2005-03-29 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / config / arm / arm.c
blobdc7d410f7610cd3f0fdf3e990bb4a349051bc057
1 /* Output routines for GCC for ARM.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
5 and Martin Simmons (@harleqn.co.uk).
6 More major hacks by Richard Earnshaw (rearnsha@arm.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 2, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "obstack.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "output.h"
38 #include "insn-attr.h"
39 #include "flags.h"
40 #include "reload.h"
41 #include "function.h"
42 #include "expr.h"
43 #include "optabs.h"
44 #include "toplev.h"
45 #include "recog.h"
46 #include "ggc.h"
47 #include "except.h"
48 #include "c-pragma.h"
49 #include "integrate.h"
50 #include "tm_p.h"
51 #include "target.h"
52 #include "target-def.h"
53 #include "debug.h"
54 #include "langhooks.h"
56 /* Forward definitions of types. */
57 typedef struct minipool_node Mnode;
58 typedef struct minipool_fixup Mfix;
60 const struct attribute_spec arm_attribute_table[];
62 /* Forward function declarations. */
63 static arm_stack_offsets *arm_get_frame_offsets (void);
64 static void arm_add_gc_roots (void);
65 static int arm_gen_constant (enum rtx_code, enum machine_mode, rtx,
66 HOST_WIDE_INT, rtx, rtx, int, int);
67 static unsigned bit_count (unsigned long);
68 static int arm_address_register_rtx_p (rtx, int);
69 static int arm_legitimate_index_p (enum machine_mode, rtx, RTX_CODE, int);
70 static int thumb_base_register_rtx_p (rtx, enum machine_mode, int);
71 inline static int thumb_index_register_rtx_p (rtx, int);
72 static int thumb_far_jump_used_p (void);
73 static bool thumb_force_lr_save (void);
74 static int const_ok_for_op (HOST_WIDE_INT, enum rtx_code);
75 static rtx emit_sfm (int, int);
76 #ifndef AOF_ASSEMBLER
77 static bool arm_assemble_integer (rtx, unsigned int, int);
78 #endif
79 static const char *fp_const_from_val (REAL_VALUE_TYPE *);
80 static arm_cc get_arm_condition_code (rtx);
81 static HOST_WIDE_INT int_log2 (HOST_WIDE_INT);
82 static rtx is_jump_table (rtx);
83 static const char *output_multi_immediate (rtx *, const char *, const char *,
84 int, HOST_WIDE_INT);
85 static const char *shift_op (rtx, HOST_WIDE_INT *);
86 static struct machine_function *arm_init_machine_status (void);
87 static void replace_symbols_in_block (tree, rtx, rtx);
88 static void thumb_exit (FILE *, int);
89 static rtx is_jump_table (rtx);
90 static HOST_WIDE_INT get_jump_table_size (rtx);
91 static Mnode *move_minipool_fix_forward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
92 static Mnode *add_minipool_forward_ref (Mfix *);
93 static Mnode *move_minipool_fix_backward_ref (Mnode *, Mnode *, HOST_WIDE_INT);
94 static Mnode *add_minipool_backward_ref (Mfix *);
95 static void assign_minipool_offsets (Mfix *);
96 static void arm_print_value (FILE *, rtx);
97 static void dump_minipool (rtx);
98 static int arm_barrier_cost (rtx);
99 static Mfix *create_fix_barrier (Mfix *, HOST_WIDE_INT);
100 static void push_minipool_barrier (rtx, HOST_WIDE_INT);
101 static void push_minipool_fix (rtx, HOST_WIDE_INT, rtx *, enum machine_mode,
102 rtx);
103 static void arm_reorg (void);
104 static bool note_invalid_constants (rtx, HOST_WIDE_INT, int);
105 static int current_file_function_operand (rtx);
106 static unsigned long arm_compute_save_reg0_reg12_mask (void);
107 static unsigned long arm_compute_save_reg_mask (void);
108 static unsigned long arm_isr_value (tree);
109 static unsigned long arm_compute_func_type (void);
110 static tree arm_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
111 static tree arm_handle_isr_attribute (tree *, tree, tree, int, bool *);
112 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
113 static tree arm_handle_notshared_attribute (tree *, tree, tree, int, bool *);
114 #endif
115 static void arm_output_function_epilogue (FILE *, HOST_WIDE_INT);
116 static void arm_output_function_prologue (FILE *, HOST_WIDE_INT);
117 static void thumb_output_function_prologue (FILE *, HOST_WIDE_INT);
118 static int arm_comp_type_attributes (tree, tree);
119 static void arm_set_default_type_attributes (tree);
120 static int arm_adjust_cost (rtx, rtx, rtx, int);
121 static int count_insns_for_constant (HOST_WIDE_INT, int);
122 static int arm_get_strip_length (int);
123 static bool arm_function_ok_for_sibcall (tree, tree);
124 static void arm_internal_label (FILE *, const char *, unsigned long);
125 static void arm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
126 tree);
127 static int arm_rtx_costs_1 (rtx, enum rtx_code, enum rtx_code);
128 static bool arm_size_rtx_costs (rtx, int, int, int *);
129 static bool arm_slowmul_rtx_costs (rtx, int, int, int *);
130 static bool arm_fastmul_rtx_costs (rtx, int, int, int *);
131 static bool arm_xscale_rtx_costs (rtx, int, int, int *);
132 static bool arm_9e_rtx_costs (rtx, int, int, int *);
133 static int arm_address_cost (rtx);
134 static bool arm_memory_load_p (rtx);
135 static bool arm_cirrus_insn_p (rtx);
136 static void cirrus_reorg (rtx);
137 static void arm_init_builtins (void);
138 static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
139 static void arm_init_iwmmxt_builtins (void);
140 static rtx safe_vector_operand (rtx, enum machine_mode);
141 static rtx arm_expand_binop_builtin (enum insn_code, tree, rtx);
142 static rtx arm_expand_unop_builtin (enum insn_code, tree, rtx, int);
143 static rtx arm_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
144 static void emit_constant_insn (rtx cond, rtx pattern);
145 static int arm_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
146 tree, bool);
148 #ifndef ARM_PE
149 static void arm_encode_section_info (tree, rtx, int);
150 #endif
152 static void arm_file_end (void);
154 #ifdef AOF_ASSEMBLER
155 static void aof_globalize_label (FILE *, const char *);
156 static void aof_dump_imports (FILE *);
157 static void aof_dump_pic_table (FILE *);
158 static void aof_file_start (void);
159 static void aof_file_end (void);
160 #endif
161 static rtx arm_struct_value_rtx (tree, int);
162 static void arm_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
163 tree, int *, int);
164 static bool arm_pass_by_reference (CUMULATIVE_ARGS *,
165 enum machine_mode, tree, bool);
166 static bool arm_promote_prototypes (tree);
167 static bool arm_default_short_enums (void);
168 static bool arm_align_anon_bitfield (void);
170 static tree arm_cxx_guard_type (void);
171 static bool arm_cxx_guard_mask_bit (void);
172 static tree arm_get_cookie_size (tree);
173 static bool arm_cookie_has_size (void);
174 static bool arm_cxx_cdtor_returns_this (void);
175 static bool arm_cxx_key_method_may_be_inline (void);
176 static bool arm_cxx_export_class_data (void);
177 static void arm_init_libfuncs (void);
178 static unsigned HOST_WIDE_INT arm_shift_truncation_mask (enum machine_mode);
180 /* Initialize the GCC target structure. */
181 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
182 #undef TARGET_MERGE_DECL_ATTRIBUTES
183 #define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
184 #endif
186 #undef TARGET_ATTRIBUTE_TABLE
187 #define TARGET_ATTRIBUTE_TABLE arm_attribute_table
189 #undef TARGET_ASM_FILE_END
190 #define TARGET_ASM_FILE_END arm_file_end
192 #ifdef AOF_ASSEMBLER
193 #undef TARGET_ASM_BYTE_OP
194 #define TARGET_ASM_BYTE_OP "\tDCB\t"
195 #undef TARGET_ASM_ALIGNED_HI_OP
196 #define TARGET_ASM_ALIGNED_HI_OP "\tDCW\t"
197 #undef TARGET_ASM_ALIGNED_SI_OP
198 #define TARGET_ASM_ALIGNED_SI_OP "\tDCD\t"
199 #undef TARGET_ASM_GLOBALIZE_LABEL
200 #define TARGET_ASM_GLOBALIZE_LABEL aof_globalize_label
201 #undef TARGET_ASM_FILE_START
202 #define TARGET_ASM_FILE_START aof_file_start
203 #undef TARGET_ASM_FILE_END
204 #define TARGET_ASM_FILE_END aof_file_end
205 #else
206 #undef TARGET_ASM_ALIGNED_SI_OP
207 #define TARGET_ASM_ALIGNED_SI_OP NULL
208 #undef TARGET_ASM_INTEGER
209 #define TARGET_ASM_INTEGER arm_assemble_integer
210 #endif
212 #undef TARGET_ASM_FUNCTION_PROLOGUE
213 #define TARGET_ASM_FUNCTION_PROLOGUE arm_output_function_prologue
215 #undef TARGET_ASM_FUNCTION_EPILOGUE
216 #define TARGET_ASM_FUNCTION_EPILOGUE arm_output_function_epilogue
218 #undef TARGET_COMP_TYPE_ATTRIBUTES
219 #define TARGET_COMP_TYPE_ATTRIBUTES arm_comp_type_attributes
221 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
222 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES arm_set_default_type_attributes
224 #undef TARGET_SCHED_ADJUST_COST
225 #define TARGET_SCHED_ADJUST_COST arm_adjust_cost
227 #undef TARGET_ENCODE_SECTION_INFO
228 #ifdef ARM_PE
229 #define TARGET_ENCODE_SECTION_INFO arm_pe_encode_section_info
230 #else
231 #define TARGET_ENCODE_SECTION_INFO arm_encode_section_info
232 #endif
234 #undef TARGET_STRIP_NAME_ENCODING
235 #define TARGET_STRIP_NAME_ENCODING arm_strip_name_encoding
237 #undef TARGET_ASM_INTERNAL_LABEL
238 #define TARGET_ASM_INTERNAL_LABEL arm_internal_label
240 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
241 #define TARGET_FUNCTION_OK_FOR_SIBCALL arm_function_ok_for_sibcall
243 #undef TARGET_ASM_OUTPUT_MI_THUNK
244 #define TARGET_ASM_OUTPUT_MI_THUNK arm_output_mi_thunk
245 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
246 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
248 /* This will be overridden in arm_override_options. */
249 #undef TARGET_RTX_COSTS
250 #define TARGET_RTX_COSTS arm_slowmul_rtx_costs
251 #undef TARGET_ADDRESS_COST
252 #define TARGET_ADDRESS_COST arm_address_cost
254 #undef TARGET_SHIFT_TRUNCATION_MASK
255 #define TARGET_SHIFT_TRUNCATION_MASK arm_shift_truncation_mask
256 #undef TARGET_VECTOR_MODE_SUPPORTED_P
257 #define TARGET_VECTOR_MODE_SUPPORTED_P arm_vector_mode_supported_p
259 #undef TARGET_MACHINE_DEPENDENT_REORG
260 #define TARGET_MACHINE_DEPENDENT_REORG arm_reorg
262 #undef TARGET_INIT_BUILTINS
263 #define TARGET_INIT_BUILTINS arm_init_builtins
264 #undef TARGET_EXPAND_BUILTIN
265 #define TARGET_EXPAND_BUILTIN arm_expand_builtin
267 #undef TARGET_INIT_LIBFUNCS
268 #define TARGET_INIT_LIBFUNCS arm_init_libfuncs
270 #undef TARGET_PROMOTE_FUNCTION_ARGS
271 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
272 #undef TARGET_PROMOTE_FUNCTION_RETURN
273 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
274 #undef TARGET_PROMOTE_PROTOTYPES
275 #define TARGET_PROMOTE_PROTOTYPES arm_promote_prototypes
276 #undef TARGET_PASS_BY_REFERENCE
277 #define TARGET_PASS_BY_REFERENCE arm_pass_by_reference
278 #undef TARGET_ARG_PARTIAL_BYTES
279 #define TARGET_ARG_PARTIAL_BYTES arm_arg_partial_bytes
281 #undef TARGET_STRUCT_VALUE_RTX
282 #define TARGET_STRUCT_VALUE_RTX arm_struct_value_rtx
284 #undef TARGET_SETUP_INCOMING_VARARGS
285 #define TARGET_SETUP_INCOMING_VARARGS arm_setup_incoming_varargs
287 #undef TARGET_DEFAULT_SHORT_ENUMS
288 #define TARGET_DEFAULT_SHORT_ENUMS arm_default_short_enums
290 #undef TARGET_ALIGN_ANON_BITFIELD
291 #define TARGET_ALIGN_ANON_BITFIELD arm_align_anon_bitfield
293 #undef TARGET_CXX_GUARD_TYPE
294 #define TARGET_CXX_GUARD_TYPE arm_cxx_guard_type
296 #undef TARGET_CXX_GUARD_MASK_BIT
297 #define TARGET_CXX_GUARD_MASK_BIT arm_cxx_guard_mask_bit
299 #undef TARGET_CXX_GET_COOKIE_SIZE
300 #define TARGET_CXX_GET_COOKIE_SIZE arm_get_cookie_size
302 #undef TARGET_CXX_COOKIE_HAS_SIZE
303 #define TARGET_CXX_COOKIE_HAS_SIZE arm_cookie_has_size
305 #undef TARGET_CXX_CDTOR_RETURNS_THIS
306 #define TARGET_CXX_CDTOR_RETURNS_THIS arm_cxx_cdtor_returns_this
308 #undef TARGET_CXX_KEY_METHOD_MAY_BE_INLINE
309 #define TARGET_CXX_KEY_METHOD_MAY_BE_INLINE arm_cxx_key_method_may_be_inline
311 #undef TARGET_CXX_EXPORT_CLASS_DATA
312 #define TARGET_CXX_EXPORT_CLASS_DATA arm_cxx_export_class_data
314 struct gcc_target targetm = TARGET_INITIALIZER;
316 /* Obstack for minipool constant handling. */
317 static struct obstack minipool_obstack;
318 static char * minipool_startobj;
320 /* The maximum number of insns skipped which
321 will be conditionalised if possible. */
322 static int max_insns_skipped = 5;
324 extern FILE * asm_out_file;
326 /* True if we are currently building a constant table. */
327 int making_const_table;
329 /* Define the information needed to generate branch insns. This is
330 stored from the compare operation. */
331 rtx arm_compare_op0, arm_compare_op1;
333 /* The processor for which instructions should be scheduled. */
334 enum processor_type arm_tune = arm_none;
336 /* Which floating point model to use. */
337 enum arm_fp_model arm_fp_model;
339 /* Which floating point hardware is available. */
340 enum fputype arm_fpu_arch;
342 /* Which floating point hardware to schedule for. */
343 enum fputype arm_fpu_tune;
345 /* Whether to use floating point hardware. */
346 enum float_abi_type arm_float_abi;
348 /* Which ABI to use. */
349 enum arm_abi_type arm_abi;
351 /* Set by the -mfpu=... option. */
352 const char * target_fpu_name = NULL;
354 /* Set by the -mfpe=... option. */
355 const char * target_fpe_name = NULL;
357 /* Set by the -mfloat-abi=... option. */
358 const char * target_float_abi_name = NULL;
360 /* Set by the legacy -mhard-float and -msoft-float options. */
361 const char * target_float_switch = NULL;
363 /* Set by the -mabi=... option. */
364 const char * target_abi_name = NULL;
366 /* Used to parse -mstructure_size_boundary command line option. */
367 const char * structure_size_string = NULL;
368 int arm_structure_size_boundary = DEFAULT_STRUCTURE_SIZE_BOUNDARY;
370 /* Used for Thumb call_via trampolines. */
371 rtx thumb_call_via_label[13];
372 static int thumb_call_reg_needed;
374 /* Bit values used to identify processor capabilities. */
375 #define FL_CO_PROC (1 << 0) /* Has external co-processor bus */
376 #define FL_ARCH3M (1 << 1) /* Extended multiply */
377 #define FL_MODE26 (1 << 2) /* 26-bit mode support */
378 #define FL_MODE32 (1 << 3) /* 32-bit mode support */
379 #define FL_ARCH4 (1 << 4) /* Architecture rel 4 */
380 #define FL_ARCH5 (1 << 5) /* Architecture rel 5 */
381 #define FL_THUMB (1 << 6) /* Thumb aware */
382 #define FL_LDSCHED (1 << 7) /* Load scheduling necessary */
383 #define FL_STRONG (1 << 8) /* StrongARM */
384 #define FL_ARCH5E (1 << 9) /* DSP extensions to v5 */
385 #define FL_XSCALE (1 << 10) /* XScale */
386 #define FL_CIRRUS (1 << 11) /* Cirrus/DSP. */
387 #define FL_ARCH6 (1 << 12) /* Architecture rel 6. Adds
388 media instructions. */
389 #define FL_VFPV2 (1 << 13) /* Vector Floating Point V2. */
391 #define FL_IWMMXT (1 << 29) /* XScale v2 or "Intel Wireless MMX technology". */
393 #define FL_FOR_ARCH2 0
394 #define FL_FOR_ARCH3 FL_MODE32
395 #define FL_FOR_ARCH3M (FL_FOR_ARCH3 | FL_ARCH3M)
396 #define FL_FOR_ARCH4 (FL_FOR_ARCH3M | FL_ARCH4)
397 #define FL_FOR_ARCH4T (FL_FOR_ARCH4 | FL_THUMB)
398 #define FL_FOR_ARCH5 (FL_FOR_ARCH4 | FL_ARCH5)
399 #define FL_FOR_ARCH5T (FL_FOR_ARCH5 | FL_THUMB)
400 #define FL_FOR_ARCH5E (FL_FOR_ARCH5 | FL_ARCH5E)
401 #define FL_FOR_ARCH5TE (FL_FOR_ARCH5E | FL_THUMB)
402 #define FL_FOR_ARCH5TEJ FL_FOR_ARCH5TE
403 #define FL_FOR_ARCH6 (FL_FOR_ARCH5TE | FL_ARCH6)
404 #define FL_FOR_ARCH6J FL_FOR_ARCH6
405 #define FL_FOR_ARCH6K FL_FOR_ARCH6
406 #define FL_FOR_ARCH6Z FL_FOR_ARCH6
407 #define FL_FOR_ARCH6ZK FL_FOR_ARCH6
409 /* The bits in this mask specify which
410 instructions we are allowed to generate. */
411 static unsigned long insn_flags = 0;
413 /* The bits in this mask specify which instruction scheduling options should
414 be used. */
415 static unsigned long tune_flags = 0;
417 /* The following are used in the arm.md file as equivalents to bits
418 in the above two flag variables. */
420 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
421 int arm_arch3m = 0;
423 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
424 int arm_arch4 = 0;
426 /* Nonzero if this chip supports the ARM Architecture 4t extensions. */
427 int arm_arch4t = 0;
429 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
430 int arm_arch5 = 0;
432 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
433 int arm_arch5e = 0;
435 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
436 int arm_arch6 = 0;
438 /* Nonzero if this chip can benefit from load scheduling. */
439 int arm_ld_sched = 0;
441 /* Nonzero if this chip is a StrongARM. */
442 int arm_is_strong = 0;
444 /* Nonzero if this chip is a Cirrus variant. */
445 int arm_arch_cirrus = 0;
447 /* Nonzero if this chip supports Intel Wireless MMX technology. */
448 int arm_arch_iwmmxt = 0;
450 /* Nonzero if this chip is an XScale. */
451 int arm_arch_xscale = 0;
453 /* Nonzero if tuning for XScale */
454 int arm_tune_xscale = 0;
456 /* Nonzero if this chip is an ARM6 or an ARM7. */
457 int arm_is_6_or_7 = 0;
459 /* Nonzero if generating Thumb instructions. */
460 int thumb_code = 0;
462 /* Nonzero if we should define __THUMB_INTERWORK__ in the
463 preprocessor.
464 XXX This is a bit of a hack, it's intended to help work around
465 problems in GLD which doesn't understand that armv5t code is
466 interworking clean. */
467 int arm_cpp_interwork = 0;
469 /* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we
470 must report the mode of the memory reference from PRINT_OPERAND to
471 PRINT_OPERAND_ADDRESS. */
472 enum machine_mode output_memory_reference_mode;
474 /* The register number to be used for the PIC offset register. */
475 const char * arm_pic_register_string = NULL;
476 int arm_pic_register = INVALID_REGNUM;
478 /* Set to 1 when a return insn is output, this means that the epilogue
479 is not needed. */
480 int return_used_this_function;
482 /* Set to 1 after arm_reorg has started. Reset to start at the start of
483 the next function. */
484 static int after_arm_reorg = 0;
486 /* The maximum number of insns to be used when loading a constant. */
487 static int arm_constant_limit = 3;
489 /* For an explanation of these variables, see final_prescan_insn below. */
490 int arm_ccfsm_state;
491 enum arm_cond_code arm_current_cc;
492 rtx arm_target_insn;
493 int arm_target_label;
495 /* The condition codes of the ARM, and the inverse function. */
496 static const char * const arm_condition_codes[] =
498 "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
499 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"
502 #define streq(string1, string2) (strcmp (string1, string2) == 0)
504 /* Initialization code. */
506 struct processors
508 const char *const name;
509 enum processor_type core;
510 const char *arch;
511 const unsigned long flags;
512 bool (* rtx_costs) (rtx, int, int, int *);
515 /* Not all of these give usefully different compilation alternatives,
516 but there is no simple way of generalizing them. */
517 static const struct processors all_cores[] =
519 /* ARM Cores */
520 #define ARM_CORE(NAME, IDENT, ARCH, FLAGS, COSTS) \
521 {NAME, arm_none, #ARCH, FLAGS | FL_FOR_ARCH##ARCH, arm_##COSTS##_rtx_costs},
522 #include "arm-cores.def"
523 #undef ARM_CORE
524 {NULL, arm_none, NULL, 0, NULL}
527 static const struct processors all_architectures[] =
529 /* ARM Architectures */
530 /* We don't specify rtx_costs here as it will be figured out
531 from the core. */
533 {"armv2", arm2, "2", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH2, NULL},
534 {"armv2a", arm2, "2", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH2, NULL},
535 {"armv3", arm6, "3", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH3, NULL},
536 {"armv3m", arm7m, "3M", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH3M, NULL},
537 {"armv4", arm7tdmi, "4", FL_CO_PROC | FL_MODE26 | FL_FOR_ARCH4, NULL},
538 /* Strictly, FL_MODE26 is a permitted option for v4t, but there are no
539 implementations that support it, so we will leave it out for now. */
540 {"armv4t", arm7tdmi, "4T", FL_CO_PROC | FL_FOR_ARCH4T, NULL},
541 {"armv5", arm10tdmi, "5", FL_CO_PROC | FL_FOR_ARCH5, NULL},
542 {"armv5t", arm10tdmi, "5T", FL_CO_PROC | FL_FOR_ARCH5T, NULL},
543 {"armv5e", arm1026ejs, "5E", FL_CO_PROC | FL_FOR_ARCH5E, NULL},
544 {"armv5te", arm1026ejs, "5TE", FL_CO_PROC | FL_FOR_ARCH5TE, NULL},
545 {"armv6", arm1136js, "6", FL_CO_PROC | FL_FOR_ARCH6, NULL},
546 {"armv6j", arm1136js, "6J", FL_CO_PROC | FL_FOR_ARCH6J, NULL},
547 {"armv6k", mpcore, "6K", FL_CO_PROC | FL_FOR_ARCH6K, NULL},
548 {"armv6z", arm1176jzs, "6Z", FL_CO_PROC | FL_FOR_ARCH6Z, NULL},
549 {"armv6zk", arm1176jzs, "6ZK", FL_CO_PROC | FL_FOR_ARCH6ZK, NULL},
550 {"ep9312", ep9312, "4T", FL_LDSCHED | FL_CIRRUS | FL_FOR_ARCH4, NULL},
551 {"iwmmxt", iwmmxt, "5TE", FL_LDSCHED | FL_STRONG | FL_FOR_ARCH5TE | FL_XSCALE | FL_IWMMXT , NULL},
552 {NULL, arm_none, NULL, 0 , NULL}
555 /* This is a magic structure. The 'string' field is magically filled in
556 with a pointer to the value specified by the user on the command line
557 assuming that the user has specified such a value. */
559 struct arm_cpu_select arm_select[] =
561 /* string name processors */
562 { NULL, "-mcpu=", all_cores },
563 { NULL, "-march=", all_architectures },
564 { NULL, "-mtune=", all_cores }
568 /* The name of the proprocessor macro to define for this architecture. */
570 char arm_arch_name[] = "__ARM_ARCH_0UNK__";
572 struct fpu_desc
574 const char * name;
575 enum fputype fpu;
579 /* Available values for for -mfpu=. */
581 static const struct fpu_desc all_fpus[] =
583 {"fpa", FPUTYPE_FPA},
584 {"fpe2", FPUTYPE_FPA_EMU2},
585 {"fpe3", FPUTYPE_FPA_EMU2},
586 {"maverick", FPUTYPE_MAVERICK},
587 {"vfp", FPUTYPE_VFP}
591 /* Floating point models used by the different hardware.
