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2549 * pui64Out [O] Destination
2551 * RETURNS
2552 * Success: S_OK.
2553 * Failure: E_INVALIDARG, if the source value is invalid
2554 * DISP_E_OVERFLOW, if the value will not fit in the destination
2555 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2557 HRESULT WINAPI VarUI8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, ULONG64* pui64Out)
2559 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pui64Out, VT_UI8);
2562 /************************************************************************
2563 * VarUI8FromDisp (OLEAUT32.436)
2565 * Convert a VT_DISPATCH to a VT_UI8.
2567 * PARAMS
2568 * pdispIn [I] Source
2569 * lcid [I] LCID for conversion
2570 * pui64Out [O] Destination
2572 * RETURNS
2573 * Success: S_OK.
2574 * Failure: E_INVALIDARG, if the source value is invalid
2575 * DISP_E_OVERFLOW, if the value will not fit in the destination
2576 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2578 HRESULT WINAPI VarUI8FromDisp(IDispatch* pdispIn, LCID lcid, ULONG64* pui64Out)
2580 return VARIANT_FromDisp(pdispIn, lcid, pui64Out, VT_UI8, 0);
2583 /************************************************************************
2584 * VarUI8FromBool (OLEAUT32.437)
2586 * Convert a VT_BOOL to a VT_UI8.
2588 * PARAMS
2589 * boolIn [I] Source
2590 * pui64Out [O] Destination
2592 * RETURNS
2593 * Success: S_OK.
2594 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2596 HRESULT WINAPI VarUI8FromBool(VARIANT_BOOL boolIn, ULONG64* pui64Out)
2598 return VarI8FromI2(boolIn, (LONG64 *)pui64Out);
2600 /************************************************************************
2601 * VarUI8FromI1 (OLEAUT32.438)
2603 * Convert a VT_I1 to a VT_UI8.
2605 * PARAMS
2606 * cIn [I] Source
2607 * pui64Out [O] Destination
2609 * RETURNS
2610 * Success: S_OK.
2611 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
2613 HRESULT WINAPI VarUI8FromI1(signed char cIn, ULONG64* pui64Out)
2615 return _VarUI8FromI1(cIn, pui64Out);
2618 /************************************************************************
2619 * VarUI8FromUI2 (OLEAUT32.439)
2621 * Convert a VT_UI2 to a VT_UI8.
2623 * PARAMS
2624 * usIn [I] Source
2625 * pui64Out [O] Destination
2627 * RETURNS
2628 * S_OK.
2630 HRESULT WINAPI VarUI8FromUI2(USHORT usIn, ULONG64* pui64Out)
2632 return _VarUI8FromUI2(usIn, pui64Out);
2635 /************************************************************************
2636 * VarUI8FromUI4 (OLEAUT32.440)
2638 * Convert a VT_UI4 to a VT_UI8.
2640 * PARAMS
2641 * ulIn [I] Source
2642 * pui64Out [O] Destination
2644 * RETURNS
2645 * S_OK.
2647 HRESULT WINAPI VarUI8FromUI4(ULONG ulIn, ULONG64* pui64Out)
2649 return _VarUI8FromUI4(ulIn, pui64Out);
2652 /************************************************************************
2653 * VarUI8FromDec (OLEAUT32.441)
2655 * Convert a VT_DECIMAL to a VT_UI8.
2657 * PARAMS
2658 * pDecIn [I] Source
2659 * pui64Out [O] Destination
2661 * RETURNS
2662 * Success: S_OK.
2663 * Failure: E_INVALIDARG, if the source value is invalid
2664 * DISP_E_OVERFLOW, if the value will not fit in the destination
2666 * NOTES
2667 * Under native Win32, if the source value has a scale of 0, its sign is
2668 * ignored, i.e. this function takes the absolute value rather than fail
2669 * with DISP_E_OVERFLOW. This bug has been fixed in Wine's implementation
2670 * (use VarAbs() on pDecIn first if you really want this behaviour).
2672 HRESULT WINAPI VarUI8FromDec(DECIMAL *pdecIn, ULONG64* pui64Out)
2674 if (!DEC_SCALE(pdecIn))
2676 /* This decimal is just a 96 bit integer */
2677 if (DEC_SIGN(pdecIn) & ~DECIMAL_NEG)
2678 return E_INVALIDARG;
2680 if (DEC_HI32(pdecIn))
2681 return DISP_E_OVERFLOW;
2683 if (DEC_SIGN(pdecIn))
2685 WARN("Sign would be ignored under Win32!\n");
2686 return DISP_E_OVERFLOW;
2689 *pui64Out = DEC_LO64(pdecIn);
2690 return S_OK;
2692 else
2694 /* Decimal contains a floating point number */
2695 HRESULT hRet;
2696 double dbl;
2698 hRet = VarR8FromDec(pdecIn, &dbl);
2699 if (SUCCEEDED(hRet))
2700 hRet = VarUI8FromR8(dbl, pui64Out);
2701 return hRet;
2705 /* R4
2708 /************************************************************************
2709 * VarR4FromUI1 (OLEAUT32.68)
2711 * Convert a VT_UI1 to a VT_R4.
2713 * PARAMS
2714 * bIn [I] Source
2715 * pFltOut [O] Destination
2717 * RETURNS
2718 * S_OK.
2720 HRESULT WINAPI VarR4FromUI1(BYTE bIn, float *pFltOut)
2722 return _VarR4FromUI1(bIn, pFltOut);
2725 /************************************************************************
2726 * VarR4FromI2 (OLEAUT32.69)
2728 * Convert a VT_I2 to a VT_R4.
2730 * PARAMS
2731 * sIn [I] Source
2732 * pFltOut [O] Destination
2734 * RETURNS
2735 * S_OK.
2737 HRESULT WINAPI VarR4FromI2(SHORT sIn, float *pFltOut)
2739 return _VarR4FromI2(sIn, pFltOut);
2742 /************************************************************************
2743 * VarR4FromI4 (OLEAUT32.70)
2745 * Convert a VT_I4 to a VT_R4.
2747 * PARAMS
2748 * sIn [I] Source
2749 * pFltOut [O] Destination
2751 * RETURNS
2752 * S_OK.
2754 HRESULT WINAPI VarR4FromI4(LONG lIn, float *pFltOut)
2756 return _VarR4FromI4(lIn, pFltOut);
2759 /************************************************************************
2760 * VarR4FromR8 (OLEAUT32.71)
2762 * Convert a VT_R8 to a VT_R4.
2764 * PARAMS
2765 * dblIn [I] Source
2766 * pFltOut [O] Destination
2768 * RETURNS
2769 * Success: S_OK.
2770 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2772 HRESULT WINAPI VarR4FromR8(double dblIn, float *pFltOut)
2774 double d = dblIn < 0.0 ? -dblIn : dblIn;
2775 if (d > R4_MAX) return DISP_E_OVERFLOW;
2776 *pFltOut = dblIn;
2777 return S_OK;
2780 /************************************************************************
2781 * VarR4FromCy (OLEAUT32.72)
2783 * Convert a VT_CY to a VT_R4.
2785 * PARAMS
2786 * cyIn [I] Source
2787 * pFltOut [O] Destination
2789 * RETURNS
2790 * S_OK.
2792 HRESULT WINAPI VarR4FromCy(CY cyIn, float *pFltOut)
2794 *pFltOut = (double)cyIn.int64 / CY_MULTIPLIER_F;
2795 return S_OK;
2798 /************************************************************************
2799 * VarR4FromDate (OLEAUT32.73)
2801 * Convert a VT_DATE to a VT_R4.
2803 * PARAMS
2804 * dateIn [I] Source
2805 * pFltOut [O] Destination
2807 * RETURNS
2808 * Success: S_OK.
2809 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination.
2811 HRESULT WINAPI VarR4FromDate(DATE dateIn, float *pFltOut)
2813 return VarR4FromR8(dateIn, pFltOut);
2816 /************************************************************************
2817 * VarR4FromStr (OLEAUT32.74)
2819 * Convert a VT_BSTR to a VT_R4.
2821 * PARAMS
2822 * strIn [I] Source
2823 * lcid [I] LCID for the conversion
2824 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
2825 * pFltOut [O] Destination
2827 * RETURNS
2828 * Success: S_OK.
2829 * Failure: E_INVALIDARG, if strIn or pFltOut is invalid.
2830 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2832 HRESULT WINAPI VarR4FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, float *pFltOut)
2834 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pFltOut, VT_R4);
2837 /************************************************************************
2838 * VarR4FromDisp (OLEAUT32.75)
2840 * Convert a VT_DISPATCH to a VT_R4.
2842 * PARAMS
2843 * pdispIn [I] Source
2844 * lcid [I] LCID for conversion
2845 * pFltOut [O] Destination
2847 * RETURNS
2848 * Success: S_OK.
2849 * Failure: E_INVALIDARG, if the source value is invalid
2850 * DISP_E_OVERFLOW, if the value will not fit in the destination
2851 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2853 HRESULT WINAPI VarR4FromDisp(IDispatch* pdispIn, LCID lcid, float *pFltOut)
2855 return VARIANT_FromDisp(pdispIn, lcid, pFltOut, VT_R4, 0);
2858 /************************************************************************
2859 * VarR4FromBool (OLEAUT32.76)
2861 * Convert a VT_BOOL to a VT_R4.
2863 * PARAMS
2864 * boolIn [I] Source
2865 * pFltOut [O] Destination
2867 * RETURNS
2868 * S_OK.
2870 HRESULT WINAPI VarR4FromBool(VARIANT_BOOL boolIn, float *pFltOut)
2872 return VarR4FromI2(boolIn, pFltOut);
2875 /************************************************************************
2876 * VarR4FromI1 (OLEAUT32.213)
2878 * Convert a VT_I1 to a VT_R4.
2880 * PARAMS
2881 * cIn [I] Source
2882 * pFltOut [O] Destination
2884 * RETURNS
2885 * Success: S_OK.
2886 * Failure: E_INVALIDARG, if the source value is invalid
2887 * DISP_E_OVERFLOW, if the value will not fit in the destination
2888 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2890 HRESULT WINAPI VarR4FromI1(signed char cIn, float *pFltOut)
2892 return _VarR4FromI1(cIn, pFltOut);
2895 /************************************************************************
2896 * VarR4FromUI2 (OLEAUT32.214)
2898 * Convert a VT_UI2 to a VT_R4.
2900 * PARAMS
2901 * usIn [I] Source
2902 * pFltOut [O] Destination
2904 * RETURNS
2905 * Success: S_OK.
2906 * Failure: E_INVALIDARG, if the source value is invalid
2907 * DISP_E_OVERFLOW, if the value will not fit in the destination
2908 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2910 HRESULT WINAPI VarR4FromUI2(USHORT usIn, float *pFltOut)
2912 return _VarR4FromUI2(usIn, pFltOut);
2915 /************************************************************************
2916 * VarR4FromUI4 (OLEAUT32.215)
2918 * Convert a VT_UI4 to a VT_R4.
2920 * PARAMS
2921 * ulIn [I] Source
2922 * pFltOut [O] Destination
2924 * RETURNS
2925 * Success: S_OK.
2926 * Failure: E_INVALIDARG, if the source value is invalid
2927 * DISP_E_OVERFLOW, if the value will not fit in the destination
2928 * DISP_E_TYPEMISMATCH, if the type cannot be converted
2930 HRESULT WINAPI VarR4FromUI4(ULONG ulIn, float *pFltOut)
2932 return _VarR4FromUI4(ulIn, pFltOut);
2935 /************************************************************************
2936 * VarR4FromDec (OLEAUT32.216)
2938 * Convert a VT_DECIMAL to a VT_R4.
2940 * PARAMS
2941 * pDecIn [I] Source
2942 * pFltOut [O] Destination
2944 * RETURNS
2945 * Success: S_OK.
2946 * Failure: E_INVALIDARG, if the source value is invalid.
2948 HRESULT WINAPI VarR4FromDec(DECIMAL* pDecIn, float *pFltOut)
2950 BYTE scale = DEC_SCALE(pDecIn);
2951 int divisor = 1;
2952 double highPart;
2954 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
2955 return E_INVALIDARG;
2957 while (scale--)
2958 divisor *= 10;
2960 if (DEC_SIGN(pDecIn))
2961 divisor = -divisor;
2963 if (DEC_HI32(pDecIn))
2965 highPart = (double)DEC_HI32(pDecIn) / (double)divisor;
2966 highPart *= 4294967296.0F;
2967 highPart *= 4294967296.0F;
2969 else
2970 highPart = 0.0;
2972 *pFltOut = (double)DEC_LO64(pDecIn) / (double)divisor + highPart;
2973 return S_OK;
2976 /************************************************************************
2977 * VarR4FromI8 (OLEAUT32.360)
2979 * Convert a VT_I8 to a VT_R4.
2981 * PARAMS
2982 * ullIn [I] Source
2983 * pFltOut [O] Destination
2985 * RETURNS
2986 * S_OK.
2988 HRESULT WINAPI VarR4FromI8(LONG64 llIn, float *pFltOut)
2990 return _VarR4FromI8(llIn, pFltOut);
2993 /************************************************************************
2994 * VarR4FromUI8 (OLEAUT32.361)
2996 * Convert a VT_UI8 to a VT_R4.
2998 * PARAMS
2999 * ullIn [I] Source
3000 * pFltOut [O] Destination
3002 * RETURNS
3003 * S_OK.
3005 HRESULT WINAPI VarR4FromUI8(ULONG64 ullIn, float *pFltOut)
3007 return _VarR4FromUI8(ullIn, pFltOut);
3010 /************************************************************************
3011 * VarR4CmpR8 (OLEAUT32.316)
3013 * Compare a VT_R4 to a VT_R8.
3015 * PARAMS
3016 * fltLeft [I] Source
3017 * dblRight [I] Value to compare
3019 * RETURNS
3020 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that fltLeft is less than,
3021 * equal to or greater than dblRight respectively.
3023 HRESULT WINAPI VarR4CmpR8(float fltLeft, double dblRight)
3025 if (fltLeft < dblRight)
3026 return VARCMP_LT;
3027 else if (fltLeft > dblRight)
3028 return VARCMP_GT;
3029 return VARCMP_EQ;
3032 /* R8
3035 /************************************************************************
3036 * VarR8FromUI1 (OLEAUT32.78)
3038 * Convert a VT_UI1 to a VT_R8.
3040 * PARAMS
3041 * bIn [I] Source
3042 * pDblOut [O] Destination
3044 * RETURNS
3045 * S_OK.
3047 HRESULT WINAPI VarR8FromUI1(BYTE bIn, double *pDblOut)
3049 return _VarR8FromUI1(bIn, pDblOut);
3052 /************************************************************************
3053 * VarR8FromI2 (OLEAUT32.79)
3055 * Convert a VT_I2 to a VT_R8.
3057 * PARAMS
3058 * sIn [I] Source
3059 * pDblOut [O] Destination
3061 * RETURNS
3062 * S_OK.
3064 HRESULT WINAPI VarR8FromI2(SHORT sIn, double *pDblOut)
3066 return _VarR8FromI2(sIn, pDblOut);
3069 /************************************************************************
3070 * VarR8FromI4 (OLEAUT32.80)
3072 * Convert a VT_I4 to a VT_R8.
3074 * PARAMS
3075 * sIn [I] Source
3076 * pDblOut [O] Destination
3078 * RETURNS
3079 * S_OK.
3081 HRESULT WINAPI VarR8FromI4(LONG lIn, double *pDblOut)
3083 return _VarR8FromI4(lIn, pDblOut);
3086 /************************************************************************
3087 * VarR8FromR4 (OLEAUT32.81)
3089 * Convert a VT_R4 to a VT_R8.
3091 * PARAMS
3092 * fltIn [I] Source
3093 * pDblOut [O] Destination
3095 * RETURNS
3096 * S_OK.
3098 HRESULT WINAPI VarR8FromR4(FLOAT fltIn, double *pDblOut)
3100 return _VarR8FromR4(fltIn, pDblOut);
3103 /************************************************************************
3104 * VarR8FromCy (OLEAUT32.82)
3106 * Convert a VT_CY to a VT_R8.
3108 * PARAMS
3109 * cyIn [I] Source
3110 * pDblOut [O] Destination
3112 * RETURNS
3113 * S_OK.
3115 HRESULT WINAPI VarR8FromCy(CY cyIn, double *pDblOut)
3117 return _VarR8FromCy(cyIn, pDblOut);
3120 /************************************************************************
3121 * VarR8FromDate (OLEAUT32.83)
3123 * Convert a VT_DATE to a VT_R8.
3125 * PARAMS
3126 * dateIn [I] Source
3127 * pDblOut [O] Destination
3129 * RETURNS
3130 * S_OK.
3132 HRESULT WINAPI VarR8FromDate(DATE dateIn, double *pDblOut)
3134 return _VarR8FromDate(dateIn, pDblOut);
3137 /************************************************************************
3138 * VarR8FromStr (OLEAUT32.84)
3140 * Convert a VT_BSTR to a VT_R8.
3142 * PARAMS
3143 * strIn [I] Source
3144 * lcid [I] LCID for the conversion
3145 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3146 * pDblOut [O] Destination
3148 * RETURNS
3149 * Success: S_OK.
3150 * Failure: E_INVALIDARG, if strIn or pDblOut is invalid.
3151 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3153 HRESULT WINAPI VarR8FromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, double *pDblOut)
3155 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDblOut, VT_R8);
3158 /************************************************************************
3159 * VarR8FromDisp (OLEAUT32.85)
3161 * Convert a VT_DISPATCH to a VT_R8.
3163 * PARAMS
3164 * pdispIn [I] Source
3165 * lcid [I] LCID for conversion
3166 * pDblOut [O] Destination
3168 * RETURNS
3169 * Success: S_OK.
3170 * Failure: E_INVALIDARG, if the source value is invalid
3171 * DISP_E_OVERFLOW, if the value will not fit in the destination
3172 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3174 HRESULT WINAPI VarR8FromDisp(IDispatch* pdispIn, LCID lcid, double *pDblOut)
3176 return VARIANT_FromDisp(pdispIn, lcid, pDblOut, VT_R8, 0);
3179 /************************************************************************
3180 * VarR8FromBool (OLEAUT32.86)
3182 * Convert a VT_BOOL to a VT_R8.
3184 * PARAMS
3185 * boolIn [I] Source
3186 * pDblOut [O] Destination
3188 * RETURNS
3189 * S_OK.
3191 HRESULT WINAPI VarR8FromBool(VARIANT_BOOL boolIn, double *pDblOut)
3193 return VarR8FromI2(boolIn, pDblOut);
3196 /************************************************************************
3197 * VarR8FromI1 (OLEAUT32.217)
3199 * Convert a VT_I1 to a VT_R8.
3201 * PARAMS
3202 * cIn [I] Source
3203 * pDblOut [O] Destination
3205 * RETURNS
3206 * Success: S_OK.
3207 * Failure: E_INVALIDARG, if the source value is invalid
3208 * DISP_E_OVERFLOW, if the value will not fit in the destination
3209 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3211 HRESULT WINAPI VarR8FromI1(signed char cIn, double *pDblOut)
3213 return _VarR8FromI1(cIn, pDblOut);
3216 /************************************************************************
3217 * VarR8FromUI2 (OLEAUT32.218)
3219 * Convert a VT_UI2 to a VT_R8.
3221 * PARAMS
3222 * usIn [I] Source
3223 * pDblOut [O] Destination
3225 * RETURNS
3226 * Success: S_OK.
3227 * Failure: E_INVALIDARG, if the source value is invalid
3228 * DISP_E_OVERFLOW, if the value will not fit in the destination
3229 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3231 HRESULT WINAPI VarR8FromUI2(USHORT usIn, double *pDblOut)
3233 return _VarR8FromUI2(usIn, pDblOut);
3236 /************************************************************************
3237 * VarR8FromUI4 (OLEAUT32.219)
3239 * Convert a VT_UI4 to a VT_R8.
3241 * PARAMS
3242 * ulIn [I] Source
3243 * pDblOut [O] Destination
3245 * RETURNS
3246 * Success: S_OK.
3247 * Failure: E_INVALIDARG, if the source value is invalid
3248 * DISP_E_OVERFLOW, if the value will not fit in the destination
3249 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3251 HRESULT WINAPI VarR8FromUI4(ULONG ulIn, double *pDblOut)
3253 return _VarR8FromUI4(ulIn, pDblOut);
3256 /************************************************************************
3257 * VarR8FromDec (OLEAUT32.220)
3259 * Convert a VT_DECIMAL to a VT_R8.
3261 * PARAMS
3262 * pDecIn [I] Source
3263 * pDblOut [O] Destination
3265 * RETURNS
3266 * Success: S_OK.
3267 * Failure: E_INVALIDARG, if the source value is invalid.
3269 HRESULT WINAPI VarR8FromDec(const DECIMAL* pDecIn, double *pDblOut)
3271 BYTE scale = DEC_SCALE(pDecIn);
3272 double divisor = 1.0, highPart;
3274 if (scale > DEC_MAX_SCALE || DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
3275 return E_INVALIDARG;
3277 while (scale--)
3278 divisor *= 10;
3280 if (DEC_SIGN(pDecIn))
3281 divisor = -divisor;
3283 if (DEC_HI32(pDecIn))
3285 highPart = (double)DEC_HI32(pDecIn) / divisor;
3286 highPart *= 4294967296.0F;
3287 highPart *= 4294967296.0F;
3289 else
3290 highPart = 0.0;
3292 *pDblOut = (double)DEC_LO64(pDecIn) / divisor + highPart;
3293 return S_OK;
3296 /************************************************************************
3297 * VarR8FromI8 (OLEAUT32.362)
3299 * Convert a VT_I8 to a VT_R8.
3301 * PARAMS
3302 * ullIn [I] Source
3303 * pDblOut [O] Destination
3305 * RETURNS
3306 * S_OK.
3308 HRESULT WINAPI VarR8FromI8(LONG64 llIn, double *pDblOut)
3310 return _VarR8FromI8(llIn, pDblOut);
3313 /************************************************************************
3314 * VarR8FromUI8 (OLEAUT32.363)
3316 * Convert a VT_UI8 to a VT_R8.
3318 * PARAMS
3319 * ullIn [I] Source
3320 * pDblOut [O] Destination
3322 * RETURNS
3323 * S_OK.
3325 HRESULT WINAPI VarR8FromUI8(ULONG64 ullIn, double *pDblOut)
3327 return _VarR8FromUI8(ullIn, pDblOut);
3330 /************************************************************************
3331 * VarR8Pow (OLEAUT32.315)
3333 * Raise a VT_R8 to a power.
3335 * PARAMS
3336 * dblLeft [I] Source
3337 * dblPow [I] Power to raise dblLeft by
3338 * pDblOut [O] Destination
3340 * RETURNS
3341 * S_OK. pDblOut contains dblLeft to the power of dblRight.
3343 HRESULT WINAPI VarR8Pow(double dblLeft, double dblPow, double *pDblOut)
3345 *pDblOut = pow(dblLeft, dblPow);
3346 return S_OK;
3349 /************************************************************************
3350 * VarR8Round (OLEAUT32.317)
3352 * Round a VT_R8 to a given number of decimal points.