592 See fputype in arm.h. */
594 static const enum fputype fp_model_for_fpu[] =
596 /* No FP hardware. */
597 ARM_FP_MODEL_UNKNOWN, /* FPUTYPE_NONE */
598 ARM_FP_MODEL_FPA, /* FPUTYPE_FPA */
599 ARM_FP_MODEL_FPA, /* FPUTYPE_FPA_EMU2 */
600 ARM_FP_MODEL_FPA, /* FPUTYPE_FPA_EMU3 */
601 ARM_FP_MODEL_MAVERICK, /* FPUTYPE_MAVERICK */
602 ARM_FP_MODEL_VFP /* FPUTYPE_VFP */
606 struct float_abi
608 const char * name;
609 enum float_abi_type abi_type;
613 /* Available values for -mfloat-abi=. */
615 static const struct float_abi all_float_abis[] =
617 {"soft", ARM_FLOAT_ABI_SOFT},
618 {"softfp", ARM_FLOAT_ABI_SOFTFP},
619 {"hard", ARM_FLOAT_ABI_HARD}
623 struct abi_name
625 const char *name;
626 enum arm_abi_type abi_type;
630 /* Available values for -mabi=. */
632 static const struct abi_name arm_all_abis[] =
634 {"apcs-gnu", ARM_ABI_APCS},
635 {"atpcs", ARM_ABI_ATPCS},
636 {"aapcs", ARM_ABI_AAPCS},
637 {"iwmmxt", ARM_ABI_IWMMXT}
640 /* Return the number of bits set in VALUE. */
641 static unsigned
642 bit_count (unsigned long value)
644 unsigned long count = 0;
646 while (value)
648 count++;
649 value &= value - 1; /* Clear the least-significant set bit. */
652 return count;
655 /* Set up library functions unique to ARM. */
657 static void
658 arm_init_libfuncs (void)
660 /* There are no special library functions unless we are using the
661 ARM BPABI. */
662 if (!TARGET_BPABI)
663 return;
665 /* The functions below are described in Section 4 of the "Run-Time
666 ABI for the ARM architecture", Version 1.0. */
668 /* Double-precision floating-point arithmetic. Table 2. */
669 set_optab_libfunc (add_optab, DFmode, "__aeabi_dadd");
670 set_optab_libfunc (sdiv_optab, DFmode, "__aeabi_ddiv");
671 set_optab_libfunc (smul_optab, DFmode, "__aeabi_dmul");
672 set_optab_libfunc (neg_optab, DFmode, "__aeabi_dneg");
673 set_optab_libfunc (sub_optab, DFmode, "__aeabi_dsub");
675 /* Double-precision comparisons. Table 3. */
676 set_optab_libfunc (eq_optab, DFmode, "__aeabi_dcmpeq");
677 set_optab_libfunc (ne_optab, DFmode, NULL);
678 set_optab_libfunc (lt_optab, DFmode, "__aeabi_dcmplt");
679 set_optab_libfunc (le_optab, DFmode, "__aeabi_dcmple");
680 set_optab_libfunc (ge_optab, DFmode, "__aeabi_dcmpge");
681 set_optab_libfunc (gt_optab, DFmode, "__aeabi_dcmpgt");
682 set_optab_libfunc (unord_optab, DFmode, "__aeabi_dcmpun");
684 /* Single-precision floating-point arithmetic. Table 4. */
685 set_optab_libfunc (add_optab, SFmode, "__aeabi_fadd");
686 set_optab_libfunc (sdiv_optab, SFmode, "__aeabi_fdiv");
687 set_optab_libfunc (smul_optab, SFmode, "__aeabi_fmul");
688 set_optab_libfunc (neg_optab, SFmode, "__aeabi_fneg");
689 set_optab_libfunc (sub_optab, SFmode, "__aeabi_fsub");
691 /* Single-precision comparisons. Table 5. */
692 set_optab_libfunc (eq_optab, SFmode, "__aeabi_fcmpeq");
693 set_optab_libfunc (ne_optab, SFmode, NULL);
694 set_optab_libfunc (lt_optab, SFmode, "__aeabi_fcmplt");
695 set_optab_libfunc (le_optab, SFmode, "__aeabi_fcmple");
696 set_optab_libfunc (ge_optab, SFmode, "__aeabi_fcmpge");
697 set_optab_libfunc (gt_optab, SFmode, "__aeabi_fcmpgt");
698 set_optab_libfunc (unord_optab, SFmode, "__aeabi_fcmpun");
700 /* Floating-point to integer conversions. Table 6. */
701 set_conv_libfunc (sfix_optab, SImode, DFmode, "__aeabi_d2iz");
702 set_conv_libfunc (ufix_optab, SImode, DFmode, "__aeabi_d2uiz");
703 set_conv_libfunc (sfix_optab, DImode, DFmode, "__aeabi_d2lz");
704 set_conv_libfunc (ufix_optab, DImode, DFmode, "__aeabi_d2ulz");
705 set_conv_libfunc (sfix_optab, SImode, SFmode, "__aeabi_f2iz");
706 set_conv_libfunc (ufix_optab, SImode, SFmode, "__aeabi_f2uiz");
707 set_conv_libfunc (sfix_optab, DImode, SFmode, "__aeabi_f2lz");
708 set_conv_libfunc (ufix_optab, DImode, SFmode, "__aeabi_f2ulz");
710 /* Conversions between floating types. Table 7. */
711 set_conv_libfunc (trunc_optab, SFmode, DFmode, "__aeabi_d2f");
712 set_conv_libfunc (sext_optab, DFmode, SFmode, "__aeabi_f2d");
714 /* Integer to floating-point conversions. Table 8. */
715 set_conv_libfunc (sfloat_optab, DFmode, SImode, "__aeabi_i2d");
716 set_conv_libfunc (ufloat_optab, DFmode, SImode, "__aeabi_ui2d");
717 set_conv_libfunc (sfloat_optab, DFmode, DImode, "__aeabi_l2d");
718 set_conv_libfunc (ufloat_optab, DFmode, DImode, "__aeabi_ul2d");
719 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__aeabi_i2f");
720 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__aeabi_ui2f");
721 set_conv_libfunc (sfloat_optab, SFmode, DImode, "__aeabi_l2f");
722 set_conv_libfunc (ufloat_optab, SFmode, DImode, "__aeabi_ul2f");
724 /* Long long. Table 9. */
725 set_optab_libfunc (smul_optab, DImode, "__aeabi_lmul");
726 set_optab_libfunc (sdivmod_optab, DImode, "__aeabi_ldivmod");
727 set_optab_libfunc (udivmod_optab, DImode, "__aeabi_uldivmod");
728 set_optab_libfunc (ashl_optab, DImode, "__aeabi_llsl");
729 set_optab_libfunc (lshr_optab, DImode, "__aeabi_llsr");
730 set_optab_libfunc (ashr_optab, DImode, "__aeabi_lasr");
731 set_optab_libfunc (cmp_optab, DImode, "__aeabi_lcmp");
732 set_optab_libfunc (ucmp_optab, DImode, "__aeabi_ulcmp");
734 /* Integer (32/32->32) division. \S 4.3.1. */
735 set_optab_libfunc (sdivmod_optab, SImode, "__aeabi_idivmod");
736 set_optab_libfunc (udivmod_optab, SImode, "__aeabi_uidivmod");
738 /* The divmod functions are designed so that they can be used for
739 plain division, even though they return both the quotient and the
740 remainder. The quotient is returned in the usual location (i.e.,
741 r0 for SImode, {r0, r1} for DImode), just as would be expected
742 for an ordinary division routine. Because the AAPCS calling
743 conventions specify that all of { r0, r1, r2, r3 } are
744 callee-saved registers, there is no need to tell the compiler
745 explicitly that those registers are clobbered by these
746 routines. */
747 set_optab_libfunc (sdiv_optab, DImode, "__aeabi_ldivmod");
748 set_optab_libfunc (udiv_optab, DImode, "__aeabi_uldivmod");
749 set_optab_libfunc (sdiv_optab, SImode, "__aeabi_idivmod");
750 set_optab_libfunc (udiv_optab, SImode, "__aeabi_uidivmod");
753 /* Fix up any incompatible options that the user has specified.
754 This has now turned into a maze. */
755 void
756 arm_override_options (void)
758 unsigned i;
760 /* Set up the flags based on the cpu/architecture selected by the user. */
761 for (i = ARRAY_SIZE (arm_select); i--;)
763 struct arm_cpu_select * ptr = arm_select + i;
765 if (ptr->string != NULL && ptr->string[0] != '\0')
767 const struct processors * sel;
769 for (sel = ptr->processors; sel->name != NULL; sel++)
770 if (streq (ptr->string, sel->name))
772 /* Set the architecture define. */
773 if (i != 2)
774 sprintf (arm_arch_name, "__ARM_ARCH_%s__", sel->arch);
776 /* Determine the processor core for which we should
777 tune code-generation. */
778 if (/* -mcpu= is a sensible default. */
779 i == 0
780 /* If -march= is used, and -mcpu= has not been used,
781 assume that we should tune for a representative
782 CPU from that architecture. */
783 || i == 1
784 /* -mtune= overrides -mcpu= and -march=. */
785 || i == 2)
786 arm_tune = (enum processor_type) (sel - ptr->processors);
788 if (i != 2)
790 /* If we have been given an architecture and a processor
791 make sure that they are compatible. We only generate
792 a warning though, and we prefer the CPU over the
793 architecture. */
794 if (insn_flags != 0 && (insn_flags ^ sel->flags))
795 warning ("switch -mcpu=%s conflicts with -march= switch",
796 ptr->string);
798 insn_flags = sel->flags;
801 break;
804 if (sel->name == NULL)
805 error ("bad value (%s) for %s switch", ptr->string, ptr->name);
809 /* If the user did not specify a processor, choose one for them. */
810 if (insn_flags == 0)
812 const struct processors * sel;
813 unsigned int sought;
814 enum processor_type cpu;
816 cpu = TARGET_CPU_DEFAULT;
817 if (cpu == arm_none)
819 #ifdef SUBTARGET_CPU_DEFAULT
820 /* Use the subtarget default CPU if none was specified by
821 configure. */
822 cpu = SUBTARGET_CPU_DEFAULT;
823 #endif
824 /* Default to ARM6. */
825 if (cpu == arm_none)
826 cpu = arm6;
828 sel = &all_cores[cpu];
830 insn_flags = sel->flags;
832 /* Now check to see if the user has specified some command line
833 switch that require certain abilities from the cpu. */
834 sought = 0;
836 if (TARGET_INTERWORK || TARGET_THUMB)
838 sought |= (FL_THUMB | FL_MODE32);
840 /* There are no ARM processors that support both APCS-26 and
841 interworking. Therefore we force FL_MODE26 to be removed
842 from insn_flags here (if it was set), so that the search
843 below will always be able to find a compatible processor. */
844 insn_flags &= ~FL_MODE26;
847 if (sought != 0 && ((sought & insn_flags) != sought))
849 /* Try to locate a CPU type that supports all of the abilities
850 of the default CPU, plus the extra abilities requested by
851 the user. */
852 for (sel = all_cores; sel->name != NULL; sel++)
853 if ((sel->flags & sought) == (sought | insn_flags))
854 break;
856 if (sel->name == NULL)
858 unsigned current_bit_count = 0;
859 const struct processors * best_fit = NULL;
861 /* Ideally we would like to issue an error message here
862 saying that it was not possible to find a CPU compatible
863 with the default CPU, but which also supports the command
864 line options specified by the programmer, and so they
865 ought to use the -mcpu=<name> command line option to
866 override the default CPU type.
868 If we cannot find a cpu that has both the
869 characteristics of the default cpu and the given
870 command line options we scan the array again looking
871 for a best match. */
872 for (sel = all_cores; sel->name != NULL; sel++)
873 if ((sel->flags & sought) == sought)
875 unsigned count;
877 count = bit_count (sel->flags & insn_flags);
879 if (count >= current_bit_count)
881 best_fit = sel;
882 current_bit_count = count;
886 if (best_fit == NULL)
887 abort ();
888 else
889 sel = best_fit;
892 insn_flags = sel->flags;
894 sprintf (arm_arch_name, "__ARM_ARCH_%s__", sel->arch);
895 if (arm_tune == arm_none)
896 arm_tune = (enum processor_type) (sel - all_cores);
899 /* The processor for which we should tune should now have been
900 chosen. */
901 if (arm_tune == arm_none)
902 abort ();
904 tune_flags = all_cores[(int)arm_tune].flags;
905 if (optimize_size)
906 targetm.rtx_costs = arm_size_rtx_costs;
907 else
908 targetm.rtx_costs = all_cores[(int)arm_tune].rtx_costs;
910 /* Make sure that the processor choice does not conflict with any of the
911 other command line choices. */
912 if (TARGET_INTERWORK && !(insn_flags & FL_THUMB))
914 warning ("target CPU does not support interworking" );
915 target_flags &= ~ARM_FLAG_INTERWORK;
918 if (TARGET_THUMB && !(insn_flags & FL_THUMB))
920 warning ("target CPU does not support THUMB instructions");
921 target_flags &= ~ARM_FLAG_THUMB;
924 if (TARGET_APCS_FRAME && TARGET_THUMB)
926 /* warning ("ignoring -mapcs-frame because -mthumb was used"); */
927 target_flags &= ~ARM_FLAG_APCS_FRAME;
930 /* TARGET_BACKTRACE calls leaf_function_p, which causes a crash if done
931 from here where no function is being compiled currently. */
932 if ((target_flags & (THUMB_FLAG_LEAF_BACKTRACE | THUMB_FLAG_BACKTRACE))
933 && TARGET_ARM)
934 warning ("enabling backtrace support is only meaningful when compiling for the Thumb");
936 if (TARGET_ARM && TARGET_CALLEE_INTERWORKING)
937 warning ("enabling callee interworking support is only meaningful when compiling for the Thumb");
939 if (TARGET_ARM && TARGET_CALLER_INTERWORKING)
940 warning ("enabling caller interworking support is only meaningful when compiling for the Thumb");
942 if (TARGET_APCS_STACK && !TARGET_APCS_FRAME)
944 warning ("-mapcs-stack-check incompatible with -mno-apcs-frame");
945 target_flags |= ARM_FLAG_APCS_FRAME;
948 if (TARGET_POKE_FUNCTION_NAME)
949 target_flags |= ARM_FLAG_APCS_FRAME;
951 if (TARGET_APCS_REENT && flag_pic)
952 error ("-fpic and -mapcs-reent are incompatible");
954 if (TARGET_APCS_REENT)
955 warning ("APCS reentrant code not supported. Ignored");
957 /* If this target is normally configured to use APCS frames, warn if they
958 are turned off and debugging is turned on. */
959 if (TARGET_ARM
960 && write_symbols != NO_DEBUG
961 && !TARGET_APCS_FRAME
962 && (TARGET_DEFAULT & ARM_FLAG_APCS_FRAME))
963 warning ("-g with -mno-apcs-frame may not give sensible debugging");
965 /* If stack checking is disabled, we can use r10 as the PIC register,
966 which keeps r9 available. */
967 if (flag_pic)
968 arm_pic_register = TARGET_APCS_STACK ? 9 : 10;
970 if (TARGET_APCS_FLOAT)
971 warning ("passing floating point arguments in fp regs not yet supported");
973 /* Initialize boolean versions of the flags, for use in the arm.md file. */
974 arm_arch3m = (insn_flags & FL_ARCH3M) != 0;
975 arm_arch4 = (insn_flags & FL_ARCH4) != 0;
976 arm_arch4t = arm_arch4 & ((insn_flags & FL_THUMB) != 0);
977 arm_arch5 = (insn_flags & FL_ARCH5) != 0;
978 arm_arch5e = (insn_flags & FL_ARCH5E) != 0;
979 arm_arch6 = (insn_flags & FL_ARCH6) != 0;
980 arm_arch_xscale = (insn_flags & FL_XSCALE) != 0;
981 arm_arch_cirrus = (insn_flags & FL_CIRRUS) != 0;
983 arm_ld_sched = (tune_flags & FL_LDSCHED) != 0;
984 arm_is_strong = (tune_flags & FL_STRONG) != 0;
985 thumb_code = (TARGET_ARM == 0);
986 arm_is_6_or_7 = (((tune_flags & (FL_MODE26 | FL_MODE32))
987 && !(tune_flags & FL_ARCH4))) != 0;
988 arm_tune_xscale = (tune_flags & FL_XSCALE) != 0;
989 arm_arch_iwmmxt = (insn_flags & FL_IWMMXT) != 0;
991 /* V5 code we generate is completely interworking capable, so we turn off
992 TARGET_INTERWORK here to avoid many tests later on. */
994 /* XXX However, we must pass the right pre-processor defines to CPP
995 or GLD can get confused. This is a hack. */
996 if (TARGET_INTERWORK)
997 arm_cpp_interwork = 1;
999 if (arm_arch5)
1000 target_flags &= ~ARM_FLAG_INTERWORK;
1002 if (target_abi_name)
1004 for (i = 0; i < ARRAY_SIZE (arm_all_abis); i++)
1006 if (streq (arm_all_abis[i].name, target_abi_name))
1008 arm_abi = arm_all_abis[i].abi_type;
1009 break;
1012 if (i == ARRAY_SIZE (arm_all_abis))
1013 error ("invalid ABI option: -mabi=%s", target_abi_name);
1015 else
1016 arm_abi = ARM_DEFAULT_ABI;
1018 if (TARGET_IWMMXT && !ARM_DOUBLEWORD_ALIGN)
1019 error ("iwmmxt requires an AAPCS compatible ABI for proper operation");
1021 if (TARGET_IWMMXT_ABI && !TARGET_IWMMXT)
1022 error ("iwmmxt abi requires an iwmmxt capable cpu");
1024 arm_fp_model = ARM_FP_MODEL_UNKNOWN;
1025 if (target_fpu_name == NULL && target_fpe_name != NULL)
1027 if (streq (target_fpe_name, "2"))
1028 target_fpu_name = "fpe2";
1029 else if (streq (target_fpe_name, "3"))
1030 target_fpu_name = "fpe3";
1031 else
1032 error ("invalid floating point emulation option: -mfpe=%s",
1033 target_fpe_name);
1035 if (target_fpu_name != NULL)
1037 /* The user specified a FPU. */
1038 for (i = 0; i < ARRAY_SIZE (all_fpus); i++)
1040 if (streq (all_fpus[i].name, target_fpu_name))
1042 arm_fpu_arch = all_fpus[i].fpu;
1043 arm_fpu_tune = arm_fpu_arch;
1044 arm_fp_model = fp_model_for_fpu[arm_fpu_arch];
1045 break;
1048 if (arm_fp_model == ARM_FP_MODEL_UNKNOWN)
1049 error ("invalid floating point option: -mfpu=%s", target_fpu_name);
1051 else
1053 #ifdef FPUTYPE_DEFAULT
1054 /* Use the default if it is specified for this platform. */
1055 arm_fpu_arch = FPUTYPE_DEFAULT;
1056 arm_fpu_tune = FPUTYPE_DEFAULT;
1057 #else
1058 /* Pick one based on CPU type. */
1059 /* ??? Some targets assume FPA is the default.
1060 if ((insn_flags & FL_VFP) != 0)
1061 arm_fpu_arch = FPUTYPE_VFP;
1062 else
1064 if (arm_arch_cirrus)
1065 arm_fpu_arch = FPUTYPE_MAVERICK;
1066 else
1067 arm_fpu_arch = FPUTYPE_FPA_EMU2;
1068 #endif
1069 if (tune_flags & FL_CO_PROC && arm_fpu_arch == FPUTYPE_FPA_EMU2)
1070 arm_fpu_tune = FPUTYPE_FPA;
1071 else
1072 arm_fpu_tune = arm_fpu_arch;
1073 arm_fp_model = fp_model_for_fpu[arm_fpu_arch];
1074 if (arm_fp_model == ARM_FP_MODEL_UNKNOWN)
1075 abort ();
1078 if (target_float_abi_name != NULL)
1080 /* The user specified a FP ABI. */
1081 for (i = 0; i < ARRAY_SIZE (all_float_abis); i++)
1083 if (streq (all_float_abis[i].name, target_float_abi_name))
1085 arm_float_abi = all_float_abis[i].abi_type;
1086 break;
1089 if (i == ARRAY_SIZE (all_float_abis))
1090 error ("invalid floating point abi: -mfloat-abi=%s",
1091 target_float_abi_name);
1093 else if (target_float_switch)
1095 /* This is a bit of a hack to avoid needing target flags for these. */
1096 if (target_float_switch[0] == 'h')
1097 arm_float_abi = ARM_FLOAT_ABI_HARD;
1098 else
1099 arm_float_abi = ARM_FLOAT_ABI_SOFT;
1101 else
1102 arm_float_abi = TARGET_DEFAULT_FLOAT_ABI;
1104 if (arm_float_abi == ARM_FLOAT_ABI_HARD && TARGET_VFP)
1105 sorry ("-mfloat-abi=hard and VFP");
1107 /* If soft-float is specified then don't use FPU. */
1108 if (TARGET_SOFT_FLOAT)
1109 arm_fpu_arch = FPUTYPE_NONE;
1111 /* For arm2/3 there is no need to do any scheduling if there is only
1112 a floating point emulator, or we are doing software floating-point. */
1113 if ((TARGET_SOFT_FLOAT
1114 || arm_fpu_tune == FPUTYPE_FPA_EMU2
1115 || arm_fpu_tune == FPUTYPE_FPA_EMU3)
1116 && (tune_flags & FL_MODE32) == 0)
1117 flag_schedule_insns = flag_schedule_insns_after_reload = 0;
1119 /* Override the default structure alignment for AAPCS ABI. */
1120 if (arm_abi == ARM_ABI_AAPCS)
1121 arm_structure_size_boundary = 8;
1123 if (structure_size_string != NULL)
1125 int size = strtol (structure_size_string, NULL, 0);
1127 if (size == 8 || size == 32
1128 || (ARM_DOUBLEWORD_ALIGN && size == 64))
1129 arm_structure_size_boundary = size;
1130 else
1131 warning ("structure size boundary can only be set to %s",
1132 ARM_DOUBLEWORD_ALIGN ? "8, 32 or 64": "8 or 32");
1135 if (arm_pic_register_string != NULL)
1137 int pic_register = decode_reg_name (arm_pic_register_string);
1139 if (!flag_pic)
1140 warning ("-mpic-register= is useless without -fpic");
1142 /* Prevent the user from choosing an obviously stupid PIC register. */
1143 else if (pic_register < 0 || call_used_regs[pic_register]
1144 || pic_register == HARD_FRAME_POINTER_REGNUM
1145 || pic_register == STACK_POINTER_REGNUM
1146 || pic_register >= PC_REGNUM)
1147 error ("unable to use '%s' for PIC register", arm_pic_register_string);
1148 else
1149 arm_pic_register = pic_register;
1152 if (TARGET_THUMB && flag_schedule_insns)
1154 /* Don't warn since it's on by default in -O2. */
1155 flag_schedule_insns = 0;
1158 if (optimize_size)
1160 /* There's some dispute as to whether this should be 1 or 2. However,
1161 experiments seem to show that in pathological cases a setting of
1162 1 degrades less severely than a setting of 2. This could change if
1163 other parts of the compiler change their behavior. */
1164 arm_constant_limit = 1;
1166 /* If optimizing for size, bump the number of instructions that we
1167 are prepared to conditionally execute (even on a StrongARM). */
1168 max_insns_skipped = 6;
1170 else
1172 /* For processors with load scheduling, it never costs more than
1173 2 cycles to load a constant, and the load scheduler may well
1174 reduce that to 1. */
1175 if (arm_ld_sched)
1176 arm_constant_limit = 1;
1178 /* On XScale the longer latency of a load makes it more difficult
1179 to achieve a good schedule, so it's faster to synthesize
1180 constants that can be done in two insns. */
1181 if (arm_tune_xscale)
1182 arm_constant_limit = 2;
1184 /* StrongARM has early execution of branches, so a sequence
1185 that is worth skipping is shorter. */
1186 if (arm_is_strong)
1187 max_insns_skipped = 3;
1190 /* Register global variables with the garbage collector. */
1191 arm_add_gc_roots ();
1194 static void
1195 arm_add_gc_roots (void)
1197 gcc_obstack_init(&minipool_obstack);
1198 minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0);
1201 /* A table of known ARM exception types.
1202 For use with the interrupt function attribute. */
1204 typedef struct
1206 const char *const arg;
1207 const unsigned long return_value;
1209 isr_attribute_arg;
1211 static const isr_attribute_arg isr_attribute_args [] =
1213 { "IRQ", ARM_FT_ISR },
1214 { "irq", ARM_FT_ISR },
1215 { "FIQ", ARM_FT_FIQ },
1216 { "fiq", ARM_FT_FIQ },
1217 { "ABORT", ARM_FT_ISR },
1218 { "abort", ARM_FT_ISR },
1219 { "ABORT", ARM_FT_ISR },
1220 { "abort", ARM_FT_ISR },
1221 { "UNDEF", ARM_FT_EXCEPTION },
1222 { "undef", ARM_FT_EXCEPTION },
1223 { "SWI", ARM_FT_EXCEPTION },
1224 { "swi", ARM_FT_EXCEPTION },
1225 { NULL, ARM_FT_NORMAL }
1228 /* Returns the (interrupt) function type of the current
1229 function, or ARM_FT_UNKNOWN if the type cannot be determined. */
1231 static unsigned long
1232 arm_isr_value (tree argument)
1234 const isr_attribute_arg * ptr;
1235 const char * arg;
1237 /* No argument - default to IRQ. */
1238 if (argument == NULL_TREE)
1239 return ARM_FT_ISR;
1241 /* Get the value of the argument. */
1242 if (TREE_VALUE (argument) == NULL_TREE
1243 || TREE_CODE (TREE_VALUE (argument)) != STRING_CST)
1244 return ARM_FT_UNKNOWN;
1246 arg = TREE_STRING_POINTER (TREE_VALUE (argument));
1248 /* Check it against the list of known arguments. */
1249 for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++)
1250 if (streq (arg, ptr->arg))
1251 return ptr->return_value;
1253 /* An unrecognized interrupt type. */
1254 return ARM_FT_UNKNOWN;
1257 /* Computes the type of the current function. */
1259 static unsigned long
1260 arm_compute_func_type (void)
1262 unsigned long type = ARM_FT_UNKNOWN;
1263 tree a;
1264 tree attr;
1266 if (TREE_CODE (current_function_decl) != FUNCTION_DECL)
1267 abort ();
1269 /* Decide if the current function is volatile. Such functions
1270 never return, and many memory cycles can be saved by not storing
1271 register values that will never be needed again. This optimization
1272 was added to speed up context switching in a kernel application. */
1273 if (optimize > 0
1274 && TREE_NOTHROW (current_function_decl)
1275 && TREE_THIS_VOLATILE (current_function_decl))
1276 type |= ARM_FT_VOLATILE;
1278 if (cfun->static_chain_decl != NULL)
1279 type |= ARM_FT_NESTED;
1281 attr = DECL_ATTRIBUTES (current_function_decl);
1283 a = lookup_attribute ("naked", attr);
1284 if (a != NULL_TREE)
1285 type |= ARM_FT_NAKED;
1287 a = lookup_attribute ("isr", attr);
1288 if (a == NULL_TREE)
1289 a = lookup_attribute ("interrupt", attr);
1291 if (a == NULL_TREE)
1292 type |= TARGET_INTERWORK ? ARM_FT_INTERWORKED : ARM_FT_NORMAL;
1293 else
1294 type |= arm_isr_value (TREE_VALUE (a));
1296 return type;
1299 /* Returns the type of the current function. */
1301 unsigned long
1302 arm_current_func_type (void)
1304 if (ARM_FUNC_TYPE (cfun->machine->func_type) == ARM_FT_UNKNOWN)
1305 cfun->machine->func_type = arm_compute_func_type ();
1307 return cfun->machine->func_type;
1310 /* Return 1 if it is possible to return using a single instruction.
1311 If SIBLING is non-null, this is a test for a return before a sibling
1312 call. SIBLING is the call insn, so we can examine its register usage. */
1315 use_return_insn (int iscond, rtx sibling)
1317 int regno;
1318 unsigned int func_type;
1319 unsigned long saved_int_regs;
1320 unsigned HOST_WIDE_INT stack_adjust;
1321 arm_stack_offsets *offsets;
1323 /* Never use a return instruction before reload has run. */
1324 if (!reload_completed)
1325 return 0;
1327 func_type = arm_current_func_type ();
1329 /* Naked functions and volatile functions need special
1330 consideration. */
1331 if (func_type & (ARM_FT_VOLATILE | ARM_FT_NAKED))
1332 return 0;
1334 /* So do interrupt functions that use the frame pointer. */
1335 if (IS_INTERRUPT (func_type) && frame_pointer_needed)
1336 return 0;
1338 offsets = arm_get_frame_offsets ();
1339 stack_adjust = offsets->outgoing_args - offsets->saved_regs;
1341 /* As do variadic functions. */
1342 if (current_function_pretend_args_size
1343 || cfun->machine->uses_anonymous_args
1344 /* Or if the function calls __builtin_eh_return () */
1345 || current_function_calls_eh_return
1346 /* Or if the function calls alloca */
1347 || current_function_calls_alloca
1348 /* Or if there is a stack adjustment. However, if the stack pointer
1349 is saved on the stack, we can use a pre-incrementing stack load. */
1350 || !(stack_adjust == 0 || (frame_pointer_needed && stack_adjust == 4)))
1351 return 0;
1353 saved_int_regs = arm_compute_save_reg_mask ();
1355 /* Unfortunately, the insn
1357 ldmib sp, {..., sp, ...}
1359 triggers a bug on most SA-110 based devices, such that the stack
1360 pointer won't be correctly restored if the instruction takes a
1361 page fault. We work around this problem by popping r3 along with
1362 the other registers, since that is never slower than executing
1363 another instruction.
1365 We test for !arm_arch5 here, because code for any architecture
1366 less than this could potentially be run on one of the buggy
1367 chips. */
1368 if (stack_adjust == 4 && !arm_arch5)
1370 /* Validate that r3 is a call-clobbered register (always true in
1371 the default abi) ... */
1372 if (!call_used_regs[3])
1373 return 0;
1375 /* ... that it isn't being used for a return value (always true
1376 until we implement return-in-regs), or for a tail-call
1377 argument ... */
1378 if (sibling)
1380 if (GET_CODE (sibling) != CALL_INSN)
1381 abort ();
1383 if (find_regno_fusage (sibling, USE, 3))
1384 return 0;
1387 /* ... and that there are no call-saved registers in r0-r2
1388 (always true in the default ABI). */
1389 if (saved_int_regs & 0x7)
1390 return 0;
1393 /* Can't be done if interworking with Thumb, and any registers have been
1394 stacked. */
1395 if (TARGET_INTERWORK && saved_int_regs != 0)
1396 return 0;
1398 /* On StrongARM, conditional returns are expensive if they aren't
1399 taken and multiple registers have been stacked. */
1400 if (iscond && arm_is_strong)
1402 /* Conditional return when just the LR is stored is a simple
1403 conditional-load instruction, that's not expensive. */
1404 if (saved_int_regs != 0 && saved_int_regs != (1 << LR_REGNUM))
1405 return 0;
1407 if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
1408 return 0;
1411 /* If there are saved registers but the LR isn't saved, then we need
1412 two instructions for the return. */
1413 if (saved_int_regs && !(saved_int_regs & (1 << LR_REGNUM)))
1414 return 0;
1416 /* Can't be done if any of the FPA regs are pushed,
1417 since this also requires an insn. */
1418 if (TARGET_HARD_FLOAT && TARGET_FPA)
1419 for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
1420 if (regs_ever_live[regno] && !call_used_regs[regno])
1421 return 0;
1423 /* Likewise VFP regs. */
1424 if (TARGET_HARD_FLOAT && TARGET_VFP)
1425 for (regno = FIRST_VFP_REGNUM; regno <= LAST_VFP_REGNUM; regno++)
1426 if (regs_ever_live[regno] && !call_used_regs[regno])
1427 return 0;
1429 if (TARGET_REALLY_IWMMXT)
1430 for (regno = FIRST_IWMMXT_REGNUM; regno <= LAST_IWMMXT_REGNUM; regno++)
1431 if (regs_ever_live[regno] && ! call_used_regs [regno])
1432 return 0;
1434 return 1;
1437 /* Return TRUE if int I is a valid immediate ARM constant. */
1440 const_ok_for_arm (HOST_WIDE_INT i)
1442 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT)0xFF;
1444 /* For machines with >32 bit HOST_WIDE_INT, the bits above bit 31 must
1445 be all zero, or all one. */
1446 if ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0
1447 && ((i & ~(unsigned HOST_WIDE_INT) 0xffffffff)
1448 != ((~(unsigned HOST_WIDE_INT) 0)
1449 & ~(unsigned HOST_WIDE_INT) 0xffffffff)))
1450 return FALSE;
1452 /* Fast return for 0 and powers of 2 */
1453 if ((i & (i - 1)) == 0)
1454 return TRUE;
1458 if ((i & mask & (unsigned HOST_WIDE_INT) 0xffffffff) == 0)
1459 return TRUE;
1460 mask =
1461 (mask << 2) | ((mask & (unsigned HOST_WIDE_INT) 0xffffffff)
1462 >> (32 - 2)) | ~(unsigned HOST_WIDE_INT) 0xffffffff;
1464 while (mask != ~(unsigned HOST_WIDE_INT) 0xFF);
1466 return FALSE;
1469 /* Return true if I is a valid constant for the operation CODE. */
1470 static int
1471 const_ok_for_op (HOST_WIDE_INT i, enum rtx_code code)
1473 if (const_ok_for_arm (i))
1474 return 1;
1476 switch (code)
1478 case PLUS:
1479 return const_ok_for_arm (ARM_SIGN_EXTEND (-i));
1481 case MINUS: /* Should only occur with (MINUS I reg) => rsb */
1482 case XOR:
1483 case IOR:
1484 return 0;
1486 case AND:
1487 return const_ok_for_arm (ARM_SIGN_EXTEND (~i));
1489 default:
1490 abort ();
1494 /* Emit a sequence of insns to handle a large constant.
1495 CODE is the code of the operation required, it can be any of SET, PLUS,
1496 IOR, AND, XOR, MINUS;
1497 MODE is the mode in which the operation is being performed;
1498 VAL is the integer to operate on;
1499 SOURCE is the other operand (a register, or a null-pointer for SET);
1500 SUBTARGETS means it is safe to create scratch registers if that will
1501 either produce a simpler sequence, or we will want to cse the values.
1502 Return value is the number of insns emitted. */
1505 arm_split_constant (enum rtx_code code, enum machine_mode mode, rtx insn,
1506 HOST_WIDE_INT val, rtx target, rtx source, int subtargets)
1508 rtx cond;
1510 if (insn && GET_CODE (PATTERN (insn)) == COND_EXEC)
1511 cond = COND_EXEC_TEST (PATTERN (insn));
1512 else
1513 cond = NULL_RTX;
1515 if (subtargets || code == SET
1516 || (GET_CODE (target) == REG && GET_CODE (source) == REG
1517 && REGNO (target) != REGNO (source)))
1519 /* After arm_reorg has been called, we can't fix up expensive
1520 constants by pushing them into memory so we must synthesize
1521 them in-line, regardless of the cost. This is only likely to
1522 be more costly on chips that have load delay slots and we are
1523 compiling without running the scheduler (so no splitting
1524 occurred before the final instruction emission).
1526 Ref: gcc -O1 -mcpu=strongarm gcc.c-torture/compile/980506-2.c
1528 if (!after_arm_reorg
1529 && !cond
1530 && (arm_gen_constant (code, mode, NULL_RTX, val, target, source,
1531 1, 0)
1532 > arm_constant_limit + (code != SET)))
1534 if (code == SET)
1536 /* Currently SET is the only monadic value for CODE, all
1537 the rest are diadic. */
1538 emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (val)));
1539 return 1;
1541 else
1543 rtx temp = subtargets ? gen_reg_rtx (mode) : target;
1545 emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (val)));
1546 /* For MINUS, the value is subtracted from, since we never
1547 have subtraction of a constant. */
1548 if (code == MINUS)
1549 emit_insn (gen_rtx_SET (VOIDmode, target,
1550 gen_rtx_MINUS (mode, temp, source)));
1551 else
1552 emit_insn (gen_rtx_SET (VOIDmode, target,
1553 gen_rtx_fmt_ee (code, mode, source, temp)));
1554 return 2;
1559 return arm_gen_constant (code, mode, cond, val, target, source, subtargets,
1563 static int
1564 count_insns_for_constant (HOST_WIDE_INT remainder, int i)
1566 HOST_WIDE_INT temp1;
1567 int num_insns = 0;
1570 int end;
1572 if (i <= 0)
1573 i += 32;
1574 if (remainder & (3 << (i - 2)))
1576 end = i - 8;
1577 if (end < 0)
1578 end += 32;
1579 temp1 = remainder & ((0x0ff << end)
1580 | ((i < end) ? (0xff >> (32 - end)) : 0));
1581 remainder &= ~temp1;
1582 num_insns++;
1583 i -= 6;
1585 i -= 2;
1586 } while (remainder);
1587 return num_insns;
1590 /* Emit an instruction with the indicated PATTERN. If COND is
1591 non-NULL, conditionalize the execution of the instruction on COND
1592 being true. */
1594 static void
1595 emit_constant_insn (rtx cond, rtx pattern)
1597 if (cond)
1598 pattern = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond), pattern);
1599 emit_insn (pattern);
1602 /* As above, but extra parameter GENERATE which, if clear, suppresses
1603 RTL generation. */
1605 static int
1606 arm_gen_constant (enum rtx_code code, enum machine_mode mode, rtx cond,
1607 HOST_WIDE_INT val, rtx target, rtx source, int subtargets,
1608 int generate)
1610 int can_invert = 0;
1611 int can_negate = 0;
1612 int can_negate_initial = 0;
1613 int can_shift = 0;
1614 int i;
1615 int num_bits_set = 0;
1616 int set_sign_bit_copies = 0;
1617 int clear_sign_bit_copies = 0;
1618 int clear_zero_bit_copies = 0;
1619 int set_zero_bit_copies = 0;
1620 int insns = 0;
1621 unsigned HOST_WIDE_INT temp1, temp2;
1622 unsigned HOST_WIDE_INT remainder = val & 0xffffffff;
1624 /* Find out which operations are safe for a given CODE. Also do a quick
1625 check for degenerate cases; these can occur when DImode operations
1626 are split. */
1627 switch (code)
1629 case SET:
1630 can_invert = 1;
1631 can_shift = 1;
1632 can_negate = 1;
1633 break;
1635 case PLUS:
1636 can_negate = 1;
1637 can_negate_initial = 1;
1638 break;
1640 case IOR:
1641 if (remainder == 0xffffffff)
1643 if (generate)
1644 emit_constant_insn (cond,
1645 gen_rtx_SET (VOIDmode, target,
1646 GEN_INT (ARM_SIGN_EXTEND (val))));
1647 return 1;
1649 if (remainder == 0)
1651 if (reload_completed && rtx_equal_p (target, source))
1652 return 0;
1653 if (generate)
1654 emit_constant_insn (cond,
1655 gen_rtx_SET (VOIDmode, target, source));
1656 return 1;
1658 break;
1660 case AND:
1661 if (remainder == 0)
1663 if (generate)
1664 emit_constant_insn (cond,
1665 gen_rtx_SET (VOIDmode, target, const0_rtx));
1666 return 1;
1668 if (remainder == 0xffffffff)
1670 if (reload_completed && rtx_equal_p (target, source))
1671 return 0;
1672 if (generate)
1673 emit_constant_insn (cond,
1674 gen_rtx_SET (VOIDmode, target, source));
1675 return 1;
1677 can_invert = 1;
1678 break;
1680 case XOR:
1681 if (remainder == 0)
1683 if (reload_completed && rtx_equal_p (target, source))
1684 return 0;
1685 if (generate)
1686 emit_constant_insn (cond,
1687 gen_rtx_SET (VOIDmode, target, source));
1688 return 1;
1690 if (remainder == 0xffffffff)
1692 if (generate)
1693 emit_constant_insn (cond,
1694 gen_rtx_SET (VOIDmode, target,
1695 gen_rtx_NOT (mode, source)));
1696 return 1;
1699 /* We don't know how to handle this yet below. */
1700 abort ();
1702 case MINUS:
1703 /* We treat MINUS as (val - source), since (source - val) is always
1704 passed as (source + (-val)). */
1705 if (remainder == 0)
1707 if (generate)
1708 emit_constant_insn (cond,
1709 gen_rtx_SET (VOIDmode, target,
1710 gen_rtx_NEG (mode, source)));
1711 return 1;
1713 if (const_ok_for_arm (val))
1715 if (generate)
1716 emit_constant_insn (cond,
1717 gen_rtx_SET (VOIDmode, target,
1718 gen_rtx_MINUS (mode, GEN_INT (val),
1719 source)));
1720 return 1;
1722 can_negate = 1;
1724 break;
1726 default:
1727 abort ();
1730 /* If we can do it in one insn get out quickly. */
1731 if (const_ok_for_arm (val)
1732 || (can_negate_initial && const_ok_for_arm (-val))
1733 || (can_invert && const_ok_for_arm (~val)))
1735 if (generate)
1736 emit_constant_insn (cond,
1737 gen_rtx_SET (VOIDmode, target,
1738 (source
1739 ? gen_rtx_fmt_ee (code, mode, source,
1740 GEN_INT (val))
1741 : GEN_INT (val))));
1742 return 1;
1745 /* Calculate a few attributes that may be useful for specific
1746 optimizations. */
1747 for (i = 31; i >= 0; i--)
1749 if ((remainder & (1 << i)) == 0)
1750 clear_sign_bit_copies++;
1751 else
1752 break;
1755 for (i = 31; i >= 0; i--)
1757 if ((remainder & (1 << i)) != 0)
1758 set_sign_bit_copies++;
1759 else
1760 break;
1763 for (i = 0; i <= 31; i++)
1765 if ((remainder & (1 << i)) == 0)
1766 clear_zero_bit_copies++;
1767 else
1768 break;
1771 for (i = 0; i <= 31; i++)
1773 if ((remainder & (1 << i)) != 0)
1774 set_zero_bit_copies++;
1775 else
1776 break;
1779 switch (code)
1781 case SET:
1782 /* See if we can do this by sign_extending a constant that is known
1783 to be negative. This is a good, way of doing it, since the shift
1784 may well merge into a subsequent insn. */
1785 if (set_sign_bit_copies > 1)
1787 if (const_ok_for_arm
1788 (temp1 = ARM_SIGN_EXTEND (remainder
1789 << (set_sign_bit_copies - 1))))
1791 if (generate)
1793 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
1794 emit_constant_insn (cond,
1795 gen_rtx_SET (VOIDmode, new_src,
1796 GEN_INT (temp1)));
1797 emit_constant_insn (cond,
1798 gen_ashrsi3 (target, new_src,
1799 GEN_INT (set_sign_bit_copies - 1)));
1801 return 2;
1803 /* For an inverted constant, we will need to set the low bits,
1804 these will be shifted out of harm's way. */
1805 temp1 |= (1 << (set_sign_bit_copies - 1)) - 1;
1806 if (const_ok_for_arm (~temp1))
1808 if (generate)
1810 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
1811 emit_constant_insn (cond,
1812 gen_rtx_SET (VOIDmode, new_src,
1813 GEN_INT (temp1)));
1814 emit_constant_insn (cond,
1815 gen_ashrsi3 (target, new_src,
1816 GEN_INT (set_sign_bit_copies - 1)));
1818 return 2;
1822 /* See if we can generate this by setting the bottom (or the top)
1823 16 bits, and then shifting these into the other half of the
1824 word. We only look for the simplest cases, to do more would cost
1825 too much. Be careful, however, not to generate this when the
1826 alternative would take fewer insns. */
1827 if (val & 0xffff0000)
1829 temp1 = remainder & 0xffff0000;
1830 temp2 = remainder & 0x0000ffff;
1832 /* Overlaps outside this range are best done using other methods. */
1833 for (i = 9; i < 24; i++)
1835 if ((((temp2 | (temp2 << i)) & 0xffffffff) == remainder)
1836 && !const_ok_for_arm (temp2))
1838 rtx new_src = (subtargets
1839 ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
1840 : target);
1841 insns = arm_gen_constant (code, mode, cond, temp2, new_src,
1842 source, subtargets, generate);
1843 source = new_src;
1844 if (generate)
1845 emit_constant_insn
1846 (cond,
1847 gen_rtx_SET
1848 (VOIDmode, target,
1849 gen_rtx_IOR (mode,
1850 gen_rtx_ASHIFT (mode, source,
1851 GEN_INT (i)),
1852 source)));
1853 return insns + 1;
1857 /* Don't duplicate cases already considered. */
1858 for (i = 17; i < 24; i++)
1860 if (((temp1 | (temp1 >> i)) == remainder)
1861 && !const_ok_for_arm (temp1))
1863 rtx new_src = (subtargets
1864 ? (generate ? gen_reg_rtx (mode) : NULL_RTX)
1865 : target);
1866 insns = arm_gen_constant (code, mode, cond, temp1, new_src,
1867 source, subtargets, generate);
1868 source = new_src;
1869 if (generate)
1870 emit_constant_insn
1871 (cond,
1872 gen_rtx_SET (VOIDmode, target,
1873 gen_rtx_IOR
1874 (mode,
1875 gen_rtx_LSHIFTRT (mode, source,
1876 GEN_INT (i)),
1877 source)));
1878 return insns + 1;
1882 break;
1884 case IOR:
1885 case XOR:
1886 /* If we have IOR or XOR, and the constant can be loaded in a
1887 single instruction, and we can find a temporary to put it in,
1888 then this can be done in two instructions instead of 3-4. */
1889 if (subtargets
1890 /* TARGET can't be NULL if SUBTARGETS is 0 */
1891 || (reload_completed && !reg_mentioned_p (target, source)))
1893 if (const_ok_for_arm (ARM_SIGN_EXTEND (~val)))
1895 if (generate)
1897 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
1899 emit_constant_insn (cond,
1900 gen_rtx_SET (VOIDmode, sub,
1901 GEN_INT (val)));
1902 emit_constant_insn (cond,
1903 gen_rtx_SET (VOIDmode, target,
1904 gen_rtx_fmt_ee (code, mode,
1905 source, sub)));
1907 return 2;
1911 if (code == XOR)
1912 break;
1914 if (set_sign_bit_copies > 8
1915 && (val & (-1 << (32 - set_sign_bit_copies))) == val)
1917 if (generate)
1919 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
1920 rtx shift = GEN_INT (set_sign_bit_copies);
1922 emit_constant_insn
1923 (cond,
1924 gen_rtx_SET (VOIDmode, sub,
1925 gen_rtx_NOT (mode,
1926 gen_rtx_ASHIFT (mode,
1927 source,
1928 shift))));
1929 emit_constant_insn
1930 (cond,
1931 gen_rtx_SET (VOIDmode, target,
1932 gen_rtx_NOT (mode,
1933 gen_rtx_LSHIFTRT (mode, sub,
1934 shift))));
1936 return 2;
1939 if (set_zero_bit_copies > 8
1940 && (remainder & ((1 << set_zero_bit_copies) - 1)) == remainder)
1942 if (generate)
1944 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
1945 rtx shift = GEN_INT (set_zero_bit_copies);
1947 emit_constant_insn
1948 (cond,
1949 gen_rtx_SET (VOIDmode, sub,
1950 gen_rtx_NOT (mode,
1951 gen_rtx_LSHIFTRT (mode,
1952 source,
1953 shift))));
1954 emit_constant_insn
1955 (cond,
1956 gen_rtx_SET (VOIDmode, target,
1957 gen_rtx_NOT (mode,
1958 gen_rtx_ASHIFT (mode, sub,
1959 shift))));
1961 return 2;
1964 if (const_ok_for_arm (temp1 = ARM_SIGN_EXTEND (~val)))
1966 if (generate)
1968 rtx sub = subtargets ? gen_reg_rtx (mode) : target;
1969 emit_constant_insn (cond,
1970 gen_rtx_SET (VOIDmode, sub,
1971 gen_rtx_NOT (mode, source)));
1972 source = sub;
1973 if (subtargets)
1974 sub = gen_reg_rtx (mode);
1975 emit_constant_insn (cond,
1976 gen_rtx_SET (VOIDmode, sub,
1977 gen_rtx_AND (mode, source,
1978 GEN_INT (temp1))));
1979 emit_constant_insn (cond,
1980 gen_rtx_SET (VOIDmode, target,
1981 gen_rtx_NOT (mode, sub)));
1983 return 3;
1985 break;
1987 case AND:
1988 /* See if two shifts will do 2 or more insn's worth of work. */
1989 if (clear_sign_bit_copies >= 16 && clear_sign_bit_copies < 24)
1991 HOST_WIDE_INT shift_mask = ((0xffffffff
1992 << (32 - clear_sign_bit_copies))
1993 & 0xffffffff);
1995 if ((remainder | shift_mask) != 0xffffffff)
1997 if (generate)
1999 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2000 insns = arm_gen_constant (AND, mode, cond,
2001 remainder | shift_mask,
2002 new_src, source, subtargets, 1);
2003 source = new_src;
2005 else
2007 rtx targ = subtargets ? NULL_RTX : target;
2008 insns = arm_gen_constant (AND, mode, cond,
2009 remainder | shift_mask,
2010 targ, source, subtargets, 0);
2014 if (generate)
2016 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2017 rtx shift = GEN_INT (clear_sign_bit_copies);
2019 emit_insn (gen_ashlsi3 (new_src, source, shift));
2020 emit_insn (gen_lshrsi3 (target, new_src, shift));
2023 return insns + 2;
2026 if (clear_zero_bit_copies >= 16 && clear_zero_bit_copies < 24)
2028 HOST_WIDE_INT shift_mask = (1 << clear_zero_bit_copies) - 1;
2030 if ((remainder | shift_mask) != 0xffffffff)
2032 if (generate)
2034 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2036 insns = arm_gen_constant (AND, mode, cond,
2037 remainder | shift_mask,
2038 new_src, source, subtargets, 1);
2039 source = new_src;
2041 else
2043 rtx targ = subtargets ? NULL_RTX : target;
2045 insns = arm_gen_constant (AND, mode, cond,
2046 remainder | shift_mask,
2047 targ, source, subtargets, 0);
2051 if (generate)
2053 rtx new_src = subtargets ? gen_reg_rtx (mode) : target;
2054 rtx shift = GEN_INT (clear_zero_bit_copies);
2056 emit_insn (gen_lshrsi3 (new_src, source, shift));
2057 emit_insn (gen_ashlsi3 (target, new_src, shift));
2060 return insns + 2;
2063 break;
2065 default:
2066 break;
2069 for (i = 0; i < 32; i++)
2070 if (remainder & (1 << i))
2071 num_bits_set++;
2073 if (code == AND || (can_invert && num_bits_set > 16))
2074 remainder = (~remainder) & 0xffffffff;
2075 else if (code == PLUS && num_bits_set > 16)
2076 remainder = (-remainder) & 0xffffffff;
2077 else
2079 can_invert = 0;
2080 can_negate = 0;
2083 /* Now try and find a way of doing the job in either two or three
2084 instructions.
2085 We start by looking for the largest block of zeros that are aligned on
2086 a 2-bit boundary, we then fill up the temps, wrapping around to the
2087 top of the word when we drop off the bottom.
2088 In the worst case this code should produce no more than four insns. */
2090 int best_start = 0;
2091 int best_consecutive_zeros = 0;
2093 for (i = 0; i < 32; i += 2)
2095 int consecutive_zeros = 0;
2097 if (!(remainder & (3 << i)))
2099 while ((i < 32) && !(remainder & (3 << i)))
2101 consecutive_zeros += 2;
2102 i += 2;
2104 if (consecutive_zeros > best_consecutive_zeros)
2106 best_consecutive_zeros = consecutive_zeros;
2107 best_start = i - consecutive_zeros;
2109 i -= 2;
2113 /* So long as it won't require any more insns to do so, it's
2114 desirable to emit a small constant (in bits 0...9) in the last
2115 insn. This way there is more chance that it can be combined with
2116 a later addressing insn to form a pre-indexed load or store
2117 operation. Consider:
2119 *((volatile int *)0xe0000100) = 1;
2120 *((volatile int *)0xe0000110) = 2;
2122 We want this to wind up as:
2124 mov rA, #0xe0000000
2125 mov rB, #1
2126 str rB, [rA, #0x100]
2127 mov rB, #2
2128 str rB, [rA, #0x110]
2130 rather than having to synthesize both large constants from scratch.
2132 Therefore, we calculate how many insns would be required to emit
2133 the constant starting from `best_start', and also starting from
2134 zero (i.e. with bit 31 first to be output). If `best_start' doesn't
2135 yield a shorter sequence, we may as well use zero. */
2136 if (best_start != 0
2137 && ((((unsigned HOST_WIDE_INT) 1) << best_start) < remainder)
2138 && (count_insns_for_constant (remainder, 0) <=
2139 count_insns_for_constant (remainder, best_start)))
2140 best_start = 0;
2142 /* Now start emitting the insns. */
2143 i = best_start;
2146 int end;
2148 if (i <= 0)
2149 i += 32;
2150 if (remainder & (3 << (i - 2)))
2152 end = i - 8;
2153 if (end < 0)
2154 end += 32;
2155 temp1 = remainder & ((0x0ff << end)
2156 | ((i < end) ? (0xff >> (32 - end)) : 0));
2157 remainder &= ~temp1;
2159 if (generate)
2161 rtx new_src, temp1_rtx;
2163 if (code == SET || code == MINUS)
2165 new_src = (subtargets ? gen_reg_rtx (mode) : target);
2166 if (can_invert && code != MINUS)
2167 temp1 = ~temp1;
2169 else
2171 if (remainder && subtargets)
2172 new_src = gen_reg_rtx (mode);
2173 else
2174 new_src = target;
2175 if (can_invert)
2176 temp1 = ~temp1;
2177 else if (can_negate)
2178 temp1 = -temp1;
2181 temp1 = trunc_int_for_mode (temp1, mode);
2182 temp1_rtx = GEN_INT (temp1);
2184 if (code == SET)
2186 else if (code == MINUS)
2187 temp1_rtx = gen_rtx_MINUS (mode, temp1_rtx, source);
2188 else
2189 temp1_rtx = gen_rtx_fmt_ee (code, mode, source, temp1_rtx);
2191 emit_constant_insn (cond,
2192 gen_rtx_SET (VOIDmode, new_src,
2193 temp1_rtx));
2194 source = new_src;
2197 if (code == SET)
2199 can_invert = 0;
2200 code = PLUS;
2202 else if (code == MINUS)
2203 code = PLUS;
2205 insns++;
2206 i -= 6;
2208 i -= 2;
2210 while (remainder);
2213 return insns;
2216 /* Canonicalize a comparison so that we are more likely to recognize it.
2217 This can be done for a few constant compares, where we can make the
2218 immediate value easier to load. */
2220 enum rtx_code
2221 arm_canonicalize_comparison (enum rtx_code code, rtx * op1)
2223 unsigned HOST_WIDE_INT i = INTVAL (*op1);
2225 switch (code)
2227 case EQ:
2228 case NE:
2229 return code;
2231 case GT:
2232 case LE:
2233 if (i != ((((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
2234 && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
2236 *op1 = GEN_INT (i + 1);
2237 return code == GT ? GE : LT;
2239 break;
2241 case GE:
2242 case LT:
2243 if (i != (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1))
2244 && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
2246 *op1 = GEN_INT (i - 1);
2247 return code == GE ? GT : LE;
2249 break;
2251 case GTU:
2252 case LEU:
2253 if (i != ~((unsigned HOST_WIDE_INT) 0)
2254 && (const_ok_for_arm (i + 1) || const_ok_for_arm (-(i + 1))))
2256 *op1 = GEN_INT (i + 1);
2257 return code == GTU ? GEU : LTU;
2259 break;
2261 case GEU:
2262 case LTU:
2263 if (i != 0
2264 && (const_ok_for_arm (i - 1) || const_ok_for_arm (-(i - 1))))
2266 *op1 = GEN_INT (i - 1);
2267 return code == GEU ? GTU : LEU;
2269 break;
2271 default:
2272 abort ();
2275 return code;
2279 /* Define how to find the value returned by a function. */
2282 arm_function_value(tree type, tree func ATTRIBUTE_UNUSED)
2284 enum machine_mode mode;
2285 int unsignedp ATTRIBUTE_UNUSED;
2286 rtx r ATTRIBUTE_UNUSED;
2289 mode = TYPE_MODE (type);
2290 /* Promote integer types. */
2291 if (INTEGRAL_TYPE_P (type))
2292 PROMOTE_FUNCTION_MODE (mode, unsignedp, type);
2293 return LIBCALL_VALUE(mode);
2296 /* Determine the amount of memory needed to store the possible return
2297 registers of an untyped call. */
2299 arm_apply_result_size (void)
2301 int size = 16;
2303 if (TARGET_ARM)
2305 if (TARGET_HARD_FLOAT_ABI)
2307 if (TARGET_FPA)
2308 size += 12;
2309 if (TARGET_MAVERICK)
2310 size += 8;
2312 if (TARGET_IWMMXT_ABI)
2313 size += 8;
2316 return size;
2319 /* Decide whether a type should be returned in memory (true)
2320 or in a register (false). This is called by the macro
2321 RETURN_IN_MEMORY. */
2323 arm_return_in_memory (tree type)
2325 HOST_WIDE_INT size;
2327 if (!AGGREGATE_TYPE_P (type) &&
2328 !(TARGET_AAPCS_BASED && TREE_CODE (type) == COMPLEX_TYPE))
2329 /* All simple types are returned in registers.