3354 * PARAMS
3355 * dblIn [I] Source
3356 * nDig [I] Number of decimal points to round to
3357 * pDblOut [O] Destination for rounded number
3359 * RETURNS
3360 * Success: S_OK. pDblOut is rounded to nDig digits.
3361 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3363 * NOTES
3364 * The native version of this function rounds using the internal
3365 * binary representation of the number. Wine uses the dutch rounding
3366 * convention, so therefore small differences can occur in the value returned.
3367 * MSDN says that you should use your own rounding function if you want
3368 * rounding to be predictable in your application.
3370 HRESULT WINAPI VarR8Round(double dblIn, int nDig, double *pDblOut)
3372 double scale, whole, fract;
3374 if (nDig < 0)
3375 return E_INVALIDARG;
3377 scale = pow(10.0, nDig);
3379 dblIn *= scale;
3380 whole = dblIn < 0 ? ceil(dblIn) : floor(dblIn);
3381 fract = dblIn - whole;
3383 if (fract > 0.5)
3384 dblIn = whole + 1.0;
3385 else if (fract == 0.5)
3386 dblIn = whole + fmod(whole, 2.0);
3387 else if (fract >= 0.0)
3388 dblIn = whole;
3389 else if (fract == -0.5)
3390 dblIn = whole - fmod(whole, 2.0);
3391 else if (fract > -0.5)
3392 dblIn = whole;
3393 else
3394 dblIn = whole - 1.0;
3396 *pDblOut = dblIn / scale;
3397 return S_OK;
3400 /* CY
3403 /* Powers of 10 from 0..4 D.P. */
3404 static const int CY_Divisors[5] = { CY_MULTIPLIER/10000, CY_MULTIPLIER/1000,
3405 CY_MULTIPLIER/100, CY_MULTIPLIER/10, CY_MULTIPLIER };
3407 /************************************************************************
3408 * VarCyFromUI1 (OLEAUT32.98)
3410 * Convert a VT_UI1 to a VT_CY.
3412 * PARAMS
3413 * bIn [I] Source
3414 * pCyOut [O] Destination
3416 * RETURNS
3417 * Success: S_OK.
3418 * Failure: E_INVALIDARG, if the source value is invalid
3419 * DISP_E_OVERFLOW, if the value will not fit in the destination
3420 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3422 HRESULT WINAPI VarCyFromUI1(BYTE bIn, CY* pCyOut)
3424 pCyOut->int64 = (ULONG64)bIn * CY_MULTIPLIER;
3425 return S_OK;
3428 /************************************************************************
3429 * VarCyFromI2 (OLEAUT32.99)
3431 * Convert a VT_I2 to a VT_CY.
3433 * PARAMS
3434 * sIn [I] Source
3435 * pCyOut [O] Destination
3437 * RETURNS
3438 * Success: S_OK.
3439 * Failure: E_INVALIDARG, if the source value is invalid
3440 * DISP_E_OVERFLOW, if the value will not fit in the destination
3441 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3443 HRESULT WINAPI VarCyFromI2(SHORT sIn, CY* pCyOut)
3445 pCyOut->int64 = (LONG64)sIn * CY_MULTIPLIER;
3446 return S_OK;
3449 /************************************************************************
3450 * VarCyFromI4 (OLEAUT32.100)
3452 * Convert a VT_I4 to a VT_CY.
3454 * PARAMS
3455 * sIn [I] Source
3456 * pCyOut [O] Destination
3458 * RETURNS
3459 * Success: S_OK.
3460 * Failure: E_INVALIDARG, if the source value is invalid
3461 * DISP_E_OVERFLOW, if the value will not fit in the destination
3462 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3464 HRESULT WINAPI VarCyFromI4(LONG lIn, CY* pCyOut)
3466 pCyOut->int64 = (LONG64)lIn * CY_MULTIPLIER;
3467 return S_OK;
3470 /************************************************************************
3471 * VarCyFromR4 (OLEAUT32.101)
3473 * Convert a VT_R4 to a VT_CY.
3475 * PARAMS
3476 * fltIn [I] Source
3477 * pCyOut [O] Destination
3479 * RETURNS
3480 * Success: S_OK.
3481 * Failure: E_INVALIDARG, if the source value is invalid
3482 * DISP_E_OVERFLOW, if the value will not fit in the destination
3483 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3485 HRESULT WINAPI VarCyFromR4(FLOAT fltIn, CY* pCyOut)
3487 return VarCyFromR8(fltIn, pCyOut);
3490 /************************************************************************
3491 * VarCyFromR8 (OLEAUT32.102)
3493 * Convert a VT_R8 to a VT_CY.
3495 * PARAMS
3496 * dblIn [I] Source
3497 * pCyOut [O] Destination
3499 * RETURNS
3500 * Success: S_OK.
3501 * Failure: E_INVALIDARG, if the source value is invalid
3502 * DISP_E_OVERFLOW, if the value will not fit in the destination
3503 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3505 HRESULT WINAPI VarCyFromR8(double dblIn, CY* pCyOut)
3507 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
3508 /* This code gives identical results to Win32 on Intel.
3509 * Here we use fp exceptions to catch overflows when storing the value.
3511 static const unsigned short r8_fpcontrol = 0x137f;
3512 static const double r8_multiplier = CY_MULTIPLIER_F;
3513 unsigned short old_fpcontrol, result_fpstatus;
3515 /* Clear exceptions, save the old fp state and load the new state */
3516 __asm__ __volatile__( "fnclex" );
3517 __asm__ __volatile__( "fstcw %0" : "=m" (old_fpcontrol) : );
3518 __asm__ __volatile__( "fldcw %0" : : "m" (r8_fpcontrol) );
3519 /* Perform the conversion. */
3520 __asm__ __volatile__( "fldl %0" : : "m" (dblIn) );
3521 __asm__ __volatile__( "fmull %0" : : "m" (r8_multiplier) );
3522 __asm__ __volatile__( "fistpll %0" : : "m" (*pCyOut) );
3523 /* Save the resulting fp state, load the old state and clear exceptions */
3524 __asm__ __volatile__( "fstsw %0" : "=m" (result_fpstatus) : );
3525 __asm__ __volatile__( "fnclex" );
3526 __asm__ __volatile__( "fldcw %0" : : "m" (old_fpcontrol) );
3528 if (result_fpstatus & 0x9) /* Overflow | Invalid */
3529 return DISP_E_OVERFLOW;
3530 #else
3531 /* This version produces slightly different results for boundary cases */
3532 if (dblIn < -922337203685477.5807 || dblIn >= 922337203685477.5807)
3533 return DISP_E_OVERFLOW;
3534 dblIn *= CY_MULTIPLIER_F;
3535 VARIANT_DutchRound(LONG64, dblIn, pCyOut->int64);
3536 #endif
3537 return S_OK;
3540 /************************************************************************
3541 * VarCyFromDate (OLEAUT32.103)
3543 * Convert a VT_DATE to a VT_CY.
3545 * PARAMS
3546 * dateIn [I] Source
3547 * pCyOut [O] Destination
3549 * RETURNS
3550 * Success: S_OK.
3551 * Failure: E_INVALIDARG, if the source value is invalid
3552 * DISP_E_OVERFLOW, if the value will not fit in the destination
3553 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3555 HRESULT WINAPI VarCyFromDate(DATE dateIn, CY* pCyOut)
3557 return VarCyFromR8(dateIn, pCyOut);
3560 /************************************************************************
3561 * VarCyFromStr (OLEAUT32.104)
3563 * Convert a VT_BSTR to a VT_CY.
3565 * PARAMS
3566 * strIn [I] Source
3567 * lcid [I] LCID for the conversion
3568 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
3569 * pCyOut [O] Destination
3571 * RETURNS
3572 * Success: S_OK.
3573 * Failure: E_INVALIDARG, if the source value is invalid
3574 * DISP_E_OVERFLOW, if the value will not fit in the destination
3575 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3577 HRESULT WINAPI VarCyFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, CY* pCyOut)
3579 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pCyOut, VT_CY);
3582 /************************************************************************
3583 * VarCyFromDisp (OLEAUT32.105)
3585 * Convert a VT_DISPATCH to a VT_CY.
3587 * PARAMS
3588 * pdispIn [I] Source
3589 * lcid [I] LCID for conversion
3590 * pCyOut [O] Destination
3592 * RETURNS
3593 * Success: S_OK.
3594 * Failure: E_INVALIDARG, if the source value is invalid
3595 * DISP_E_OVERFLOW, if the value will not fit in the destination
3596 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3598 HRESULT WINAPI VarCyFromDisp(IDispatch* pdispIn, LCID lcid, CY* pCyOut)
3600 return VARIANT_FromDisp(pdispIn, lcid, pCyOut, VT_CY, 0);
3603 /************************************************************************
3604 * VarCyFromBool (OLEAUT32.106)
3606 * Convert a VT_BOOL to a VT_CY.
3608 * PARAMS
3609 * boolIn [I] Source
3610 * pCyOut [O] Destination
3612 * RETURNS
3613 * Success: S_OK.
3614 * Failure: E_INVALIDARG, if the source value is invalid
3615 * DISP_E_OVERFLOW, if the value will not fit in the destination
3616 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3618 * NOTES
3619 * While the sign of the boolean is stored in the currency, the value is
3620 * converted to either 0 or 1.
3622 HRESULT WINAPI VarCyFromBool(VARIANT_BOOL boolIn, CY* pCyOut)
3624 pCyOut->int64 = (LONG64)boolIn * CY_MULTIPLIER;
3625 return S_OK;
3628 /************************************************************************
3629 * VarCyFromI1 (OLEAUT32.225)
3631 * Convert a VT_I1 to a VT_CY.
3633 * PARAMS
3634 * cIn [I] Source
3635 * pCyOut [O] Destination
3637 * RETURNS
3638 * Success: S_OK.
3639 * Failure: E_INVALIDARG, if the source value is invalid
3640 * DISP_E_OVERFLOW, if the value will not fit in the destination
3641 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3643 HRESULT WINAPI VarCyFromI1(signed char cIn, CY* pCyOut)
3645 pCyOut->int64 = (LONG64)cIn * CY_MULTIPLIER;
3646 return S_OK;
3649 /************************************************************************
3650 * VarCyFromUI2 (OLEAUT32.226)
3652 * Convert a VT_UI2 to a VT_CY.
3654 * PARAMS
3655 * usIn [I] Source
3656 * pCyOut [O] Destination
3658 * RETURNS
3659 * Success: S_OK.
3660 * Failure: E_INVALIDARG, if the source value is invalid
3661 * DISP_E_OVERFLOW, if the value will not fit in the destination
3662 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3664 HRESULT WINAPI VarCyFromUI2(USHORT usIn, CY* pCyOut)
3666 pCyOut->int64 = (ULONG64)usIn * CY_MULTIPLIER;
3667 return S_OK;
3670 /************************************************************************
3671 * VarCyFromUI4 (OLEAUT32.227)
3673 * Convert a VT_UI4 to a VT_CY.
3675 * PARAMS
3676 * ulIn [I] Source
3677 * pCyOut [O] Destination
3679 * RETURNS
3680 * Success: S_OK.
3681 * Failure: E_INVALIDARG, if the source value is invalid
3682 * DISP_E_OVERFLOW, if the value will not fit in the destination
3683 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3685 HRESULT WINAPI VarCyFromUI4(ULONG ulIn, CY* pCyOut)
3687 pCyOut->int64 = (ULONG64)ulIn * CY_MULTIPLIER;
3688 return S_OK;
3691 /************************************************************************
3692 * VarCyFromDec (OLEAUT32.228)
3694 * Convert a VT_DECIMAL to a VT_CY.
3696 * PARAMS
3697 * pdecIn [I] Source
3698 * pCyOut [O] Destination
3700 * RETURNS
3701 * Success: S_OK.
3702 * Failure: E_INVALIDARG, if the source value is invalid
3703 * DISP_E_OVERFLOW, if the value will not fit in the destination
3704 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3706 HRESULT WINAPI VarCyFromDec(DECIMAL* pdecIn, CY* pCyOut)
3708 DECIMAL rounded;
3709 HRESULT hRet;
3711 hRet = VarDecRound(pdecIn, 4, &rounded);
3713 if (SUCCEEDED(hRet))
3715 double d;
3717 if (DEC_HI32(&rounded))
3718 return DISP_E_OVERFLOW;
3720 /* Note: Without the casts this promotes to int64 which loses precision */
3721 d = (double)DEC_LO64(&rounded) / (double)CY_Divisors[DEC_SCALE(&rounded)];
3722 if (DEC_SIGN(&rounded))
3723 d = -d;
3724 return VarCyFromR8(d, pCyOut);
3726 return hRet;
3729 /************************************************************************
3730 * VarCyFromI8 (OLEAUT32.366)
3732 * Convert a VT_I8 to a VT_CY.
3734 * PARAMS
3735 * ullIn [I] Source
3736 * pCyOut [O] Destination
3738 * RETURNS
3739 * Success: S_OK.
3740 * Failure: E_INVALIDARG, if the source value is invalid
3741 * DISP_E_OVERFLOW, if the value will not fit in the destination
3742 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3744 HRESULT WINAPI VarCyFromI8(LONG64 llIn, CY* pCyOut)
3746 if (llIn <= (I8_MIN/CY_MULTIPLIER) || llIn >= (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3747 pCyOut->int64 = llIn * CY_MULTIPLIER;
3748 return S_OK;
3751 /************************************************************************
3752 * VarCyFromUI8 (OLEAUT32.375)
3754 * Convert a VT_UI8 to a VT_CY.
3756 * PARAMS
3757 * ullIn [I] Source
3758 * pCyOut [O] Destination
3760 * RETURNS
3761 * Success: S_OK.
3762 * Failure: E_INVALIDARG, if the source value is invalid
3763 * DISP_E_OVERFLOW, if the value will not fit in the destination
3764 * DISP_E_TYPEMISMATCH, if the type cannot be converted
3766 HRESULT WINAPI VarCyFromUI8(ULONG64 ullIn, CY* pCyOut)
3768 if (ullIn > (I8_MAX/CY_MULTIPLIER)) return DISP_E_OVERFLOW;
3769 pCyOut->int64 = ullIn * CY_MULTIPLIER;
3770 return S_OK;
3773 /************************************************************************
3774 * VarCyAdd (OLEAUT32.299)
3776 * Add one CY to another.
3778 * PARAMS
3779 * cyLeft [I] Source
3780 * cyRight [I] Value to add
3781 * pCyOut [O] Destination
3783 * RETURNS
3784 * Success: S_OK.
3785 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3787 HRESULT WINAPI VarCyAdd(const CY cyLeft, const CY cyRight, CY* pCyOut)
3789 double l,r;
3790 _VarR8FromCy(cyLeft, &l);
3791 _VarR8FromCy(cyRight, &r);
3792 l = l + r;
3793 return VarCyFromR8(l, pCyOut);
3796 /************************************************************************
3797 * VarCyMul (OLEAUT32.303)
3799 * Multiply one CY by another.
3801 * PARAMS
3802 * cyLeft [I] Source
3803 * cyRight [I] Value to multiply by
3804 * pCyOut [O] Destination
3806 * RETURNS
3807 * Success: S_OK.
3808 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3810 HRESULT WINAPI VarCyMul(const CY cyLeft, const CY cyRight, CY* pCyOut)
3812 double l,r;
3813 _VarR8FromCy(cyLeft, &l);
3814 _VarR8FromCy(cyRight, &r);
3815 l = l * r;
3816 return VarCyFromR8(l, pCyOut);
3819 /************************************************************************
3820 * VarCyMulI4 (OLEAUT32.304)
3822 * Multiply one CY by a VT_I4.
3824 * PARAMS
3825 * cyLeft [I] Source
3826 * lRight [I] Value to multiply by
3827 * pCyOut [O] Destination
3829 * RETURNS
3830 * Success: S_OK.
3831 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3833 HRESULT WINAPI VarCyMulI4(const CY cyLeft, LONG lRight, CY* pCyOut)
3835 double d;
3837 _VarR8FromCy(cyLeft, &d);
3838 d = d * lRight;
3839 return VarCyFromR8(d, pCyOut);
3842 /************************************************************************
3843 * VarCySub (OLEAUT32.305)
3845 * Subtract one CY from another.
3847 * PARAMS
3848 * cyLeft [I] Source
3849 * cyRight [I] Value to subtract
3850 * pCyOut [O] Destination
3852 * RETURNS
3853 * Success: S_OK.
3854 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3856 HRESULT WINAPI VarCySub(const CY cyLeft, const CY cyRight, CY* pCyOut)
3858 double l,r;
3859 _VarR8FromCy(cyLeft, &l);
3860 _VarR8FromCy(cyRight, &r);
3861 l = l - r;
3862 return VarCyFromR8(l, pCyOut);
3865 /************************************************************************
3866 * VarCyAbs (OLEAUT32.306)
3868 * Convert a VT_CY into its absolute value.
3870 * PARAMS
3871 * cyIn [I] Source
3872 * pCyOut [O] Destination
3874 * RETURNS
3875 * Success: S_OK. pCyOut contains the absolute value.
3876 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3878 HRESULT WINAPI VarCyAbs(const CY cyIn, CY* pCyOut)
3880 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3881 return DISP_E_OVERFLOW;
3883 pCyOut->int64 = cyIn.int64 < 0 ? -cyIn.int64 : cyIn.int64;
3884 return S_OK;
3887 /************************************************************************
3888 * VarCyFix (OLEAUT32.307)
3890 * Return the integer part of a VT_CY.
3892 * PARAMS
3893 * cyIn [I] Source
3894 * pCyOut [O] Destination
3896 * RETURNS
3897 * Success: S_OK.
3898 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3900 * NOTES
3901 * - The difference between this function and VarCyInt() is that VarCyInt() rounds
3902 * negative numbers away from 0, while this function rounds them towards zero.
3904 HRESULT WINAPI VarCyFix(const CY cyIn, CY* pCyOut)
3906 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3907 pCyOut->int64 *= CY_MULTIPLIER;
3908 return S_OK;
3911 /************************************************************************
3912 * VarCyInt (OLEAUT32.308)
3914 * Return the integer part of a VT_CY.
3916 * PARAMS
3917 * cyIn [I] Source
3918 * pCyOut [O] Destination
3920 * RETURNS
3921 * Success: S_OK.
3922 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3924 * NOTES
3925 * - The difference between this function and VarCyFix() is that VarCyFix() rounds
3926 * negative numbers towards 0, while this function rounds them away from zero.
3928 HRESULT WINAPI VarCyInt(const CY cyIn, CY* pCyOut)
3930 pCyOut->int64 = cyIn.int64 / CY_MULTIPLIER;
3931 pCyOut->int64 *= CY_MULTIPLIER;
3933 if (cyIn.int64 < 0 && cyIn.int64 % CY_MULTIPLIER != 0)
3935 pCyOut->int64 -= CY_MULTIPLIER;
3937 return S_OK;
3940 /************************************************************************
3941 * VarCyNeg (OLEAUT32.309)
3943 * Change the sign of a VT_CY.
3945 * PARAMS
3946 * cyIn [I] Source
3947 * pCyOut [O] Destination
3949 * RETURNS
3950 * Success: S_OK.
3951 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
3953 HRESULT WINAPI VarCyNeg(const CY cyIn, CY* pCyOut)
3955 if (cyIn.s.Hi == (int)0x80000000 && !cyIn.s.Lo)
3956 return DISP_E_OVERFLOW;
3958 pCyOut->int64 = -cyIn.int64;
3959 return S_OK;
3962 /************************************************************************
3963 * VarCyRound (OLEAUT32.310)
3965 * Change the precision of a VT_CY.
3967 * PARAMS
3968 * cyIn [I] Source
3969 * cDecimals [I] New number of decimals to keep
3970 * pCyOut [O] Destination
3972 * RETURNS
3973 * Success: S_OK.
3974 * Failure: E_INVALIDARG, if cDecimals is less than 0.
3976 HRESULT WINAPI VarCyRound(const CY cyIn, int cDecimals, CY* pCyOut)
3978 if (cDecimals < 0)
3979 return E_INVALIDARG;
3981 if (cDecimals > 3)
3983 /* Rounding to more precision than we have */
3984 *pCyOut = cyIn;
3985 return S_OK;
3987 else
3989 double d, div = CY_Divisors[cDecimals];
3991 _VarR8FromCy(cyIn, &d);
3992 d = d * div;
3993 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3994 d = (double)pCyOut->int64 / div * CY_MULTIPLIER_F;
3995 VARIANT_DutchRound(LONGLONG, d, pCyOut->int64);
3996 return S_OK;
4000 /************************************************************************
4001 * VarCyCmp (OLEAUT32.311)
4003 * Compare two VT_CY values.
4005 * PARAMS
4006 * cyLeft [I] Source
4007 * cyRight [I] Value to compare
4009 * RETURNS
4010 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that the value to
4011 * compare is less, equal or greater than source respectively.
4012 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4014 HRESULT WINAPI VarCyCmp(const CY cyLeft, const CY cyRight)
4016 HRESULT hRet;
4017 CY result;
4019 /* Subtract right from left, and compare the result to 0 */
4020 hRet = VarCySub(cyLeft, cyRight, &result);
4022 if (SUCCEEDED(hRet))
4024 if (result.int64 < 0)
4025 hRet = (HRESULT)VARCMP_LT;
4026 else if (result.int64 > 0)
4027 hRet = (HRESULT)VARCMP_GT;
4028 else
4029 hRet = (HRESULT)VARCMP_EQ;
4031 return hRet;
4034 /************************************************************************
4035 * VarCyCmpR8 (OLEAUT32.312)
4037 * Compare a VT_CY to a double
4039 * PARAMS
4040 * cyLeft [I] Currency Source
4041 * dblRight [I] double to compare to cyLeft
4043 * RETURNS
4044 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight is
4045 * less than, equal to or greater than cyLeft respectively.
4046 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
4048 HRESULT WINAPI VarCyCmpR8(const CY cyLeft, double dblRight)
4050 HRESULT hRet;
4051 CY cyRight;
4053 hRet = VarCyFromR8(dblRight, &cyRight);
4055 if (SUCCEEDED(hRet))
4056 hRet = VarCyCmp(cyLeft, cyRight);
4058 return hRet;
4061 /************************************************************************
4062 * VarCyMulI8 (OLEAUT32.329)
4064 * Multiply a VT_CY by a VT_I8.
4066 * PARAMS
4067 * cyLeft [I] Source
4068 * llRight [I] Value to multiply by
4069 * pCyOut [O] Destination
4071 * RETURNS
4072 * Success: S_OK.
4073 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4075 HRESULT WINAPI VarCyMulI8(const CY cyLeft, LONG64 llRight, CY* pCyOut)
4077 double d;
4079 _VarR8FromCy(cyLeft, &d);
4080 d = d * (double)llRight;
4081 return VarCyFromR8(d, pCyOut);
4084 /* DECIMAL
4087 /************************************************************************
4088 * VarDecFromUI1 (OLEAUT32.190)
4090 * Convert a VT_UI1 to a DECIMAL.
4092 * PARAMS
4093 * bIn [I] Source
4094 * pDecOut [O] Destination
4096 * RETURNS
4097 * S_OK.
4099 HRESULT WINAPI VarDecFromUI1(BYTE bIn, DECIMAL* pDecOut)
4101 return VarDecFromUI4(bIn, pDecOut);
4104 /************************************************************************
4105 * VarDecFromI2 (OLEAUT32.191)
4107 * Convert a VT_I2 to a DECIMAL.
4109 * PARAMS
4110 * sIn [I] Source
4111 * pDecOut [O] Destination
4113 * RETURNS
4114 * S_OK.
4116 HRESULT WINAPI VarDecFromI2(SHORT sIn, DECIMAL* pDecOut)
4118 return VarDecFromI4(sIn, pDecOut);
4121 /************************************************************************
4122 * VarDecFromI4 (OLEAUT32.192)
4124 * Convert a VT_I4 to a DECIMAL.
4126 * PARAMS
4127 * sIn [I] Source
4128 * pDecOut [O] Destination
4130 * RETURNS
4131 * S_OK.
4133 HRESULT WINAPI VarDecFromI4(LONG lIn, DECIMAL* pDecOut)
4135 DEC_HI32(pDecOut) = 0;
4136 DEC_MID32(pDecOut) = 0;
4138 if (lIn < 0)
4140 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4141 DEC_LO32(pDecOut) = -lIn;
4143 else
4145 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4146 DEC_LO32(pDecOut) = lIn;
4148 return S_OK;
4151 /* internal representation of the value stored in a DECIMAL. The bytes are
4152 stored from LSB at index 0 to MSB at index 11
4154 typedef struct DECIMAL_internal
4156 DWORD bitsnum[3]; /* 96 significant bits, unsigned */
4157 unsigned char scale; /* number scaled * 10 ^ -(scale) */
4158 unsigned int sign : 1; /* 0 - positive, 1 - negative */
4159 } VARIANT_DI;
4161 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest);
4162 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest);
4163 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to);
4164 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to);
4165 static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor);
4166 static BOOL VARIANT_int_iszero(const DWORD * p, unsigned int n);
4168 /************************************************************************
4169 * VarDecFromR4 (OLEAUT32.193)
4171 * Convert a VT_R4 to a DECIMAL.
4173 * PARAMS
4174 * fltIn [I] Source
4175 * pDecOut [O] Destination
4177 * RETURNS
4178 * S_OK.
4180 HRESULT WINAPI VarDecFromR4(FLOAT fltIn, DECIMAL* pDecOut)
4182 VARIANT_DI di;
4183 HRESULT hres;
4185 hres = VARIANT_DI_FromR4(fltIn, &di);
4186 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4187 return hres;
4190 /************************************************************************
4191 * VarDecFromR8 (OLEAUT32.194)
4193 * Convert a VT_R8 to a DECIMAL.
4195 * PARAMS
4196 * dblIn [I] Source
4197 * pDecOut [O] Destination
4199 * RETURNS
4200 * S_OK.
4202 HRESULT WINAPI VarDecFromR8(double dblIn, DECIMAL* pDecOut)
4204 VARIANT_DI di;
4205 HRESULT hres;
4207 hres = VARIANT_DI_FromR8(dblIn, &di);
4208 if (hres == S_OK) VARIANT_DecFromDI(&di, pDecOut);
4209 return hres;
4212 /************************************************************************
4213 * VarDecFromDate (OLEAUT32.195)
4215 * Convert a VT_DATE to a DECIMAL.
4217 * PARAMS
4218 * dateIn [I] Source
4219 * pDecOut [O] Destination
4221 * RETURNS
4222 * S_OK.
4224 HRESULT WINAPI VarDecFromDate(DATE dateIn, DECIMAL* pDecOut)
4226 return VarDecFromR8(dateIn, pDecOut);
4229 /************************************************************************
4230 * VarDecFromCy (OLEAUT32.196)
4232 * Convert a VT_CY to a DECIMAL.
4234 * PARAMS
4235 * cyIn [I] Source
4236 * pDecOut [O] Destination
4238 * RETURNS
4239 * S_OK.
4241 HRESULT WINAPI VarDecFromCy(CY cyIn, DECIMAL* pDecOut)
4243 DEC_HI32(pDecOut) = 0;
4245 /* Note: This assumes 2s complement integer representation */
4246 if (cyIn.s.Hi & 0x80000000)
4248 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,4);
4249 DEC_LO64(pDecOut) = -cyIn.int64;
4251 else
4253 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,4);
4254 DEC_MID32(pDecOut) = cyIn.s.Hi;
4255 DEC_LO32(pDecOut) = cyIn.s.Lo;
4257 return S_OK;
4260 /************************************************************************
4261 * VarDecFromStr (OLEAUT32.197)
4263 * Convert a VT_BSTR to a DECIMAL.
4265 * PARAMS
4266 * strIn [I] Source
4267 * lcid [I] LCID for the conversion
4268 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
4269 * pDecOut [O] Destination
4271 * RETURNS
4272 * Success: S_OK.
4273 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4275 HRESULT WINAPI VarDecFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DECIMAL* pDecOut)
4277 return VARIANT_NumberFromBstr(strIn, lcid, dwFlags, pDecOut, VT_DECIMAL);
4280 /************************************************************************
4281 * VarDecFromDisp (OLEAUT32.198)
4283 * Convert a VT_DISPATCH to a DECIMAL.
4285 * PARAMS
4286 * pdispIn [I] Source
4287 * lcid [I] LCID for conversion
4288 * pDecOut [O] Destination
4290 * RETURNS
4291 * Success: S_OK.
4292 * Failure: DISP_E_TYPEMISMATCH, if the type cannot be converted
4294 HRESULT WINAPI VarDecFromDisp(IDispatch* pdispIn, LCID lcid, DECIMAL* pDecOut)
4296 return VARIANT_FromDisp(pdispIn, lcid, pDecOut, VT_DECIMAL, 0);
4299 /************************************************************************
4300 * VarDecFromBool (OLEAUT32.199)
4302 * Convert a VT_BOOL to a DECIMAL.
4304 * PARAMS
4305 * bIn [I] Source
4306 * pDecOut [O] Destination
4308 * RETURNS
4309 * S_OK.
4311 * NOTES
4312 * The value is converted to either 0 (if bIn is FALSE) or -1 (TRUE).
4314 HRESULT WINAPI VarDecFromBool(VARIANT_BOOL bIn, DECIMAL* pDecOut)
4316 DEC_HI32(pDecOut) = 0;
4317 DEC_MID32(pDecOut) = 0;
4318 if (bIn)
4320 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4321 DEC_LO32(pDecOut) = 1;
4323 else
4325 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4326 DEC_LO32(pDecOut) = 0;
4328 return S_OK;
4331 /************************************************************************
4332 * VarDecFromI1 (OLEAUT32.241)
4334 * Convert a VT_I1 to a DECIMAL.
4336 * PARAMS
4337 * cIn [I] Source
4338 * pDecOut [O] Destination
4340 * RETURNS
4341 * S_OK.
4343 HRESULT WINAPI VarDecFromI1(signed char cIn, DECIMAL* pDecOut)
4345 return VarDecFromI4(cIn, pDecOut);
4348 /************************************************************************
4349 * VarDecFromUI2 (OLEAUT32.242)
4351 * Convert a VT_UI2 to a DECIMAL.
4353 * PARAMS
4354 * usIn [I] Source
4355 * pDecOut [O] Destination
4357 * RETURNS
4358 * S_OK.
4360 HRESULT WINAPI VarDecFromUI2(USHORT usIn, DECIMAL* pDecOut)
4362 return VarDecFromUI4(usIn, pDecOut);
4365 /************************************************************************
4366 * VarDecFromUI4 (OLEAUT32.243)
4368 * Convert a VT_UI4 to a DECIMAL.
4370 * PARAMS
4371 * ulIn [I] Source
4372 * pDecOut [O] Destination
4374 * RETURNS
4375 * S_OK.
4377 HRESULT WINAPI VarDecFromUI4(ULONG ulIn, DECIMAL* pDecOut)
4379 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4380 DEC_HI32(pDecOut) = 0;
4381 DEC_MID32(pDecOut) = 0;
4382 DEC_LO32(pDecOut) = ulIn;
4383 return S_OK;
4386 /************************************************************************
4387 * VarDecFromI8 (OLEAUT32.374)
4389 * Convert a VT_I8 to a DECIMAL.
4391 * PARAMS
4392 * llIn [I] Source
4393 * pDecOut [O] Destination
4395 * RETURNS
4396 * S_OK.
4398 HRESULT WINAPI VarDecFromI8(LONG64 llIn, DECIMAL* pDecOut)
4400 PULARGE_INTEGER pLi = (PULARGE_INTEGER)&llIn;
4402 DEC_HI32(pDecOut) = 0;
4404 /* Note: This assumes 2s complement integer representation */
4405 if (pLi->u.HighPart & 0x80000000)
4407 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_NEG,0);
4408 DEC_LO64(pDecOut) = -pLi->QuadPart;
4410 else
4412 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4413 DEC_MID32(pDecOut) = pLi->u.HighPart;
4414 DEC_LO32(pDecOut) = pLi->u.LowPart;
4416 return S_OK;
4419 /************************************************************************
4420 * VarDecFromUI8 (OLEAUT32.375)
4422 * Convert a VT_UI8 to a DECIMAL.
4424 * PARAMS
4425 * ullIn [I] Source
4426 * pDecOut [O] Destination
4428 * RETURNS
4429 * S_OK.
4431 HRESULT WINAPI VarDecFromUI8(ULONG64 ullIn, DECIMAL* pDecOut)
4433 DEC_SIGNSCALE(pDecOut) = SIGNSCALE(DECIMAL_POS,0);
4434 DEC_HI32(pDecOut) = 0;
4435 DEC_LO64(pDecOut) = ullIn;
4436 return S_OK;
4439 /* Make two DECIMALS the same scale; used by math functions below */
4440 static HRESULT VARIANT_DecScale(const DECIMAL** ppDecLeft,
4441 const DECIMAL** ppDecRight,
4442 DECIMAL pDecOut[2])
4444 static DECIMAL scaleFactor;
4445 unsigned char remainder;
4446 DECIMAL decTemp;
4447 VARIANT_DI di;
4448 int scaleAmount, i;
4450 if (DEC_SIGN(*ppDecLeft) & ~DECIMAL_NEG || DEC_SIGN(*ppDecRight) & ~DECIMAL_NEG)
4451 return E_INVALIDARG;
4453 DEC_LO32(&scaleFactor) = 10;
4455 i = scaleAmount = DEC_SCALE(*ppDecLeft) - DEC_SCALE(*ppDecRight);
4457 if (!scaleAmount)
4458 return S_OK; /* Same scale */
4460 if (scaleAmount > 0)
4462 decTemp = *(*ppDecRight); /* Left is bigger - scale the right hand side */
4463 *ppDecRight = &pDecOut[0];
4465 else
4467 decTemp = *(*ppDecLeft); /* Right is bigger - scale the left hand side */
4468 *ppDecLeft = &pDecOut[0];
4469 i = -scaleAmount;
4472 /* Multiply up the value to be scaled by the correct amount (if possible) */
4473 while (i > 0 && SUCCEEDED(VarDecMul(&decTemp, &scaleFactor, &pDecOut[0])))
4475 decTemp = pDecOut[0];
4476 i--;
4479 if (!i)
4481 DEC_SCALE(&pDecOut[0]) += (scaleAmount > 0) ? scaleAmount : (-scaleAmount);
4482 return S_OK; /* Same scale */
4485 /* Scaling further not possible, reduce accuracy of other argument */
4486 pDecOut[0] = decTemp;
4487 if (scaleAmount > 0)
4489 DEC_SCALE(&pDecOut[0]) += scaleAmount - i;
4490 VARIANT_DIFromDec(*ppDecLeft, &di);
4491 *ppDecLeft = &pDecOut[1];
4493 else
4495 DEC_SCALE(&pDecOut[0]) += (-scaleAmount) - i;
4496 VARIANT_DIFromDec(*ppDecRight, &di);
4497 *ppDecRight = &pDecOut[1];
4500 di.scale -= i;
4501 remainder = 0;
4502 while (i-- > 0 && !VARIANT_int_iszero(di.bitsnum, sizeof(di.bitsnum)/sizeof(DWORD)))
4504 remainder = VARIANT_int_divbychar(di.bitsnum, sizeof(di.bitsnum)/sizeof(DWORD), 10);
4505 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4508 /* round up the result - native oleaut32 does this */
4509 if (remainder >= 5) {
4510 for (remainder = 1, i = 0; i < sizeof(di.bitsnum)/sizeof(DWORD) && remainder; i++) {
4511 ULONGLONG digit = di.bitsnum[i] + 1;
4512 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4513 di.bitsnum[i] = digit & 0xFFFFFFFF;
4517 VARIANT_DecFromDI(&di, &pDecOut[1]);
4518 return S_OK;
4521 /* Add two unsigned 32 bit values with overflow */
4522 static ULONG VARIANT_Add(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4524 ULARGE_INTEGER ul64;
4526 ul64.QuadPart = (ULONG64)ulLeft + (ULONG64)ulRight + (ULONG64)*pulHigh;
4527 *pulHigh = ul64.u.HighPart;
4528 return ul64.u.LowPart;
4531 /* Subtract two unsigned 32 bit values with underflow */
4532 static ULONG VARIANT_Sub(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4534 BOOL invert = FALSE;
4535 ULARGE_INTEGER ul64;
4537 ul64.QuadPart = (LONG64)ulLeft - (ULONG64)ulRight;
4538 if (ulLeft < ulRight)
4539 invert = TRUE;
4541 if (ul64.QuadPart > (ULONG64)*pulHigh)
4542 ul64.QuadPart -= (ULONG64)*pulHigh;
4543 else
4545 ul64.QuadPart -= (ULONG64)*pulHigh;
4546 invert = TRUE;
4548 if (invert)
4549 ul64.u.HighPart = -ul64.u.HighPart ;
4551 *pulHigh = ul64.u.HighPart;
4552 return ul64.u.LowPart;
4555 /* Multiply two unsigned 32 bit values with overflow */
4556 static ULONG VARIANT_Mul(ULONG ulLeft, ULONG ulRight, ULONG* pulHigh)
4558 ULARGE_INTEGER ul64;
4560 ul64.QuadPart = (ULONG64)ulLeft * (ULONG64)ulRight + (ULONG64)*pulHigh;
4561 *pulHigh = ul64.u.HighPart;
4562 return ul64.u.LowPart;
4565 /* Compare two decimals that have the same scale */
4566 static inline int VARIANT_DecCmp(const DECIMAL *pDecLeft, const DECIMAL *pDecRight)
4568 if ( DEC_HI32(pDecLeft) < DEC_HI32(pDecRight) ||
4569 (DEC_HI32(pDecLeft) <= DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) < DEC_LO64(pDecRight)))
4570 return -1;
4571 else if (DEC_HI32(pDecLeft) == DEC_HI32(pDecRight) && DEC_LO64(pDecLeft) == DEC_LO64(pDecRight))
4572 return 0;
4573 return 1;
4576 /************************************************************************
4577 * VarDecAdd (OLEAUT32.177)
4579 * Add one DECIMAL to another.
4581 * PARAMS
4582 * pDecLeft [I] Source
4583 * pDecRight [I] Value to add
4584 * pDecOut [O] Destination
4586 * RETURNS
4587 * Success: S_OK.
4588 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
4590 HRESULT WINAPI VarDecAdd(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
4592 HRESULT hRet;
4593 DECIMAL scaled[2];
4595 hRet = VARIANT_DecScale(&pDecLeft, &pDecRight, scaled);
4597 if (SUCCEEDED(hRet))
4599 /* Our decimals now have the same scale, we can add them as 96 bit integers */
4600 ULONG overflow = 0;
4601 BYTE sign = DECIMAL_POS;
4602 int cmp;
4604 /* Correct for the sign of the result */
4605 if (DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4607 /* -x + -y : Negative */
4608 sign = DECIMAL_NEG;
4609 goto VarDecAdd_AsPositive;
4611 else if (DEC_SIGN(pDecLeft) && !DEC_SIGN(pDecRight))
4613 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4615 /* -x + y : Negative if x > y */
4616 if (cmp > 0)
4618 sign = DECIMAL_NEG;
4619 VarDecAdd_AsNegative:
4620 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4621 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4622 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4624 else
4626 VarDecAdd_AsInvertedNegative:
4627 DEC_LO32(pDecOut) = VARIANT_Sub(DEC_LO32(pDecRight), DEC_LO32(pDecLeft), &overflow);
4628 DEC_MID32(pDecOut) = VARIANT_Sub(DEC_MID32(pDecRight), DEC_MID32(pDecLeft), &overflow);
4629 DEC_HI32(pDecOut) = VARIANT_Sub(DEC_HI32(pDecRight), DEC_HI32(pDecLeft), &overflow);
4632 else if (!DEC_SIGN(pDecLeft) && DEC_SIGN(pDecRight))
4634 cmp = VARIANT_DecCmp(pDecLeft, pDecRight);
4636 /* x + -y : Negative if x <= y */
4637 if (cmp <= 0)
4639 sign = DECIMAL_NEG;
4640 goto VarDecAdd_AsInvertedNegative;
4642 goto VarDecAdd_AsNegative;
4644 else
4646 /* x + y : Positive */
4647 VarDecAdd_AsPositive:
4648 DEC_LO32(pDecOut) = VARIANT_Add(DEC_LO32(pDecLeft), DEC_LO32(pDecRight), &overflow);
4649 DEC_MID32(pDecOut) = VARIANT_Add(DEC_MID32(pDecLeft), DEC_MID32(pDecRight), &overflow);
4650 DEC_HI32(pDecOut) = VARIANT_Add(DEC_HI32(pDecLeft), DEC_HI32(pDecRight), &overflow);
4653 if (overflow)
4654 return DISP_E_OVERFLOW; /* overflowed */
4656 DEC_SCALE(pDecOut) = DEC_SCALE(pDecLeft);
4657 DEC_SIGN(pDecOut) = sign;
4659 return hRet;
4662 /* translate from external DECIMAL format into an internal representation */
4663 static void VARIANT_DIFromDec(const DECIMAL * from, VARIANT_DI * to)
4665 to->scale = DEC_SCALE(from);
4666 to->sign = DEC_SIGN(from) ? 1 : 0;
4668 to->bitsnum[0] = DEC_LO32(from);
4669 to->bitsnum[1] = DEC_MID32(from);
4670 to->bitsnum[2] = DEC_HI32(from);
4673 static void VARIANT_DecFromDI(const VARIANT_DI * from, DECIMAL * to)
4675 if (from->sign) {
4676 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_NEG, from->scale);
4677 } else {
4678 DEC_SIGNSCALE(to) = SIGNSCALE(DECIMAL_POS, from->scale);
4681 DEC_LO32(to) = from->bitsnum[0];
4682 DEC_MID32(to) = from->bitsnum[1];
4683 DEC_HI32(to) = from->bitsnum[2];
4686 /* clear an internal representation of a DECIMAL */
4687 static void VARIANT_DI_clear(VARIANT_DI * i)
4689 memset(i, 0, sizeof(VARIANT_DI));
4692 /* divide the (unsigned) number stored in p (LSB) by a byte value (<= 0xff). Any nonzero
4693 size is supported. The value in p is replaced by the quotient of the division, and
4694 the remainder is returned as a result. This routine is most often used with a divisor
4695 of 10 in order to scale up numbers, and in the DECIMAL->string conversion.
4697 static unsigned char VARIANT_int_divbychar(DWORD * p, unsigned int n, unsigned char divisor)
4699 if (divisor == 0) {
4700 /* division by 0 */
4701 return 0xFF;
4702 } else if (divisor == 1) {
4703 /* dividend remains unchanged */
4704 return 0;
4705 } else {
4706 unsigned char remainder = 0;
4707 ULONGLONG iTempDividend;
4708 signed int i;
4710 for (i = n - 1; i >= 0 && !p[i]; i--); /* skip leading zeros */
4711 for (; i >= 0; i--) {
4712 iTempDividend = ((ULONGLONG)remainder << 32) + p[i];
4713 remainder = iTempDividend % divisor;
4714 p[i] = iTempDividend / divisor;
4717 return remainder;
4721 /* check to test if encoded number is a zero. Returns 1 if zero, 0 for nonzero */
4722 static BOOL VARIANT_int_iszero(const DWORD * p, unsigned int n)
4724 for (; n > 0; n--) if (*p++ != 0) return FALSE;
4725 return TRUE;
4728 /* multiply two DECIMALS, without changing either one, and place result in third
4729 parameter. Result is normalized when scale is > 0. Attempts to remove significant
4730 digits when scale > 0 in order to fit an overflowing result. Final overflow
4731 flag is returned.
4733 static int VARIANT_DI_mul(const VARIANT_DI * a, const VARIANT_DI * b, VARIANT_DI * result)
4735 BOOL r_overflow = FALSE;
4736 DWORD running[6];
4737 signed int mulstart;
4739 VARIANT_DI_clear(result);
4740 result->sign = (a->sign ^ b->sign) ? 1 : 0;
4742 /* Multiply 128-bit operands into a (max) 256-bit result. The scale
4743 of the result is formed by adding the scales of the operands.
4745 result->scale = a->scale + b->scale;
4746 memset(running, 0, sizeof(running));
4748 /* count number of leading zero-bytes in operand A */
4749 for (mulstart = sizeof(a->bitsnum)/sizeof(DWORD) - 1; mulstart >= 0 && !a->bitsnum[mulstart]; mulstart--);
4750 if (mulstart < 0) {
4751 /* result is 0, because operand A is 0 */
4752 result->scale = 0;
4753 result->sign = 0;
4754 } else {
4755 unsigned char remainder = 0;
4756 int iA;
4758 /* perform actual multiplication */
4759 for (iA = 0; iA <= mulstart; iA++) {
4760 ULONG iOverflowMul;
4761 int iB;
4763 for (iOverflowMul = 0, iB = 0; iB < sizeof(b->bitsnum)/sizeof(DWORD); iB++) {
4764 ULONG iRV;
4765 int iR;
4767 iRV = VARIANT_Mul(b->bitsnum[iB], a->bitsnum[iA], &iOverflowMul);
4768 iR = iA + iB;
4769 do {
4770 running[iR] = VARIANT_Add(running[iR], 0, &iRV);
4771 iR++;
4772 } while (iRV);
4776 /* Too bad - native oleaut does not do this, so we should not either */
4777 #if 0
4778 /* While the result is divisible by 10, and the scale > 0, divide by 10.
4779 This operation should not lose significant digits, and gives an
4780 opportunity to reduce the possibility of overflows in future
4781 operations issued by the application.
4783 while (result->scale > 0) {
4784 memcpy(quotient, running, sizeof(quotient));
4785 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4786 if (remainder > 0) break;
4787 memcpy(running, quotient, sizeof(quotient));
4788 result->scale--;
4790 #endif
4791 /* While the 256-bit result overflows, and the scale > 0, divide by 10.
4792 This operation *will* lose significant digits of the result because
4793 all the factors of 10 were consumed by the previous operation.