2330 For AAPCS, complex types are treated the same as aggregates. */
2331 return 0;
2333 size = int_size_in_bytes (type);
2335 if (arm_abi != ARM_ABI_APCS)
2337 /* ATPCS and later return aggregate types in memory only if they are
2338 larger than a word (or are variable size). */
2339 return (size < 0 || size > UNITS_PER_WORD);
2342 /* For the arm-wince targets we choose to be compatible with Microsoft's
2343 ARM and Thumb compilers, which always return aggregates in memory. */
2344 #ifndef ARM_WINCE
2345 /* All structures/unions bigger than one word are returned in memory.
2346 Also catch the case where int_size_in_bytes returns -1. In this case
2347 the aggregate is either huge or of variable size, and in either case
2348 we will want to return it via memory and not in a register. */
2349 if (size < 0 || size > UNITS_PER_WORD)
2350 return 1;
2352 if (TREE_CODE (type) == RECORD_TYPE)
2354 tree field;
2356 /* For a struct the APCS says that we only return in a register
2357 if the type is 'integer like' and every addressable element
2358 has an offset of zero. For practical purposes this means
2359 that the structure can have at most one non bit-field element
2360 and that this element must be the first one in the structure. */
2362 /* Find the first field, ignoring non FIELD_DECL things which will
2363 have been created by C++. */
2364 for (field = TYPE_FIELDS (type);
2365 field && TREE_CODE (field) != FIELD_DECL;
2366 field = TREE_CHAIN (field))
2367 continue;
2369 if (field == NULL)
2370 return 0; /* An empty structure. Allowed by an extension to ANSI C. */
2372 /* Check that the first field is valid for returning in a register. */
2374 /* ... Floats are not allowed */
2375 if (FLOAT_TYPE_P (TREE_TYPE (field)))
2376 return 1;
2378 /* ... Aggregates that are not themselves valid for returning in
2379 a register are not allowed. */
2380 if (RETURN_IN_MEMORY (TREE_TYPE (field)))
2381 return 1;
2383 /* Now check the remaining fields, if any. Only bitfields are allowed,
2384 since they are not addressable. */
2385 for (field = TREE_CHAIN (field);
2386 field;
2387 field = TREE_CHAIN (field))
2389 if (TREE_CODE (field) != FIELD_DECL)
2390 continue;
2392 if (!DECL_BIT_FIELD_TYPE (field))
2393 return 1;
2396 return 0;
2399 if (TREE_CODE (type) == UNION_TYPE)
2401 tree field;
2403 /* Unions can be returned in registers if every element is
2404 integral, or can be returned in an integer register. */
2405 for (field = TYPE_FIELDS (type);
2406 field;
2407 field = TREE_CHAIN (field))
2409 if (TREE_CODE (field) != FIELD_DECL)
2410 continue;
2412 if (FLOAT_TYPE_P (TREE_TYPE (field)))
2413 return 1;
2415 if (RETURN_IN_MEMORY (TREE_TYPE (field)))
2416 return 1;
2419 return 0;
2421 #endif /* not ARM_WINCE */
2423 /* Return all other types in memory. */
2424 return 1;
2427 /* Indicate whether or not words of a double are in big-endian order. */
2430 arm_float_words_big_endian (void)
2432 if (TARGET_MAVERICK)
2433 return 0;
2435 /* For FPA, float words are always big-endian. For VFP, floats words
2436 follow the memory system mode. */
2438 if (TARGET_FPA)
2440 return 1;
2443 if (TARGET_VFP)
2444 return (TARGET_BIG_END ? 1 : 0);
2446 return 1;
2449 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2450 for a call to a function whose data type is FNTYPE.
2451 For a library call, FNTYPE is NULL. */
2452 void
2453 arm_init_cumulative_args (CUMULATIVE_ARGS *pcum, tree fntype,
2454 rtx libname ATTRIBUTE_UNUSED,
2455 tree fndecl ATTRIBUTE_UNUSED)
2457 /* On the ARM, the offset starts at 0. */
2458 pcum->nregs = ((fntype && aggregate_value_p (TREE_TYPE (fntype), fntype)) ? 1 : 0);
2459 pcum->iwmmxt_nregs = 0;
2460 pcum->can_split = true;
2462 pcum->call_cookie = CALL_NORMAL;
2464 if (TARGET_LONG_CALLS)
2465 pcum->call_cookie = CALL_LONG;
2467 /* Check for long call/short call attributes. The attributes
2468 override any command line option. */
2469 if (fntype)
2471 if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (fntype)))
2472 pcum->call_cookie = CALL_SHORT;
2473 else if (lookup_attribute ("long_call", TYPE_ATTRIBUTES (fntype)))
2474 pcum->call_cookie = CALL_LONG;
2477 /* Varargs vectors are treated the same as long long.
2478 named_count avoids having to change the way arm handles 'named' */
2479 pcum->named_count = 0;
2480 pcum->nargs = 0;
2482 if (TARGET_REALLY_IWMMXT && fntype)
2484 tree fn_arg;
2486 for (fn_arg = TYPE_ARG_TYPES (fntype);
2487 fn_arg;
2488 fn_arg = TREE_CHAIN (fn_arg))
2489 pcum->named_count += 1;
2491 if (! pcum->named_count)
2492 pcum->named_count = INT_MAX;
2497 /* Return true if mode/type need doubleword alignment. */
2498 bool
2499 arm_needs_doubleword_align (enum machine_mode mode, tree type)
2501 return (GET_MODE_ALIGNMENT (mode) > PARM_BOUNDARY
2502 || (type && TYPE_ALIGN (type) > PARM_BOUNDARY));
2506 /* Determine where to put an argument to a function.
2507 Value is zero to push the argument on the stack,
2508 or a hard register in which to store the argument.
2510 MODE is the argument's machine mode.
2511 TYPE is the data type of the argument (as a tree).
2512 This is null for libcalls where that information may
2513 not be available.
2514 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2515 the preceding args and about the function being called.
2516 NAMED is nonzero if this argument is a named parameter
2517 (otherwise it is an extra parameter matching an ellipsis). */
2520 arm_function_arg (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
2521 tree type, int named)
2523 int nregs;
2525 /* Varargs vectors are treated the same as long long.
2526 named_count avoids having to change the way arm handles 'named' */
2527 if (TARGET_IWMMXT_ABI
2528 && arm_vector_mode_supported_p (mode)
2529 && pcum->named_count > pcum->nargs + 1)
2531 if (pcum->iwmmxt_nregs <= 9)
2532 return gen_rtx_REG (mode, pcum->iwmmxt_nregs + FIRST_IWMMXT_REGNUM);
2533 else
2535 pcum->can_split = false;
2536 return NULL_RTX;
2540 /* Put doubleword aligned quantities in even register pairs. */
2541 if (pcum->nregs & 1
2542 && ARM_DOUBLEWORD_ALIGN
2543 && arm_needs_doubleword_align (mode, type))
2544 pcum->nregs++;
2546 if (mode == VOIDmode)
2547 /* Compute operand 2 of the call insn. */
2548 return GEN_INT (pcum->call_cookie);
2550 /* Only allow splitting an arg between regs and memory if all preceding
2551 args were allocated to regs. For args passed by reference we only count
2552 the reference pointer. */
2553 if (pcum->can_split)
2554 nregs = 1;
2555 else
2556 nregs = ARM_NUM_REGS2 (mode, type);
2558 if (!named || pcum->nregs + nregs > NUM_ARG_REGS)
2559 return NULL_RTX;
2561 return gen_rtx_REG (mode, pcum->nregs);
2564 static int
2565 arm_arg_partial_bytes (CUMULATIVE_ARGS *pcum, enum machine_mode mode,
2566 tree type, bool named ATTRIBUTE_UNUSED)
2568 int nregs = pcum->nregs;
2570 if (arm_vector_mode_supported_p (mode))
2571 return 0;
2573 if (NUM_ARG_REGS > nregs
2574 && (NUM_ARG_REGS < nregs + ARM_NUM_REGS2 (mode, type))
2575 && pcum->can_split)
2576 return (NUM_ARG_REGS - nregs) * UNITS_PER_WORD;
2578 return 0;
2581 /* Variable sized types are passed by reference. This is a GCC
2582 extension to the ARM ABI. */
2584 static bool
2585 arm_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
2586 enum machine_mode mode ATTRIBUTE_UNUSED,
2587 tree type, bool named ATTRIBUTE_UNUSED)
2589 return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
2592 /* Encode the current state of the #pragma [no_]long_calls. */
2593 typedef enum
2595 OFF, /* No #pramgma [no_]long_calls is in effect. */
2596 LONG, /* #pragma long_calls is in effect. */
2597 SHORT /* #pragma no_long_calls is in effect. */
2598 } arm_pragma_enum;
2600 static arm_pragma_enum arm_pragma_long_calls = OFF;
2602 void
2603 arm_pr_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
2605 arm_pragma_long_calls = LONG;
2608 void
2609 arm_pr_no_long_calls (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
2611 arm_pragma_long_calls = SHORT;
2614 void
2615 arm_pr_long_calls_off (struct cpp_reader * pfile ATTRIBUTE_UNUSED)
2617 arm_pragma_long_calls = OFF;
2620 /* Table of machine attributes. */
2621 const struct attribute_spec arm_attribute_table[] =
2623 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
2624 /* Function calls made to this symbol must be done indirectly, because
2625 it may lie outside of the 26 bit addressing range of a normal function
2626 call. */
2627 { "long_call", 0, 0, false, true, true, NULL },
2628 /* Whereas these functions are always known to reside within the 26 bit
2629 addressing range. */
2630 { "short_call", 0, 0, false, true, true, NULL },
2631 /* Interrupt Service Routines have special prologue and epilogue requirements. */
2632 { "isr", 0, 1, false, false, false, arm_handle_isr_attribute },
2633 { "interrupt", 0, 1, false, false, false, arm_handle_isr_attribute },
2634 { "naked", 0, 0, true, false, false, arm_handle_fndecl_attribute },
2635 #ifdef ARM_PE
2636 /* ARM/PE has three new attributes:
2637 interfacearm - ?
2638 dllexport - for exporting a function/variable that will live in a dll
2639 dllimport - for importing a function/variable from a dll
2641 Microsoft allows multiple declspecs in one __declspec, separating
2642 them with spaces. We do NOT support this. Instead, use __declspec
2643 multiple times.
2645 { "dllimport", 0, 0, true, false, false, NULL },
2646 { "dllexport", 0, 0, true, false, false, NULL },
2647 { "interfacearm", 0, 0, true, false, false, arm_handle_fndecl_attribute },
2648 #elif TARGET_DLLIMPORT_DECL_ATTRIBUTES
2649 { "dllimport", 0, 0, false, false, false, handle_dll_attribute },
2650 { "dllexport", 0, 0, false, false, false, handle_dll_attribute },
2651 { "notshared", 0, 0, false, true, false, arm_handle_notshared_attribute },
2652 #endif
2653 { NULL, 0, 0, false, false, false, NULL }
2656 /* Handle an attribute requiring a FUNCTION_DECL;
2657 arguments as in struct attribute_spec.handler. */
2658 static tree
2659 arm_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
2660 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
2662 if (TREE_CODE (*node) != FUNCTION_DECL)
2664 warning ("%qs attribute only applies to functions",
2665 IDENTIFIER_POINTER (name));
2666 *no_add_attrs = true;
2669 return NULL_TREE;
2672 /* Handle an "interrupt" or "isr" attribute;
2673 arguments as in struct attribute_spec.handler. */
2674 static tree
2675 arm_handle_isr_attribute (tree *node, tree name, tree args, int flags,
2676 bool *no_add_attrs)
2678 if (DECL_P (*node))
2680 if (TREE_CODE (*node) != FUNCTION_DECL)
2682 warning ("%qs attribute only applies to functions",
2683 IDENTIFIER_POINTER (name));
2684 *no_add_attrs = true;
2686 /* FIXME: the argument if any is checked for type attributes;
2687 should it be checked for decl ones? */
2689 else
2691 if (TREE_CODE (*node) == FUNCTION_TYPE
2692 || TREE_CODE (*node) == METHOD_TYPE)
2694 if (arm_isr_value (args) == ARM_FT_UNKNOWN)
2696 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
2697 *no_add_attrs = true;
2700 else if (TREE_CODE (*node) == POINTER_TYPE
2701 && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE
2702 || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE)
2703 && arm_isr_value (args) != ARM_FT_UNKNOWN)
2705 *node = build_variant_type_copy (*node);
2706 TREE_TYPE (*node) = build_type_attribute_variant
2707 (TREE_TYPE (*node),
2708 tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node))));
2709 *no_add_attrs = true;
2711 else
2713 /* Possibly pass this attribute on from the type to a decl. */
2714 if (flags & ((int) ATTR_FLAG_DECL_NEXT
2715 | (int) ATTR_FLAG_FUNCTION_NEXT
2716 | (int) ATTR_FLAG_ARRAY_NEXT))
2718 *no_add_attrs = true;
2719 return tree_cons (name, args, NULL_TREE);
2721 else
2723 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
2728 return NULL_TREE;
2731 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
2732 /* Handle the "notshared" attribute. This attribute is another way of
2733 requesting hidden visibility. ARM's compiler supports
2734 "__declspec(notshared)"; we support the same thing via an
2735 attribute. */
2737 static tree
2738 arm_handle_notshared_attribute (tree *node,
2739 tree name ATTRIBUTE_UNUSED,
2740 tree args ATTRIBUTE_UNUSED,
2741 int flags ATTRIBUTE_UNUSED,
2742 bool *no_add_attrs)
2744 tree decl = TYPE_NAME (*node);
2746 if (decl)
2748 DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
2749 DECL_VISIBILITY_SPECIFIED (decl) = 1;
2750 *no_add_attrs = false;
2752 return NULL_TREE;
2754 #endif
2756 /* Return 0 if the attributes for two types are incompatible, 1 if they
2757 are compatible, and 2 if they are nearly compatible (which causes a
2758 warning to be generated). */
2759 static int
2760 arm_comp_type_attributes (tree type1, tree type2)
2762 int l1, l2, s1, s2;
2764 /* Check for mismatch of non-default calling convention. */
2765 if (TREE_CODE (type1) != FUNCTION_TYPE)
2766 return 1;
2768 /* Check for mismatched call attributes. */
2769 l1 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type1)) != NULL;
2770 l2 = lookup_attribute ("long_call", TYPE_ATTRIBUTES (type2)) != NULL;
2771 s1 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type1)) != NULL;
2772 s2 = lookup_attribute ("short_call", TYPE_ATTRIBUTES (type2)) != NULL;
2774 /* Only bother to check if an attribute is defined. */
2775 if (l1 | l2 | s1 | s2)
2777 /* If one type has an attribute, the other must have the same attribute. */
2778 if ((l1 != l2) || (s1 != s2))
2779 return 0;
2781 /* Disallow mixed attributes. */
2782 if ((l1 & s2) || (l2 & s1))
2783 return 0;
2786 /* Check for mismatched ISR attribute. */
2787 l1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL;
2788 if (! l1)
2789 l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL;
2790 l2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL;
2791 if (! l2)
2792 l1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL;
2793 if (l1 != l2)
2794 return 0;
2796 return 1;
2799 /* Encode long_call or short_call attribute by prefixing
2800 symbol name in DECL with a special character FLAG. */
2801 void
2802 arm_encode_call_attribute (tree decl, int flag)
2804 const char * str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
2805 int len = strlen (str);
2806 char * newstr;
2808 /* Do not allow weak functions to be treated as short call. */
2809 if (DECL_WEAK (decl) && flag == SHORT_CALL_FLAG_CHAR)
2810 return;
2812 newstr = alloca (len + 2);
2813 newstr[0] = flag;
2814 strcpy (newstr + 1, str);
2816 newstr = (char *) ggc_alloc_string (newstr, len + 1);
2817 XSTR (XEXP (DECL_RTL (decl), 0), 0) = newstr;
2820 /* Assigns default attributes to newly defined type. This is used to
2821 set short_call/long_call attributes for function types of
2822 functions defined inside corresponding #pragma scopes. */
2823 static void
2824 arm_set_default_type_attributes (tree type)
2826 /* Add __attribute__ ((long_call)) to all functions, when
2827 inside #pragma long_calls or __attribute__ ((short_call)),
2828 when inside #pragma no_long_calls. */
2829 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
2831 tree type_attr_list, attr_name;
2832 type_attr_list = TYPE_ATTRIBUTES (type);
2834 if (arm_pragma_long_calls == LONG)
2835 attr_name = get_identifier ("long_call");
2836 else if (arm_pragma_long_calls == SHORT)
2837 attr_name = get_identifier ("short_call");
2838 else
2839 return;
2841 type_attr_list = tree_cons (attr_name, NULL_TREE, type_attr_list);
2842 TYPE_ATTRIBUTES (type) = type_attr_list;
2846 /* Return 1 if the operand is a SYMBOL_REF for a function known to be
2847 defined within the current compilation unit. If this cannot be
2848 determined, then 0 is returned. */
2849 static int
2850 current_file_function_operand (rtx sym_ref)
2852 /* This is a bit of a fib. A function will have a short call flag
2853 applied to its name if it has the short call attribute, or it has
2854 already been defined within the current compilation unit. */
2855 if (ENCODED_SHORT_CALL_ATTR_P (XSTR (sym_ref, 0)))
2856 return 1;
2858 /* The current function is always defined within the current compilation
2859 unit. If it s a weak definition however, then this may not be the real
2860 definition of the function, and so we have to say no. */
2861 if (sym_ref == XEXP (DECL_RTL (current_function_decl), 0)
2862 && !DECL_WEAK (current_function_decl))
2863 return 1;
2865 /* We cannot make the determination - default to returning 0. */
2866 return 0;
2869 /* Return nonzero if a 32 bit "long_call" should be generated for
2870 this call. We generate a long_call if the function:
2872 a. has an __attribute__((long call))
2873 or b. is within the scope of a #pragma long_calls
2874 or c. the -mlong-calls command line switch has been specified
2875 . and either:
2876 1. -ffunction-sections is in effect
2877 or 2. the current function has __attribute__ ((section))
2878 or 3. the target function has __attribute__ ((section))
2880 However we do not generate a long call if the function:
2882 d. has an __attribute__ ((short_call))
2883 or e. is inside the scope of a #pragma no_long_calls
2884 or f. is defined within the current compilation unit.
2886 This function will be called by C fragments contained in the machine
2887 description file. SYM_REF and CALL_COOKIE correspond to the matched
2888 rtl operands. CALL_SYMBOL is used to distinguish between
2889 two different callers of the function. It is set to 1 in the
2890 "call_symbol" and "call_symbol_value" patterns and to 0 in the "call"
2891 and "call_value" patterns. This is because of the difference in the
2892 SYM_REFs passed by these patterns. */
2894 arm_is_longcall_p (rtx sym_ref, int call_cookie, int call_symbol)
2896 if (!call_symbol)
2898 if (GET_CODE (sym_ref) != MEM)
2899 return 0;
2901 sym_ref = XEXP (sym_ref, 0);
2904 if (GET_CODE (sym_ref) != SYMBOL_REF)
2905 return 0;
2907 if (call_cookie & CALL_SHORT)
2908 return 0;
2910 if (TARGET_LONG_CALLS)
2912 if (flag_function_sections
2913 || DECL_SECTION_NAME (current_function_decl))
2914 /* c.3 is handled by the definition of the
2915 ARM_DECLARE_FUNCTION_SIZE macro. */
2916 return 1;
2919 if (current_file_function_operand (sym_ref))
2920 return 0;
2922 return (call_cookie & CALL_LONG)
2923 || ENCODED_LONG_CALL_ATTR_P (XSTR (sym_ref, 0))
2924 || TARGET_LONG_CALLS;
2927 /* Return nonzero if it is ok to make a tail-call to DECL. */
2928 static bool
2929 arm_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
2931 int call_type = TARGET_LONG_CALLS ? CALL_LONG : CALL_NORMAL;
2933 if (cfun->machine->sibcall_blocked)
2934 return false;
2936 /* Never tailcall something for which we have no decl, or if we
2937 are in Thumb mode. */
2938 if (decl == NULL || TARGET_THUMB)
2939 return false;
2941 /* Get the calling method. */
2942 if (lookup_attribute ("short_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
2943 call_type = CALL_SHORT;
2944 else if (lookup_attribute ("long_call", TYPE_ATTRIBUTES (TREE_TYPE (decl))))
2945 call_type = CALL_LONG;
2947 /* Cannot tail-call to long calls, since these are out of range of
2948 a branch instruction. However, if not compiling PIC, we know
2949 we can reach the symbol if it is in this compilation unit. */
2950 if (call_type == CALL_LONG && (flag_pic || !TREE_ASM_WRITTEN (decl)))
2951 return false;
2953 /* If we are interworking and the function is not declared static
2954 then we can't tail-call it unless we know that it exists in this
2955 compilation unit (since it might be a Thumb routine). */
2956 if (TARGET_INTERWORK && TREE_PUBLIC (decl) && !TREE_ASM_WRITTEN (decl))
2957 return false;
2959 /* Never tailcall from an ISR routine - it needs a special exit sequence. */
2960 if (IS_INTERRUPT (arm_current_func_type ()))
2961 return false;
2963 /* Everything else is ok. */
2964 return true;
2968 /* Addressing mode support functions. */
2970 /* Return nonzero if X is a legitimate immediate operand when compiling
2971 for PIC. */
2973 legitimate_pic_operand_p (rtx x)
2975 if (CONSTANT_P (x)
2976 && flag_pic
2977 && (GET_CODE (x) == SYMBOL_REF
2978 || (GET_CODE (x) == CONST
2979 && GET_CODE (XEXP (x, 0)) == PLUS
2980 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)))
2981 return 0;
2983 return 1;
2987 legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
2989 if (GET_CODE (orig) == SYMBOL_REF
2990 || GET_CODE (orig) == LABEL_REF)
2992 #ifndef AOF_ASSEMBLER
2993 rtx pic_ref, address;
2994 #endif
2995 rtx insn;
2996 int subregs = 0;
2998 if (reg == 0)
3000 if (no_new_pseudos)
3001 abort ();
3002 else
3003 reg = gen_reg_rtx (Pmode);
3005 subregs = 1;
3008 #ifdef AOF_ASSEMBLER
3009 /* The AOF assembler can generate relocations for these directly, and
3010 understands that the PIC register has to be added into the offset. */
3011 insn = emit_insn (gen_pic_load_addr_based (reg, orig));
3012 #else
3013 if (subregs)
3014 address = gen_reg_rtx (Pmode);
3015 else
3016 address = reg;
3018 if (TARGET_ARM)
3019 emit_insn (gen_pic_load_addr_arm (address, orig));
3020 else
3021 emit_insn (gen_pic_load_addr_thumb (address, orig));
3023 if ((GET_CODE (orig) == LABEL_REF
3024 || (GET_CODE (orig) == SYMBOL_REF &&
3025 SYMBOL_REF_LOCAL_P (orig)))
3026 && NEED_GOT_RELOC)
3027 pic_ref = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, address);
3028 else
3030 pic_ref = gen_const_mem (Pmode,
3031 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
3032 address));
3035 insn = emit_move_insn (reg, pic_ref);
3036 #endif
3037 current_function_uses_pic_offset_table = 1;
3038 /* Put a REG_EQUAL note on this insn, so that it can be optimized
3039 by loop. */
3040 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig,
3041 REG_NOTES (insn));
3042 return reg;
3044 else if (GET_CODE (orig) == CONST)
3046 rtx base, offset;
3048 if (GET_CODE (XEXP (orig, 0)) == PLUS
3049 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
3050 return orig;
3052 if (reg == 0)
3054 if (no_new_pseudos)
3055 abort ();
3056 else
3057 reg = gen_reg_rtx (Pmode);
3060 if (GET_CODE (XEXP (orig, 0)) == PLUS)
3062 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
3063 offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
3064 base == reg ? 0 : reg);
3066 else
3067 abort ();
3069 if (GET_CODE (offset) == CONST_INT)
3071 /* The base register doesn't really matter, we only want to
3072 test the index for the appropriate mode. */
3073 if (!arm_legitimate_index_p (mode, offset, SET, 0))
3075 if (!no_new_pseudos)
3076 offset = force_reg (Pmode, offset);
3077 else
3078 abort ();
3081 if (GET_CODE (offset) == CONST_INT)
3082 return plus_constant (base, INTVAL (offset));
3085 if (GET_MODE_SIZE (mode) > 4
3086 && (GET_MODE_CLASS (mode) == MODE_INT
3087 || TARGET_SOFT_FLOAT))
3089 emit_insn (gen_addsi3 (reg, base, offset));
3090 return reg;
3093 return gen_rtx_PLUS (Pmode, base, offset);
3096 return orig;
3100 /* Find a spare low register to use during the prolog of a function. */
3102 static int
3103 thumb_find_work_register (unsigned long pushed_regs_mask)
3105 int reg;
3107 /* Check the argument registers first as these are call-used. The
3108 register allocation order means that sometimes r3 might be used
3109 but earlier argument registers might not, so check them all. */
3110 for (reg = LAST_ARG_REGNUM; reg >= 0; reg --)
3111 if (!regs_ever_live[reg])
3112 return reg;
3114 /* Before going on to check the call-saved registers we can try a couple
3115 more ways of deducing that r3 is available. The first is when we are
3116 pushing anonymous arguments onto the stack and we have less than 4
3117 registers worth of fixed arguments(*). In this case r3 will be part of
3118 the variable argument list and so we can be sure that it will be
3119 pushed right at the start of the function. Hence it will be available
3120 for the rest of the prologue.
3121 (*): ie current_function_pretend_args_size is greater than 0. */
3122 if (cfun->machine->uses_anonymous_args
3123 && current_function_pretend_args_size > 0)
3124 return LAST_ARG_REGNUM;
3126 /* The other case is when we have fixed arguments but less than 4 registers
3127 worth. In this case r3 might be used in the body of the function, but
3128 it is not being used to convey an argument into the function. In theory
3129 we could just check current_function_args_size to see how many bytes are
3130 being passed in argument registers, but it seems that it is unreliable.