4795 while (result->scale > 0 && !VARIANT_int_iszero(
4796 running + sizeof(result->bitsnum) / sizeof(DWORD),
4797 (sizeof(running) - sizeof(result->bitsnum)) / sizeof(DWORD))) {
4799 remainder = VARIANT_int_divbychar(running, sizeof(running) / sizeof(DWORD), 10);
4800 if (remainder > 0) WARN("losing significant digits (remainder %u)...\n", remainder);
4801 result->scale--;
4804 /* round up the result - native oleaut32 does this */
4805 if (remainder >= 5) {
4806 unsigned int i;
4807 for (remainder = 1, i = 0; i < sizeof(running)/sizeof(DWORD) && remainder; i++) {
4808 ULONGLONG digit = running[i] + 1;
4809 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
4810 running[i] = digit & 0xFFFFFFFF;
4814 /* Signal overflow if scale == 0 and 256-bit result still overflows,
4815 and copy result bits into result structure
4817 r_overflow = !VARIANT_int_iszero(
4818 running + sizeof(result->bitsnum)/sizeof(DWORD),
4819 (sizeof(running) - sizeof(result->bitsnum))/sizeof(DWORD));
4820 memcpy(result->bitsnum, running, sizeof(result->bitsnum));
4822 return r_overflow;
4825 /* cast DECIMAL into string. Any scale should be handled properly. en_US locale is
4826 hardcoded (period for decimal separator, dash as negative sign). Returns TRUE for
4827 success, FALSE if insufficient space in output buffer.
4829 static BOOL VARIANT_DI_tostringW(const VARIANT_DI * a, WCHAR * s, unsigned int n)
4831 BOOL overflow = FALSE;
4832 DWORD quotient[3];
4833 unsigned char remainder;
4834 unsigned int i;
4836 /* place negative sign */
4837 if (!VARIANT_int_iszero(a->bitsnum, sizeof(a->bitsnum) / sizeof(DWORD)) && a->sign) {
4838 if (n > 0) {
4839 *s++ = '-';
4840 n--;
4842 else overflow = TRUE;
4845 /* prepare initial 0 */
4846 if (!overflow) {
4847 if (n >= 2) {
4848 s[0] = '0';
4849 s[1] = '\0';
4850 } else overflow = TRUE;
4853 i = 0;
4854 memcpy(quotient, a->bitsnum, sizeof(a->bitsnum));
4855 while (!overflow && !VARIANT_int_iszero(quotient, sizeof(quotient) / sizeof(DWORD))) {
4856 remainder = VARIANT_int_divbychar(quotient, sizeof(quotient) / sizeof(DWORD), 10);
4857 if (i + 2 > n) {
4858 overflow = TRUE;
4859 } else {
4860 s[i++] = '0' + remainder;
4861 s[i] = '\0';
4865 if (!overflow && !VARIANT_int_iszero(a->bitsnum, sizeof(a->bitsnum) / sizeof(DWORD))) {
4867 /* reverse order of digits */
4868 WCHAR * x = s; WCHAR * y = s + i - 1;
4869 while (x < y) {
4870 *x ^= *y;
4871 *y ^= *x;
4872 *x++ ^= *y--;
4875 /* check for decimal point. "i" now has string length */
4876 if (i <= a->scale) {
4877 unsigned int numzeroes = a->scale + 1 - i;
4878 if (i + 1 + numzeroes >= n) {
4879 overflow = TRUE;
4880 } else {
4881 memmove(s + numzeroes, s, (i + 1) * sizeof(WCHAR));
4882 i += numzeroes;
4883 while (numzeroes > 0) {
4884 s[--numzeroes] = '0';
4889 /* place decimal point */
4890 if (a->scale > 0) {
4891 unsigned int periodpos = i - a->scale;
4892 if (i + 2 >= n) {
4893 overflow = TRUE;
4894 } else {
4895 memmove(s + periodpos + 1, s + periodpos, (i + 1 - periodpos) * sizeof(WCHAR));
4896 s[periodpos] = '.'; i++;
4898 /* remove extra zeros at the end, if any */
4899 while (s[i - 1] == '0') s[--i] = '\0';
4900 if (s[i - 1] == '.') s[--i] = '\0';
4905 return !overflow;
4908 /* shift the bits of a DWORD array to the left. p[0] is assumed LSB */
4909 static void VARIANT_int_shiftleft(DWORD * p, unsigned int n, unsigned int shift)
4911 DWORD shifted;
4912 unsigned int i;
4914 /* shift whole DWORDs to the left */
4915 while (shift >= 32)
4917 memmove(p + 1, p, (n - 1) * sizeof(DWORD));
4918 *p = 0; shift -= 32;
4921 /* shift remainder (1..31 bits) */
4922 shifted = 0;
4923 if (shift > 0) for (i = 0; i < n; i++)
4925 DWORD b;
4926 b = p[i] >> (32 - shift);
4927 p[i] = (p[i] << shift) | shifted;
4928 shifted = b;
4932 /* add the (unsigned) numbers stored in two DWORD arrays with LSB at index 0.
4933 Value at v is incremented by the value at p. Any size is supported, provided
4934 that v is not shorter than p. Any unapplied carry is returned as a result.
4936 static unsigned char VARIANT_int_add(DWORD * v, unsigned int nv, const DWORD * p,
4937 unsigned int np)
4939 unsigned char carry = 0;
4941 if (nv >= np) {
4942 ULONGLONG sum;
4943 unsigned int i;
4945 for (i = 0; i < np; i++) {
4946 sum = (ULONGLONG)v[i]
4947 + (ULONGLONG)p[i]
4948 + (ULONGLONG)carry;
4949 v[i] = sum & 0xffffffff;
4950 carry = sum >> 32;
4952 for (; i < nv && carry; i++) {
4953 sum = (ULONGLONG)v[i]
4954 + (ULONGLONG)carry;
4955 v[i] = sum & 0xffffffff;
4956 carry = sum >> 32;
4959 return carry;
4962 /* perform integral division with operand p as dividend. Parameter n indicates
4963 number of available DWORDs in divisor p, but available space in p must be
4964 actually at least 2 * n DWORDs, because the remainder of the integral
4965 division is built in the next n DWORDs past the start of the quotient. This
4966 routine replaces the dividend in p with the quotient, and appends n
4967 additional DWORDs for the remainder.
4969 Thanks to Lee & Mark Atkinson for their book _Using_C_ (my very first book on
4970 C/C++ :-) where the "longhand binary division" algorithm was exposed for the
4971 source code to the VLI (Very Large Integer) division operator. This algorithm
4972 was then heavily modified by me (Alex Villacis Lasso) in order to handle
4973 variably-scaled integers such as the MS DECIMAL representation.
4975 static void VARIANT_int_div(DWORD * p, unsigned int n, const DWORD * divisor,
4976 unsigned int dn)
4978 unsigned int i;
4979 DWORD tempsub[8];
4980 DWORD * negdivisor = tempsub + n;
4982 /* build 2s-complement of divisor */
4983 for (i = 0; i < n; i++) negdivisor[i] = (i < dn) ? ~divisor[i] : 0xFFFFFFFF;
4984 p[n] = 1;
4985 VARIANT_int_add(negdivisor, n, p + n, 1);
4986 memset(p + n, 0, n * sizeof(DWORD));
4988 /* skip all leading zero DWORDs in quotient */
4989 for (i = 0; i < n && !p[n - 1]; i++) VARIANT_int_shiftleft(p, n, 32);
4990 /* i is now number of DWORDs left to process */
4991 for (i <<= 5; i < (n << 5); i++) {
4992 VARIANT_int_shiftleft(p, n << 1, 1); /* shl quotient+remainder */
4994 /* trial subtraction */
4995 memcpy(tempsub, p + n, n * sizeof(DWORD));
4996 VARIANT_int_add(tempsub, n, negdivisor, n);
4998 /* check whether result of subtraction was negative */
4999 if ((tempsub[n - 1] & 0x80000000) == 0) {
5000 memcpy(p + n, tempsub, n * sizeof(DWORD));
5001 p[0] |= 1;
5006 /* perform integral multiplication by a byte operand. Used for scaling by 10 */
5007 static unsigned char VARIANT_int_mulbychar(DWORD * p, unsigned int n, unsigned char m)
5009 unsigned int i;
5010 ULONG iOverflowMul;
5012 for (iOverflowMul = 0, i = 0; i < n; i++)
5013 p[i] = VARIANT_Mul(p[i], m, &iOverflowMul);
5014 return (unsigned char)iOverflowMul;
5017 /* increment value in A by the value indicated in B, with scale adjusting.
5018 Modifies parameters by adjusting scales. Returns 0 if addition was
5019 successful, nonzero if a parameter underflowed before it could be
5020 successfully used in the addition.
5022 static int VARIANT_int_addlossy(
5023 DWORD * a, int * ascale, unsigned int an,
5024 DWORD * b, int * bscale, unsigned int bn)
5026 int underflow = 0;
5028 if (VARIANT_int_iszero(a, an)) {
5029 /* if A is zero, copy B into A, after removing digits */
5030 while (bn > an && !VARIANT_int_iszero(b + an, bn - an)) {
5031 VARIANT_int_divbychar(b, bn, 10);
5032 (*bscale)--;
5034 memcpy(a, b, an * sizeof(DWORD));
5035 *ascale = *bscale;
5036 } else if (!VARIANT_int_iszero(b, bn)) {
5037 unsigned int tn = an + 1;
5038 DWORD t[5];
5040 if (bn + 1 > tn) tn = bn + 1;
5041 if (*ascale != *bscale) {
5042 /* first (optimistic) try - try to scale down the one with the bigger
5043 scale, while this number is divisible by 10 */
5044 DWORD * digitchosen;
5045 unsigned int nchosen;
5046 int * scalechosen;
5047 int targetscale;
5049 if (*ascale < *bscale) {
5050 targetscale = *ascale;
5051 scalechosen = bscale;
5052 digitchosen = b;
5053 nchosen = bn;
5054 } else {
5055 targetscale = *bscale;
5056 scalechosen = ascale;
5057 digitchosen = a;
5058 nchosen = an;
5060 memset(t, 0, tn * sizeof(DWORD));
5061 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5063 /* divide by 10 until target scale is reached */
5064 while (*scalechosen > targetscale) {
5065 unsigned char remainder = VARIANT_int_divbychar(t, tn, 10);
5066 if (!remainder) {
5067 (*scalechosen)--;
5068 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5069 } else break;
5073 if (*ascale != *bscale) {
5074 DWORD * digitchosen;
5075 unsigned int nchosen;
5076 int * scalechosen;
5077 int targetscale;
5079 /* try to scale up the one with the smaller scale */
5080 if (*ascale > *bscale) {
5081 targetscale = *ascale;
5082 scalechosen = bscale;
5083 digitchosen = b;
5084 nchosen = bn;
5085 } else {
5086 targetscale = *bscale;
5087 scalechosen = ascale;
5088 digitchosen = a;
5089 nchosen = an;
5091 memset(t, 0, tn * sizeof(DWORD));
5092 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5094 /* multiply by 10 until target scale is reached, or
5095 significant bytes overflow the number
5097 while (*scalechosen < targetscale && t[nchosen] == 0) {
5098 VARIANT_int_mulbychar(t, tn, 10);
5099 if (t[nchosen] == 0) {
5100 /* still does not overflow */
5101 (*scalechosen)++;
5102 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5107 if (*ascale != *bscale) {
5108 /* still different? try to scale down the one with the bigger scale
5109 (this *will* lose significant digits) */
5110 DWORD * digitchosen;
5111 unsigned int nchosen;
5112 int * scalechosen;
5113 int targetscale;
5115 if (*ascale < *bscale) {
5116 targetscale = *ascale;
5117 scalechosen = bscale;
5118 digitchosen = b;
5119 nchosen = bn;
5120 } else {
5121 targetscale = *bscale;
5122 scalechosen = ascale;
5123 digitchosen = a;
5124 nchosen = an;
5126 memset(t, 0, tn * sizeof(DWORD));
5127 memcpy(t, digitchosen, nchosen * sizeof(DWORD));
5129 /* divide by 10 until target scale is reached */
5130 while (*scalechosen > targetscale) {
5131 VARIANT_int_divbychar(t, tn, 10);
5132 (*scalechosen)--;
5133 memcpy(digitchosen, t, nchosen * sizeof(DWORD));
5137 /* check whether any of the operands still has significant digits
5138 (underflow case 1)
5140 if (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn)) {
5141 underflow = 1;
5142 } else {
5143 /* at this step, both numbers have the same scale and can be added
5144 as integers. However, the result might not fit in A, so further
5145 scaling down might be necessary.
5147 while (!underflow) {
5148 memset(t, 0, tn * sizeof(DWORD));
5149 memcpy(t, a, an * sizeof(DWORD));
5151 VARIANT_int_add(t, tn, b, bn);
5152 if (VARIANT_int_iszero(t + an, tn - an)) {
5153 /* addition was successful */
5154 memcpy(a, t, an * sizeof(DWORD));
5155 break;
5156 } else {
5157 /* addition overflowed - remove significant digits
5158 from both operands and try again */
5159 VARIANT_int_divbychar(a, an, 10); (*ascale)--;
5160 VARIANT_int_divbychar(b, bn, 10); (*bscale)--;
5161 /* check whether any operand keeps significant digits after
5162 scaledown (underflow case 2)
5164 underflow = (VARIANT_int_iszero(a, an) || VARIANT_int_iszero(b, bn));
5169 return underflow;
5172 /* perform complete DECIMAL division in the internal representation. Returns
5173 0 if the division was completed (even if quotient is set to 0), or nonzero
5174 in case of quotient overflow.
5176 static HRESULT VARIANT_DI_div(const VARIANT_DI * dividend, const VARIANT_DI * divisor,
5177 VARIANT_DI * quotient, BOOL round_remainder)
5179 HRESULT r_overflow = S_OK;
5181 if (VARIANT_int_iszero(divisor->bitsnum, sizeof(divisor->bitsnum)/sizeof(DWORD))) {
5182 /* division by 0 */
5183 r_overflow = DISP_E_DIVBYZERO;
5184 } else if (VARIANT_int_iszero(dividend->bitsnum, sizeof(dividend->bitsnum)/sizeof(DWORD))) {
5185 VARIANT_DI_clear(quotient);
5186 } else {
5187 int quotientscale, remainderscale, tempquotientscale;
5188 DWORD remainderplusquotient[8];
5189 int underflow;
5191 quotientscale = remainderscale = (int)dividend->scale - (int)divisor->scale;
5192 tempquotientscale = quotientscale;
5193 VARIANT_DI_clear(quotient);
5194 quotient->sign = (dividend->sign ^ divisor->sign) ? 1 : 0;
5196 /* The following strategy is used for division
5197 1) if there was a nonzero remainder from previous iteration, use it as
5198 dividend for this iteration, else (for first iteration) use intended
5199 dividend
5200 2) perform integer division in temporary buffer, develop quotient in
5201 low-order part, remainder in high-order part
5202 3) add quotient from step 2 to final result, with possible loss of
5203 significant digits
5204 4) multiply integer part of remainder by 10, while incrementing the
5205 scale of the remainder. This operation preserves the intended value
5206 of the remainder.
5207 5) loop to step 1 until one of the following is true:
5208 a) remainder is zero (exact division achieved)
5209 b) addition in step 3 fails to modify bits in quotient (remainder underflow)
5211 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5212 memcpy(remainderplusquotient, dividend->bitsnum, sizeof(dividend->bitsnum));
5213 do {
5214 VARIANT_int_div(
5215 remainderplusquotient, 4,
5216 divisor->bitsnum, sizeof(divisor->bitsnum)/sizeof(DWORD));
5217 underflow = VARIANT_int_addlossy(
5218 quotient->bitsnum, &quotientscale, sizeof(quotient->bitsnum) / sizeof(DWORD),
5219 remainderplusquotient, &tempquotientscale, 4);
5220 if (round_remainder) {
5221 if(remainderplusquotient[4] >= 5){
5222 unsigned int i;
5223 unsigned char remainder = 1;
5224 for (i = 0; i < sizeof(quotient->bitsnum) / sizeof(DWORD) && remainder; i++) {
5225 ULONGLONG digit = quotient->bitsnum[i] + 1;
5226 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
5227 quotient->bitsnum[i] = digit & 0xFFFFFFFF;
5230 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5231 } else {
5232 VARIANT_int_mulbychar(remainderplusquotient + 4, 4, 10);
5233 memcpy(remainderplusquotient, remainderplusquotient + 4, 4 * sizeof(DWORD));
5235 tempquotientscale = ++remainderscale;
5236 } while (!underflow && !VARIANT_int_iszero(remainderplusquotient + 4, 4));
5238 /* quotient scale might now be negative (extremely big number). If, so, try
5239 to multiply quotient by 10 (without overflowing), while adjusting the scale,
5240 until scale is 0. If this cannot be done, it is a real overflow.