3131 Sometimes it will have the value 0 when in fact arguments are being
3132 passed. (See testcase execute/20021111-1.c for an example). So we also
3133 check the args_info.nregs field as well. The problem with this field is
3134 that it makes no allowances for arguments that are passed to the
3135 function but which are not used. Hence we could miss an opportunity
3136 when a function has an unused argument in r3. But it is better to be
3137 safe than to be sorry. */
3138 if (! cfun->machine->uses_anonymous_args
3139 && current_function_args_size >= 0
3140 && current_function_args_size <= (LAST_ARG_REGNUM * UNITS_PER_WORD)
3141 && cfun->args_info.nregs < 4)
3142 return LAST_ARG_REGNUM;
3144 /* Otherwise look for a call-saved register that is going to be pushed. */
3145 for (reg = LAST_LO_REGNUM; reg > LAST_ARG_REGNUM; reg --)
3146 if (pushed_regs_mask & (1 << reg))
3147 return reg;
3149 /* Something went wrong - thumb_compute_save_reg_mask()
3150 should have arranged for a suitable register to be pushed. */
3151 abort ();
3155 /* Generate code to load the PIC register. In thumb mode SCRATCH is a
3156 low register. */
3158 void
3159 arm_load_pic_register (unsigned int scratch)
3161 #ifndef AOF_ASSEMBLER
3162 rtx l1, pic_tmp, pic_tmp2, pic_rtx;
3163 rtx global_offset_table;
3165 if (current_function_uses_pic_offset_table == 0 || TARGET_SINGLE_PIC_BASE)
3166 return;
3168 if (!flag_pic)
3169 abort ();
3171 l1 = gen_label_rtx ();
3173 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
3174 /* On the ARM the PC register contains 'dot + 8' at the time of the
3175 addition, on the Thumb it is 'dot + 4'. */
3176 pic_tmp = plus_constant (gen_rtx_LABEL_REF (Pmode, l1), TARGET_ARM ? 8 : 4);
3177 if (GOT_PCREL)
3178 pic_tmp2 = gen_rtx_CONST (VOIDmode,
3179 gen_rtx_PLUS (Pmode, global_offset_table, pc_rtx));
3180 else
3181 pic_tmp2 = gen_rtx_CONST (VOIDmode, global_offset_table);
3183 pic_rtx = gen_rtx_CONST (Pmode, gen_rtx_MINUS (Pmode, pic_tmp2, pic_tmp));
3185 if (TARGET_ARM)
3187 emit_insn (gen_pic_load_addr_arm (pic_offset_table_rtx, pic_rtx));
3188 emit_insn (gen_pic_add_dot_plus_eight (pic_offset_table_rtx, l1));
3190 else
3192 if (REGNO (pic_offset_table_rtx) > LAST_LO_REGNUM)
3194 /* We will have pushed the pic register, so should always be
3195 able to find a work register. */
3196 pic_tmp = gen_rtx_REG (SImode, scratch);
3197 emit_insn (gen_pic_load_addr_thumb (pic_tmp, pic_rtx));
3198 emit_insn (gen_movsi (pic_offset_table_rtx, pic_tmp));
3200 else
3201 emit_insn (gen_pic_load_addr_thumb (pic_offset_table_rtx, pic_rtx));
3202 emit_insn (gen_pic_add_dot_plus_four (pic_offset_table_rtx, l1));
3205 /* Need to emit this whether or not we obey regdecls,
3206 since setjmp/longjmp can cause life info to screw up. */
3207 emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
3208 #endif /* AOF_ASSEMBLER */
3212 /* Return nonzero if X is valid as an ARM state addressing register. */
3213 static int
3214 arm_address_register_rtx_p (rtx x, int strict_p)
3216 int regno;
3218 if (GET_CODE (x) != REG)
3219 return 0;
3221 regno = REGNO (x);
3223 if (strict_p)
3224 return ARM_REGNO_OK_FOR_BASE_P (regno);
3226 return (regno <= LAST_ARM_REGNUM
3227 || regno >= FIRST_PSEUDO_REGISTER
3228 || regno == FRAME_POINTER_REGNUM
3229 || regno == ARG_POINTER_REGNUM);
3232 /* Return nonzero if X is a valid ARM state address operand. */
3234 arm_legitimate_address_p (enum machine_mode mode, rtx x, RTX_CODE outer,
3235 int strict_p)
3237 bool use_ldrd;
3238 enum rtx_code code = GET_CODE (x);
3240 if (arm_address_register_rtx_p (x, strict_p))
3241 return 1;
3243 use_ldrd = (TARGET_LDRD
3244 && (mode == DImode
3245 || (mode == DFmode && (TARGET_SOFT_FLOAT || TARGET_VFP))));
3247 if (code == POST_INC || code == PRE_DEC
3248 || ((code == PRE_INC || code == POST_DEC)
3249 && (use_ldrd || GET_MODE_SIZE (mode) <= 4)))
3250 return arm_address_register_rtx_p (XEXP (x, 0), strict_p);
3252 else if ((code == POST_MODIFY || code == PRE_MODIFY)
3253 && arm_address_register_rtx_p (XEXP (x, 0), strict_p)
3254 && GET_CODE (XEXP (x, 1)) == PLUS
3255 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
3257 rtx addend = XEXP (XEXP (x, 1), 1);
3259 /* Don't allow ldrd post increment by register because it's hard
3260 to fixup invalid register choices. */
3261 if (use_ldrd
3262 && GET_CODE (x) == POST_MODIFY
3263 && GET_CODE (addend) == REG)
3264 return 0;
3266 return ((use_ldrd || GET_MODE_SIZE (mode) <= 4)
3267 && arm_legitimate_index_p (mode, addend, outer, strict_p));
3270 /* After reload constants split into minipools will have addresses
3271 from a LABEL_REF. */
3272 else if (reload_completed
3273 && (code == LABEL_REF
3274 || (code == CONST
3275 && GET_CODE (XEXP (x, 0)) == PLUS
3276 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
3277 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
3278 return 1;
3280 else if (mode == TImode)
3281 return 0;
3283 else if (code == PLUS)
3285 rtx xop0 = XEXP (x, 0);
3286 rtx xop1 = XEXP (x, 1);
3288 return ((arm_address_register_rtx_p (xop0, strict_p)
3289 && arm_legitimate_index_p (mode, xop1, outer, strict_p))
3290 || (arm_address_register_rtx_p (xop1, strict_p)
3291 && arm_legitimate_index_p (mode, xop0, outer, strict_p)));
3294 #if 0
3295 /* Reload currently can't handle MINUS, so disable this for now */
3296 else if (GET_CODE (x) == MINUS)
3298 rtx xop0 = XEXP (x, 0);
3299 rtx xop1 = XEXP (x, 1);
3301 return (arm_address_register_rtx_p (xop0, strict_p)
3302 && arm_legitimate_index_p (mode, xop1, outer, strict_p));
3304 #endif
3306 else if (GET_MODE_CLASS (mode) != MODE_FLOAT
3307 && code == SYMBOL_REF
3308 && CONSTANT_POOL_ADDRESS_P (x)
3309 && ! (flag_pic
3310 && symbol_mentioned_p (get_pool_constant (x))))
3311 return 1;
3313 return 0;
3316 /* Return nonzero if INDEX is valid for an address index operand in
3317 ARM state. */
3318 static int
3319 arm_legitimate_index_p (enum machine_mode mode, rtx index, RTX_CODE outer,
3320 int strict_p)
3322 HOST_WIDE_INT range;
3323 enum rtx_code code = GET_CODE (index);
3325 /* Standard coprocessor addressing modes. */
3326 if (TARGET_HARD_FLOAT
3327 && (TARGET_FPA || TARGET_MAVERICK)
3328 && (GET_MODE_CLASS (mode) == MODE_FLOAT
3329 || (TARGET_MAVERICK && mode == DImode)))
3330 return (code == CONST_INT && INTVAL (index) < 1024
3331 && INTVAL (index) > -1024
3332 && (INTVAL (index) & 3) == 0);
3334 if (TARGET_REALLY_IWMMXT && VALID_IWMMXT_REG_MODE (mode))
3335 return (code == CONST_INT
3336 && INTVAL (index) < 1024
3337 && INTVAL (index) > -1024
3338 && (INTVAL (index) & 3) == 0);
3340 if (arm_address_register_rtx_p (index, strict_p)
3341 && (GET_MODE_SIZE (mode) <= 4))
3342 return 1;
3344 if (mode == DImode || mode == DFmode)
3346 if (code == CONST_INT)
3348 HOST_WIDE_INT val = INTVAL (index);
3350 if (TARGET_LDRD)
3351 return val > -256 && val < 256;
3352 else
3353 return val > -4096 && val < 4092;
3356 return TARGET_LDRD && arm_address_register_rtx_p (index, strict_p);
3359 if (GET_MODE_SIZE (mode) <= 4
3360 && ! (arm_arch4
3361 && (mode == HImode
3362 || (mode == QImode && outer == SIGN_EXTEND))))
3364 if (code == MULT)
3366 rtx xiop0 = XEXP (index, 0);
3367 rtx xiop1 = XEXP (index, 1);
3369 return ((arm_address_register_rtx_p (xiop0, strict_p)
3370 && power_of_two_operand (xiop1, SImode))
3371 || (arm_address_register_rtx_p (xiop1, strict_p)
3372 && power_of_two_operand (xiop0, SImode)));
3374 else if (code == LSHIFTRT || code == ASHIFTRT
3375 || code == ASHIFT || code == ROTATERT)
3377 rtx op = XEXP (index, 1);
3379 return (arm_address_register_rtx_p (XEXP (index, 0), strict_p)
3380 && GET_CODE (op) == CONST_INT
3381 && INTVAL (op) > 0
3382 && INTVAL (op) <= 31);
3386 /* For ARM v4 we may be doing a sign-extend operation during the
3387 load. */
3388 if (arm_arch4)
3390 if (mode == HImode || (outer == SIGN_EXTEND && mode == QImode))
3391 range = 256;
3392 else
3393 range = 4096;
3395 else
3396 range = (mode == HImode) ? 4095 : 4096;
3398 return (code == CONST_INT
3399 && INTVAL (index) < range
3400 && INTVAL (index) > -range);
3403 /* Return nonzero if X is valid as a Thumb state base register. */
3404 static int
3405 thumb_base_register_rtx_p (rtx x, enum machine_mode mode, int strict_p)
3407 int regno;
3409 if (GET_CODE (x) != REG)
3410 return 0;
3412 regno = REGNO (x);
3414 if (strict_p)
3415 return THUMB_REGNO_MODE_OK_FOR_BASE_P (regno, mode);
3417 return (regno <= LAST_LO_REGNUM
3418 || regno > LAST_VIRTUAL_REGISTER
3419 || regno == FRAME_POINTER_REGNUM
3420 || (GET_MODE_SIZE (mode) >= 4
3421 && (regno == STACK_POINTER_REGNUM
3422 || regno >= FIRST_PSEUDO_REGISTER
3423 || x == hard_frame_pointer_rtx
3424 || x == arg_pointer_rtx)));
3427 /* Return nonzero if x is a legitimate index register. This is the case
3428 for any base register that can access a QImode object. */
3429 inline static int
3430 thumb_index_register_rtx_p (rtx x, int strict_p)
3432 return thumb_base_register_rtx_p (x, QImode, strict_p);
3435 /* Return nonzero if x is a legitimate Thumb-state address.
3437 The AP may be eliminated to either the SP or the FP, so we use the
3438 least common denominator, e.g. SImode, and offsets from 0 to 64.
3440 ??? Verify whether the above is the right approach.
3442 ??? Also, the FP may be eliminated to the SP, so perhaps that
3443 needs special handling also.
3445 ??? Look at how the mips16 port solves this problem. It probably uses
3446 better ways to solve some of these problems.
3448 Although it is not incorrect, we don't accept QImode and HImode
3449 addresses based on the frame pointer or arg pointer until the
3450 reload pass starts. This is so that eliminating such addresses
3451 into stack based ones won't produce impossible code. */
3453 thumb_legitimate_address_p (enum machine_mode mode, rtx x, int strict_p)
3455 /* ??? Not clear if this is right. Experiment. */
3456 if (GET_MODE_SIZE (mode) < 4
3457 && !(reload_in_progress || reload_completed)
3458 && (reg_mentioned_p (frame_pointer_rtx, x)
3459 || reg_mentioned_p (arg_pointer_rtx, x)
3460 || reg_mentioned_p (virtual_incoming_args_rtx, x)
3461 || reg_mentioned_p (virtual_outgoing_args_rtx, x)
3462 || reg_mentioned_p (virtual_stack_dynamic_rtx, x)
3463 || reg_mentioned_p (virtual_stack_vars_rtx, x)))
3464 return 0;
3466 /* Accept any base register. SP only in SImode or larger. */
3467 else if (thumb_base_register_rtx_p (x, mode, strict_p))
3468 return 1;
3470 /* This is PC relative data before arm_reorg runs. */
3471 else if (GET_MODE_SIZE (mode) >= 4 && CONSTANT_P (x)
3472 && GET_CODE (x) == SYMBOL_REF
3473 && CONSTANT_POOL_ADDRESS_P (x) && ! flag_pic)
3474 return 1;
3476 /* This is PC relative data after arm_reorg runs. */
3477 else if (GET_MODE_SIZE (mode) >= 4 && reload_completed
3478 && (GET_CODE (x) == LABEL_REF
3479 || (GET_CODE (x) == CONST
3480 && GET_CODE (XEXP (x, 0)) == PLUS
3481 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF
3482 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
3483 return 1;
3485 /* Post-inc indexing only supported for SImode and larger. */
3486 else if (GET_CODE (x) == POST_INC && GET_MODE_SIZE (mode) >= 4
3487 && thumb_index_register_rtx_p (XEXP (x, 0), strict_p))
3488 return 1;
3490 else if (GET_CODE (x) == PLUS)
3492 /* REG+REG address can be any two index registers. */
3493 /* We disallow FRAME+REG addressing since we know that FRAME
3494 will be replaced with STACK, and SP relative addressing only
3495 permits SP+OFFSET. */
3496 if (GET_MODE_SIZE (mode) <= 4
3497 && XEXP (x, 0) != frame_pointer_rtx
3498 && XEXP (x, 1) != frame_pointer_rtx
3499 && thumb_index_register_rtx_p (XEXP (x, 0), strict_p)
3500 && thumb_index_register_rtx_p (XEXP (x, 1), strict_p))
3501 return 1;
3503 /* REG+const has 5-7 bit offset for non-SP registers. */
3504 else if ((thumb_index_register_rtx_p (XEXP (x, 0), strict_p)
3505 || XEXP (x, 0) == arg_pointer_rtx)
3506 && GET_CODE (XEXP (x, 1)) == CONST_INT
3507 && thumb_legitimate_offset_p (mode, INTVAL (XEXP (x, 1))))
3508 return 1;
3510 /* REG+const has 10 bit offset for SP, but only SImode and
3511 larger is supported. */
3512 /* ??? Should probably check for DI/DFmode overflow here
3513 just like GO_IF_LEGITIMATE_OFFSET does. */
3514 else if (GET_CODE (XEXP (x, 0)) == REG
3515 && REGNO (XEXP (x, 0)) == STACK_POINTER_REGNUM
3516 && GET_MODE_SIZE (mode) >= 4
3517 && GET_CODE (XEXP (x, 1)) == CONST_INT
3518 && INTVAL (XEXP (x, 1)) >= 0
3519 && INTVAL (XEXP (x, 1)) + GET_MODE_SIZE (mode) <= 1024
3520 && (INTVAL (XEXP (x, 1)) & 3) == 0)
3521 return 1;
3523 else if (GET_CODE (XEXP (x, 0)) == REG
3524 && REGNO (XEXP (x, 0)) == FRAME_POINTER_REGNUM
3525 && GET_MODE_SIZE (mode) >= 4
3526 && GET_CODE (XEXP (x, 1)) == CONST_INT
3527 && (INTVAL (XEXP (x, 1)) & 3) == 0)
3528 return 1;
3531 else if (GET_MODE_CLASS (mode) != MODE_FLOAT
3532 && GET_MODE_SIZE (mode) == 4
3533 && GET_CODE (x) == SYMBOL_REF
3534 && CONSTANT_POOL_ADDRESS_P (x)
3535 && !(flag_pic
3536 && symbol_mentioned_p (get_pool_constant (x))))
3537 return 1;
3539 return 0;
3542 /* Return nonzero if VAL can be used as an offset in a Thumb-state address
3543 instruction of mode MODE. */
3545 thumb_legitimate_offset_p (enum machine_mode mode, HOST_WIDE_INT val)
3547 switch (GET_MODE_SIZE (mode))
3549 case 1:
3550 return val >= 0 && val < 32;
3552 case 2:
3553 return val >= 0 && val < 64 && (val & 1) == 0;
3555 default:
3556 return (val >= 0
3557 && (val + GET_MODE_SIZE (mode)) <= 128
3558 && (val & 3) == 0);
3562 /* Try machine-dependent ways of modifying an illegitimate address
3563 to be legitimate. If we find one, return the new, valid address. */
3565 arm_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
3567 if (GET_CODE (x) == PLUS)
3569 rtx xop0 = XEXP (x, 0);
3570 rtx xop1 = XEXP (x, 1);
3572 if (CONSTANT_P (xop0) && !symbol_mentioned_p (xop0))
3573 xop0 = force_reg (SImode, xop0);
3575 if (CONSTANT_P (xop1) && !symbol_mentioned_p (xop1))
3576 xop1 = force_reg (SImode, xop1);
3578 if (ARM_BASE_REGISTER_RTX_P (xop0)
3579 && GET_CODE (xop1) == CONST_INT)
3581 HOST_WIDE_INT n, low_n;
3582 rtx base_reg, val;
3583 n = INTVAL (xop1);
3585 /* VFP addressing modes actually allow greater offsets, but for
3586 now we just stick with the lowest common denominator. */
3587 if (mode == DImode
3588 || ((TARGET_SOFT_FLOAT || TARGET_VFP) && mode == DFmode))
3590 low_n = n & 0x0f;
3591 n &= ~0x0f;
3592 if (low_n > 4)
3594 n += 16;
3595 low_n -= 16;
3598 else
3600 low_n = ((mode) == TImode ? 0
3601 : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff));
3602 n -= low_n;
3605 base_reg = gen_reg_rtx (SImode);
3606 val = force_operand (gen_rtx_PLUS (SImode, xop0,
3607 GEN_INT (n)), NULL_RTX);
3608 emit_move_insn (base_reg, val);
3609 x = (low_n == 0 ? base_reg
3610 : gen_rtx_PLUS (SImode, base_reg, GEN_INT (low_n)));
3612 else if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
3613 x = gen_rtx_PLUS (SImode, xop0, xop1);
3616 /* XXX We don't allow MINUS any more -- see comment in
3617 arm_legitimate_address_p (). */
3618 else if (GET_CODE (x) == MINUS)
3620 rtx xop0 = XEXP (x, 0);
3621 rtx xop1 = XEXP (x, 1);
3623 if (CONSTANT_P (xop0))
3624 xop0 = force_reg (SImode, xop0);
3626 if (CONSTANT_P (xop1) && ! symbol_mentioned_p (xop1))
3627 xop1 = force_reg (SImode, xop1);
3629 if (xop0 != XEXP (x, 0) || xop1 != XEXP (x, 1))
3630 x = gen_rtx_MINUS (SImode, xop0, xop1);
3633 if (flag_pic)
3635 /* We need to find and carefully transform any SYMBOL and LABEL
3636 references; so go back to the original address expression. */
3637 rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
3639 if (new_x != orig_x)
3640 x = new_x;
3643 return x;
3647 /* Try machine-dependent ways of modifying an illegitimate Thumb address
3648 to be legitimate. If we find one, return the new, valid address. */
3650 thumb_legitimize_address (rtx x, rtx orig_x, enum machine_mode mode)
3652 if (GET_CODE (x) == PLUS
3653 && GET_CODE (XEXP (x, 1)) == CONST_INT
3654 && (INTVAL (XEXP (x, 1)) >= 32 * GET_MODE_SIZE (mode)
3655 || INTVAL (XEXP (x, 1)) < 0))
3657 rtx xop0 = XEXP (x, 0);
3658 rtx xop1 = XEXP (x, 1);
3659 HOST_WIDE_INT offset = INTVAL (xop1);
3661 /* Try and fold the offset into a biasing of the base register and
3662 then offsetting that. Don't do this when optimizing for space
3663 since it can cause too many CSEs. */
3664 if (optimize_size && offset >= 0
3665 && offset < 256 + 31 * GET_MODE_SIZE (mode))
3667 HOST_WIDE_INT delta;
3669 if (offset >= 256)
3670 delta = offset - (256 - GET_MODE_SIZE (mode));
3671 else if (offset < 32 * GET_MODE_SIZE (mode) + 8)
3672 delta = 31 * GET_MODE_SIZE (mode);
3673 else
3674 delta = offset & (~31 * GET_MODE_SIZE (mode));
3676 xop0 = force_operand (plus_constant (xop0, offset - delta),
3677 NULL_RTX);
3678 x = plus_constant (xop0, delta);
3680 else if (offset < 0 && offset > -256)
3681 /* Small negative offsets are best done with a subtract before the
3682 dereference, forcing these into a register normally takes two
3683 instructions. */
3684 x = force_operand (x, NULL_RTX);
3685 else
3687 /* For the remaining cases, force the constant into a register. */
3688 xop1 = force_reg (SImode, xop1);
3689 x = gen_rtx_PLUS (SImode, xop0, xop1);
3692 else if (GET_CODE (x) == PLUS
3693 && s_register_operand (XEXP (x, 1), SImode)
3694 && !s_register_operand (XEXP (x, 0), SImode))
3696 rtx xop0 = force_operand (XEXP (x, 0), NULL_RTX);
3698 x = gen_rtx_PLUS (SImode, xop0, XEXP (x, 1));
3701 if (flag_pic)
3703 /* We need to find and carefully transform any SYMBOL and LABEL
3704 references; so go back to the original address expression. */
3705 rtx new_x = legitimize_pic_address (orig_x, mode, NULL_RTX);
3707 if (new_x != orig_x)
3708 x = new_x;
3711 return x;
3716 #define REG_OR_SUBREG_REG(X) \
3717 (GET_CODE (X) == REG \
3718 || (GET_CODE (X) == SUBREG && GET_CODE (SUBREG_REG (X)) == REG))
3720 #define REG_OR_SUBREG_RTX(X) \
3721 (GET_CODE (X) == REG ? (X) : SUBREG_REG (X))
3723 #ifndef COSTS_N_INSNS
3724 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
3725 #endif
3726 static inline int
3727 thumb_rtx_costs (rtx x, enum rtx_code code, enum rtx_code outer)
3729 enum machine_mode mode = GET_MODE (x);
3731 switch (code)
3733 case ASHIFT:
3734 case ASHIFTRT:
3735 case LSHIFTRT:
3736 case ROTATERT:
3737 case PLUS:
3738 case MINUS:
3739 case COMPARE:
3740 case NEG:
3741 case NOT:
3742 return COSTS_N_INSNS (1);
3744 case MULT:
3745 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3747 int cycles = 0;
3748 unsigned HOST_WIDE_INT i = INTVAL (XEXP (x, 1));
3750 while (i)
3752 i >>= 2;
3753 cycles++;
3755 return COSTS_N_INSNS (2) + cycles;
3757 return COSTS_N_INSNS (1) + 16;
3759 case SET:
3760 return (COSTS_N_INSNS (1)
3761 + 4 * ((GET_CODE (SET_SRC (x)) == MEM)
3762 + GET_CODE (SET_DEST (x)) == MEM));
3764 case CONST_INT:
3765 if (outer == SET)
3767 if ((unsigned HOST_WIDE_INT) INTVAL (x) < 256)
3768 return 0;
3769 if (thumb_shiftable_const (INTVAL (x)))
3770 return COSTS_N_INSNS (2);
3771 return COSTS_N_INSNS (3);
3773 else if ((outer == PLUS || outer == COMPARE)
3774 && INTVAL (x) < 256 && INTVAL (x) > -256)
3775 return 0;
3776 else if (outer == AND
3777 && INTVAL (x) < 256 && INTVAL (x) >= -256)
3778 return COSTS_N_INSNS (1);
3779 else if (outer == ASHIFT || outer == ASHIFTRT
3780 || outer == LSHIFTRT)
3781 return 0;
3782 return COSTS_N_INSNS (2);
3784 case CONST:
3785 case CONST_DOUBLE:
3786 case LABEL_REF:
3787 case SYMBOL_REF:
3788 return COSTS_N_INSNS (3);
3790 case UDIV:
3791 case UMOD:
3792 case DIV:
3793 case MOD:
3794 return 100;
3796 case TRUNCATE:
3797 return 99;
3799 case AND:
3800 case XOR:
3801 case IOR:
3802 /* XXX guess. */
3803 return 8;
3805 case MEM:
3806 /* XXX another guess. */
3807 /* Memory costs quite a lot for the first word, but subsequent words
3808 load at the equivalent of a single insn each. */
3809 return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
3810 + ((GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x))
3811 ? 4 : 0));
3813 case IF_THEN_ELSE:
3814 /* XXX a guess. */
3815 if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
3816 return 14;
3817 return 2;
3819 case ZERO_EXTEND:
3820 /* XXX still guessing. */
3821 switch (GET_MODE (XEXP (x, 0)))
3823 case QImode:
3824 return (1 + (mode == DImode ? 4 : 0)
3825 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
3827 case HImode:
3828 return (4 + (mode == DImode ? 4 : 0)
3829 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
3831 case SImode:
3832 return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
3834 default:
3835 return 99;
3838 default:
3839 return 99;
3844 /* Worker routine for arm_rtx_costs. */
3845 static inline int
3846 arm_rtx_costs_1 (rtx x, enum rtx_code code, enum rtx_code outer)
3848 enum machine_mode mode = GET_MODE (x);
3849 enum rtx_code subcode;
3850 int extra_cost;
3852 switch (code)
3854 case MEM:
3855 /* Memory costs quite a lot for the first word, but subsequent words
3856 load at the equivalent of a single insn each. */
3857 return (10 + 4 * ((GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD)
3858 + (GET_CODE (x) == SYMBOL_REF
3859 && CONSTANT_POOL_ADDRESS_P (x) ? 4 : 0));
3861 case DIV:
3862 case MOD:
3863 case UDIV:
3864 case UMOD:
3865 return optimize_size ? COSTS_N_INSNS (2) : 100;
3867 case ROTATE:
3868 if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
3869 return 4;
3870 /* Fall through */
3871 case ROTATERT:
3872 if (mode != SImode)
3873 return 8;
3874 /* Fall through */
3875 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3876 if (mode == DImode)
3877 return (8 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : 8)
3878 + ((GET_CODE (XEXP (x, 0)) == REG
3879 || (GET_CODE (XEXP (x, 0)) == SUBREG
3880 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
3881 ? 0 : 8));
3882 return (1 + ((GET_CODE (XEXP (x, 0)) == REG
3883 || (GET_CODE (XEXP (x, 0)) == SUBREG
3884 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG))
3885 ? 0 : 4)
3886 + ((GET_CODE (XEXP (x, 1)) == REG
3887 || (GET_CODE (XEXP (x, 1)) == SUBREG
3888 && GET_CODE (SUBREG_REG (XEXP (x, 1))) == REG)
3889 || (GET_CODE (XEXP (x, 1)) == CONST_INT))
3890 ? 0 : 4));
3892 case MINUS:
3893 if (mode == DImode)
3894 return (4 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 8)
3895 + ((REG_OR_SUBREG_REG (XEXP (x, 0))
3896 || (GET_CODE (XEXP (x, 0)) == CONST_INT
3897 && const_ok_for_arm (INTVAL (XEXP (x, 0)))))
3898 ? 0 : 8));
3900 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3901 return (2 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
3902 || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
3903 && arm_const_double_rtx (XEXP (x, 1))))
3904 ? 0 : 8)
3905 + ((REG_OR_SUBREG_REG (XEXP (x, 0))
3906 || (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE
3907 && arm_const_double_rtx (XEXP (x, 0))))
3908 ? 0 : 8));
3910 if (((GET_CODE (XEXP (x, 0)) == CONST_INT
3911 && const_ok_for_arm (INTVAL (XEXP (x, 0)))
3912 && REG_OR_SUBREG_REG (XEXP (x, 1))))
3913 || (((subcode = GET_CODE (XEXP (x, 1))) == ASHIFT
3914 || subcode == ASHIFTRT || subcode == LSHIFTRT
3915 || subcode == ROTATE || subcode == ROTATERT
3916 || (subcode == MULT
3917 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3918 && ((INTVAL (XEXP (XEXP (x, 1), 1)) &
3919 (INTVAL (XEXP (XEXP (x, 1), 1)) - 1)) == 0)))
3920 && REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 0))
3921 && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 1), 1))
3922 || GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
3923 && REG_OR_SUBREG_REG (XEXP (x, 0))))
3924 return 1;
3925 /* Fall through */
3927 case PLUS:
3928 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3929 return (2 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
3930 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
3931 || (GET_CODE (XEXP (x, 1)) == CONST_DOUBLE
3932 && arm_const_double_rtx (XEXP (x, 1))))
3933 ? 0 : 8));
3935 /* Fall through */
3936 case AND: case XOR: case IOR:
3937 extra_cost = 0;
3939 /* Normally the frame registers will be spilt into reg+const during
3940 reload, so it is a bad idea to combine them with other instructions,
3941 since then they might not be moved outside of loops. As a compromise
3942 we allow integration with ops that have a constant as their second
3943 operand. */
3944 if ((REG_OR_SUBREG_REG (XEXP (x, 0))
3945 && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))
3946 && GET_CODE (XEXP (x, 1)) != CONST_INT)
3947 || (REG_OR_SUBREG_REG (XEXP (x, 0))
3948 && ARM_FRAME_RTX (REG_OR_SUBREG_RTX (XEXP (x, 0)))))
3949 extra_cost = 4;
3951 if (mode == DImode)
3952 return (4 + extra_cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 8)
3953 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
3954 || (GET_CODE (XEXP (x, 1)) == CONST_INT
3955 && const_ok_for_op (INTVAL (XEXP (x, 1)), code)))
3956 ? 0 : 8));
3958 if (REG_OR_SUBREG_REG (XEXP (x, 0)))
3959 return (1 + (GET_CODE (XEXP (x, 1)) == CONST_INT ? 0 : extra_cost)
3960 + ((REG_OR_SUBREG_REG (XEXP (x, 1))
3961 || (GET_CODE (XEXP (x, 1)) == CONST_INT
3962 && const_ok_for_op (INTVAL (XEXP (x, 1)), code)))
3963 ? 0 : 4));
3965 else if (REG_OR_SUBREG_REG (XEXP (x, 1)))
3966 return (1 + extra_cost
3967 + ((((subcode = GET_CODE (XEXP (x, 0))) == ASHIFT
3968 || subcode == LSHIFTRT || subcode == ASHIFTRT
3969 || subcode == ROTATE || subcode == ROTATERT
3970 || (subcode == MULT
3971 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3972 && ((INTVAL (XEXP (XEXP (x, 0), 1)) &
3973 (INTVAL (XEXP (XEXP (x, 0), 1)) - 1)) == 0)))
3974 && (REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 0)))
3975 && ((REG_OR_SUBREG_REG (XEXP (XEXP (x, 0), 1)))
3976 || GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
3977 ? 0 : 4));
3979 return 8;
3981 case MULT:
3982 /* This should have been handled by the CPU specific routines. */
3983 abort ();
3985 case TRUNCATE:
3986 if (arm_arch3m && mode == SImode
3987 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
3988 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
3989 && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0))
3990 == GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)))
3991 && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
3992 || GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND))
3993 return 8;
3994 return 99;
3996 case NEG:
3997 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3998 return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 6);
3999 /* Fall through */
4000 case NOT:
4001 if (mode == DImode)
4002 return 4 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
4004 return 1 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4);
4006 case IF_THEN_ELSE:
4007 if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC)
4008 return 14;
4009 return 2;
4011 case COMPARE:
4012 return 1;
4014 case ABS:
4015 return 4 + (mode == DImode ? 4 : 0);
4017 case SIGN_EXTEND:
4018 if (GET_MODE (XEXP (x, 0)) == QImode)
4019 return (4 + (mode == DImode ? 4 : 0)
4020 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4021 /* Fall through */
4022 case ZERO_EXTEND:
4023 switch (GET_MODE (XEXP (x, 0)))
4025 case QImode:
4026 return (1 + (mode == DImode ? 4 : 0)
4027 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4029 case HImode:
4030 return (4 + (mode == DImode ? 4 : 0)
4031 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4033 case SImode:
4034 return (1 + (GET_CODE (XEXP (x, 0)) == MEM ? 10 : 0));
4036 case V8QImode:
4037 case V4HImode:
4038 case V2SImode:
4039 case V4QImode:
4040 case V2HImode:
4041 return 1;
4043 default:
4044 break;
4046 abort ();
4048 case CONST_INT:
4049 if (const_ok_for_arm (INTVAL (x)))
4050 return outer == SET ? 2 : -1;
4051 else if (outer == AND
4052 && const_ok_for_arm (~INTVAL (x)))
4053 return -1;
4054 else if ((outer == COMPARE
4055 || outer == PLUS || outer == MINUS)
4056 && const_ok_for_arm (-INTVAL (x)))
4057 return -1;
4058 else
4059 return 5;
4061 case CONST:
4062 case LABEL_REF:
4063 case SYMBOL_REF:
4064 return 6;
4066 case CONST_DOUBLE:
4067 if (arm_const_double_rtx (x))
4068 return outer == SET ? 2 : -1;
4069 else if ((outer == COMPARE || outer == PLUS)
4070 && neg_const_double_rtx_ok_for_fpa (x))
4071 return -1;
4072 return 7;
4074 default:
4075 return 99;
4079 /* RTX costs when optimizing for size. */
4080 static bool
4081 arm_size_rtx_costs (rtx x, int code, int outer_code, int *total)
4083 enum machine_mode mode = GET_MODE (x);
4085 if (TARGET_THUMB)
4087 /* XXX TBD. For now, use the standard costs. */
4088 *total = thumb_rtx_costs (x, code, outer_code);
4089 return true;
4092 switch (code)
4094 case MEM:
4095 /* A memory access costs 1 insn if the mode is small, or the address is
4096 a single register, otherwise it costs one insn per word. */
4097 if (REG_P (XEXP (x, 0)))
4098 *total = COSTS_N_INSNS (1);
4099 else
4100 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4101 return true;
4103 case DIV:
4104 case MOD:
4105 case UDIV:
4106 case UMOD:
4107 /* Needs a libcall, so it costs about this. */
4108 *total = COSTS_N_INSNS (2);
4109 return false;
4111 case ROTATE:
4112 if (mode == SImode && GET_CODE (XEXP (x, 1)) == REG)
4114 *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), code);
4115 return true;
4117 /* Fall through */
4118 case ROTATERT:
4119 case ASHIFT:
4120 case LSHIFTRT:
4121 case ASHIFTRT:
4122 if (mode == DImode && GET_CODE (XEXP (x, 1)) == CONST_INT)
4124 *total = COSTS_N_INSNS (3) + rtx_cost (XEXP (x, 0), code);
4125 return true;
4127 else if (mode == SImode)
4129 *total = COSTS_N_INSNS (1) + rtx_cost (XEXP (x, 0), code);
4130 /* Slightly disparage register shifts, but not by much. */
4131 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
4132 *total += 1 + rtx_cost (XEXP (x, 1), code);
4133 return true;
4136 /* Needs a libcall. */
4137 *total = COSTS_N_INSNS (2);
4138 return false;
4140 case MINUS:
4141 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4143 *total = COSTS_N_INSNS (1);
4144 return false;
4147 if (mode == SImode)
4149 enum rtx_code subcode0 = GET_CODE (XEXP (x, 0));
4150 enum rtx_code subcode1 = GET_CODE (XEXP (x, 1));
4152 if (subcode0 == ROTATE || subcode0 == ROTATERT || subcode0 == ASHIFT
4153 || subcode0 == LSHIFTRT || subcode0 == ASHIFTRT
4154 || subcode1 == ROTATE || subcode1 == ROTATERT
4155 || subcode1 == ASHIFT || subcode1 == LSHIFTRT
4156 || subcode1 == ASHIFTRT)
4158 /* It's just the cost of the two operands. */
4159 *total = 0;
4160 return false;
4163 *total = COSTS_N_INSNS (1);
4164 return false;
4167 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4168 return false;
4170 case PLUS:
4171 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4173 *total = COSTS_N_INSNS (1);
4174 return false;
4177 /* Fall through */
4178 case AND: case XOR: case IOR:
4179 if (mode == SImode)
4181 enum rtx_code subcode = GET_CODE (XEXP (x, 0));
4183 if (subcode == ROTATE || subcode == ROTATERT || subcode == ASHIFT
4184 || subcode == LSHIFTRT || subcode == ASHIFTRT
4185 || (code == AND && subcode == NOT))
4187 /* It's just the cost of the two operands. */
4188 *total = 0;
4189 return false;
4193 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4194 return false;
4196 case MULT:
4197 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4198 return false;
4200 case NEG:
4201 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4202 *total = COSTS_N_INSNS (1);
4203 /* Fall through */
4204 case NOT:
4205 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4207 return false;
4209 case IF_THEN_ELSE:
4210 *total = 0;
4211 return false;
4213 case COMPARE:
4214 if (cc_register (XEXP (x, 0), VOIDmode))
4215 * total = 0;
4216 else
4217 *total = COSTS_N_INSNS (1);
4218 return false;
4220 case ABS:
4221 if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
4222 *total = COSTS_N_INSNS (1);
4223 else
4224 *total = COSTS_N_INSNS (1 + ARM_NUM_REGS (mode));
4225 return false;
4227 case SIGN_EXTEND:
4228 *total = 0;
4229 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) < 4)
4231 if (!(arm_arch4 && MEM_P (XEXP (x, 0))))
4232 *total += COSTS_N_INSNS (arm_arch6 ? 1 : 2);
4234 if (mode == DImode)
4235 *total += COSTS_N_INSNS (1);
4236 return false;
4238 case ZERO_EXTEND:
4239 *total = 0;
4240 if (!(arm_arch4 && MEM_P (XEXP (x, 0))))
4242 switch (GET_MODE (XEXP (x, 0)))
4244 case QImode:
4245 *total += COSTS_N_INSNS (1);
4246 break;
4248 case HImode:
4249 *total += COSTS_N_INSNS (arm_arch6 ? 1 : 2);
4251 case SImode:
4252 break;
4254 default:
4255 *total += COSTS_N_INSNS (2);
4259 if (mode == DImode)
4260 *total += COSTS_N_INSNS (1);
4262 return false;
4264 case CONST_INT:
4265 if (const_ok_for_arm (INTVAL (x)))
4266 *total = COSTS_N_INSNS (outer_code == SET ? 1 : 0);
4267 else if (const_ok_for_arm (~INTVAL (x)))
4268 *total = COSTS_N_INSNS (outer_code == AND ? 0 : 1);
4269 else if (const_ok_for_arm (-INTVAL (x)))
4271 if (outer_code == COMPARE || outer_code == PLUS
4272 || outer_code == MINUS)
4273 *total = 0;
4274 else
4275 *total = COSTS_N_INSNS (1);
4277 else
4278 *total = COSTS_N_INSNS (2);
4279 return true;
4281 case CONST:
4282 case LABEL_REF:
4283 case SYMBOL_REF:
4284 *total = COSTS_N_INSNS (2);
4285 return true;
4287 case CONST_DOUBLE:
4288 *total = COSTS_N_INSNS (4);
4289 return true;
4291 default:
4292 if (mode != VOIDmode)
4293 *total = COSTS_N_INSNS (ARM_NUM_REGS (mode));
4294 else
4295 *total = COSTS_N_INSNS (4); /* How knows? */
4296 return false;
4300 /* RTX costs for cores with a slow MUL implementation. */
4302 static bool
4303 arm_slowmul_rtx_costs (rtx x, int code, int outer_code, int *total)
4305 enum machine_mode mode = GET_MODE (x);
4307 if (TARGET_THUMB)
4309 *total = thumb_rtx_costs (x, code, outer_code);
4310 return true;
4313 switch (code)
4315 case MULT:
4316 if (GET_MODE_CLASS (mode) == MODE_FLOAT
4317 || mode == DImode)
4319 *total = 30;
4320 return true;
4323 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4325 unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
4326 & (unsigned HOST_WIDE_INT) 0xffffffff);
4327 int cost, const_ok = const_ok_for_arm (i);
4328 int j, booth_unit_size;
4330 /* Tune as appropriate. */
4331 cost = const_ok ? 4 : 8;
4332 booth_unit_size = 2;
4333 for (j = 0; i && j < 32; j += booth_unit_size)
4335 i >>= booth_unit_size;
4336 cost += 2;
4339 *total = cost;
4340 return true;
4343 *total = 30 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
4344 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
4345 return true;
4347 default:
4348 *total = arm_rtx_costs_1 (x, code, outer_code);
4349 return true;
4354 /* RTX cost for cores with a fast multiply unit (M variants). */
4356 static bool
4357 arm_fastmul_rtx_costs (rtx x, int code, int outer_code, int *total)
4359 enum machine_mode mode = GET_MODE (x);
4361 if (TARGET_THUMB)
4363 *total = thumb_rtx_costs (x, code, outer_code);
4364 return true;
4367 switch (code)
4369 case MULT:
4370 /* There is no point basing this on the tuning, since it is always the
4371 fast variant if it exists at all. */
4372 if (mode == DImode
4373 && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
4374 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
4375 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
4377 *total = 8;
4378 return true;
4382 if (GET_MODE_CLASS (mode) == MODE_FLOAT
4383 || mode == DImode)
4385 *total = 30;
4386 return true;
4389 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4391 unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
4392 & (unsigned HOST_WIDE_INT) 0xffffffff);
4393 int cost, const_ok = const_ok_for_arm (i);
4394 int j, booth_unit_size;
4396 /* Tune as appropriate. */
4397 cost = const_ok ? 4 : 8;
4398 booth_unit_size = 8;
4399 for (j = 0; i && j < 32; j += booth_unit_size)
4401 i >>= booth_unit_size;
4402 cost += 2;
4405 *total = cost;
4406 return true;
4409 *total = 8 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
4410 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
4411 return true;
4413 default:
4414 *total = arm_rtx_costs_1 (x, code, outer_code);
4415 return true;
4420 /* RTX cost for XScale CPUs. */
4422 static bool
4423 arm_xscale_rtx_costs (rtx x, int code, int outer_code, int *total)
4425 enum machine_mode mode = GET_MODE (x);
4427 if (TARGET_THUMB)
4429 *total = thumb_rtx_costs (x, code, outer_code);
4430 return true;
4433 switch (code)
4435 case MULT:
4436 /* There is no point basing this on the tuning, since it is always the
4437 fast variant if it exists at all. */
4438 if (mode == DImode
4439 && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
4440 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
4441 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
4443 *total = 8;
4444 return true;
4448 if (GET_MODE_CLASS (mode) == MODE_FLOAT
4449 || mode == DImode)
4451 *total = 30;
4452 return true;
4455 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4457 unsigned HOST_WIDE_INT i = (INTVAL (XEXP (x, 1))
4458 & (unsigned HOST_WIDE_INT) 0xffffffff);
4459 int cost, const_ok = const_ok_for_arm (i);
4460 unsigned HOST_WIDE_INT masked_const;
4462 /* The cost will be related to two insns.
4463 First a load of the constant (MOV or LDR), then a multiply. */
4464 cost = 2;
4465 if (! const_ok)
4466 cost += 1; /* LDR is probably more expensive because
4467 of longer result latency. */
4468 masked_const = i & 0xffff8000;
4469 if (masked_const != 0 && masked_const != 0xffff8000)
4471 masked_const = i & 0xf8000000;
4472 if (masked_const == 0 || masked_const == 0xf8000000)
4473 cost += 1;
4474 else
4475 cost += 2;
4477 *total = cost;
4478 return true;
4481 *total = 8 + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : 4)
4482 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : 4);
4483 return true;
4485 case COMPARE:
4486 /* A COMPARE of a MULT is slow on XScale; the muls instruction
4487 will stall until the multiplication is complete. */
4488 if (GET_CODE (XEXP (x, 0)) == MULT)
4489 *total = 4 + rtx_cost (XEXP (x, 0), code);
4490 else
4491 *total = arm_rtx_costs_1 (x, code, outer_code);
4492 return true;
4494 default:
4495 *total = arm_rtx_costs_1 (x, code, outer_code);
4496 return true;
4501 /* RTX costs for 9e (and later) cores. */
4503 static bool
4504 arm_9e_rtx_costs (rtx x, int code, int outer_code, int *total)
4506 enum machine_mode mode = GET_MODE (x);
4507 int nonreg_cost;
4508 int cost;
4510 if (TARGET_THUMB)
4512 switch (code)
4514 case MULT:
4515 *total = COSTS_N_INSNS (3);
4516 return true;
4518 default:
4519 *total = thumb_rtx_costs (x, code, outer_code);
4520 return true;
4524 switch (code)
4526 case MULT:
4527 /* There is no point basing this on the tuning, since it is always the
4528 fast variant if it exists at all. */
4529 if (mode == DImode
4530 && (GET_CODE (XEXP (x, 0)) == GET_CODE (XEXP (x, 1)))
4531 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
4532 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND))
4534 *total = 3;
4535 return true;
4539 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4541 *total = 30;
4542 return true;
4544 if (mode == DImode)
4546 cost = 7;
4547 nonreg_cost = 8;
4549 else
4551 cost = 2;
4552 nonreg_cost = 4;
4556 *total = cost + (REG_OR_SUBREG_REG (XEXP (x, 0)) ? 0 : nonreg_cost)
4557 + (REG_OR_SUBREG_REG (XEXP (x, 1)) ? 0 : nonreg_cost);
4558 return true;
4560 default:
4561 *total = arm_rtx_costs_1 (x, code, outer_code);
4562 return true;
4565 /* All address computations that can be done are free, but rtx cost returns
4566 the same for practically all of them. So we weight the different types
4567 of address here in the order (most pref first):
4568 PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
4569 static inline int
4570 arm_arm_address_cost (rtx x)
4572 enum rtx_code c = GET_CODE (x);
4574 if (c == PRE_INC || c == PRE_DEC || c == POST_INC || c == POST_DEC)
4575 return 0;
4576 if (c == MEM || c == LABEL_REF || c == SYMBOL_REF)
4577 return 10;
4579 if (c == PLUS || c == MINUS)
4581 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
4582 return 2;
4584 if (ARITHMETIC_P (XEXP (x, 0)) || ARITHMETIC_P (XEXP (x, 1)))
4585 return 3;
4587 return 4;
4590 return 6;
4593 static inline int
4594 arm_thumb_address_cost (rtx x)
4596 enum rtx_code c = GET_CODE (x);
4598 if (c == REG)
4599 return 1;
4600 if (c == PLUS
4601 && GET_CODE (XEXP (x, 0)) == REG
4602 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4603 return 1;
4605 return 2;
4608 static int
4609 arm_address_cost (rtx x)
4611 return TARGET_ARM ? arm_arm_address_cost (x) : arm_thumb_address_cost (x);
4614 static int
4615 arm_adjust_cost (rtx insn, rtx link, rtx dep, int cost)
4617 rtx i_pat, d_pat;
4619 /* Some true dependencies can have a higher cost depending
4620 on precisely how certain input operands are used. */
4621 if (arm_tune_xscale
4622 && REG_NOTE_KIND (link) == 0
4623 && recog_memoized (insn) >= 0
4624 && recog_memoized (dep) >= 0)
4626 int shift_opnum = get_attr_shift (insn);
4627 enum attr_type attr_type = get_attr_type (dep);
4629 /* If nonzero, SHIFT_OPNUM contains the operand number of a shifted
4630 operand for INSN. If we have a shifted input operand and the
4631 instruction we depend on is another ALU instruction, then we may
4632 have to account for an additional stall. */
4633 if (shift_opnum != 0
4634 && (attr_type == TYPE_ALU_SHIFT || attr_type == TYPE_ALU_SHIFT_REG))
4636 rtx shifted_operand;
4637 int opno;
4639 /* Get the shifted operand. */
4640 extract_insn (insn);
4641 shifted_operand = recog_data.operand[shift_opnum];
4643 /* Iterate over all the operands in DEP. If we write an operand
4644 that overlaps with SHIFTED_OPERAND, then we have increase the
4645 cost of this dependency. */
4646 extract_insn (dep);
4647 preprocess_constraints ();
4648 for (opno = 0; opno < recog_data.n_operands; opno++)
4650 /* We can ignore strict inputs. */
4651 if (recog_data.operand_type[opno] == OP_IN)
4652 continue;
4654 if (reg_overlap_mentioned_p (recog_data.operand[opno],
4655 shifted_operand))
4656 return 2;
4661 /* XXX This is not strictly true for the FPA. */
4662 if (REG_NOTE_KIND (link) == REG_DEP_ANTI
4663 || REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
4664 return 0;
4666 /* Call insns don't incur a stall, even if they follow a load. */
4667 if (REG_NOTE_KIND (link) == 0
4668 && GET_CODE (insn) == CALL_INSN)
4669 return 1;
4671 if ((i_pat = single_set (insn)) != NULL
4672 && GET_CODE (SET_SRC (i_pat)) == MEM
4673 && (d_pat = single_set (dep)) != NULL
4674 && GET_CODE (SET_DEST (d_pat)) == MEM)
4676 rtx src_mem = XEXP (SET_SRC (i_pat), 0);
4677 /* This is a load after a store, there is no conflict if the load reads
4678 from a cached area. Assume that loads from the stack, and from the
4679 constant pool are cached, and that others will miss. This is a
4680 hack. */
4682 if ((GET_CODE (src_mem) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (src_mem))
4683 || reg_mentioned_p (stack_pointer_rtx, src_mem)
4684 || reg_mentioned_p (frame_pointer_rtx, src_mem)
4685 || reg_mentioned_p (hard_frame_pointer_rtx, src_mem))
4686 return 1;
4689 return cost;
4692 static int fp_consts_inited = 0;
4694 /* Only zero is valid for VFP. Other values are also valid for FPA. */
4695 static const char * const strings_fp[8] =
4697 "0", "1", "2", "3",
4698 "4", "5", "0.5", "10"
4701 static REAL_VALUE_TYPE values_fp[8];
4703 static void
4704 init_fp_table (void)
4706 int i;
4707 REAL_VALUE_TYPE r;
4709 if (TARGET_VFP)
4710 fp_consts_inited = 1;
4711 else
4712 fp_consts_inited = 8;
4714 for (i = 0; i < fp_consts_inited; i++)
4716 r = REAL_VALUE_ATOF (strings_fp[i], DFmode);
4717 values_fp[i] = r;
4721 /* Return TRUE if rtx X is a valid immediate FP constant. */
4723 arm_const_double_rtx (rtx x)
4725 REAL_VALUE_TYPE r;
4726 int i;
4728 if (!fp_consts_inited)
4729 init_fp_table ();
4731 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4732 if (REAL_VALUE_MINUS_ZERO (r))
4733 return 0;
4735 for (i = 0; i < fp_consts_inited; i++)
4736 if (REAL_VALUES_EQUAL (r, values_fp[i]))
4737 return 1;
4739 return 0;
4742 /* Return TRUE if rtx X is a valid immediate FPA constant. */
4744 neg_const_double_rtx_ok_for_fpa (rtx x)
4746 REAL_VALUE_TYPE r;
4747 int i;
4749 if (!fp_consts_inited)
4750 init_fp_table ();
4752 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4753 r = REAL_VALUE_NEGATE (r);
4754 if (REAL_VALUE_MINUS_ZERO (r))
4755 return 0;
4757 for (i = 0; i < 8; i++)
4758 if (REAL_VALUES_EQUAL (r, values_fp[i]))
4759 return 1;
4761 return 0;
4764 /* Predicates for `match_operand' and `match_operator'. */
4766 /* Return nonzero if OP is a valid Cirrus memory address pattern. */
4768 cirrus_memory_offset (rtx op)
4770 /* Reject eliminable registers. */
4771 if (! (reload_in_progress || reload_completed)
4772 && ( reg_mentioned_p (frame_pointer_rtx, op)
4773 || reg_mentioned_p (arg_pointer_rtx, op)
4774 || reg_mentioned_p (virtual_incoming_args_rtx, op)
4775 || reg_mentioned_p (virtual_outgoing_args_rtx, op)
4776 || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
4777 || reg_mentioned_p (virtual_stack_vars_rtx, op)))
4778 return 0;
4780 if (GET_CODE (op) == MEM)
4782 rtx ind;
4784 ind = XEXP (op, 0);
4786 /* Match: (mem (reg)). */
4787 if (GET_CODE (ind) == REG)
4788 return 1;
4790 /* Match:
4791 (mem (plus (reg)
4792 (const))). */
4793 if (GET_CODE (ind) == PLUS
4794 && GET_CODE (XEXP (ind, 0)) == REG
4795 && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
4796 && GET_CODE (XEXP (ind, 1)) == CONST_INT)
4797 return 1;
4800 return 0;
4803 /* Return TRUE if OP is a valid VFP memory address pattern.