5242 while (r_overflow == S_OK && quotientscale < 0) {
5243 memset(remainderplusquotient, 0, sizeof(remainderplusquotient));
5244 memcpy(remainderplusquotient, quotient->bitsnum, sizeof(quotient->bitsnum));
5245 VARIANT_int_mulbychar(remainderplusquotient, sizeof(remainderplusquotient)/sizeof(DWORD), 10);
5246 if (VARIANT_int_iszero(remainderplusquotient + sizeof(quotient->bitsnum)/sizeof(DWORD),
5247 (sizeof(remainderplusquotient) - sizeof(quotient->bitsnum))/sizeof(DWORD))) {
5248 quotientscale++;
5249 memcpy(quotient->bitsnum, remainderplusquotient, sizeof(quotient->bitsnum));
5250 } else r_overflow = DISP_E_OVERFLOW;
5252 if (r_overflow == S_OK) {
5253 if (quotientscale <= 255) quotient->scale = quotientscale;
5254 else VARIANT_DI_clear(quotient);
5257 return r_overflow;
5260 /* This procedure receives a VARIANT_DI with a defined mantissa and sign, but
5261 with an undefined scale, which will be assigned to (if possible). It also
5262 receives an exponent of 2. This procedure will then manipulate the mantissa
5263 and calculate a corresponding scale, so that the exponent2 value is assimilated
5264 into the VARIANT_DI and is therefore no longer necessary. Returns S_OK if
5265 successful, or DISP_E_OVERFLOW if the represented value is too big to fit into
5266 a DECIMAL. */
5267 static HRESULT VARIANT_DI_normalize(VARIANT_DI * val, int exponent2, BOOL isDouble)
5269 HRESULT hres = S_OK;
5270 int exponent5, exponent10;
5272 /* A factor of 2^exponent2 is equivalent to (10^exponent2)/(5^exponent2), and
5273 thus equal to (5^-exponent2)*(10^exponent2). After all manipulations,
5274 exponent10 might be used to set the VARIANT_DI scale directly. However,
5275 the value of 5^-exponent5 must be assimilated into the VARIANT_DI. */
5276 exponent5 = -exponent2;
5277 exponent10 = exponent2;
5279 /* Handle exponent5 > 0 */
5280 while (exponent5 > 0) {
5281 char bPrevCarryBit;
5282 char bCurrCarryBit;
5284 /* In order to multiply the value represented by the VARIANT_DI by 5, it
5285 is best to multiply by 10/2. Therefore, exponent10 is incremented, and
5286 somehow the mantissa should be divided by 2. */
5287 if ((val->bitsnum[0] & 1) == 0) {
5288 /* The mantissa is divisible by 2. Therefore the division can be done
5289 without losing significant digits. */
5290 exponent10++; exponent5--;
5292 /* Shift right */
5293 bPrevCarryBit = val->bitsnum[2] & 1;
5294 val->bitsnum[2] >>= 1;
5295 bCurrCarryBit = val->bitsnum[1] & 1;
5296 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5297 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5298 } else {
5299 /* The mantissa is NOT divisible by 2. Therefore the mantissa should
5300 be multiplied by 5, unless the multiplication overflows. */
5301 DWORD temp_bitsnum[3];
5303 exponent5--;
5305 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5306 if (0 == VARIANT_int_mulbychar(temp_bitsnum, 3, 5)) {
5307 /* Multiplication succeeded without overflow, so copy result back
5308 into VARIANT_DI */
5309 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5311 /* Mask out 3 extraneous bits introduced by the multiply */
5312 } else {
5313 /* Multiplication by 5 overflows. The mantissa should be divided
5314 by 2, and therefore will lose significant digits. */
5315 exponent10++;
5317 /* Shift right */
5318 bPrevCarryBit = val->bitsnum[2] & 1;
5319 val->bitsnum[2] >>= 1;
5320 bCurrCarryBit = val->bitsnum[1] & 1;
5321 val->bitsnum[1] = (val->bitsnum[1] >> 1) | (bPrevCarryBit ? 0x80000000 : 0);
5322 val->bitsnum[0] = (val->bitsnum[0] >> 1) | (bCurrCarryBit ? 0x80000000 : 0);
5327 /* Handle exponent5 < 0 */
5328 while (exponent5 < 0) {
5329 /* In order to divide the value represented by the VARIANT_DI by 5, it
5330 is best to multiply by 2/10. Therefore, exponent10 is decremented,
5331 and the mantissa should be multiplied by 2 */
5332 if ((val->bitsnum[2] & 0x80000000) == 0) {
5333 /* The mantissa can withstand a shift-left without overflowing */
5334 exponent10--; exponent5++;
5335 VARIANT_int_shiftleft(val->bitsnum, 3, 1);
5336 } else {
5337 /* The mantissa would overflow if shifted. Therefore it should be
5338 directly divided by 5. This will lose significant digits, unless
5339 by chance the mantissa happens to be divisible by 5 */
5340 exponent5++;
5341 VARIANT_int_divbychar(val->bitsnum, 3, 5);
5345 /* At this point, the mantissa has assimilated the exponent5, but the
5346 exponent10 might not be suitable for assignment. The exponent10 must be
5347 in the range [-DEC_MAX_SCALE..0], so the mantissa must be scaled up or
5348 down appropriately. */
5349 while (hres == S_OK && exponent10 > 0) {
5350 /* In order to bring exponent10 down to 0, the mantissa should be
5351 multiplied by 10 to compensate. If the exponent10 is too big, this
5352 will cause the mantissa to overflow. */
5353 if (0 == VARIANT_int_mulbychar(val->bitsnum, 3, 10)) {
5354 exponent10--;
5355 } else {
5356 hres = DISP_E_OVERFLOW;
5359 while (exponent10 < -DEC_MAX_SCALE) {
5360 int rem10;
5361 /* In order to bring exponent up to -DEC_MAX_SCALE, the mantissa should
5362 be divided by 10 to compensate. If the exponent10 is too small, this
5363 will cause the mantissa to underflow and become 0 */
5364 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5365 exponent10++;
5366 if (VARIANT_int_iszero(val->bitsnum, 3)) {
5367 /* Underflow, unable to keep dividing */
5368 exponent10 = 0;
5369 } else if (rem10 >= 5) {
5370 DWORD x = 1;
5371 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5374 /* This step is required in order to remove excess bits of precision from the
5375 end of the bit representation, down to the precision guaranteed by the
5376 floating point number. */
5377 if (isDouble) {
5378 while (exponent10 < 0 && (val->bitsnum[2] != 0 || (val->bitsnum[2] == 0 && (val->bitsnum[1] & 0xFFE00000) != 0))) {
5379 int rem10;
5381 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5382 exponent10++;
5383 if (rem10 >= 5) {
5384 DWORD x = 1;
5385 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5388 } else {
5389 while (exponent10 < 0 && (val->bitsnum[2] != 0 || val->bitsnum[1] != 0 ||
5390 (val->bitsnum[2] == 0 && val->bitsnum[1] == 0 && (val->bitsnum[0] & 0xFF000000) != 0))) {
5391 int rem10;
5393 rem10 = VARIANT_int_divbychar(val->bitsnum, 3, 10);
5394 exponent10++;
5395 if (rem10 >= 5) {
5396 DWORD x = 1;
5397 VARIANT_int_add(val->bitsnum, 3, &x, 1);
5401 /* Remove multiples of 10 from the representation */
5402 while (exponent10 < 0) {
5403 DWORD temp_bitsnum[3];
5405 memcpy(temp_bitsnum, val->bitsnum, 3 * sizeof(DWORD));
5406 if (0 == VARIANT_int_divbychar(temp_bitsnum, 3, 10)) {
5407 exponent10++;
5408 memcpy(val->bitsnum, temp_bitsnum, 3 * sizeof(DWORD));
5409 } else break;
5412 /* Scale assignment */
5413 if (hres == S_OK) val->scale = -exponent10;
5415 return hres;
5418 typedef union
5420 struct
5422 unsigned int m : 23;
5423 unsigned int exp_bias : 8;
5424 unsigned int sign : 1;
5425 } i;
5426 float f;
5427 } R4_FIELDS;
5429 /* Convert a 32-bit floating point number into a DECIMAL, without using an
5430 intermediate string step. */
5431 static HRESULT VARIANT_DI_FromR4(float source, VARIANT_DI * dest)
5433 HRESULT hres = S_OK;
5434 R4_FIELDS fx;
5436 fx.f = source;
5438 /* Detect special cases */
5439 if (fx.i.m == 0 && fx.i.exp_bias == 0) {
5440 /* Floating-point zero */
5441 VARIANT_DI_clear(dest);
5442 } else if (fx.i.m == 0 && fx.i.exp_bias == 0xFF) {
5443 /* Floating-point infinity */
5444 hres = DISP_E_OVERFLOW;
5445 } else if (fx.i.exp_bias == 0xFF) {
5446 /* Floating-point NaN */
5447 hres = DISP_E_BADVARTYPE;
5448 } else {
5449 int exponent2;
5450 VARIANT_DI_clear(dest);
5452 exponent2 = fx.i.exp_bias - 127; /* Get unbiased exponent */
5453 dest->sign = fx.i.sign; /* Sign is simply copied */
5455 /* Copy significant bits to VARIANT_DI mantissa */
5456 dest->bitsnum[0] = fx.i.m;
5457 dest->bitsnum[0] &= 0x007FFFFF;
5458 if (fx.i.exp_bias == 0) {
5459 /* Denormalized number - correct exponent */
5460 exponent2++;
5461 } else {
5462 /* Add hidden bit to mantissa */
5463 dest->bitsnum[0] |= 0x00800000;
5466 /* The act of copying a FP mantissa as integer bits is equivalent to
5467 shifting left the mantissa 23 bits. The exponent2 is reduced to
5468 compensate. */
5469 exponent2 -= 23;
5471 hres = VARIANT_DI_normalize(dest, exponent2, FALSE);
5474 return hres;
5477 typedef union
5479 struct
5481 unsigned int m_lo : 32; /* 52 bits of precision */
5482 unsigned int m_hi : 20;
5483 unsigned int exp_bias : 11; /* bias == 1023 */
5484 unsigned int sign : 1;
5485 } i;
5486 double d;
5487 } R8_FIELDS;
5489 /* Convert a 64-bit floating point number into a DECIMAL, without using an
5490 intermediate string step. */
5491 static HRESULT VARIANT_DI_FromR8(double source, VARIANT_DI * dest)
5493 HRESULT hres = S_OK;
5494 R8_FIELDS fx;
5496 fx.d = source;
5498 /* Detect special cases */
5499 if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0) {
5500 /* Floating-point zero */
5501 VARIANT_DI_clear(dest);
5502 } else if (fx.i.m_lo == 0 && fx.i.m_hi == 0 && fx.i.exp_bias == 0x7FF) {
5503 /* Floating-point infinity */
5504 hres = DISP_E_OVERFLOW;
5505 } else if (fx.i.exp_bias == 0x7FF) {
5506 /* Floating-point NaN */
5507 hres = DISP_E_BADVARTYPE;
5508 } else {
5509 int exponent2;
5510 VARIANT_DI_clear(dest);
5512 exponent2 = fx.i.exp_bias - 1023; /* Get unbiased exponent */
5513 dest->sign = fx.i.sign; /* Sign is simply copied */
5515 /* Copy significant bits to VARIANT_DI mantissa */
5516 dest->bitsnum[0] = fx.i.m_lo;
5517 dest->bitsnum[1] = fx.i.m_hi;
5518 dest->bitsnum[1] &= 0x000FFFFF;
5519 if (fx.i.exp_bias == 0) {
5520 /* Denormalized number - correct exponent */
5521 exponent2++;
5522 } else {
5523 /* Add hidden bit to mantissa */
5524 dest->bitsnum[1] |= 0x00100000;
5527 /* The act of copying a FP mantissa as integer bits is equivalent to
5528 shifting left the mantissa 52 bits. The exponent2 is reduced to
5529 compensate. */
5530 exponent2 -= 52;
5532 hres = VARIANT_DI_normalize(dest, exponent2, TRUE);
5535 return hres;
5538 static HRESULT VARIANT_do_division(const DECIMAL *pDecLeft, const DECIMAL *pDecRight, DECIMAL *pDecOut,
5539 BOOL round)
5541 HRESULT hRet = S_OK;
5542 VARIANT_DI di_left, di_right, di_result;
5543 HRESULT divresult;
5545 VARIANT_DIFromDec(pDecLeft, &di_left);
5546 VARIANT_DIFromDec(pDecRight, &di_right);
5547 divresult = VARIANT_DI_div(&di_left, &di_right, &di_result, round);
5548 if (divresult != S_OK)
5550 /* division actually overflowed */
5551 hRet = divresult;
5553 else
5555 hRet = S_OK;
5557 if (di_result.scale > DEC_MAX_SCALE)
5559 unsigned char remainder = 0;
5561 /* division underflowed. In order to comply with the MSDN
5562 specifications for DECIMAL ranges, some significant digits
5563 must be removed
5565 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5566 di_result.scale);
5567 while (di_result.scale > DEC_MAX_SCALE &&
5568 !VARIANT_int_iszero(di_result.bitsnum, sizeof(di_result.bitsnum) / sizeof(DWORD)))
5570 remainder = VARIANT_int_divbychar(di_result.bitsnum, sizeof(di_result.bitsnum) / sizeof(DWORD), 10);
5571 di_result.scale--;
5573 if (di_result.scale > DEC_MAX_SCALE)
5575 WARN("result underflowed, setting to 0\n");
5576 di_result.scale = 0;
5577 di_result.sign = 0;
5579 else if (remainder >= 5) /* round up result - native oleaut32 does this */
5581 unsigned int i;
5582 for (remainder = 1, i = 0; i < sizeof(di_result.bitsnum) / sizeof(DWORD) && remainder; i++) {
5583 ULONGLONG digit = di_result.bitsnum[i] + 1;
5584 remainder = (digit > 0xFFFFFFFF) ? 1 : 0;
5585 di_result.bitsnum[i] = digit & 0xFFFFFFFF;
5589 VARIANT_DecFromDI(&di_result, pDecOut);
5591 return hRet;
5594 /************************************************************************
5595 * VarDecDiv (OLEAUT32.178)
5597 * Divide one DECIMAL by another.
5599 * PARAMS
5600 * pDecLeft [I] Source
5601 * pDecRight [I] Value to divide by
5602 * pDecOut [O] Destination
5604 * RETURNS
5605 * Success: S_OK.
5606 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5608 HRESULT WINAPI VarDecDiv(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5610 if (!pDecLeft || !pDecRight || !pDecOut) return E_INVALIDARG;
5612 return VARIANT_do_division(pDecLeft, pDecRight, pDecOut, FALSE);
5615 /************************************************************************
5616 * VarDecMul (OLEAUT32.179)
5618 * Multiply one DECIMAL by another.
5620 * PARAMS
5621 * pDecLeft [I] Source
5622 * pDecRight [I] Value to multiply by
5623 * pDecOut [O] Destination
5625 * RETURNS
5626 * Success: S_OK.
5627 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5629 HRESULT WINAPI VarDecMul(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5631 HRESULT hRet = S_OK;
5632 VARIANT_DI di_left, di_right, di_result;
5633 int mulresult;
5635 VARIANT_DIFromDec(pDecLeft, &di_left);
5636 VARIANT_DIFromDec(pDecRight, &di_right);
5637 mulresult = VARIANT_DI_mul(&di_left, &di_right, &di_result);
5638 if (mulresult)
5640 /* multiplication actually overflowed */
5641 hRet = DISP_E_OVERFLOW;
5643 else
5645 if (di_result.scale > DEC_MAX_SCALE)
5647 /* multiplication underflowed. In order to comply with the MSDN
5648 specifications for DECIMAL ranges, some significant digits
5649 must be removed
5651 WARN("result scale is %u, scaling (with loss of significant digits)...\n",
5652 di_result.scale);
5653 while (di_result.scale > DEC_MAX_SCALE &&
5654 !VARIANT_int_iszero(di_result.bitsnum, sizeof(di_result.bitsnum)/sizeof(DWORD)))
5656 VARIANT_int_divbychar(di_result.bitsnum, sizeof(di_result.bitsnum)/sizeof(DWORD), 10);
5657 di_result.scale--;
5659 if (di_result.scale > DEC_MAX_SCALE)
5661 WARN("result underflowed, setting to 0\n");
5662 di_result.scale = 0;
5663 di_result.sign = 0;
5666 VARIANT_DecFromDI(&di_result, pDecOut);
5668 return hRet;
5671 /************************************************************************
5672 * VarDecSub (OLEAUT32.181)
5674 * Subtract one DECIMAL from another.
5676 * PARAMS
5677 * pDecLeft [I] Source
5678 * pDecRight [I] DECIMAL to subtract from pDecLeft
5679 * pDecOut [O] Destination
5681 * RETURNS
5682 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5684 HRESULT WINAPI VarDecSub(const DECIMAL* pDecLeft, const DECIMAL* pDecRight, DECIMAL* pDecOut)
5686 DECIMAL decRight;
5688 /* Implement as addition of the negative */
5689 VarDecNeg(pDecRight, &decRight);
5690 return VarDecAdd(pDecLeft, &decRight, pDecOut);
5693 /************************************************************************
5694 * VarDecAbs (OLEAUT32.182)
5696 * Convert a DECIMAL into its absolute value.
5698 * PARAMS
5699 * pDecIn [I] Source
5700 * pDecOut [O] Destination
5702 * RETURNS
5703 * S_OK. This function does not fail.
5705 HRESULT WINAPI VarDecAbs(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5707 *pDecOut = *pDecIn;
5708 DEC_SIGN(pDecOut) &= ~DECIMAL_NEG;
5709 return S_OK;
5712 /************************************************************************
5713 * VarDecFix (OLEAUT32.187)
5715 * Return the integer portion of a DECIMAL.
5717 * PARAMS
5718 * pDecIn [I] Source
5719 * pDecOut [O] Destination
5721 * RETURNS
5722 * Success: S_OK.
5723 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5725 * NOTES
5726 * - The difference between this function and VarDecInt() is that VarDecInt() rounds
5727 * negative numbers away from 0, while this function rounds them towards zero.
5729 HRESULT WINAPI VarDecFix(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5731 double dbl;
5732 HRESULT hr;
5734 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5735 return E_INVALIDARG;
5737 if (!DEC_SCALE(pDecIn))
5739 *pDecOut = *pDecIn; /* Already an integer */
5740 return S_OK;
5743 hr = VarR8FromDec(pDecIn, &dbl);
5744 if (SUCCEEDED(hr)) {
5745 LONGLONG rounded = dbl;
5747 hr = VarDecFromI8(rounded, pDecOut);
5749 return hr;
5752 /************************************************************************
5753 * VarDecInt (OLEAUT32.188)
5755 * Return the integer portion of a DECIMAL.
5757 * PARAMS
5758 * pDecIn [I] Source
5759 * pDecOut [O] Destination
5761 * RETURNS
5762 * Success: S_OK.
5763 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
5765 * NOTES
5766 * - The difference between this function and VarDecFix() is that VarDecFix() rounds
5767 * negative numbers towards 0, while this function rounds them away from zero.
5769 HRESULT WINAPI VarDecInt(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5771 double dbl;
5772 HRESULT hr;
5774 if (DEC_SIGN(pDecIn) & ~DECIMAL_NEG)
5775 return E_INVALIDARG;
5777 if (!(DEC_SIGN(pDecIn) & DECIMAL_NEG) || !DEC_SCALE(pDecIn))
5778 return VarDecFix(pDecIn, pDecOut); /* The same, if +ve or no fractionals */
5780 hr = VarR8FromDec(pDecIn, &dbl);
5781 if (SUCCEEDED(hr)) {
5782 LONGLONG rounded = dbl >= 0.0 ? dbl + 0.5 : dbl - 0.5;
5784 hr = VarDecFromI8(rounded, pDecOut);
5786 return hr;
5789 /************************************************************************
5790 * VarDecNeg (OLEAUT32.189)
5792 * Change the sign of a DECIMAL.
5794 * PARAMS
5795 * pDecIn [I] Source
5796 * pDecOut [O] Destination
5798 * RETURNS
5799 * S_OK. This function does not fail.
5801 HRESULT WINAPI VarDecNeg(const DECIMAL* pDecIn, DECIMAL* pDecOut)
5803 *pDecOut = *pDecIn;
5804 DEC_SIGN(pDecOut) ^= DECIMAL_NEG;
5805 return S_OK;
5808 /************************************************************************
5809 * VarDecRound (OLEAUT32.203)
5811 * Change the precision of a DECIMAL.
5813 * PARAMS
5814 * pDecIn [I] Source
5815 * cDecimals [I] New number of decimals to keep
5816 * pDecOut [O] Destination
5818 * RETURNS
5819 * Success: S_OK. pDecOut contains the rounded value.
5820 * Failure: E_INVALIDARG if any argument is invalid.
5822 HRESULT WINAPI VarDecRound(const DECIMAL* pDecIn, int cDecimals, DECIMAL* pDecOut)
5824 DECIMAL divisor, tmp;
5825 HRESULT hr;
5826 unsigned int i;
5828 if (cDecimals < 0 || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG) || DEC_SCALE(pDecIn) > DEC_MAX_SCALE)
5829 return E_INVALIDARG;
5831 if (cDecimals >= DEC_SCALE(pDecIn))
5833 *pDecOut = *pDecIn; /* More precision than we have */
5834 return S_OK;
5837 /* truncate significant digits and rescale */
5838 memset(&divisor, 0, sizeof(divisor));
5839 DEC_LO64(&divisor) = 1;
5841 memset(&tmp, 0, sizeof(tmp));
5842 DEC_LO64(&tmp) = 10;
5843 for (i = 0; i < DEC_SCALE(pDecIn) - cDecimals; ++i)
5845 hr = VarDecMul(&divisor, &tmp, &divisor);
5846 if (FAILED(hr))
5847 return hr;
5850 hr = VARIANT_do_division(pDecIn, &divisor, pDecOut, TRUE);
5851 if (FAILED(hr))
5852 return hr;
5854 DEC_SCALE(pDecOut) = cDecimals;
5856 return S_OK;
5859 /************************************************************************
5860 * VarDecCmp (OLEAUT32.204)
5862 * Compare two DECIMAL values.
5864 * PARAMS
5865 * pDecLeft [I] Source
5866 * pDecRight [I] Value to compare
5868 * RETURNS
5869 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pDecLeft
5870 * is less than, equal to or greater than pDecRight respectively.
5871 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5873 HRESULT WINAPI VarDecCmp(const DECIMAL* pDecLeft, const DECIMAL* pDecRight)
5875 HRESULT hRet;
5876 DECIMAL result;
5878 if (!pDecLeft || !pDecRight)
5879 return VARCMP_NULL;
5881 if ((!(DEC_SIGN(pDecLeft) & DECIMAL_NEG)) && (DEC_SIGN(pDecRight) & DECIMAL_NEG) &&
5882 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5883 return VARCMP_GT;
5884 else if ((DEC_SIGN(pDecLeft) & DECIMAL_NEG) && (!(DEC_SIGN(pDecRight) & DECIMAL_NEG)) &&
5885 (DEC_HI32(pDecLeft) | DEC_MID32(pDecLeft) | DEC_LO32(pDecLeft)))
5886 return VARCMP_LT;
5888 /* Subtract right from left, and compare the result to 0 */
5889 hRet = VarDecSub(pDecLeft, pDecRight, &result);
5891 if (SUCCEEDED(hRet))
5893 int non_zero = DEC_HI32(&result) | DEC_MID32(&result) | DEC_LO32(&result);
5895 if ((DEC_SIGN(&result) & DECIMAL_NEG) && non_zero)
5896 hRet = (HRESULT)VARCMP_LT;
5897 else if (non_zero)
5898 hRet = (HRESULT)VARCMP_GT;
5899 else
5900 hRet = (HRESULT)VARCMP_EQ;
5902 return hRet;
5905 /************************************************************************
5906 * VarDecCmpR8 (OLEAUT32.298)
5908 * Compare a DECIMAL to a double
5910 * PARAMS
5911 * pDecLeft [I] DECIMAL Source
5912 * dblRight [I] double to compare to pDecLeft
5914 * RETURNS
5915 * Success: VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that dblRight
5916 * is less than, equal to or greater than pDecLeft respectively.
5917 * Failure: DISP_E_OVERFLOW, if overflow occurs during the comparison
5919 HRESULT WINAPI VarDecCmpR8(const DECIMAL* pDecLeft, double dblRight)
5921 HRESULT hRet;
5922 DECIMAL decRight;
5924 hRet = VarDecFromR8(dblRight, &decRight);
5926 if (SUCCEEDED(hRet))
5927 hRet = VarDecCmp(pDecLeft, &decRight);
5929 return hRet;
5932 /* BOOL
5935 /************************************************************************
5936 * VarBoolFromUI1 (OLEAUT32.118)
5938 * Convert a VT_UI1 to a VT_BOOL.
5940 * PARAMS
5941 * bIn [I] Source
5942 * pBoolOut [O] Destination
5944 * RETURNS
5945 * S_OK.
5947 HRESULT WINAPI VarBoolFromUI1(BYTE bIn, VARIANT_BOOL *pBoolOut)
5949 *pBoolOut = bIn ? VARIANT_TRUE : VARIANT_FALSE;
5950 return S_OK;
5953 /************************************************************************
5954 * VarBoolFromI2 (OLEAUT32.119)
5956 * Convert a VT_I2 to a VT_BOOL.
5958 * PARAMS
5959 * sIn [I] Source
5960 * pBoolOut [O] Destination
5962 * RETURNS
5963 * S_OK.
5965 HRESULT WINAPI VarBoolFromI2(SHORT sIn, VARIANT_BOOL *pBoolOut)
5967 *pBoolOut = sIn ? VARIANT_TRUE : VARIANT_FALSE;
5968 return S_OK;
5971 /************************************************************************
5972 * VarBoolFromI4 (OLEAUT32.120)
5974 * Convert a VT_I4 to a VT_BOOL.
5976 * PARAMS
5977 * sIn [I] Source
5978 * pBoolOut [O] Destination
5980 * RETURNS
5981 * S_OK.
5983 HRESULT WINAPI VarBoolFromI4(LONG lIn, VARIANT_BOOL *pBoolOut)
5985 *pBoolOut = lIn ? VARIANT_TRUE : VARIANT_FALSE;
5986 return S_OK;
5989 /************************************************************************
5990 * VarBoolFromR4 (OLEAUT32.121)
5992 * Convert a VT_R4 to a VT_BOOL.
5994 * PARAMS
5995 * fltIn [I] Source
5996 * pBoolOut [O] Destination
5998 * RETURNS
5999 * S_OK.
6001 HRESULT WINAPI VarBoolFromR4(FLOAT fltIn, VARIANT_BOOL *pBoolOut)
6003 *pBoolOut = fltIn ? VARIANT_TRUE : VARIANT_FALSE;
6004 return S_OK;
6007 /************************************************************************
6008 * VarBoolFromR8 (OLEAUT32.122)
6010 * Convert a VT_R8 to a VT_BOOL.
6012 * PARAMS
6013 * dblIn [I] Source
6014 * pBoolOut [O] Destination
6016 * RETURNS
6017 * S_OK.
6019 HRESULT WINAPI VarBoolFromR8(double dblIn, VARIANT_BOOL *pBoolOut)
6021 *pBoolOut = dblIn ? VARIANT_TRUE : VARIANT_FALSE;
6022 return S_OK;
6025 /************************************************************************
6026 * VarBoolFromDate (OLEAUT32.123)
6028 * Convert a VT_DATE to a VT_BOOL.
6030 * PARAMS
6031 * dateIn [I] Source
6032 * pBoolOut [O] Destination
6034 * RETURNS
6035 * S_OK.
6037 HRESULT WINAPI VarBoolFromDate(DATE dateIn, VARIANT_BOOL *pBoolOut)
6039 *pBoolOut = dateIn ? VARIANT_TRUE : VARIANT_FALSE;
6040 return S_OK;
6043 /************************************************************************
6044 * VarBoolFromCy (OLEAUT32.124)
6046 * Convert a VT_CY to a VT_BOOL.
6048 * PARAMS
6049 * cyIn [I] Source
6050 * pBoolOut [O] Destination
6052 * RETURNS
6053 * S_OK.
6055 HRESULT WINAPI VarBoolFromCy(CY cyIn, VARIANT_BOOL *pBoolOut)
6057 *pBoolOut = cyIn.int64 ? VARIANT_TRUE : VARIANT_FALSE;
6058 return S_OK;
6061 /************************************************************************
6062 * VARIANT_GetLocalisedText [internal]
6064 * Get a localized string from the resources
6067 BOOL VARIANT_GetLocalisedText(LANGID langId, DWORD dwId, WCHAR *lpszDest)
6069 HRSRC hrsrc;
6071 hrsrc = FindResourceExW( hProxyDll, (LPWSTR)RT_STRING,
6072 MAKEINTRESOURCEW((dwId >> 4) + 1), langId );
6073 if (hrsrc)
6075 HGLOBAL hmem = LoadResource( hProxyDll, hrsrc );
6077 if (hmem)
6079 const WCHAR *p;
6080 unsigned int i;
6082 p = LockResource( hmem );
6083 for (i = 0; i < (dwId & 0x0f); i++) p += *p + 1;
6085 memcpy( lpszDest, p + 1, *p * sizeof(WCHAR) );
6086 lpszDest[*p] = '\0';
6087 TRACE("got %s for LANGID %08x\n", debugstr_w(lpszDest), langId);
6088 return TRUE;
6091 return FALSE;
6094 /************************************************************************
6095 * VarBoolFromStr (OLEAUT32.125)
6097 * Convert a VT_BSTR to a VT_BOOL.
6099 * PARAMS
6100 * strIn [I] Source
6101 * lcid [I] LCID for the conversion
6102 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6103 * pBoolOut [O] Destination
6105 * RETURNS
6106 * Success: S_OK.
6107 * Failure: E_INVALIDARG, if pBoolOut is invalid.
6108 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6110 * NOTES
6111 * - strIn will be recognised if it contains "#TRUE#" or "#FALSE#". Additionally,
6112 * it may contain (in any case mapping) the text "true" or "false".
6113 * - If dwFlags includes VAR_LOCALBOOL, then the text may also match the
6114 * localised text of "True" or "False" in the language specified by lcid.
6115 * - If none of these matches occur, the string is treated as a numeric string
6116 * and the boolean pBoolOut will be set according to whether the number is zero
6117 * or not. The dwFlags parameter is passed to VarR8FromStr() for this conversion.
6118 * - If the text is not numeric and does not match any of the above, then
6119 * DISP_E_TYPEMISMATCH is returned.
6121 HRESULT WINAPI VarBoolFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, VARIANT_BOOL *pBoolOut)
6123 /* Any VB/VBA programmers out there should recognise these strings... */
6124 static const WCHAR szFalse[] = { '#','F','A','L','S','E','#','\0' };
6125 static const WCHAR szTrue[] = { '#','T','R','U','E','#','\0' };
6126 WCHAR szBuff[64];
6127 LANGID langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6128 HRESULT hRes = S_OK;
6130 if (!strIn || !pBoolOut)
6131 return DISP_E_TYPEMISMATCH;
6133 /* Check if we should be comparing against localised text */
6134 if (dwFlags & VAR_LOCALBOOL)
6136 /* Convert our LCID into a usable value */
6137 lcid = ConvertDefaultLocale(lcid);
6139 langId = LANGIDFROMLCID(lcid);
6141 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6142 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6144 /* Note: Native oleaut32 always copies strIn and maps halfwidth characters.
6145 * I don't think this is needed unless any of the localised text strings
6146 * contain characters that can be so mapped. In the event that this is
6147 * true for a given language (possibly some Asian languages), then strIn
6148 * should be mapped here _only_ if langId is an Id for which this can occur.
6152 /* Note that if we are not comparing against localised strings, langId
6153 * will have its default value of LANG_ENGLISH. This allows us to mimic
6154 * the native behaviour of always checking against English strings even
6155 * after we've checked for localised ones.
6157 VarBoolFromStr_CheckLocalised:
6158 if (VARIANT_GetLocalisedText(langId, IDS_TRUE, szBuff))
6160 /* Compare against localised strings, ignoring case */
6161 if (!strcmpiW(strIn, szBuff))
6163 *pBoolOut = VARIANT_TRUE; /* Matched localised 'true' text */
6164 return hRes;
6166 VARIANT_GetLocalisedText(langId, IDS_FALSE, szBuff);
6167 if (!strcmpiW(strIn, szBuff))
6169 *pBoolOut = VARIANT_FALSE; /* Matched localised 'false' text */
6170 return hRes;
6174 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6176 /* We have checked the localised text, now check English */
6177 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6178 goto VarBoolFromStr_CheckLocalised;
6181 /* All checks against localised text have failed, try #TRUE#/#FALSE# */
6182 if (!strcmpW(strIn, szFalse))
6183 *pBoolOut = VARIANT_FALSE;
6184 else if (!strcmpW(strIn, szTrue))
6185 *pBoolOut = VARIANT_TRUE;
6186 else
6188 double d;
6190 /* If this string is a number, convert it as one */
6191 hRes = VarR8FromStr(strIn, lcid, dwFlags, &d);
6192 if (SUCCEEDED(hRes)) *pBoolOut = d ? VARIANT_TRUE : VARIANT_FALSE;
6194 return hRes;
6197 /************************************************************************
6198 * VarBoolFromDisp (OLEAUT32.126)
6200 * Convert a VT_DISPATCH to a VT_BOOL.
6202 * PARAMS
6203 * pdispIn [I] Source
6204 * lcid [I] LCID for conversion
6205 * pBoolOut [O] Destination
6207 * RETURNS
6208 * Success: S_OK.
6209 * Failure: E_INVALIDARG, if the source value is invalid
6210 * DISP_E_OVERFLOW, if the value will not fit in the destination
6211 * DISP_E_TYPEMISMATCH, if the type cannot be converted
6213 HRESULT WINAPI VarBoolFromDisp(IDispatch* pdispIn, LCID lcid, VARIANT_BOOL *pBoolOut)
6215 return VARIANT_FromDisp(pdispIn, lcid, pBoolOut, VT_BOOL, 0);
6218 /************************************************************************
6219 * VarBoolFromI1 (OLEAUT32.233)
6221 * Convert a VT_I1 to a VT_BOOL.
6223 * PARAMS
6224 * cIn [I] Source
6225 * pBoolOut [O] Destination
6227 * RETURNS
6228 * S_OK.
6230 HRESULT WINAPI VarBoolFromI1(signed char cIn, VARIANT_BOOL *pBoolOut)
6232 *pBoolOut = cIn ? VARIANT_TRUE : VARIANT_FALSE;
6233 return S_OK;
6236 /************************************************************************
6237 * VarBoolFromUI2 (OLEAUT32.234)
6239 * Convert a VT_UI2 to a VT_BOOL.
6241 * PARAMS
6242 * usIn [I] Source
6243 * pBoolOut [O] Destination
6245 * RETURNS
6246 * S_OK.
6248 HRESULT WINAPI VarBoolFromUI2(USHORT usIn, VARIANT_BOOL *pBoolOut)
6250 *pBoolOut = usIn ? VARIANT_TRUE : VARIANT_FALSE;
6251 return S_OK;
6254 /************************************************************************
6255 * VarBoolFromUI4 (OLEAUT32.235)
6257 * Convert a VT_UI4 to a VT_BOOL.
6259 * PARAMS
6260 * ulIn [I] Source
6261 * pBoolOut [O] Destination
6263 * RETURNS
6264 * S_OK.
6266 HRESULT WINAPI VarBoolFromUI4(ULONG ulIn, VARIANT_BOOL *pBoolOut)
6268 *pBoolOut = ulIn ? VARIANT_TRUE : VARIANT_FALSE;
6269 return S_OK;
6272 /************************************************************************
6273 * VarBoolFromDec (OLEAUT32.236)
6275 * Convert a VT_DECIMAL to a VT_BOOL.
6277 * PARAMS
6278 * pDecIn [I] Source
6279 * pBoolOut [O] Destination
6281 * RETURNS
6282 * Success: S_OK.
6283 * Failure: E_INVALIDARG, if pDecIn is invalid.
6285 HRESULT WINAPI VarBoolFromDec(DECIMAL* pDecIn, VARIANT_BOOL *pBoolOut)
6287 if (DEC_SCALE(pDecIn) > DEC_MAX_SCALE || (DEC_SIGN(pDecIn) & ~DECIMAL_NEG))
6288 return E_INVALIDARG;
6290 if (DEC_HI32(pDecIn) || DEC_MID32(pDecIn) || DEC_LO32(pDecIn))
6291 *pBoolOut = VARIANT_TRUE;
6292 else
6293 *pBoolOut = VARIANT_FALSE;
6294 return S_OK;
6297 /************************************************************************
6298 * VarBoolFromI8 (OLEAUT32.370)
6300 * Convert a VT_I8 to a VT_BOOL.
6302 * PARAMS
6303 * ullIn [I] Source
6304 * pBoolOut [O] Destination
6306 * RETURNS
6307 * S_OK.
6309 HRESULT WINAPI VarBoolFromI8(LONG64 llIn, VARIANT_BOOL *pBoolOut)
6311 *pBoolOut = llIn ? VARIANT_TRUE : VARIANT_FALSE;
6312 return S_OK;
6315 /************************************************************************
6316 * VarBoolFromUI8 (OLEAUT32.371)
6318 * Convert a VT_UI8 to a VT_BOOL.
6320 * PARAMS
6321 * ullIn [I] Source
6322 * pBoolOut [O] Destination
6324 * RETURNS
6325 * S_OK.
6327 HRESULT WINAPI VarBoolFromUI8(ULONG64 ullIn, VARIANT_BOOL *pBoolOut)
6329 *pBoolOut = ullIn ? VARIANT_TRUE : VARIANT_FALSE;
6330 return S_OK;
6333 /* BSTR
6336 /* Write a number from a UI8 and sign */
6337 static WCHAR *VARIANT_WriteNumber(ULONG64 ulVal, WCHAR* szOut)
6341 WCHAR ulNextDigit = ulVal % 10;
6343 *szOut-- = '0' + ulNextDigit;
6344 ulVal = (ulVal - ulNextDigit) / 10;
6345 } while (ulVal);
6347 szOut++;
6348 return szOut;
6351 /* Create a (possibly localised) BSTR from a UI8 and sign */
6352 static BSTR VARIANT_MakeBstr(LCID lcid, DWORD dwFlags, WCHAR *szOut)
6354 WCHAR szConverted[256];
6356 if (dwFlags & VAR_NEGATIVE)
6357 *--szOut = '-';
6359 if (dwFlags & LOCALE_USE_NLS)
6361 /* Format the number for the locale */
6362 szConverted[0] = '\0';
6363 GetNumberFormatW(lcid,
6364 dwFlags & LOCALE_NOUSEROVERRIDE,
6365 szOut, NULL, szConverted, sizeof(szConverted)/sizeof(WCHAR));
6366 szOut = szConverted;
6368 return SysAllocStringByteLen((LPCSTR)szOut, strlenW(szOut) * sizeof(WCHAR));
6371 /* Create a (possibly localised) BSTR from a UI8 and sign */
6372 static HRESULT VARIANT_BstrFromUInt(ULONG64 ulVal, LCID lcid, DWORD dwFlags, BSTR *pbstrOut)
6374 WCHAR szBuff[64], *szOut = szBuff + sizeof(szBuff)/sizeof(WCHAR) - 1;
6376 if (!pbstrOut)
6377 return E_INVALIDARG;
6379 /* Create the basic number string */
6380 *szOut-- = '\0';
6381 szOut = VARIANT_WriteNumber(ulVal, szOut);
6383 *pbstrOut = VARIANT_MakeBstr(lcid, dwFlags, szOut);
6384 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6385 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6388 /******************************************************************************
6389 * VarBstrFromUI1 (OLEAUT32.108)
6391 * Convert a VT_UI1 to a VT_BSTR.
6393 * PARAMS
6394 * bIn [I] Source
6395 * lcid [I] LCID for the conversion
6396 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6397 * pbstrOut [O] Destination
6399 * RETURNS
6400 * Success: S_OK.
6401 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6402 * E_OUTOFMEMORY, if memory allocation fails.
6404 HRESULT WINAPI VarBstrFromUI1(BYTE bIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6406 return VARIANT_BstrFromUInt(bIn, lcid, dwFlags, pbstrOut);
6409 /******************************************************************************
6410 * VarBstrFromI2 (OLEAUT32.109)
6412 * Convert a VT_I2 to a VT_BSTR.
6414 * PARAMS
6415 * sIn [I] Source
6416 * lcid [I] LCID for the conversion
6417 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6418 * pbstrOut [O] Destination
6420 * RETURNS
6421 * Success: S_OK.
6422 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6423 * E_OUTOFMEMORY, if memory allocation fails.
6425 HRESULT WINAPI VarBstrFromI2(short sIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6427 ULONG64 ul64 = sIn;
6429 if (sIn < 0)
6431 ul64 = -sIn;
6432 dwFlags |= VAR_NEGATIVE;
6434 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6437 /******************************************************************************
6438 * VarBstrFromI4 (OLEAUT32.110)
6440 * Convert a VT_I4 to a VT_BSTR.
6442 * PARAMS
6443 * lIn [I] Source
6444 * lcid [I] LCID for the conversion
6445 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6446 * pbstrOut [O] Destination
6448 * RETURNS
6449 * Success: S_OK.
6450 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6451 * E_OUTOFMEMORY, if memory allocation fails.
6453 HRESULT WINAPI VarBstrFromI4(LONG lIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6455 ULONG64 ul64 = lIn;
6457 if (lIn < 0)
6459 ul64 = (ULONG)-lIn;
6460 dwFlags |= VAR_NEGATIVE;
6462 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6465 static BSTR VARIANT_BstrReplaceDecimal(const WCHAR * buff, LCID lcid, ULONG dwFlags)
6467 BSTR bstrOut;
6468 WCHAR lpDecimalSep[16];
6470 /* Native oleaut32 uses the locale-specific decimal separator even in the
6471 absence of the LOCALE_USE_NLS flag. For example, the Spanish/Latin
6472 American locales will see "one thousand and one tenth" as "1000,1"
6473 instead of "1000.1" (notice the comma). The following code checks for
6474 the need to replace the decimal separator, and if so, will prepare an
6475 appropriate NUMBERFMTW structure to do the job via GetNumberFormatW().
6477 GetLocaleInfoW(lcid, LOCALE_SDECIMAL | (dwFlags & LOCALE_NOUSEROVERRIDE),
6478 lpDecimalSep, sizeof(lpDecimalSep) / sizeof(WCHAR));
6479 if (lpDecimalSep[0] == '.' && lpDecimalSep[1] == '\0')
6481 /* locale is compatible with English - return original string */
6482 bstrOut = SysAllocString(buff);
6484 else
6486 WCHAR *p;
6487 WCHAR numbuff[256];
6488 WCHAR empty[] = {'\0'};
6489 NUMBERFMTW minFormat;
6491 minFormat.NumDigits = 0;
6492 minFormat.LeadingZero = 0;
6493 minFormat.Grouping = 0;
6494 minFormat.lpDecimalSep = lpDecimalSep;
6495 minFormat.lpThousandSep = empty;
6496 minFormat.NegativeOrder = 1; /* NLS_NEG_LEFT */
6498 /* count number of decimal digits in string */
6499 p = strchrW( buff, '.' );
6500 if (p) minFormat.NumDigits = strlenW(p + 1);
6502 numbuff[0] = '\0';
6503 if (!GetNumberFormatW(lcid, 0, buff, &minFormat, numbuff, sizeof(numbuff) / sizeof(WCHAR)))
6505 WARN("GetNumberFormatW() failed, returning raw number string instead\n");
6506 bstrOut = SysAllocString(buff);
6508 else
6510 TRACE("created minimal NLS string %s\n", debugstr_w(numbuff));
6511 bstrOut = SysAllocString(numbuff);
6514 return bstrOut;
6517 static HRESULT VARIANT_BstrFromReal(DOUBLE dblIn, LCID lcid, ULONG dwFlags,
6518 BSTR* pbstrOut, LPCWSTR lpszFormat)
6520 WCHAR buff[256];
6522 if (!pbstrOut)
6523 return E_INVALIDARG;
6525 sprintfW( buff, lpszFormat, dblIn );
6527 /* Negative zeroes are disallowed (some applications depend on this).
6528 If buff starts with a minus, and then nothing follows but zeroes
6529 and/or a period, it is a negative zero and is replaced with a
6530 canonical zero. This duplicates native oleaut32 behavior.
6532 if (buff[0] == '-')
6534 const WCHAR szAccept[] = {'0', '.', '\0'};
6535 if (strlenW(buff + 1) == strspnW(buff + 1, szAccept))
6536 { buff[0] = '0'; buff[1] = '\0'; }
6539 TRACE("created string %s\n", debugstr_w(buff));
6540 if (dwFlags & LOCALE_USE_NLS)
6542 WCHAR numbuff[256];
6544 /* Format the number for the locale */
6545 numbuff[0] = '\0';
6546 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6547 buff, NULL, numbuff, sizeof(numbuff) / sizeof(WCHAR));
6548 TRACE("created NLS string %s\n", debugstr_w(numbuff));
6549 *pbstrOut = SysAllocString(numbuff);
6551 else
6553 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
6555 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6558 /******************************************************************************
6559 * VarBstrFromR4 (OLEAUT32.111)
6561 * Convert a VT_R4 to a VT_BSTR.
6563 * PARAMS
6564 * fltIn [I] Source
6565 * lcid [I] LCID for the conversion
6566 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6567 * pbstrOut [O] Destination
6569 * RETURNS
6570 * Success: S_OK.
6571 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6572 * E_OUTOFMEMORY, if memory allocation fails.
6574 HRESULT WINAPI VarBstrFromR4(FLOAT fltIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6576 return VARIANT_BstrFromReal(fltIn, lcid, dwFlags, pbstrOut, szFloatFormatW);
6579 /******************************************************************************
6580 * VarBstrFromR8 (OLEAUT32.112)
6582 * Convert a VT_R8 to a VT_BSTR.
6584 * PARAMS
6585 * dblIn [I] Source
6586 * lcid [I] LCID for the conversion
6587 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6588 * pbstrOut [O] Destination
6590 * RETURNS
6591 * Success: S_OK.
6592 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6593 * E_OUTOFMEMORY, if memory allocation fails.
6595 HRESULT WINAPI VarBstrFromR8(double dblIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6597 return VARIANT_BstrFromReal(dblIn, lcid, dwFlags, pbstrOut, szDoubleFormatW);
6600 /******************************************************************************
6601 * VarBstrFromCy [OLEAUT32.113]
6603 * Convert a VT_CY to a VT_BSTR.
6605 * PARAMS
6606 * cyIn [I] Source
6607 * lcid [I] LCID for the conversion
6608 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6609 * pbstrOut [O] Destination
6611 * RETURNS
6612 * Success: S_OK.
6613 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6614 * E_OUTOFMEMORY, if memory allocation fails.
6616 HRESULT WINAPI VarBstrFromCy(CY cyIn, LCID lcid, ULONG dwFlags, BSTR *pbstrOut)
6618 WCHAR buff[256];
6619 VARIANT_DI decVal;
6621 if (!pbstrOut)
6622 return E_INVALIDARG;
6624 decVal.scale = 4;
6625 decVal.sign = 0;
6626 decVal.bitsnum[0] = cyIn.s.Lo;
6627 decVal.bitsnum[1] = cyIn.s.Hi;
6628 if (cyIn.s.Hi & 0x80000000UL) {
6629 DWORD one = 1;
6631 /* Negative number! */
6632 decVal.sign = 1;
6633 decVal.bitsnum[0] = ~decVal.bitsnum[0];
6634 decVal.bitsnum[1] = ~decVal.bitsnum[1];
6635 VARIANT_int_add(decVal.bitsnum, 3, &one, 1);
6637 decVal.bitsnum[2] = 0;
6638 VARIANT_DI_tostringW(&decVal, buff, sizeof(buff)/sizeof(buff[0]));
6640 if (dwFlags & LOCALE_USE_NLS)
6642 WCHAR cybuff[256];
6644 /* Format the currency for the locale */
6645 cybuff[0] = '\0';
6646 GetCurrencyFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
6647 buff, NULL, cybuff, sizeof(cybuff) / sizeof(WCHAR));
6648 *pbstrOut = SysAllocString(cybuff);
6650 else
6651 *pbstrOut = VARIANT_BstrReplaceDecimal(buff,lcid,dwFlags);
6653 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6656 static inline int output_int_len(int o, int min_len, WCHAR *date, int date_len)
6658 int len, tmp;
6660 if(min_len >= date_len)
6661 return -1;
6663 for(len=0, tmp=o; tmp; tmp/=10) len++;
6664 if(!len) len++;
6665 if(len >= date_len)
6666 return -1;
6668 for(tmp=min_len-len; tmp>0; tmp--)
6669 *date++ = '0';
6670 for(tmp=len; tmp>0; tmp--, o/=10)
6671 date[tmp-1] = '0' + o%10;
6672 return min_len>len ? min_len : len;
6675 /* format date string, similar to GetDateFormatW function but works on bigger range of dates */
6676 BOOL get_date_format(LCID lcid, DWORD flags, const SYSTEMTIME *st,
6677 const WCHAR *fmt, WCHAR *date, int date_len)
6679 static const LCTYPE dayname[] = {
6680 LOCALE_SDAYNAME7, LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3,
6681 LOCALE_SDAYNAME4, LOCALE_SDAYNAME5, LOCALE_SDAYNAME6
6683 static const LCTYPE sdayname[] = {
6684 LOCALE_SABBREVDAYNAME7, LOCALE_SABBREVDAYNAME1, LOCALE_SABBREVDAYNAME2,
6685 LOCALE_SABBREVDAYNAME3, LOCALE_SABBREVDAYNAME4, LOCALE_SABBREVDAYNAME5,
6686 LOCALE_SABBREVDAYNAME6
6688 static const LCTYPE monthname[] = {
6689 LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4,
6690 LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8,
6691 LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12
6693 static const LCTYPE smonthname[] = {
6694 LOCALE_SABBREVMONTHNAME1, LOCALE_SABBREVMONTHNAME2, LOCALE_SABBREVMONTHNAME3,
6695 LOCALE_SABBREVMONTHNAME4, LOCALE_SABBREVMONTHNAME5, LOCALE_SABBREVMONTHNAME6,
6696 LOCALE_SABBREVMONTHNAME7, LOCALE_SABBREVMONTHNAME8, LOCALE_SABBREVMONTHNAME9,
6697 LOCALE_SABBREVMONTHNAME10, LOCALE_SABBREVMONTHNAME11, LOCALE_SABBREVMONTHNAME12
6700 if(flags & ~(LOCALE_NOUSEROVERRIDE|VAR_DATEVALUEONLY))
6701 FIXME("ignoring flags %x\n", flags);
6702 flags &= LOCALE_NOUSEROVERRIDE;
6704 while(*fmt && date_len) {
6705 int count = 1;
6707 switch(*fmt) {
6708 case 'd':
6709 case 'M':
6710 case 'y':
6711 case 'g':
6712 while(*fmt == *(fmt+count))
6713 count++;
6714 fmt += count-1;
6717 switch(*fmt) {
6718 case 'd':
6719 if(count >= 4)
6720 count = GetLocaleInfoW(lcid, dayname[st->wDayOfWeek] | flags, date, date_len)-1;
6721 else if(count == 3)
6722 count = GetLocaleInfoW(lcid, sdayname[st->wDayOfWeek] | flags, date, date_len)-1;
6723 else
6724 count = output_int_len(st->wDay, count, date, date_len);
6725 break;
6726 case 'M':
6727 if(count >= 4)
6728 count = GetLocaleInfoW(lcid, monthname[st->wMonth-1] | flags, date, date_len)-1;
6729 else if(count == 3)
6730 count = GetLocaleInfoW(lcid, smonthname[st->wMonth-1] | flags, date, date_len)-1;
6731 else
6732 count = output_int_len(st->wMonth, count, date, date_len);
6733 break;
6734 case 'y':
6735 if(count >= 3)
6736 count = output_int_len(st->wYear, 0, date, date_len);
6737 else
6738 count = output_int_len(st->wYear%100, count, date, date_len);
6739 break;
6740 case 'g':
6741 if(count == 2) {
6742 FIXME("Should be using GetCalendarInfo(CAL_SERASTRING), defaulting to 'AD'\n");
6744 *date++ = 'A';
6745 date_len--;
6746 if(date_len)
6747 *date = 'D';
6748 else
6749 count = -1;
6750 break;
6752 /* fall through */
6753 default:
6754 *date = *fmt;
6757 if(count < 0)
6758 break;
6759 fmt++;
6760 date += count;
6761 date_len -= count;
6764 if(!date_len)
6765 return FALSE;
6766 *date++ = 0;
6767 return TRUE;
6770 /******************************************************************************
6771 * VarBstrFromDate [OLEAUT32.114]
6773 * Convert a VT_DATE to a VT_BSTR.