4804 WB if true if writeback address modes are allowed. */
4807 arm_coproc_mem_operand (rtx op, bool wb)
4809 rtx ind;
4811 /* Reject eliminable registers. */
4812 if (! (reload_in_progress || reload_completed)
4813 && ( reg_mentioned_p (frame_pointer_rtx, op)
4814 || reg_mentioned_p (arg_pointer_rtx, op)
4815 || reg_mentioned_p (virtual_incoming_args_rtx, op)
4816 || reg_mentioned_p (virtual_outgoing_args_rtx, op)
4817 || reg_mentioned_p (virtual_stack_dynamic_rtx, op)
4818 || reg_mentioned_p (virtual_stack_vars_rtx, op)))
4819 return FALSE;
4821 /* Constants are converted into offsets from labels. */
4822 if (GET_CODE (op) != MEM)
4823 return FALSE;
4825 ind = XEXP (op, 0);
4827 if (reload_completed
4828 && (GET_CODE (ind) == LABEL_REF
4829 || (GET_CODE (ind) == CONST
4830 && GET_CODE (XEXP (ind, 0)) == PLUS
4831 && GET_CODE (XEXP (XEXP (ind, 0), 0)) == LABEL_REF
4832 && GET_CODE (XEXP (XEXP (ind, 0), 1)) == CONST_INT)))
4833 return TRUE;
4835 /* Match: (mem (reg)). */
4836 if (GET_CODE (ind) == REG)
4837 return arm_address_register_rtx_p (ind, 0);
4839 /* Autoincremment addressing modes. */
4840 if (wb
4841 && (GET_CODE (ind) == PRE_INC
4842 || GET_CODE (ind) == POST_INC
4843 || GET_CODE (ind) == PRE_DEC
4844 || GET_CODE (ind) == POST_DEC))
4845 return arm_address_register_rtx_p (XEXP (ind, 0), 0);
4847 if (wb
4848 && (GET_CODE (ind) == POST_MODIFY || GET_CODE (ind) == PRE_MODIFY)
4849 && arm_address_register_rtx_p (XEXP (ind, 0), 0)
4850 && GET_CODE (XEXP (ind, 1)) == PLUS
4851 && rtx_equal_p (XEXP (XEXP (ind, 1), 0), XEXP (ind, 0)))
4852 ind = XEXP (ind, 1);
4854 /* Match:
4855 (plus (reg)
4856 (const)). */
4857 if (GET_CODE (ind) == PLUS
4858 && GET_CODE (XEXP (ind, 0)) == REG
4859 && REG_MODE_OK_FOR_BASE_P (XEXP (ind, 0), VOIDmode)
4860 && GET_CODE (XEXP (ind, 1)) == CONST_INT
4861 && INTVAL (XEXP (ind, 1)) > -1024
4862 && INTVAL (XEXP (ind, 1)) < 1024
4863 && (INTVAL (XEXP (ind, 1)) & 3) == 0)
4864 return TRUE;
4866 return FALSE;
4869 /* Return true if X is a register that will be eliminated later on. */
4871 arm_eliminable_register (rtx x)
4873 return REG_P (x) && (REGNO (x) == FRAME_POINTER_REGNUM
4874 || REGNO (x) == ARG_POINTER_REGNUM
4875 || (REGNO (x) >= FIRST_VIRTUAL_REGISTER
4876 && REGNO (x) <= LAST_VIRTUAL_REGISTER));
4879 /* Return GENERAL_REGS if a scratch register required to reload x to/from
4880 VFP registers. Otherwise return NO_REGS. */
4882 enum reg_class
4883 vfp_secondary_reload_class (enum machine_mode mode, rtx x)
4885 if (arm_coproc_mem_operand (x, FALSE) || s_register_operand (x, mode))
4886 return NO_REGS;
4888 return GENERAL_REGS;
4892 /* Returns TRUE if INSN is an "LDR REG, ADDR" instruction.
4893 Use by the Cirrus Maverick code which has to workaround
4894 a hardware bug triggered by such instructions. */
4895 static bool
4896 arm_memory_load_p (rtx insn)
4898 rtx body, lhs, rhs;;
4900 if (insn == NULL_RTX || GET_CODE (insn) != INSN)
4901 return false;
4903 body = PATTERN (insn);
4905 if (GET_CODE (body) != SET)
4906 return false;
4908 lhs = XEXP (body, 0);
4909 rhs = XEXP (body, 1);
4911 lhs = REG_OR_SUBREG_RTX (lhs);
4913 /* If the destination is not a general purpose
4914 register we do not have to worry. */
4915 if (GET_CODE (lhs) != REG
4916 || REGNO_REG_CLASS (REGNO (lhs)) != GENERAL_REGS)
4917 return false;
4919 /* As well as loads from memory we also have to react
4920 to loads of invalid constants which will be turned
4921 into loads from the minipool. */
4922 return (GET_CODE (rhs) == MEM
4923 || GET_CODE (rhs) == SYMBOL_REF
4924 || note_invalid_constants (insn, -1, false));
4927 /* Return TRUE if INSN is a Cirrus instruction. */
4928 static bool
4929 arm_cirrus_insn_p (rtx insn)
4931 enum attr_cirrus attr;
4933 /* get_attr aborts on USE and CLOBBER. */
4934 if (!insn
4935 || GET_CODE (insn) != INSN
4936 || GET_CODE (PATTERN (insn)) == USE
4937 || GET_CODE (PATTERN (insn)) == CLOBBER)
4938 return 0;
4940 attr = get_attr_cirrus (insn);
4942 return attr != CIRRUS_NOT;
4945 /* Cirrus reorg for invalid instruction combinations. */
4946 static void
4947 cirrus_reorg (rtx first)
4949 enum attr_cirrus attr;
4950 rtx body = PATTERN (first);
4951 rtx t;
4952 int nops;
4954 /* Any branch must be followed by 2 non Cirrus instructions. */
4955 if (GET_CODE (first) == JUMP_INSN && GET_CODE (body) != RETURN)
4957 nops = 0;
4958 t = next_nonnote_insn (first);
4960 if (arm_cirrus_insn_p (t))
4961 ++ nops;
4963 if (arm_cirrus_insn_p (next_nonnote_insn (t)))
4964 ++ nops;
4966 while (nops --)
4967 emit_insn_after (gen_nop (), first);
4969 return;
4972 /* (float (blah)) is in parallel with a clobber. */
4973 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
4974 body = XVECEXP (body, 0, 0);
4976 if (GET_CODE (body) == SET)
4978 rtx lhs = XEXP (body, 0), rhs = XEXP (body, 1);
4980 /* cfldrd, cfldr64, cfstrd, cfstr64 must
4981 be followed by a non Cirrus insn. */
4982 if (get_attr_cirrus (first) == CIRRUS_DOUBLE)
4984 if (arm_cirrus_insn_p (next_nonnote_insn (first)))
4985 emit_insn_after (gen_nop (), first);
4987 return;
4989 else if (arm_memory_load_p (first))
4991 unsigned int arm_regno;
4993 /* Any ldr/cfmvdlr, ldr/cfmvdhr, ldr/cfmvsr, ldr/cfmv64lr,
4994 ldr/cfmv64hr combination where the Rd field is the same
4995 in both instructions must be split with a non Cirrus
4996 insn. Example:
4998 ldr r0, blah
5000 cfmvsr mvf0, r0. */
5002 /* Get Arm register number for ldr insn. */
5003 if (GET_CODE (lhs) == REG)
5004 arm_regno = REGNO (lhs);
5005 else if (GET_CODE (rhs) == REG)
5006 arm_regno = REGNO (rhs);
5007 else
5008 abort ();
5010 /* Next insn. */
5011 first = next_nonnote_insn (first);
5013 if (! arm_cirrus_insn_p (first))
5014 return;
5016 body = PATTERN (first);
5018 /* (float (blah)) is in parallel with a clobber. */
5019 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0))
5020 body = XVECEXP (body, 0, 0);
5022 if (GET_CODE (body) == FLOAT)
5023 body = XEXP (body, 0);
5025 if (get_attr_cirrus (first) == CIRRUS_MOVE
5026 && GET_CODE (XEXP (body, 1)) == REG
5027 && arm_regno == REGNO (XEXP (body, 1)))
5028 emit_insn_after (gen_nop (), first);
5030 return;
5034 /* get_attr aborts on USE and CLOBBER. */
5035 if (!first
5036 || GET_CODE (first) != INSN
5037 || GET_CODE (PATTERN (first)) == USE
5038 || GET_CODE (PATTERN (first)) == CLOBBER)
5039 return;
5041 attr = get_attr_cirrus (first);
5043 /* Any coprocessor compare instruction (cfcmps, cfcmpd, ...)
5044 must be followed by a non-coprocessor instruction. */
5045 if (attr == CIRRUS_COMPARE)
5047 nops = 0;
5049 t = next_nonnote_insn (first);
5051 if (arm_cirrus_insn_p (t))
5052 ++ nops;
5054 if (arm_cirrus_insn_p (next_nonnote_insn (t)))
5055 ++ nops;
5057 while (nops --)
5058 emit_insn_after (gen_nop (), first);
5060 return;
5064 /* Return TRUE if X references a SYMBOL_REF. */
5066 symbol_mentioned_p (rtx x)
5068 const char * fmt;
5069 int i;
5071 if (GET_CODE (x) == SYMBOL_REF)
5072 return 1;
5074 fmt = GET_RTX_FORMAT (GET_CODE (x));
5076 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5078 if (fmt[i] == 'E')
5080 int j;
5082 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5083 if (symbol_mentioned_p (XVECEXP (x, i, j)))
5084 return 1;
5086 else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i)))
5087 return 1;
5090 return 0;
5093 /* Return TRUE if X references a LABEL_REF. */
5095 label_mentioned_p (rtx x)
5097 const char * fmt;
5098 int i;
5100 if (GET_CODE (x) == LABEL_REF)
5101 return 1;
5103 fmt = GET_RTX_FORMAT (GET_CODE (x));
5104 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5106 if (fmt[i] == 'E')
5108 int j;
5110 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5111 if (label_mentioned_p (XVECEXP (x, i, j)))
5112 return 1;
5114 else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i)))
5115 return 1;
5118 return 0;
5121 enum rtx_code
5122 minmax_code (rtx x)
5124 enum rtx_code code = GET_CODE (x);
5126 if (code == SMAX)
5127 return GE;
5128 else if (code == SMIN)
5129 return LE;
5130 else if (code == UMIN)
5131 return LEU;
5132 else if (code == UMAX)
5133 return GEU;
5135 abort ();
5138 /* Return 1 if memory locations are adjacent. */
5140 adjacent_mem_locations (rtx a, rtx b)
5142 if ((GET_CODE (XEXP (a, 0)) == REG
5143 || (GET_CODE (XEXP (a, 0)) == PLUS
5144 && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
5145 && (GET_CODE (XEXP (b, 0)) == REG
5146 || (GET_CODE (XEXP (b, 0)) == PLUS
5147 && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
5149 HOST_WIDE_INT val0 = 0, val1 = 0;
5150 rtx reg0, reg1;
5151 int val_diff;
5153 if (GET_CODE (XEXP (a, 0)) == PLUS)
5155 reg0 = XEXP (XEXP (a, 0), 0);
5156 val0 = INTVAL (XEXP (XEXP (a, 0), 1));
5158 else
5159 reg0 = XEXP (a, 0);
5161 if (GET_CODE (XEXP (b, 0)) == PLUS)
5163 reg1 = XEXP (XEXP (b, 0), 0);
5164 val1 = INTVAL (XEXP (XEXP (b, 0), 1));
5166 else
5167 reg1 = XEXP (b, 0);
5169 /* Don't accept any offset that will require multiple
5170 instructions to handle, since this would cause the
5171 arith_adjacentmem pattern to output an overlong sequence. */
5172 if (!const_ok_for_op (PLUS, val0) || !const_ok_for_op (PLUS, val1))
5173 return 0;
5175 /* Don't allow an eliminable register: register elimination can make
5176 the offset too large. */
5177 if (arm_eliminable_register (reg0))
5178 return 0;
5180 val_diff = val1 - val0;
5181 return ((REGNO (reg0) == REGNO (reg1))
5182 && (val_diff == 4 || val_diff == -4));
5185 return 0;
5189 load_multiple_sequence (rtx *operands, int nops, int *regs, int *base,
5190 HOST_WIDE_INT *load_offset)
5192 int unsorted_regs[4];
5193 HOST_WIDE_INT unsorted_offsets[4];
5194 int order[4];
5195 int base_reg = -1;
5196 int i;
5198 /* Can only handle 2, 3, or 4 insns at present,
5199 though could be easily extended if required. */
5200 if (nops < 2 || nops > 4)
5201 abort ();
5203 /* Loop over the operands and check that the memory references are
5204 suitable (i.e. immediate offsets from the same base register). At
5205 the same time, extract the target register, and the memory
5206 offsets. */
5207 for (i = 0; i < nops; i++)
5209 rtx reg;
5210 rtx offset;
5212 /* Convert a subreg of a mem into the mem itself. */
5213 if (GET_CODE (operands[nops + i]) == SUBREG)
5214 operands[nops + i] = alter_subreg (operands + (nops + i));
5216 if (GET_CODE (operands[nops + i]) != MEM)
5217 abort ();
5219 /* Don't reorder volatile memory references; it doesn't seem worth
5220 looking for the case where the order is ok anyway. */
5221 if (MEM_VOLATILE_P (operands[nops + i]))
5222 return 0;
5224 offset = const0_rtx;
5226 if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
5227 || (GET_CODE (reg) == SUBREG
5228 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5229 || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
5230 && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
5231 == REG)
5232 || (GET_CODE (reg) == SUBREG
5233 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5234 && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
5235 == CONST_INT)))
5237 if (i == 0)
5239 base_reg = REGNO (reg);
5240 unsorted_regs[0] = (GET_CODE (operands[i]) == REG
5241 ? REGNO (operands[i])
5242 : REGNO (SUBREG_REG (operands[i])));
5243 order[0] = 0;
5245 else
5247 if (base_reg != (int) REGNO (reg))
5248 /* Not addressed from the same base register. */
5249 return 0;
5251 unsorted_regs[i] = (GET_CODE (operands[i]) == REG
5252 ? REGNO (operands[i])
5253 : REGNO (SUBREG_REG (operands[i])));
5254 if (unsorted_regs[i] < unsorted_regs[order[0]])
5255 order[0] = i;
5258 /* If it isn't an integer register, or if it overwrites the
5259 base register but isn't the last insn in the list, then
5260 we can't do this. */
5261 if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14
5262 || (i != nops - 1 && unsorted_regs[i] == base_reg))
5263 return 0;
5265 unsorted_offsets[i] = INTVAL (offset);
5267 else
5268 /* Not a suitable memory address. */
5269 return 0;
5272 /* All the useful information has now been extracted from the
5273 operands into unsorted_regs and unsorted_offsets; additionally,
5274 order[0] has been set to the lowest numbered register in the
5275 list. Sort the registers into order, and check that the memory
5276 offsets are ascending and adjacent. */
5278 for (i = 1; i < nops; i++)
5280 int j;
5282 order[i] = order[i - 1];
5283 for (j = 0; j < nops; j++)
5284 if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
5285 && (order[i] == order[i - 1]
5286 || unsorted_regs[j] < unsorted_regs[order[i]]))
5287 order[i] = j;
5289 /* Have we found a suitable register? if not, one must be used more
5290 than once. */
5291 if (order[i] == order[i - 1])
5292 return 0;
5294 /* Is the memory address adjacent and ascending? */
5295 if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
5296 return 0;
5299 if (base)
5301 *base = base_reg;
5303 for (i = 0; i < nops; i++)
5304 regs[i] = unsorted_regs[order[i]];
5306 *load_offset = unsorted_offsets[order[0]];
5309 if (unsorted_offsets[order[0]] == 0)
5310 return 1; /* ldmia */
5312 if (unsorted_offsets[order[0]] == 4)
5313 return 2; /* ldmib */
5315 if (unsorted_offsets[order[nops - 1]] == 0)
5316 return 3; /* ldmda */
5318 if (unsorted_offsets[order[nops - 1]] == -4)
5319 return 4; /* ldmdb */
5321 /* For ARM8,9 & StrongARM, 2 ldr instructions are faster than an ldm
5322 if the offset isn't small enough. The reason 2 ldrs are faster
5323 is because these ARMs are able to do more than one cache access
5324 in a single cycle. The ARM9 and StrongARM have Harvard caches,
5325 whilst the ARM8 has a double bandwidth cache. This means that
5326 these cores can do both an instruction fetch and a data fetch in
5327 a single cycle, so the trick of calculating the address into a
5328 scratch register (one of the result regs) and then doing a load
5329 multiple actually becomes slower (and no smaller in code size).
5330 That is the transformation
5332 ldr rd1, [rbase + offset]
5333 ldr rd2, [rbase + offset + 4]
5337 add rd1, rbase, offset
5338 ldmia rd1, {rd1, rd2}
5340 produces worse code -- '3 cycles + any stalls on rd2' instead of
5341 '2 cycles + any stalls on rd2'. On ARMs with only one cache
5342 access per cycle, the first sequence could never complete in less
5343 than 6 cycles, whereas the ldm sequence would only take 5 and
5344 would make better use of sequential accesses if not hitting the
5345 cache.
5347 We cheat here and test 'arm_ld_sched' which we currently know to
5348 only be true for the ARM8, ARM9 and StrongARM. If this ever
5349 changes, then the test below needs to be reworked. */
5350 if (nops == 2 && arm_ld_sched)
5351 return 0;
5353 /* Can't do it without setting up the offset, only do this if it takes
5354 no more than one insn. */
5355 return (const_ok_for_arm (unsorted_offsets[order[0]])
5356 || const_ok_for_arm (-unsorted_offsets[order[0]])) ? 5 : 0;
5359 const char *
5360 emit_ldm_seq (rtx *operands, int nops)
5362 int regs[4];
5363 int base_reg;
5364 HOST_WIDE_INT offset;
5365 char buf[100];
5366 int i;
5368 switch (load_multiple_sequence (operands, nops, regs, &base_reg, &offset))
5370 case 1:
5371 strcpy (buf, "ldm%?ia\t");
5372 break;
5374 case 2:
5375 strcpy (buf, "ldm%?ib\t");
5376 break;
5378 case 3:
5379 strcpy (buf, "ldm%?da\t");
5380 break;
5382 case 4:
5383 strcpy (buf, "ldm%?db\t");
5384 break;
5386 case 5:
5387 if (offset >= 0)
5388 sprintf (buf, "add%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
5389 reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
5390 (long) offset);
5391 else
5392 sprintf (buf, "sub%%?\t%s%s, %s%s, #%ld", REGISTER_PREFIX,
5393 reg_names[regs[0]], REGISTER_PREFIX, reg_names[base_reg],
5394 (long) -offset);
5395 output_asm_insn (buf, operands);
5396 base_reg = regs[0];
5397 strcpy (buf, "ldm%?ia\t");
5398 break;
5400 default:
5401 abort ();
5404 sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
5405 reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
5407 for (i = 1; i < nops; i++)
5408 sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
5409 reg_names[regs[i]]);
5411 strcat (buf, "}\t%@ phole ldm");
5413 output_asm_insn (buf, operands);
5414 return "";
5418 store_multiple_sequence (rtx *operands, int nops, int *regs, int *base,
5419 HOST_WIDE_INT * load_offset)
5421 int unsorted_regs[4];
5422 HOST_WIDE_INT unsorted_offsets[4];
5423 int order[4];
5424 int base_reg = -1;
5425 int i;
5427 /* Can only handle 2, 3, or 4 insns at present, though could be easily
5428 extended if required. */
5429 if (nops < 2 || nops > 4)
5430 abort ();
5432 /* Loop over the operands and check that the memory references are
5433 suitable (i.e. immediate offsets from the same base register). At
5434 the same time, extract the target register, and the memory
5435 offsets. */
5436 for (i = 0; i < nops; i++)
5438 rtx reg;
5439 rtx offset;
5441 /* Convert a subreg of a mem into the mem itself. */
5442 if (GET_CODE (operands[nops + i]) == SUBREG)
5443 operands[nops + i] = alter_subreg (operands + (nops + i));
5445 if (GET_CODE (operands[nops + i]) != MEM)
5446 abort ();
5448 /* Don't reorder volatile memory references; it doesn't seem worth
5449 looking for the case where the order is ok anyway. */
5450 if (MEM_VOLATILE_P (operands[nops + i]))
5451 return 0;
5453 offset = const0_rtx;
5455 if ((GET_CODE (reg = XEXP (operands[nops + i], 0)) == REG
5456 || (GET_CODE (reg) == SUBREG
5457 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5458 || (GET_CODE (XEXP (operands[nops + i], 0)) == PLUS
5459 && ((GET_CODE (reg = XEXP (XEXP (operands[nops + i], 0), 0))
5460 == REG)
5461 || (GET_CODE (reg) == SUBREG
5462 && GET_CODE (reg = SUBREG_REG (reg)) == REG))
5463 && (GET_CODE (offset = XEXP (XEXP (operands[nops + i], 0), 1))
5464 == CONST_INT)))
5466 if (i == 0)
5468 base_reg = REGNO (reg);
5469 unsorted_regs[0] = (GET_CODE (operands[i]) == REG
5470 ? REGNO (operands[i])
5471 : REGNO (SUBREG_REG (operands[i])));
5472 order[0] = 0;
5474 else
5476 if (base_reg != (int) REGNO (reg))
5477 /* Not addressed from the same base register. */
5478 return 0;
5480 unsorted_regs[i] = (GET_CODE (operands[i]) == REG
5481 ? REGNO (operands[i])
5482 : REGNO (SUBREG_REG (operands[i])));
5483 if (unsorted_regs[i] < unsorted_regs[order[0]])
5484 order[0] = i;
5487 /* If it isn't an integer register, then we can't do this. */
5488 if (unsorted_regs[i] < 0 || unsorted_regs[i] > 14)
5489 return 0;
5491 unsorted_offsets[i] = INTVAL (offset);
5493 else
5494 /* Not a suitable memory address. */
5495 return 0;
5498 /* All the useful information has now been extracted from the
5499 operands into unsorted_regs and unsorted_offsets; additionally,
5500 order[0] has been set to the lowest numbered register in the
5501 list. Sort the registers into order, and check that the memory
5502 offsets are ascending and adjacent. */
5504 for (i = 1; i < nops; i++)
5506 int j;
5508 order[i] = order[i - 1];
5509 for (j = 0; j < nops; j++)
5510 if (unsorted_regs[j] > unsorted_regs[order[i - 1]]
5511 && (order[i] == order[i - 1]
5512 || unsorted_regs[j] < unsorted_regs[order[i]]))
5513 order[i] = j;
5515 /* Have we found a suitable register? if not, one must be used more
5516 than once. */
5517 if (order[i] == order[i - 1])
5518 return 0;
5520 /* Is the memory address adjacent and ascending? */
5521 if (unsorted_offsets[order[i]] != unsorted_offsets[order[i - 1]] + 4)
5522 return 0;
5525 if (base)
5527 *base = base_reg;
5529 for (i = 0; i < nops; i++)
5530 regs[i] = unsorted_regs[order[i]];
5532 *load_offset = unsorted_offsets[order[0]];
5535 if (unsorted_offsets[order[0]] == 0)
5536 return 1; /* stmia */
5538 if (unsorted_offsets[order[0]] == 4)
5539 return 2; /* stmib */
5541 if (unsorted_offsets[order[nops - 1]] == 0)
5542 return 3; /* stmda */
5544 if (unsorted_offsets[order[nops - 1]] == -4)
5545 return 4; /* stmdb */
5547 return 0;
5550 const char *
5551 emit_stm_seq (rtx *operands, int nops)
5553 int regs[4];
5554 int base_reg;
5555 HOST_WIDE_INT offset;
5556 char buf[100];
5557 int i;
5559 switch (store_multiple_sequence (operands, nops, regs, &base_reg, &offset))
5561 case 1:
5562 strcpy (buf, "stm%?ia\t");
5563 break;
5565 case 2:
5566 strcpy (buf, "stm%?ib\t");
5567 break;
5569 case 3:
5570 strcpy (buf, "stm%?da\t");
5571 break;
5573 case 4:
5574 strcpy (buf, "stm%?db\t");
5575 break;
5577 default:
5578 abort ();
5581 sprintf (buf + strlen (buf), "%s%s, {%s%s", REGISTER_PREFIX,
5582 reg_names[base_reg], REGISTER_PREFIX, reg_names[regs[0]]);
5584 for (i = 1; i < nops; i++)
5585 sprintf (buf + strlen (buf), ", %s%s", REGISTER_PREFIX,
5586 reg_names[regs[i]]);
5588 strcat (buf, "}\t%@ phole stm");
5590 output_asm_insn (buf, operands);
5591 return "";
5595 /* Routines for use in generating RTL. */
5598 arm_gen_load_multiple (int base_regno, int count, rtx from, int up,
5599 int write_back, rtx basemem, HOST_WIDE_INT *offsetp)
5601 HOST_WIDE_INT offset = *offsetp;
5602 int i = 0, j;
5603 rtx result;
5604 int sign = up ? 1 : -1;
5605 rtx mem, addr;
5607 /* XScale has load-store double instructions, but they have stricter
5608 alignment requirements than load-store multiple, so we cannot
5609 use them.
5611 For XScale ldm requires 2 + NREGS cycles to complete and blocks
5612 the pipeline until completion.
5614 NREGS CYCLES
5620 An ldr instruction takes 1-3 cycles, but does not block the
5621 pipeline.
5623 NREGS CYCLES
5624 1 1-3
5625 2 2-6
5626 3 3-9
5627 4 4-12
5629 Best case ldr will always win. However, the more ldr instructions
5630 we issue, the less likely we are to be able to schedule them well.