6775 * PARAMS
6776 * dateIn [I] Source
6777 * lcid [I] LCID for the conversion
6778 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6779 * pbstrOut [O] Destination
6781 * RETURNS
6782 * Success: S_OK.
6783 * Failure: E_INVALIDARG, if pbstrOut or dateIn is invalid.
6784 * E_OUTOFMEMORY, if memory allocation fails.
6786 HRESULT WINAPI VarBstrFromDate(DATE dateIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6788 SYSTEMTIME st;
6789 DWORD dwFormatFlags = dwFlags & LOCALE_NOUSEROVERRIDE;
6790 WCHAR date[128], fmt_buff[80], *time;
6792 TRACE("(%g,0x%08x,0x%08x,%p)\n", dateIn, lcid, dwFlags, pbstrOut);
6794 if (!pbstrOut || !VariantTimeToSystemTime(dateIn, &st))
6795 return E_INVALIDARG;
6797 *pbstrOut = NULL;
6799 if (dwFlags & VAR_CALENDAR_THAI)
6800 st.wYear += 553; /* Use the Thai buddhist calendar year */
6801 else if (dwFlags & (VAR_CALENDAR_HIJRI|VAR_CALENDAR_GREGORIAN))
6802 FIXME("VAR_CALENDAR_HIJRI/VAR_CALENDAR_GREGORIAN not handled\n");
6804 if (dwFlags & LOCALE_USE_NLS)
6805 dwFlags &= ~(VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY);
6806 else
6808 double whole = dateIn < 0 ? ceil(dateIn) : floor(dateIn);
6809 double partial = dateIn - whole;
6811 if (whole == 0.0)
6812 dwFlags |= VAR_TIMEVALUEONLY;
6813 else if (partial > -1e-12 && partial < 1e-12)
6814 dwFlags |= VAR_DATEVALUEONLY;
6817 if (dwFlags & VAR_TIMEVALUEONLY)
6818 date[0] = '\0';
6819 else
6820 if (!GetLocaleInfoW(lcid, LOCALE_SSHORTDATE, fmt_buff, sizeof(fmt_buff)/sizeof(WCHAR)) ||
6821 !get_date_format(lcid, dwFlags, &st, fmt_buff, date, sizeof(date)/sizeof(WCHAR)))
6822 return E_INVALIDARG;
6824 if (!(dwFlags & VAR_DATEVALUEONLY))
6826 time = date + strlenW(date);
6827 if (time != date)
6828 *time++ = ' ';
6829 if (!GetTimeFormatW(lcid, dwFormatFlags, &st, NULL, time,
6830 sizeof(date)/sizeof(WCHAR)-(time-date)))
6831 return E_INVALIDARG;
6834 *pbstrOut = SysAllocString(date);
6835 if (*pbstrOut)
6836 TRACE("returning %s\n", debugstr_w(*pbstrOut));
6837 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6840 /******************************************************************************
6841 * VarBstrFromBool (OLEAUT32.116)
6843 * Convert a VT_BOOL to a VT_BSTR.
6845 * PARAMS
6846 * boolIn [I] Source
6847 * lcid [I] LCID for the conversion
6848 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6849 * pbstrOut [O] Destination
6851 * RETURNS
6852 * Success: S_OK.
6853 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6854 * E_OUTOFMEMORY, if memory allocation fails.
6856 * NOTES
6857 * If dwFlags includes VARIANT_LOCALBOOL, this function converts to the
6858 * localised text of "True" or "False". To convert a bool into a
6859 * numeric string of "0" or "-1", use VariantChangeTypeTypeEx().
6861 HRESULT WINAPI VarBstrFromBool(VARIANT_BOOL boolIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6863 WCHAR szBuff[64];
6864 DWORD dwResId = IDS_TRUE;
6865 LANGID langId;
6867 TRACE("%d,0x%08x,0x%08x,%p\n", boolIn, lcid, dwFlags, pbstrOut);
6869 if (!pbstrOut)
6870 return E_INVALIDARG;
6872 /* VAR_BOOLONOFF and VAR_BOOLYESNO are internal flags used
6873 * for variant formatting */
6874 switch (dwFlags & (VAR_LOCALBOOL|VAR_BOOLONOFF|VAR_BOOLYESNO))
6876 case VAR_BOOLONOFF:
6877 dwResId = IDS_ON;
6878 break;
6879 case VAR_BOOLYESNO:
6880 dwResId = IDS_YES;
6881 break;
6882 case VAR_LOCALBOOL:
6883 break;
6884 default:
6885 lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT),SORT_DEFAULT);
6888 lcid = ConvertDefaultLocale(lcid);
6889 langId = LANGIDFROMLCID(lcid);
6890 if (PRIMARYLANGID(langId) == LANG_NEUTRAL)
6891 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6893 if (boolIn == VARIANT_FALSE)
6894 dwResId++; /* Use negative form */
6896 VarBstrFromBool_GetLocalised:
6897 if (VARIANT_GetLocalisedText(langId, dwResId, szBuff))
6899 *pbstrOut = SysAllocString(szBuff);
6900 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
6903 if (langId != MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT))
6905 langId = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
6906 goto VarBstrFromBool_GetLocalised;
6909 /* Should never get here */
6910 WARN("Failed to load bool text!\n");
6911 return E_OUTOFMEMORY;
6914 /******************************************************************************
6915 * VarBstrFromI1 (OLEAUT32.229)
6917 * Convert a VT_I1 to a VT_BSTR.
6919 * PARAMS
6920 * cIn [I] Source
6921 * lcid [I] LCID for the conversion
6922 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6923 * pbstrOut [O] Destination
6925 * RETURNS
6926 * Success: S_OK.
6927 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6928 * E_OUTOFMEMORY, if memory allocation fails.
6930 HRESULT WINAPI VarBstrFromI1(signed char cIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6932 ULONG64 ul64 = cIn;
6934 if (cIn < 0)
6936 ul64 = -cIn;
6937 dwFlags |= VAR_NEGATIVE;
6939 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
6942 /******************************************************************************
6943 * VarBstrFromUI2 (OLEAUT32.230)
6945 * Convert a VT_UI2 to a VT_BSTR.
6947 * PARAMS
6948 * usIn [I] Source
6949 * lcid [I] LCID for the conversion
6950 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6951 * pbstrOut [O] Destination
6953 * RETURNS
6954 * Success: S_OK.
6955 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6956 * E_OUTOFMEMORY, if memory allocation fails.
6958 HRESULT WINAPI VarBstrFromUI2(USHORT usIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6960 return VARIANT_BstrFromUInt(usIn, lcid, dwFlags, pbstrOut);
6963 /******************************************************************************
6964 * VarBstrFromUI4 (OLEAUT32.231)
6966 * Convert a VT_UI4 to a VT_BSTR.
6968 * PARAMS
6969 * ulIn [I] Source
6970 * lcid [I] LCID for the conversion
6971 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6972 * pbstrOut [O] Destination
6974 * RETURNS
6975 * Success: S_OK.
6976 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6977 * E_OUTOFMEMORY, if memory allocation fails.
6979 HRESULT WINAPI VarBstrFromUI4(ULONG ulIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
6981 return VARIANT_BstrFromUInt(ulIn, lcid, dwFlags, pbstrOut);
6984 /******************************************************************************
6985 * VarBstrFromDec (OLEAUT32.232)
6987 * Convert a VT_DECIMAL to a VT_BSTR.
6989 * PARAMS
6990 * pDecIn [I] Source
6991 * lcid [I] LCID for the conversion
6992 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
6993 * pbstrOut [O] Destination
6995 * RETURNS
6996 * Success: S_OK.
6997 * Failure: E_INVALIDARG, if pbstrOut is invalid.
6998 * E_OUTOFMEMORY, if memory allocation fails.
7000 HRESULT WINAPI VarBstrFromDec(DECIMAL* pDecIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7002 WCHAR buff[256];
7003 VARIANT_DI temp;
7005 if (!pbstrOut)
7006 return E_INVALIDARG;
7008 VARIANT_DIFromDec(pDecIn, &temp);
7009 VARIANT_DI_tostringW(&temp, buff, 256);
7011 if (dwFlags & LOCALE_USE_NLS)
7013 WCHAR numbuff[256];
7015 /* Format the number for the locale */
7016 numbuff[0] = '\0';
7017 GetNumberFormatW(lcid, dwFlags & LOCALE_NOUSEROVERRIDE,
7018 buff, NULL, numbuff, sizeof(numbuff) / sizeof(WCHAR));
7019 TRACE("created NLS string %s\n", debugstr_w(numbuff));
7020 *pbstrOut = SysAllocString(numbuff);
7022 else
7024 *pbstrOut = VARIANT_BstrReplaceDecimal(buff, lcid, dwFlags);
7027 TRACE("returning %s\n", debugstr_w(*pbstrOut));
7028 return *pbstrOut ? S_OK : E_OUTOFMEMORY;
7031 /************************************************************************
7032 * VarBstrFromI8 (OLEAUT32.370)
7034 * Convert a VT_I8 to a VT_BSTR.
7036 * PARAMS
7037 * llIn [I] Source
7038 * lcid [I] LCID for the conversion
7039 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7040 * pbstrOut [O] Destination
7042 * RETURNS
7043 * Success: S_OK.
7044 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7045 * E_OUTOFMEMORY, if memory allocation fails.
7047 HRESULT WINAPI VarBstrFromI8(LONG64 llIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7049 ULONG64 ul64 = llIn;
7051 if (llIn < 0)
7053 ul64 = -llIn;
7054 dwFlags |= VAR_NEGATIVE;
7056 return VARIANT_BstrFromUInt(ul64, lcid, dwFlags, pbstrOut);
7059 /************************************************************************
7060 * VarBstrFromUI8 (OLEAUT32.371)
7062 * Convert a VT_UI8 to a VT_BSTR.
7064 * PARAMS
7065 * ullIn [I] Source
7066 * lcid [I] LCID for the conversion
7067 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7068 * pbstrOut [O] Destination
7070 * RETURNS
7071 * Success: S_OK.
7072 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7073 * E_OUTOFMEMORY, if memory allocation fails.
7075 HRESULT WINAPI VarBstrFromUI8(ULONG64 ullIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7077 return VARIANT_BstrFromUInt(ullIn, lcid, dwFlags, pbstrOut);
7080 /************************************************************************
7081 * VarBstrFromDisp (OLEAUT32.115)
7083 * Convert a VT_DISPATCH to a BSTR.
7085 * PARAMS
7086 * pdispIn [I] Source
7087 * lcid [I] LCID for conversion
7088 * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h")
7089 * pbstrOut [O] Destination
7091 * RETURNS
7092 * Success: S_OK.
7093 * Failure: E_INVALIDARG, if the source value is invalid
7094 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7096 HRESULT WINAPI VarBstrFromDisp(IDispatch* pdispIn, LCID lcid, ULONG dwFlags, BSTR* pbstrOut)
7098 return VARIANT_FromDisp(pdispIn, lcid, pbstrOut, VT_BSTR, dwFlags);
7101 /**********************************************************************
7102 * VarBstrCat (OLEAUT32.313)
7104 * Concatenate two BSTR values.
7106 * PARAMS
7107 * pbstrLeft [I] Source
7108 * pbstrRight [I] Value to concatenate
7109 * pbstrOut [O] Destination
7111 * RETURNS
7112 * Success: S_OK.
7113 * Failure: E_INVALIDARG, if pbstrOut is invalid.
7114 * E_OUTOFMEMORY, if memory allocation fails.
7116 HRESULT WINAPI VarBstrCat(BSTR pbstrLeft, BSTR pbstrRight, BSTR *pbstrOut)
7118 unsigned int lenLeft, lenRight;
7120 TRACE("%s,%s,%p\n",
7121 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
7122 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), pbstrOut);
7124 if (!pbstrOut)
7125 return E_INVALIDARG;
7127 /* use byte length here to properly handle ansi-allocated BSTRs */
7128 lenLeft = pbstrLeft ? SysStringByteLen(pbstrLeft) : 0;
7129 lenRight = pbstrRight ? SysStringByteLen(pbstrRight) : 0;
7131 *pbstrOut = SysAllocStringByteLen(NULL, lenLeft + lenRight);
7132 if (!*pbstrOut)
7133 return E_OUTOFMEMORY;
7135 (*pbstrOut)[0] = '\0';
7137 if (pbstrLeft)
7138 memcpy(*pbstrOut, pbstrLeft, lenLeft);
7140 if (pbstrRight)
7141 memcpy((CHAR*)*pbstrOut + lenLeft, pbstrRight, lenRight);
7143 TRACE("%s\n", debugstr_wn(*pbstrOut, SysStringLen(*pbstrOut)));
7144 return S_OK;
7147 /**********************************************************************
7148 * VarBstrCmp (OLEAUT32.314)
7150 * Compare two BSTR values.
7152 * PARAMS
7153 * pbstrLeft [I] Source
7154 * pbstrRight [I] Value to compare
7155 * lcid [I] LCID for the comparison
7156 * dwFlags [I] Flags to pass directly to CompareStringW().
7158 * RETURNS
7159 * VARCMP_LT, VARCMP_EQ or VARCMP_GT indicating that pbstrLeft is less
7160 * than, equal to or greater than pbstrRight respectively.
7162 * NOTES
7163 * VARCMP_NULL is NOT returned if either string is NULL unlike MSDN
7164 * states. A NULL BSTR pointer is equivalent to an empty string.
7165 * If LCID is equal to 0, a byte by byte comparison is performed.
7167 HRESULT WINAPI VarBstrCmp(BSTR pbstrLeft, BSTR pbstrRight, LCID lcid, DWORD dwFlags)
7169 HRESULT hres;
7170 int ret;
7172 TRACE("%s,%s,%d,%08x\n",
7173 debugstr_wn(pbstrLeft, SysStringLen(pbstrLeft)),
7174 debugstr_wn(pbstrRight, SysStringLen(pbstrRight)), lcid, dwFlags);
7176 if (!pbstrLeft || !*pbstrLeft)
7178 if (pbstrRight && *pbstrRight)
7179 return VARCMP_LT;
7181 else if (!pbstrRight || !*pbstrRight)
7182 return VARCMP_GT;
7184 if (lcid == 0)
7186 unsigned int lenLeft = SysStringByteLen(pbstrLeft);
7187 unsigned int lenRight = SysStringByteLen(pbstrRight);
7188 ret = memcmp(pbstrLeft, pbstrRight, min(lenLeft, lenRight));
7189 if (ret < 0)
7190 return VARCMP_LT;
7191 if (ret > 0)
7192 return VARCMP_GT;
7193 if (lenLeft < lenRight)
7194 return VARCMP_LT;
7195 if (lenLeft > lenRight)
7196 return VARCMP_GT;
7197 return VARCMP_EQ;
7199 else
7201 unsigned int lenLeft = SysStringLen(pbstrLeft);
7202 unsigned int lenRight = SysStringLen(pbstrRight);
7204 if (lenLeft == 0 || lenRight == 0)
7206 if (lenLeft == 0 && lenRight == 0) return VARCMP_EQ;
7207 return lenLeft < lenRight ? VARCMP_LT : VARCMP_GT;
7210 hres = CompareStringW(lcid, dwFlags, pbstrLeft, lenLeft,
7211 pbstrRight, lenRight) - CSTR_LESS_THAN;
7212 TRACE("%d\n", hres);
7213 return hres;
7218 * DATE
7221 /******************************************************************************
7222 * VarDateFromUI1 (OLEAUT32.88)
7224 * Convert a VT_UI1 to a VT_DATE.
7226 * PARAMS
7227 * bIn [I] Source
7228 * pdateOut [O] Destination
7230 * RETURNS
7231 * S_OK.
7233 HRESULT WINAPI VarDateFromUI1(BYTE bIn, DATE* pdateOut)
7235 return VarR8FromUI1(bIn, pdateOut);
7238 /******************************************************************************
7239 * VarDateFromI2 (OLEAUT32.89)
7241 * Convert a VT_I2 to a VT_DATE.
7243 * PARAMS
7244 * sIn [I] Source
7245 * pdateOut [O] Destination
7247 * RETURNS
7248 * S_OK.
7250 HRESULT WINAPI VarDateFromI2(short sIn, DATE* pdateOut)
7252 return VarR8FromI2(sIn, pdateOut);
7255 /******************************************************************************
7256 * VarDateFromI4 (OLEAUT32.90)
7258 * Convert a VT_I4 to a VT_DATE.
7260 * PARAMS
7261 * lIn [I] Source
7262 * pdateOut [O] Destination
7264 * RETURNS
7265 * S_OK.
7267 HRESULT WINAPI VarDateFromI4(LONG lIn, DATE* pdateOut)
7269 return VarDateFromR8(lIn, pdateOut);
7272 /******************************************************************************
7273 * VarDateFromR4 (OLEAUT32.91)
7275 * Convert a VT_R4 to a VT_DATE.
7277 * PARAMS
7278 * fltIn [I] Source
7279 * pdateOut [O] Destination
7281 * RETURNS
7282 * S_OK.
7284 HRESULT WINAPI VarDateFromR4(FLOAT fltIn, DATE* pdateOut)
7286 return VarR8FromR4(fltIn, pdateOut);
7289 /******************************************************************************
7290 * VarDateFromR8 (OLEAUT32.92)
7292 * Convert a VT_R8 to a VT_DATE.
7294 * PARAMS
7295 * dblIn [I] Source
7296 * pdateOut [O] Destination
7298 * RETURNS
7299 * S_OK.
7301 HRESULT WINAPI VarDateFromR8(double dblIn, DATE* pdateOut)
7303 if (dblIn <= (DATE_MIN - 1.0) || dblIn >= (DATE_MAX + 1.0)) return DISP_E_OVERFLOW;
7304 *pdateOut = (DATE)dblIn;
7305 return S_OK;
7308 /**********************************************************************
7309 * VarDateFromDisp (OLEAUT32.95)
7311 * Convert a VT_DISPATCH to a VT_DATE.
7313 * PARAMS
7314 * pdispIn [I] Source
7315 * lcid [I] LCID for conversion
7316 * pdateOut [O] Destination
7318 * RETURNS
7319 * Success: S_OK.
7320 * Failure: E_INVALIDARG, if the source value is invalid
7321 * DISP_E_OVERFLOW, if the value will not fit in the destination
7322 * DISP_E_TYPEMISMATCH, if the type cannot be converted
7324 HRESULT WINAPI VarDateFromDisp(IDispatch* pdispIn, LCID lcid, DATE* pdateOut)
7326 return VARIANT_FromDisp(pdispIn, lcid, pdateOut, VT_DATE, 0);
7329 /******************************************************************************
7330 * VarDateFromBool (OLEAUT32.96)
7332 * Convert a VT_BOOL to a VT_DATE.
7334 * PARAMS
7335 * boolIn [I] Source
7336 * pdateOut [O] Destination
7338 * RETURNS
7339 * S_OK.
7341 HRESULT WINAPI VarDateFromBool(VARIANT_BOOL boolIn, DATE* pdateOut)
7343 return VarR8FromBool(boolIn, pdateOut);
7346 /**********************************************************************
7347 * VarDateFromCy (OLEAUT32.93)
7349 * Convert a VT_CY to a VT_DATE.
7351 * PARAMS
7352 * lIn [I] Source
7353 * pdateOut [O] Destination
7355 * RETURNS
7356 * S_OK.
7358 HRESULT WINAPI VarDateFromCy(CY cyIn, DATE* pdateOut)
7360 return VarR8FromCy(cyIn, pdateOut);
7363 /* Date string parsing */
7364 #define DP_TIMESEP 0x01 /* Time separator ( _must_ remain 0x1, used as a bitmask) */
7365 #define DP_DATESEP 0x02 /* Date separator */
7366 #define DP_MONTH 0x04 /* Month name */
7367 #define DP_AM 0x08 /* AM */
7368 #define DP_PM 0x10 /* PM */
7370 typedef struct tagDATEPARSE
7372 DWORD dwCount; /* Number of fields found so far (maximum 6) */
7373 DWORD dwParseFlags; /* Global parse flags (DP_ Flags above) */
7374 DWORD dwFlags[6]; /* Flags for each field */
7375 DWORD dwValues[6]; /* Value of each field */
7376 } DATEPARSE;
7378 #define TIMEFLAG(i) ((dp.dwFlags[i] & DP_TIMESEP) << i)
7380 #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0)))
7382 /* Determine if a day is valid in a given month of a given year */
7383 static BOOL VARIANT_IsValidMonthDay(DWORD day, DWORD month, DWORD year)
7385 static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
7387 if (day && month && month < 13)
7389 if (day <= days[month] || (month == 2 && day == 29 && IsLeapYear(year)))
7390 return TRUE;
7392 return FALSE;
7395 /* Possible orders for 3 numbers making up a date */
7396 #define ORDER_MDY 0x01
7397 #define ORDER_YMD 0x02
7398 #define ORDER_YDM 0x04
7399 #define ORDER_DMY 0x08
7400 #define ORDER_MYD 0x10 /* Synthetic order, used only for funky 2 digit dates */
7402 /* Determine a date for a particular locale, from 3 numbers */
7403 static inline HRESULT VARIANT_MakeDate(DATEPARSE *dp, DWORD iDate,
7404 DWORD offset, SYSTEMTIME *st)
7406 DWORD dwAllOrders, dwTry, dwCount = 0, v1, v2, v3;
7408 if (!dp->dwCount)
7410 v1 = 30; /* Default to (Variant) 0 date part */
7411 v2 = 12;
7412 v3 = 1899;
7413 goto VARIANT_MakeDate_OK;
7416 v1 = dp->dwValues[offset + 0];
7417 v2 = dp->dwValues[offset + 1];
7418 if (dp->dwCount == 2)
7420 SYSTEMTIME current;
7421 GetSystemTime(&current);
7422 v3 = current.wYear;
7424 else
7425 v3 = dp->dwValues[offset + 2];
7427 TRACE("(%d,%d,%d,%d,%d)\n", v1, v2, v3, iDate, offset);
7429 /* If one number must be a month (Because a month name was given), then only
7430 * consider orders with the month in that position.
7431 * If we took the current year as 'v3', then only allow a year in that position.
7433 if (dp->dwFlags[offset + 0] & DP_MONTH)
7435 dwAllOrders = ORDER_MDY;
7437 else if (dp->dwFlags[offset + 1] & DP_MONTH)
7439 dwAllOrders = ORDER_DMY;
7440 if (dp->dwCount > 2)
7441 dwAllOrders |= ORDER_YMD;
7443 else if (dp->dwCount > 2 && dp->dwFlags[offset + 2] & DP_MONTH)
7445 dwAllOrders = ORDER_YDM;
7447 else
7449 dwAllOrders = ORDER_MDY|ORDER_DMY;
7450 if (dp->dwCount > 2)
7451 dwAllOrders |= (ORDER_YMD|ORDER_YDM);
7454 VARIANT_MakeDate_Start:
7455 TRACE("dwAllOrders is 0x%08x\n", dwAllOrders);
7457 while (dwAllOrders)
7459 DWORD dwTemp;
7461 if (dwCount == 0)
7463 /* First: Try the order given by iDate */
7464 switch (iDate)
7466 case 0: dwTry = dwAllOrders & ORDER_MDY; break;
7467 case 1: dwTry = dwAllOrders & ORDER_DMY; break;
7468 default: dwTry = dwAllOrders & ORDER_YMD; break;
7471 else if (dwCount == 1)
7473 /* Second: Try all the orders compatible with iDate */
7474 switch (iDate)
7476 case 0: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7477 case 1: dwTry = dwAllOrders & ~(ORDER_MDY|ORDER_YDM|ORDER_MYD); break;
7478 default: dwTry = dwAllOrders & ~(ORDER_DMY|ORDER_YDM); break;
7481 else
7483 /* Finally: Try any remaining orders */
7484 dwTry = dwAllOrders;
7487 TRACE("Attempt %d, dwTry is 0x%08x\n", dwCount, dwTry);
7489 dwCount++;
7490 if (!dwTry)
7491 continue;
7493 #define DATE_SWAP(x,y) do { dwTemp = x; x = y; y = dwTemp; } while (0)
7495 if (dwTry & ORDER_MDY)
7497 if (VARIANT_IsValidMonthDay(v2,v1,v3))
7499 DATE_SWAP(v1,v2);
7500 goto VARIANT_MakeDate_OK;
7502 dwAllOrders &= ~ORDER_MDY;
7504 if (dwTry & ORDER_YMD)
7506 if (VARIANT_IsValidMonthDay(v3,v2,v1))
7508 DATE_SWAP(v1,v3);
7509 goto VARIANT_MakeDate_OK;
7511 dwAllOrders &= ~ORDER_YMD;
7513 if (dwTry & ORDER_YDM)
7515 if (VARIANT_IsValidMonthDay(v2,v3,v1))
7517 DATE_SWAP(v1,v2);
7518 DATE_SWAP(v2,v3);
7519 goto VARIANT_MakeDate_OK;
7521 dwAllOrders &= ~ORDER_YDM;
7523 if (dwTry & ORDER_DMY)
7525 if (VARIANT_IsValidMonthDay(v1,v2,v3))
7526 goto VARIANT_MakeDate_OK;
7527 dwAllOrders &= ~ORDER_DMY;
7529 if (dwTry & ORDER_MYD)
7531 /* Only occurs if we are trying a 2 year date as M/Y not D/M */
7532 if (VARIANT_IsValidMonthDay(v3,v1,v2))
7534 DATE_SWAP(v1,v3);
7535 DATE_SWAP(v2,v3);
7536 goto VARIANT_MakeDate_OK;
7538 dwAllOrders &= ~ORDER_MYD;
7542 if (dp->dwCount == 2)
7544 /* We couldn't make a date as D/M or M/D, so try M/Y or Y/M */
7545 v3 = 1; /* 1st of the month */
7546 dwAllOrders = ORDER_YMD|ORDER_MYD;
7547 dp->dwCount = 0; /* Don't return to this code path again */
7548 dwCount = 0;
7549 goto VARIANT_MakeDate_Start;
7552 /* No valid dates were able to be constructed */
7553 return DISP_E_TYPEMISMATCH;
7555 VARIANT_MakeDate_OK:
7557 /* Check that the time part is ok */
7558 if (st->wHour > 23 || st->wMinute > 59 || st->wSecond > 59)
7559 return DISP_E_TYPEMISMATCH;
7561 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7562 if (st->wHour < 12 && (dp->dwParseFlags & DP_PM))
7563 st->wHour += 12;
7564 else if (st->wHour == 12 && (dp->dwParseFlags & DP_AM))
7565 st->wHour = 0;
7566 TRACE("Time %d %d %d\n", st->wHour, st->wMinute, st->wSecond);
7568 st->wDay = v1;
7569 st->wMonth = v2;
7570 /* FIXME: For 2 digit dates, I'm not sure if 30 is hard coded or not. It may
7571 * be retrieved from:
7572 * HKCU\Control Panel\International\Calendars\TwoDigitYearMax
7573 * But Wine doesn't have/use that key as at the time of writing.
7575 st->wYear = v3 < 30 ? 2000 + v3 : v3 < 100 ? 1900 + v3 : v3;
7576 TRACE("Returning date %d/%d/%d\n", v1, v2, st->wYear);
7577 return S_OK;
7580 /******************************************************************************
7581 * VarDateFromStr [OLEAUT32.94]
7583 * Convert a VT_BSTR to at VT_DATE.
7585 * PARAMS
7586 * strIn [I] String to convert
7587 * lcid [I] Locale identifier for the conversion
7588 * dwFlags [I] Flags affecting the conversion (VAR_ flags from "oleauto.h")
7589 * pdateOut [O] Destination for the converted value
7591 * RETURNS
7592 * Success: S_OK. pdateOut contains the converted value.
7593 * FAILURE: An HRESULT error code indicating the problem.
7595 * NOTES
7596 * Any date format that can be created using the date formats from lcid
7597 * (Either from kernel Nls functions, variant conversion or formatting) is a
7598 * valid input to this function. In addition, a few more esoteric formats are
7599 * also supported for compatibility with the native version. The date is
7600 * interpreted according to the date settings in the control panel, unless
7601 * the date is invalid in that format, in which the most compatible format
7602 * that produces a valid date will be used.
7604 HRESULT WINAPI VarDateFromStr(OLECHAR* strIn, LCID lcid, ULONG dwFlags, DATE* pdateOut)
7606 static const USHORT ParseDateTokens[] =
7608 LOCALE_SMONTHNAME1, LOCALE_SMONTHNAME2, LOCALE_SMONTHNAME3, LOCALE_SMONTHNAME4,
7609 LOCALE_SMONTHNAME5, LOCALE_SMONTHNAME6, LOCALE_SMONTHNAME7, LOCALE_SMONTHNAME8,
7610 LOCALE_SMONTHNAME9, LOCALE_SMONTHNAME10, LOCALE_SMONTHNAME11, LOCALE_SMONTHNAME12,
7611 LOCALE_SMONTHNAME13,
7612 LOCALE_SABBREVMONTHNAME1, LOCALE_SABBREVMONTHNAME2, LOCALE_SABBREVMONTHNAME3,
7613 LOCALE_SABBREVMONTHNAME4, LOCALE_SABBREVMONTHNAME5, LOCALE_SABBREVMONTHNAME6,
7614 LOCALE_SABBREVMONTHNAME7, LOCALE_SABBREVMONTHNAME8, LOCALE_SABBREVMONTHNAME9,
7615 LOCALE_SABBREVMONTHNAME10, LOCALE_SABBREVMONTHNAME11, LOCALE_SABBREVMONTHNAME12,
7616 LOCALE_SABBREVMONTHNAME13,
7617 LOCALE_SDAYNAME1, LOCALE_SDAYNAME2, LOCALE_SDAYNAME3, LOCALE_SDAYNAME4,
7618 LOCALE_SDAYNAME5, LOCALE_SDAYNAME6, LOCALE_SDAYNAME7,
7619 LOCALE_SABBREVDAYNAME1, LOCALE_SABBREVDAYNAME2, LOCALE_SABBREVDAYNAME3,
7620 LOCALE_SABBREVDAYNAME4, LOCALE_SABBREVDAYNAME5, LOCALE_SABBREVDAYNAME6,
7621 LOCALE_SABBREVDAYNAME7,
7622 LOCALE_S1159, LOCALE_S2359,
7623 LOCALE_SDATE
7625 static const BYTE ParseDateMonths[] =
7627 1,2,3,4,5,6,7,8,9,10,11,12,13,
7628 1,2,3,4,5,6,7,8,9,10,11,12,13
7630 unsigned int i;
7631 BSTR tokens[sizeof(ParseDateTokens)/sizeof(ParseDateTokens[0])];
7632 DATEPARSE dp;
7633 DWORD dwDateSeps = 0, iDate = 0;
7634 HRESULT hRet = S_OK;
7636 if ((dwFlags & (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY)) ==
7637 (VAR_TIMEVALUEONLY|VAR_DATEVALUEONLY))
7638 return E_INVALIDARG;
7640 if (!strIn)
7641 return DISP_E_TYPEMISMATCH;
7643 *pdateOut = 0.0;
7645 TRACE("(%s,0x%08x,0x%08x,%p)\n", debugstr_w(strIn), lcid, dwFlags, pdateOut);
7647 memset(&dp, 0, sizeof(dp));
7649 GetLocaleInfoW(lcid, LOCALE_IDATE|LOCALE_RETURN_NUMBER|(dwFlags & LOCALE_NOUSEROVERRIDE),
7650 (LPWSTR)&iDate, sizeof(iDate)/sizeof(WCHAR));
7651 TRACE("iDate is %d\n", iDate);
7653 /* Get the month/day/am/pm tokens for this locale */
7654 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7656 WCHAR buff[128];
7657 LCTYPE lctype = ParseDateTokens[i] | (dwFlags & LOCALE_NOUSEROVERRIDE);
7659 /* FIXME: Alternate calendars - should use GetCalendarInfo() and/or
7660 * GetAltMonthNames(). We should really cache these strings too.
7662 buff[0] = '\0';
7663 GetLocaleInfoW(lcid, lctype, buff, sizeof(buff)/sizeof(WCHAR));
7664 tokens[i] = SysAllocString(buff);
7665 TRACE("token %d is %s\n", i, debugstr_w(tokens[i]));
7668 /* Parse the string into our structure */
7669 while (*strIn)
7671 if (dp.dwCount >= 6)
7672 break;
7674 if (isdigitW(*strIn))
7676 dp.dwValues[dp.dwCount] = strtoulW(strIn, &strIn, 10);
7677 dp.dwCount++;
7678 strIn--;
7680 else if (isalpha(*strIn))
7682 BOOL bFound = FALSE;
7684 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7686 DWORD dwLen = strlenW(tokens[i]);
7687 if (dwLen && !strncmpiW(strIn, tokens[i], dwLen))
7689 if (i <= 25)
7691 dp.dwValues[dp.dwCount] = ParseDateMonths[i];
7692 dp.dwFlags[dp.dwCount] |= (DP_MONTH|DP_DATESEP);
7693 dp.dwCount++;
7695 else if (i > 39 && i < 42)
7697 if (!dp.dwCount || dp.dwParseFlags & (DP_AM|DP_PM))
7698 hRet = DISP_E_TYPEMISMATCH;
7699 else
7701 dp.dwFlags[dp.dwCount - 1] |= (i == 40 ? DP_AM : DP_PM);
7702 dp.dwParseFlags |= (i == 40 ? DP_AM : DP_PM);
7705 strIn += (dwLen - 1);
7706 bFound = TRUE;
7707 break;
7711 if (!bFound)
7713 if ((*strIn == 'a' || *strIn == 'A' || *strIn == 'p' || *strIn == 'P') &&
7714 (dp.dwCount && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7716 /* Special case - 'a' and 'p' are recognised as short for am/pm */
7717 if (*strIn == 'a' || *strIn == 'A')
7719 dp.dwFlags[dp.dwCount - 1] |= DP_AM;
7720 dp.dwParseFlags |= DP_AM;
7722 else
7724 dp.dwFlags[dp.dwCount - 1] |= DP_PM;
7725 dp.dwParseFlags |= DP_PM;
7727 strIn++;
7729 else
7731 TRACE("No matching token for %s\n", debugstr_w(strIn));
7732 hRet = DISP_E_TYPEMISMATCH;
7733 break;
7737 else if (*strIn == ':' || *strIn == '.')
7739 if (!dp.dwCount || !strIn[1])
7740 hRet = DISP_E_TYPEMISMATCH;
7741 else
7742 if (tokens[42][0] == *strIn)
7744 dwDateSeps++;
7745 if (dwDateSeps > 2)
7746 hRet = DISP_E_TYPEMISMATCH;
7747 else
7748 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7750 else
7751 dp.dwFlags[dp.dwCount - 1] |= DP_TIMESEP;
7753 else if (*strIn == '-' || *strIn == '/')
7755 dwDateSeps++;
7756 if (dwDateSeps > 2 || !dp.dwCount || !strIn[1])
7757 hRet = DISP_E_TYPEMISMATCH;
7758 else
7759 dp.dwFlags[dp.dwCount - 1] |= DP_DATESEP;
7761 else if (*strIn == ',' || isspaceW(*strIn))
7763 if (*strIn == ',' && !strIn[1])
7764 hRet = DISP_E_TYPEMISMATCH;
7766 else
7768 hRet = DISP_E_TYPEMISMATCH;
7770 strIn++;
7773 if (!dp.dwCount || dp.dwCount > 6 ||
7774 (dp.dwCount == 1 && !(dp.dwParseFlags & (DP_AM|DP_PM))))
7775 hRet = DISP_E_TYPEMISMATCH;
7777 if (SUCCEEDED(hRet))
7779 SYSTEMTIME st;
7780 DWORD dwOffset = 0; /* Start of date fields in dp.dwValues */
7782 st.wDayOfWeek = st.wHour = st.wMinute = st.wSecond = st.wMilliseconds = 0;
7784 /* Figure out which numbers correspond to which fields.
7786 * This switch statement works based on the fact that native interprets any
7787 * fields that are not joined with a time separator ('.' or ':') as date
7788 * fields. Thus we construct a value from 0-32 where each set bit indicates
7789 * a time field. This encapsulates the hundreds of permutations of 2-6 fields.
7790 * For valid permutations, we set dwOffset to point to the first date field
7791 * and shorten dp.dwCount by the number of time fields found. The real
7792 * magic here occurs in VARIANT_MakeDate() above, where we determine what
7793 * each date number must represent in the context of iDate.
7795 TRACE("0x%08x\n", TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4));
7797 switch (TIMEFLAG(0)|TIMEFLAG(1)|TIMEFLAG(2)|TIMEFLAG(3)|TIMEFLAG(4))
7799 case 0x1: /* TT TTDD TTDDD */
7800 if (dp.dwCount > 3 &&
7801 ((dp.dwFlags[2] & (DP_AM|DP_PM)) || (dp.dwFlags[3] & (DP_AM|DP_PM)) ||
7802 (dp.dwFlags[4] & (DP_AM|DP_PM))))
7803 hRet = DISP_E_TYPEMISMATCH;
7804 else if (dp.dwCount != 2 && dp.dwCount != 4 && dp.dwCount != 5)
7805 hRet = DISP_E_TYPEMISMATCH;
7806 st.wHour = dp.dwValues[0];
7807 st.wMinute = dp.dwValues[1];
7808 dp.dwCount -= 2;
7809 dwOffset = 2;
7810 break;
7812 case 0x3: /* TTT TTTDD TTTDDD */
7813 if (dp.dwCount > 4 &&
7814 ((dp.dwFlags[3] & (DP_AM|DP_PM)) || (dp.dwFlags[4] & (DP_AM|DP_PM)) ||
7815 (dp.dwFlags[5] & (DP_AM|DP_PM))))
7816 hRet = DISP_E_TYPEMISMATCH;
7817 else if (dp.dwCount != 3 && dp.dwCount != 5 && dp.dwCount != 6)
7818 hRet = DISP_E_TYPEMISMATCH;
7819 st.wHour = dp.dwValues[0];
7820 st.wMinute = dp.dwValues[1];
7821 st.wSecond = dp.dwValues[2];
7822 dwOffset = 3;
7823 dp.dwCount -= 3;
7824 break;
7826 case 0x4: /* DDTT */
7827 if (dp.dwCount != 4 ||
7828 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7829 hRet = DISP_E_TYPEMISMATCH;
7831 st.wHour = dp.dwValues[2];
7832 st.wMinute = dp.dwValues[3];
7833 dp.dwCount -= 2;
7834 break;
7836 case 0x0: /* T DD DDD TDDD TDDD */
7837 if (dp.dwCount == 1 && (dp.dwParseFlags & (DP_AM|DP_PM)))
7839 st.wHour = dp.dwValues[0]; /* T */
7840 dp.dwCount = 0;
7841 break;
7843 else if (dp.dwCount > 4 || (dp.dwCount < 3 && dp.dwParseFlags & (DP_AM|DP_PM)))
7845 hRet = DISP_E_TYPEMISMATCH;
7847 else if (dp.dwCount == 3)
7849 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDD */
7851 dp.dwCount = 2;
7852 st.wHour = dp.dwValues[0];
7853 dwOffset = 1;
7854 break;
7856 if (dp.dwFlags[2] & (DP_AM|DP_PM)) /* DDT */
7858 dp.dwCount = 2;
7859 st.wHour = dp.dwValues[2];
7860 break;
7862 else if (dp.dwParseFlags & (DP_AM|DP_PM))
7863 hRet = DISP_E_TYPEMISMATCH;
7865 else if (dp.dwCount == 4)
7867 dp.dwCount = 3;
7868 if (dp.dwFlags[0] & (DP_AM|DP_PM)) /* TDDD */
7870 st.wHour = dp.dwValues[0];
7871 dwOffset = 1;
7873 else if (dp.dwFlags[3] & (DP_AM|DP_PM)) /* DDDT */
7875 st.wHour = dp.dwValues[3];
7877 else
7878 hRet = DISP_E_TYPEMISMATCH;
7879 break;
7881 /* .. fall through .. */
7883 case 0x8: /* DDDTT */
7884 if ((dp.dwCount == 2 && (dp.dwParseFlags & (DP_AM|DP_PM))) ||
7885 (dp.dwCount == 5 && ((dp.dwFlags[0] & (DP_AM|DP_PM)) ||
7886 (dp.dwFlags[1] & (DP_AM|DP_PM)) || (dp.dwFlags[2] & (DP_AM|DP_PM)))) ||
7887 dp.dwCount == 4 || dp.dwCount == 6)
7888 hRet = DISP_E_TYPEMISMATCH;
7889 st.wHour = dp.dwValues[3];
7890 st.wMinute = dp.dwValues[4];
7891 if (dp.dwCount == 5)
7892 dp.dwCount -= 2;
7893 break;
7895 case 0xC: /* DDTTT */
7896 if (dp.dwCount != 5 ||
7897 (dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)))
7898 hRet = DISP_E_TYPEMISMATCH;
7899 st.wHour = dp.dwValues[2];
7900 st.wMinute = dp.dwValues[3];
7901 st.wSecond = dp.dwValues[4];
7902 dp.dwCount -= 3;
7903 break;
7905 case 0x18: /* DDDTTT */
7906 if ((dp.dwFlags[0] & (DP_AM|DP_PM)) || (dp.dwFlags[1] & (DP_AM|DP_PM)) ||
7907 (dp.dwFlags[2] & (DP_AM|DP_PM)))
7908 hRet = DISP_E_TYPEMISMATCH;
7909 st.wHour = dp.dwValues[3];
7910 st.wMinute = dp.dwValues[4];
7911 st.wSecond = dp.dwValues[5];
7912 dp.dwCount -= 3;
7913 break;
7915 default:
7916 hRet = DISP_E_TYPEMISMATCH;
7917 break;
7920 if (SUCCEEDED(hRet))
7922 hRet = VARIANT_MakeDate(&dp, iDate, dwOffset, &st);
7924 if (dwFlags & VAR_TIMEVALUEONLY)
7926 st.wYear = 1899;
7927 st.wMonth = 12;
7928 st.wDay = 30;
7930 else if (dwFlags & VAR_DATEVALUEONLY)
7931 st.wHour = st.wMinute = st.wSecond = 0;
7933 /* Finally, convert the value to a VT_DATE */
7934 if (SUCCEEDED(hRet))
7935 hRet = SystemTimeToVariantTime(&st, pdateOut) ? S_OK : DISP_E_TYPEMISMATCH;
7939 for (i = 0; i < sizeof(tokens)/sizeof(tokens[0]); i++)
7940 SysFreeString(tokens[i]);
7941 return hRet;
7944 /******************************************************************************
7945 * VarDateFromI1 (OLEAUT32.221)
7947 * Convert a VT_I1 to a VT_DATE.
7949 * PARAMS
7950 * cIn [I] Source
7951 * pdateOut [O] Destination
7953 * RETURNS
7954 * S_OK.
7956 HRESULT WINAPI VarDateFromI1(signed char cIn, DATE* pdateOut)
7958 return VarR8FromI1(cIn, pdateOut);
7961 /******************************************************************************
7962 * VarDateFromUI2 (OLEAUT32.222)
7964 * Convert a VT_UI2 to a VT_DATE.
7966 * PARAMS
7967 * uiIn [I] Source
7968 * pdateOut [O] Destination
7970 * RETURNS
7971 * S_OK.
7973 HRESULT WINAPI VarDateFromUI2(USHORT uiIn, DATE* pdateOut)
7975 return VarR8FromUI2(uiIn, pdateOut);
7978 /******************************************************************************
7979 * VarDateFromUI4 (OLEAUT32.223)
7981 * Convert a VT_UI4 to a VT_DATE.
7983 * PARAMS
7984 * ulIn [I] Source
7985 * pdateOut [O] Destination
7987 * RETURNS
7988 * S_OK.
7990 HRESULT WINAPI VarDateFromUI4(ULONG ulIn, DATE* pdateOut)
7992 return VarDateFromR8(ulIn, pdateOut);
7995 /**********************************************************************
7996 * VarDateFromDec (OLEAUT32.224)
7998 * Convert a VT_DECIMAL to a VT_DATE.
8000 * PARAMS
8001 * pdecIn [I] Source
8002 * pdateOut [O] Destination
8004 * RETURNS
8005 * S_OK.
8007 HRESULT WINAPI VarDateFromDec(DECIMAL *pdecIn, DATE* pdateOut)
8009 return VarR8FromDec(pdecIn, pdateOut);
8012 /******************************************************************************
8013 * VarDateFromI8 (OLEAUT32.364)
8015 * Convert a VT_I8 to a VT_DATE.
8017 * PARAMS
8018 * llIn [I] Source
8019 * pdateOut [O] Destination
8021 * RETURNS
8022 * Success: S_OK.
8023 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
8025 HRESULT WINAPI VarDateFromI8(LONG64 llIn, DATE* pdateOut)
8027 if (llIn < DATE_MIN || llIn > DATE_MAX) return DISP_E_OVERFLOW;
8028 *pdateOut = (DATE)llIn;
8029 return S_OK;
8032 /******************************************************************************
8033 * VarDateFromUI8 (OLEAUT32.365)
8035 * Convert a VT_UI8 to a VT_DATE.
8037 * PARAMS
8038 * ullIn [I] Source
8039 * pdateOut [O] Destination
8041 * RETURNS
8042 * Success: S_OK.
8043 * Failure: DISP_E_OVERFLOW, if the value will not fit in the destination
8045 HRESULT WINAPI VarDateFromUI8(ULONG64 ullIn, DATE* pdateOut)
8047 if (ullIn > DATE_MAX) return DISP_E_OVERFLOW;
8048 *pdateOut = (DATE)ullIn;
8049 return S_OK;