5631 Using ldr instructions also increases code size.
5633 As a compromise, we use ldr for counts of 1 or 2 regs, and ldm
5634 for counts of 3 or 4 regs. */
5635 if (arm_tune_xscale && count <= 2 && ! optimize_size)
5637 rtx seq;
5639 start_sequence ();
5641 for (i = 0; i < count; i++)
5643 addr = plus_constant (from, i * 4 * sign);
5644 mem = adjust_automodify_address (basemem, SImode, addr, offset);
5645 emit_move_insn (gen_rtx_REG (SImode, base_regno + i), mem);
5646 offset += 4 * sign;
5649 if (write_back)
5651 emit_move_insn (from, plus_constant (from, count * 4 * sign));
5652 *offsetp = offset;
5655 seq = get_insns ();
5656 end_sequence ();
5658 return seq;
5661 result = gen_rtx_PARALLEL (VOIDmode,
5662 rtvec_alloc (count + (write_back ? 1 : 0)));
5663 if (write_back)
5665 XVECEXP (result, 0, 0)
5666 = gen_rtx_SET (GET_MODE (from), from,
5667 plus_constant (from, count * 4 * sign));
5668 i = 1;
5669 count++;
5672 for (j = 0; i < count; i++, j++)
5674 addr = plus_constant (from, j * 4 * sign);
5675 mem = adjust_automodify_address_nv (basemem, SImode, addr, offset);
5676 XVECEXP (result, 0, i)
5677 = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, base_regno + j), mem);
5678 offset += 4 * sign;
5681 if (write_back)
5682 *offsetp = offset;
5684 return result;
5688 arm_gen_store_multiple (int base_regno, int count, rtx to, int up,
5689 int write_back, rtx basemem, HOST_WIDE_INT *offsetp)
5691 HOST_WIDE_INT offset = *offsetp;
5692 int i = 0, j;
5693 rtx result;
5694 int sign = up ? 1 : -1;
5695 rtx mem, addr;
5697 /* See arm_gen_load_multiple for discussion of
5698 the pros/cons of ldm/stm usage for XScale. */
5699 if (arm_tune_xscale && count <= 2 && ! optimize_size)
5701 rtx seq;
5703 start_sequence ();
5705 for (i = 0; i < count; i++)
5707 addr = plus_constant (to, i * 4 * sign);
5708 mem = adjust_automodify_address (basemem, SImode, addr, offset);
5709 emit_move_insn (mem, gen_rtx_REG (SImode, base_regno + i));
5710 offset += 4 * sign;
5713 if (write_back)
5715 emit_move_insn (to, plus_constant (to, count * 4 * sign));
5716 *offsetp = offset;
5719 seq = get_insns ();
5720 end_sequence ();
5722 return seq;
5725 result = gen_rtx_PARALLEL (VOIDmode,
5726 rtvec_alloc (count + (write_back ? 1 : 0)));
5727 if (write_back)
5729 XVECEXP (result, 0, 0)
5730 = gen_rtx_SET (GET_MODE (to), to,
5731 plus_constant (to, count * 4 * sign));
5732 i = 1;
5733 count++;
5736 for (j = 0; i < count; i++, j++)
5738 addr = plus_constant (to, j * 4 * sign);
5739 mem = adjust_automodify_address_nv (basemem, SImode, addr, offset);
5740 XVECEXP (result, 0, i)
5741 = gen_rtx_SET (VOIDmode, mem, gen_rtx_REG (SImode, base_regno + j));
5742 offset += 4 * sign;
5745 if (write_back)
5746 *offsetp = offset;
5748 return result;
5752 arm_gen_movmemqi (rtx *operands)
5754 HOST_WIDE_INT in_words_to_go, out_words_to_go, last_bytes;
5755 HOST_WIDE_INT srcoffset, dstoffset;
5756 int i;
5757 rtx src, dst, srcbase, dstbase;
5758 rtx part_bytes_reg = NULL;
5759 rtx mem;
5761 if (GET_CODE (operands[2]) != CONST_INT
5762 || GET_CODE (operands[3]) != CONST_INT
5763 || INTVAL (operands[2]) > 64
5764 || INTVAL (operands[3]) & 3)
5765 return 0;
5767 dstbase = operands[0];
5768 srcbase = operands[1];
5770 dst = copy_to_mode_reg (SImode, XEXP (dstbase, 0));
5771 src = copy_to_mode_reg (SImode, XEXP (srcbase, 0));
5773 in_words_to_go = ARM_NUM_INTS (INTVAL (operands[2]));
5774 out_words_to_go = INTVAL (operands[2]) / 4;
5775 last_bytes = INTVAL (operands[2]) & 3;
5776 dstoffset = srcoffset = 0;
5778 if (out_words_to_go != in_words_to_go && ((in_words_to_go - 1) & 3) != 0)
5779 part_bytes_reg = gen_rtx_REG (SImode, (in_words_to_go - 1) & 3);
5781 for (i = 0; in_words_to_go >= 2; i+=4)
5783 if (in_words_to_go > 4)
5784 emit_insn (arm_gen_load_multiple (0, 4, src, TRUE, TRUE,
5785 srcbase, &srcoffset));
5786 else
5787 emit_insn (arm_gen_load_multiple (0, in_words_to_go, src, TRUE,
5788 FALSE, srcbase, &srcoffset));
5790 if (out_words_to_go)
5792 if (out_words_to_go > 4)
5793 emit_insn (arm_gen_store_multiple (0, 4, dst, TRUE, TRUE,
5794 dstbase, &dstoffset));
5795 else if (out_words_to_go != 1)
5796 emit_insn (arm_gen_store_multiple (0, out_words_to_go,
5797 dst, TRUE,
5798 (last_bytes == 0
5799 ? FALSE : TRUE),
5800 dstbase, &dstoffset));
5801 else
5803 mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
5804 emit_move_insn (mem, gen_rtx_REG (SImode, 0));
5805 if (last_bytes != 0)
5807 emit_insn (gen_addsi3 (dst, dst, GEN_INT (4)));
5808 dstoffset += 4;
5813 in_words_to_go -= in_words_to_go < 4 ? in_words_to_go : 4;
5814 out_words_to_go -= out_words_to_go < 4 ? out_words_to_go : 4;
5817 /* OUT_WORDS_TO_GO will be zero here if there are byte stores to do. */
5818 if (out_words_to_go)
5820 rtx sreg;
5822 mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
5823 sreg = copy_to_reg (mem);
5825 mem = adjust_automodify_address (dstbase, SImode, dst, dstoffset);
5826 emit_move_insn (mem, sreg);
5827 in_words_to_go--;
5829 if (in_words_to_go) /* Sanity check */
5830 abort ();
5833 if (in_words_to_go)
5835 if (in_words_to_go < 0)
5836 abort ();
5838 mem = adjust_automodify_address (srcbase, SImode, src, srcoffset);
5839 part_bytes_reg = copy_to_mode_reg (SImode, mem);
5842 if (last_bytes && part_bytes_reg == NULL)
5843 abort ();
5845 if (BYTES_BIG_ENDIAN && last_bytes)
5847 rtx tmp = gen_reg_rtx (SImode);
5849 /* The bytes we want are in the top end of the word. */
5850 emit_insn (gen_lshrsi3 (tmp, part_bytes_reg,
5851 GEN_INT (8 * (4 - last_bytes))));
5852 part_bytes_reg = tmp;
5854 while (last_bytes)
5856 mem = adjust_automodify_address (dstbase, QImode,
5857 plus_constant (dst, last_bytes - 1),
5858 dstoffset + last_bytes - 1);
5859 emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
5861 if (--last_bytes)
5863 tmp = gen_reg_rtx (SImode);
5864 emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (8)));
5865 part_bytes_reg = tmp;
5870 else
5872 if (last_bytes > 1)
5874 mem = adjust_automodify_address (dstbase, HImode, dst, dstoffset);
5875 emit_move_insn (mem, gen_lowpart (HImode, part_bytes_reg));
5876 last_bytes -= 2;
5877 if (last_bytes)
5879 rtx tmp = gen_reg_rtx (SImode);
5880 emit_insn (gen_addsi3 (dst, dst, const2_rtx));
5881 emit_insn (gen_lshrsi3 (tmp, part_bytes_reg, GEN_INT (16)));
5882 part_bytes_reg = tmp;
5883 dstoffset += 2;
5887 if (last_bytes)
5889 mem = adjust_automodify_address (dstbase, QImode, dst, dstoffset);
5890 emit_move_insn (mem, gen_lowpart (QImode, part_bytes_reg));
5894 return 1;
5897 /* Generate a memory reference for a half word, such that it will be loaded
5898 into the top 16 bits of the word. We can assume that the address is
5899 known to be alignable and of the form reg, or plus (reg, const). */
5902 arm_gen_rotated_half_load (rtx memref)
5904 HOST_WIDE_INT offset = 0;
5905 rtx base = XEXP (memref, 0);
5907 if (GET_CODE (base) == PLUS)
5909 offset = INTVAL (XEXP (base, 1));
5910 base = XEXP (base, 0);
5913 /* If we aren't allowed to generate unaligned addresses, then fail. */
5914 if ((BYTES_BIG_ENDIAN ? 1 : 0) ^ ((offset & 2) == 0))
5915 return NULL;
5917 base = gen_rtx_MEM (SImode, plus_constant (base, offset & ~2));
5919 if ((BYTES_BIG_ENDIAN ? 1 : 0) ^ ((offset & 2) == 2))
5920 return base;
5922 return gen_rtx_ROTATE (SImode, base, GEN_INT (16));
5925 /* Select a dominance comparison mode if possible for a test of the general
5926 form (OP (COND_OR (X) (Y)) (const_int 0)). We support three forms.
5927 COND_OR == DOM_CC_X_AND_Y => (X && Y)
5928 COND_OR == DOM_CC_NX_OR_Y => ((! X) || Y)
5929 COND_OR == DOM_CC_X_OR_Y => (X || Y)
5930 In all cases OP will be either EQ or NE, but we don't need to know which
5931 here. If we are unable to support a dominance comparison we return
5932 CC mode. This will then fail to match for the RTL expressions that
5933 generate this call. */
5934 enum machine_mode
5935 arm_select_dominance_cc_mode (rtx x, rtx y, HOST_WIDE_INT cond_or)
5937 enum rtx_code cond1, cond2;
5938 int swapped = 0;
5940 /* Currently we will probably get the wrong result if the individual
5941 comparisons are not simple. This also ensures that it is safe to
5942 reverse a comparison if necessary. */
5943 if ((arm_select_cc_mode (cond1 = GET_CODE (x), XEXP (x, 0), XEXP (x, 1))
5944 != CCmode)
5945 || (arm_select_cc_mode (cond2 = GET_CODE (y), XEXP (y, 0), XEXP (y, 1))
5946 != CCmode))
5947 return CCmode;
5949 /* The if_then_else variant of this tests the second condition if the
5950 first passes, but is true if the first fails. Reverse the first
5951 condition to get a true "inclusive-or" expression. */
5952 if (cond_or == DOM_CC_NX_OR_Y)
5953 cond1 = reverse_condition (cond1);
5955 /* If the comparisons are not equal, and one doesn't dominate the other,
5956 then we can't do this. */
5957 if (cond1 != cond2
5958 && !comparison_dominates_p (cond1, cond2)
5959 && (swapped = 1, !comparison_dominates_p (cond2, cond1)))
5960 return CCmode;
5962 if (swapped)
5964 enum rtx_code temp = cond1;
5965 cond1 = cond2;
5966 cond2 = temp;
5969 switch (cond1)
5971 case EQ:
5972 if (cond2 == EQ || cond_or == DOM_CC_X_AND_Y)
5973 return CC_DEQmode;
5975 switch (cond2)
5977 case LE: return CC_DLEmode;
5978 case LEU: return CC_DLEUmode;
5979 case GE: return CC_DGEmode;
5980 case GEU: return CC_DGEUmode;
5981 default: break;
5984 break;
5986 case LT:
5987 if (cond2 == LT || cond_or == DOM_CC_X_AND_Y)
5988 return CC_DLTmode;
5989 if (cond2 == LE)
5990 return CC_DLEmode;
5991 if (cond2 == NE)
5992 return CC_DNEmode;
5993 break;
5995 case GT:
5996 if (cond2 == GT || cond_or == DOM_CC_X_AND_Y)
5997 return CC_DGTmode;
5998 if (cond2 == GE)
5999 return CC_DGEmode;
6000 if (cond2 == NE)
6001 return CC_DNEmode;
6002 break;
6004 case LTU:
6005 if (cond2 == LTU || cond_or == DOM_CC_X_AND_Y)
6006 return CC_DLTUmode;
6007 if (cond2 == LEU)
6008 return CC_DLEUmode;
6009 if (cond2 == NE)
6010 return CC_DNEmode;
6011 break;
6013 case GTU:
6014 if (cond2 == GTU || cond_or == DOM_CC_X_AND_Y)
6015 return CC_DGTUmode;
6016 if (cond2 == GEU)
6017 return CC_DGEUmode;
6018 if (cond2 == NE)
6019 return CC_DNEmode;
6020 break;
6022 /* The remaining cases only occur when both comparisons are the
6023 same. */
6024 case NE:
6025 return CC_DNEmode;
6027 case LE:
6028 return CC_DLEmode;
6030 case GE:
6031 return CC_DGEmode;
6033 case LEU:
6034 return CC_DLEUmode;
6036 case GEU:
6037 return CC_DGEUmode;
6039 default:
6040 break;
6043 abort ();
6046 enum machine_mode
6047 arm_select_cc_mode (enum rtx_code op, rtx x, rtx y)
6049 /* All floating point compares return CCFP if it is an equality
6050 comparison, and CCFPE otherwise. */
6051 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
6053 switch (op)
6055 case EQ:
6056 case NE:
6057 case UNORDERED:
6058 case ORDERED:
6059 case UNLT:
6060 case UNLE:
6061 case UNGT:
6062 case UNGE:
6063 case UNEQ:
6064 case LTGT:
6065 return CCFPmode;
6067 case LT:
6068 case LE:
6069 case GT:
6070 case GE:
6071 if (TARGET_HARD_FLOAT && TARGET_MAVERICK)
6072 return CCFPmode;
6073 return CCFPEmode;
6075 default:
6076 abort ();
6080 /* A compare with a shifted operand. Because of canonicalization, the
6081 comparison will have to be swapped when we emit the assembler. */
6082 if (GET_MODE (y) == SImode && GET_CODE (y) == REG
6083 && (GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
6084 || GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ROTATE
6085 || GET_CODE (x) == ROTATERT))
6086 return CC_SWPmode;
6088 /* This is a special case that is used by combine to allow a
6089 comparison of a shifted byte load to be split into a zero-extend
6090 followed by a comparison of the shifted integer (only valid for
6091 equalities and unsigned inequalities). */
6092 if (GET_MODE (x) == SImode
6093 && GET_CODE (x) == ASHIFT
6094 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 24
6095 && GET_CODE (XEXP (x, 0)) == SUBREG
6096 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == MEM
6097 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == QImode
6098 && (op == EQ || op == NE
6099 || op == GEU || op == GTU || op == LTU || op == LEU)
6100 && GET_CODE (y) == CONST_INT)
6101 return CC_Zmode;
6103 /* A construct for a conditional compare, if the false arm contains
6104 0, then both conditions must be true, otherwise either condition
6105 must be true. Not all conditions are possible, so CCmode is
6106 returned if it can't be done. */
6107 if (GET_CODE (x) == IF_THEN_ELSE
6108 && (XEXP (x, 2) == const0_rtx
6109 || XEXP (x, 2) == const1_rtx)
6110 && COMPARISON_P (XEXP (x, 0))
6111 && COMPARISON_P (XEXP (x, 1)))
6112 return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
6113 INTVAL (XEXP (x, 2)));
6115 /* Alternate canonicalizations of the above. These are somewhat cleaner. */
6116 if (GET_CODE (x) == AND
6117 && COMPARISON_P (XEXP (x, 0))
6118 && COMPARISON_P (XEXP (x, 1)))
6119 return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
6120 DOM_CC_X_AND_Y);
6122 if (GET_CODE (x) == IOR
6123 && COMPARISON_P (XEXP (x, 0))
6124 && COMPARISON_P (XEXP (x, 1)))
6125 return arm_select_dominance_cc_mode (XEXP (x, 0), XEXP (x, 1),
6126 DOM_CC_X_OR_Y);
6128 /* An operation (on Thumb) where we want to test for a single bit.
6129 This is done by shifting that bit up into the top bit of a
6130 scratch register; we can then branch on the sign bit. */
6131 if (TARGET_THUMB
6132 && GET_MODE (x) == SImode
6133 && (op == EQ || op == NE)
6134 && (GET_CODE (x) == ZERO_EXTRACT))
6135 return CC_Nmode;
6137 /* An operation that sets the condition codes as a side-effect, the
6138 V flag is not set correctly, so we can only use comparisons where
6139 this doesn't matter. (For LT and GE we can use "mi" and "pl"
6140 instead.) */
6141 if (GET_MODE (x) == SImode
6142 && y == const0_rtx
6143 && (op == EQ || op == NE || op == LT || op == GE)
6144 && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
6145 || GET_CODE (x) == AND || GET_CODE (x) == IOR
6146 || GET_CODE (x) == XOR || GET_CODE (x) == MULT
6147 || GET_CODE (x) == NOT || GET_CODE (x) == NEG
6148 || GET_CODE (x) == LSHIFTRT
6149 || GET_CODE (x) == ASHIFT || GET_CODE (x) == ASHIFTRT
6150 || GET_CODE (x) == ROTATERT
6151 || (TARGET_ARM && GET_CODE (x) == ZERO_EXTRACT)))
6152 return CC_NOOVmode;
6154 if (GET_MODE (x) == QImode && (op == EQ || op == NE))
6155 return CC_Zmode;
6157 if (GET_MODE (x) == SImode && (op == LTU || op == GEU)
6158 && GET_CODE (x) == PLUS
6159 && (rtx_equal_p (XEXP (x, 0), y) || rtx_equal_p (XEXP (x, 1), y)))
6160 return CC_Cmode;
6162 return CCmode;
6165 /* X and Y are two things to compare using CODE. Emit the compare insn and
6166 return the rtx for register 0 in the proper mode. FP means this is a
6167 floating point compare: I don't think that it is needed on the arm. */
6169 arm_gen_compare_reg (enum rtx_code code, rtx x, rtx y)
6171 enum machine_mode mode = SELECT_CC_MODE (code, x, y);
6172 rtx cc_reg = gen_rtx_REG (mode, CC_REGNUM);
6174 emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
6175 gen_rtx_COMPARE (mode, x, y)));
6177 return cc_reg;
6180 /* Generate a sequence of insns that will generate the correct return
6181 address mask depending on the physical architecture that the program
6182 is running on. */
6184 arm_gen_return_addr_mask (void)
6186 rtx reg = gen_reg_rtx (Pmode);
6188 emit_insn (gen_return_addr_mask (reg));
6189 return reg;
6192 void
6193 arm_reload_in_hi (rtx *operands)
6195 rtx ref = operands[1];
6196 rtx base, scratch;
6197 HOST_WIDE_INT offset = 0;
6199 if (GET_CODE (ref) == SUBREG)
6201 offset = SUBREG_BYTE (ref);
6202 ref = SUBREG_REG (ref);
6205 if (GET_CODE (ref) == REG)
6207 /* We have a pseudo which has been spilt onto the stack; there
6208 are two cases here: the first where there is a simple
6209 stack-slot replacement and a second where the stack-slot is
6210 out of range, or is used as a subreg. */
6211 if (reg_equiv_mem[REGNO (ref)])
6213 ref = reg_equiv_mem[REGNO (ref)];
6214 base = find_replacement (&XEXP (ref, 0));
6216 else
6217 /* The slot is out of range, or was dressed up in a SUBREG. */
6218 base = reg_equiv_address[REGNO (ref)];
6220 else
6221 base = find_replacement (&XEXP (ref, 0));
6223 /* Handle the case where the address is too complex to be offset by 1. */
6224 if (GET_CODE (base) == MINUS
6225 || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
6227 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6229 emit_insn (gen_rtx_SET (VOIDmode, base_plus, base));
6230 base = base_plus;
6232 else if (GET_CODE (base) == PLUS)
6234 /* The addend must be CONST_INT, or we would have dealt with it above. */
6235 HOST_WIDE_INT hi, lo;
6237 offset += INTVAL (XEXP (base, 1));
6238 base = XEXP (base, 0);
6240 /* Rework the address into a legal sequence of insns. */
6241 /* Valid range for lo is -4095 -> 4095 */
6242 lo = (offset >= 0
6243 ? (offset & 0xfff)
6244 : -((-offset) & 0xfff));
6246 /* Corner case, if lo is the max offset then we would be out of range
6247 once we have added the additional 1 below, so bump the msb into the
6248 pre-loading insn(s). */
6249 if (lo == 4095)
6250 lo &= 0x7ff;
6252 hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
6253 ^ (HOST_WIDE_INT) 0x80000000)
6254 - (HOST_WIDE_INT) 0x80000000);
6256 if (hi + lo != offset)
6257 abort ();
6259 if (hi != 0)
6261 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6263 /* Get the base address; addsi3 knows how to handle constants
6264 that require more than one insn. */
6265 emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
6266 base = base_plus;
6267 offset = lo;
6271 /* Operands[2] may overlap operands[0] (though it won't overlap
6272 operands[1]), that's why we asked for a DImode reg -- so we can
6273 use the bit that does not overlap. */
6274 if (REGNO (operands[2]) == REGNO (operands[0]))
6275 scratch = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6276 else
6277 scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
6279 emit_insn (gen_zero_extendqisi2 (scratch,
6280 gen_rtx_MEM (QImode,
6281 plus_constant (base,
6282 offset))));
6283 emit_insn (gen_zero_extendqisi2 (gen_rtx_SUBREG (SImode, operands[0], 0),
6284 gen_rtx_MEM (QImode,
6285 plus_constant (base,
6286 offset + 1))));
6287 if (!BYTES_BIG_ENDIAN)
6288 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_SUBREG (SImode, operands[0], 0),
6289 gen_rtx_IOR (SImode,
6290 gen_rtx_ASHIFT
6291 (SImode,
6292 gen_rtx_SUBREG (SImode, operands[0], 0),
6293 GEN_INT (8)),
6294 scratch)));
6295 else
6296 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_SUBREG (SImode, operands[0], 0),
6297 gen_rtx_IOR (SImode,
6298 gen_rtx_ASHIFT (SImode, scratch,
6299 GEN_INT (8)),
6300 gen_rtx_SUBREG (SImode, operands[0],
6301 0))));
6304 /* Handle storing a half-word to memory during reload by synthesizing as two
6305 byte stores. Take care not to clobber the input values until after we
6306 have moved them somewhere safe. This code assumes that if the DImode
6307 scratch in operands[2] overlaps either the input value or output address
6308 in some way, then that value must die in this insn (we absolutely need
6309 two scratch registers for some corner cases). */
6310 void
6311 arm_reload_out_hi (rtx *operands)
6313 rtx ref = operands[0];
6314 rtx outval = operands[1];
6315 rtx base, scratch;
6316 HOST_WIDE_INT offset = 0;
6318 if (GET_CODE (ref) == SUBREG)
6320 offset = SUBREG_BYTE (ref);
6321 ref = SUBREG_REG (ref);
6324 if (GET_CODE (ref) == REG)
6326 /* We have a pseudo which has been spilt onto the stack; there
6327 are two cases here: the first where there is a simple
6328 stack-slot replacement and a second where the stack-slot is
6329 out of range, or is used as a subreg. */
6330 if (reg_equiv_mem[REGNO (ref)])
6332 ref = reg_equiv_mem[REGNO (ref)];
6333 base = find_replacement (&XEXP (ref, 0));
6335 else
6336 /* The slot is out of range, or was dressed up in a SUBREG. */
6337 base = reg_equiv_address[REGNO (ref)];
6339 else
6340 base = find_replacement (&XEXP (ref, 0));
6342 scratch = gen_rtx_REG (SImode, REGNO (operands[2]));
6344 /* Handle the case where the address is too complex to be offset by 1. */
6345 if (GET_CODE (base) == MINUS
6346 || (GET_CODE (base) == PLUS && GET_CODE (XEXP (base, 1)) != CONST_INT))
6348 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6350 /* Be careful not to destroy OUTVAL. */
6351 if (reg_overlap_mentioned_p (base_plus, outval))
6353 /* Updating base_plus might destroy outval, see if we can
6354 swap the scratch and base_plus. */
6355 if (!reg_overlap_mentioned_p (scratch, outval))
6357 rtx tmp = scratch;
6358 scratch = base_plus;
6359 base_plus = tmp;
6361 else
6363 rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
6365 /* Be conservative and copy OUTVAL into the scratch now,
6366 this should only be necessary if outval is a subreg
6367 of something larger than a word. */
6368 /* XXX Might this clobber base? I can't see how it can,
6369 since scratch is known to overlap with OUTVAL, and
6370 must be wider than a word. */
6371 emit_insn (gen_movhi (scratch_hi, outval));
6372 outval = scratch_hi;
6376 emit_insn (gen_rtx_SET (VOIDmode, base_plus, base));
6377 base = base_plus;
6379 else if (GET_CODE (base) == PLUS)
6381 /* The addend must be CONST_INT, or we would have dealt with it above. */
6382 HOST_WIDE_INT hi, lo;
6384 offset += INTVAL (XEXP (base, 1));
6385 base = XEXP (base, 0);
6387 /* Rework the address into a legal sequence of insns. */
6388 /* Valid range for lo is -4095 -> 4095 */
6389 lo = (offset >= 0
6390 ? (offset & 0xfff)
6391 : -((-offset) & 0xfff));
6393 /* Corner case, if lo is the max offset then we would be out of range
6394 once we have added the additional 1 below, so bump the msb into the
6395 pre-loading insn(s). */
6396 if (lo == 4095)
6397 lo &= 0x7ff;
6399 hi = ((((offset - lo) & (HOST_WIDE_INT) 0xffffffff)
6400 ^ (HOST_WIDE_INT) 0x80000000)
6401 - (HOST_WIDE_INT) 0x80000000);
6403 if (hi + lo != offset)
6404 abort ();
6406 if (hi != 0)
6408 rtx base_plus = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
6410 /* Be careful not to destroy OUTVAL. */
6411 if (reg_overlap_mentioned_p (base_plus, outval))
6413 /* Updating base_plus might destroy outval, see if we
6414 can swap the scratch and base_plus. */
6415 if (!reg_overlap_mentioned_p (scratch, outval))
6417 rtx tmp = scratch;
6418 scratch = base_plus;
6419 base_plus = tmp;
6421 else
6423 rtx scratch_hi = gen_rtx_REG (HImode, REGNO (operands[2]));
6425 /* Be conservative and copy outval into scratch now,
6426 this should only be necessary if outval is a
6427 subreg of something larger than a word. */
6428 /* XXX Might this clobber base? I can't see how it
6429 can, since scratch is known to overlap with
6430 outval. */
6431 emit_insn (gen_movhi (scratch_hi, outval));
6432 outval = scratch_hi;
6436 /* Get the base address; addsi3 knows how to handle constants
6437 that require more than one insn. */
6438 emit_insn (gen_addsi3 (base_plus, base, GEN_INT (hi)));
6439 base = base_plus;
6440 offset = lo;
6444 if (BYTES_BIG_ENDIAN)
6446 emit_insn (gen_movqi (gen_rtx_MEM (QImode,
6447 plus_constant (base, offset + 1)),
6448 gen_lowpart (QImode, outval)));
6449 emit_insn (gen_lshrsi3 (scratch,
6450 gen_rtx_SUBREG (SImode, outval, 0),
6451 GEN_INT (8)));
6452 emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
6453 gen_lowpart (QImode, scratch)));
6455 else
6457 emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (base, offset)),
6458 gen_lowpart (QImode, outval)));
6459 emit_insn (gen_lshrsi3 (scratch,
6460 gen_rtx_SUBREG (SImode, outval, 0),
6461 GEN_INT (8)));
6462 emit_insn (gen_movqi (gen_rtx_MEM (QImode,
6463 plus_constant (base, offset + 1)),
6464 gen_lowpart (QImode, scratch)));
6468 /* Print a symbolic form of X to the debug file, F. */
6469 static void
6470 arm_print_value (FILE *f, rtx x)
6472 switch (GET_CODE (x))
6474 case CONST_INT:
6475 fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
6476 return;
6478 case CONST_DOUBLE:
6479 fprintf (f, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
6480 return;
6482 case CONST_VECTOR:
6484 int i;
6486 fprintf (f, "<");
6487 for (i = 0; i < CONST_VECTOR_NUNITS (x); i++)
6489 fprintf (f, HOST_WIDE_INT_PRINT_HEX, INTVAL (CONST_VECTOR_ELT (x, i)));
6490 if (i < (CONST_VECTOR_NUNITS (x) - 1))
6491 fputc (',', f);
6493 fprintf (f, ">");
6495 return;
6497 case CONST_STRING:
6498 fprintf (f, "\"%s\"", XSTR (x, 0));
6499 return;
6501 case SYMBOL_REF:
6502 fprintf (f, "`%s'", XSTR (x, 0));
6503 return;
6505 case LABEL_REF:
6506 fprintf (f, "L%d", INSN_UID (XEXP (x, 0)));
6507 return;
6509 case CONST:
6510 arm_print_value (f, XEXP (x, 0));
6511 return;
6513 case PLUS:
6514 arm_print_value (f, XEXP (x, 0));
6515 fprintf (f, "+");
6516 arm_print_value (f, XEXP (x, 1));
6517 return;
6519 case PC:
6520 fprintf (f, "pc");
6521 return;
6523 default:
6524 fprintf (f, "????");
6525 return;
6529 /* Routines for manipulation of the constant pool. */
6531 /* Arm instructions cannot load a large constant directly into a
6532 register; they have to come from a pc relative load. The constant
6533 must therefore be placed in the addressable range of the pc
6534 relative load. Depending on the precise pc relative load
6535 instruction the range is somewhere between 256 bytes and 4k. This
6536 means that we often have to dump a constant inside a function, and
6537 generate code to branch around it.
6539 It is important to minimize this, since the branches will slow
6540 things down and make the code larger.
6542 Normally we can hide the table after an existing unconditional
6543 branch so that there is no interruption of the flow, but in the
6544 worst case the code looks like this:
6546 ldr rn, L1
6548 b L2
6549 align
6550 L1: .long value
6554 ldr rn, L3
6556 b L4
6557 align
6558 L3: .long value
6562 We fix this by performing a scan after scheduling, which notices
6563 which instructions need to have their operands fetched from the
6564 constant table and builds the table.
6566 The algorithm starts by building a table of all the constants that
6567 need fixing up and all the natural barriers in the function (places
6568 where a constant table can be dropped without breaking the flow).
6569 For each fixup we note how far the pc-relative replacement will be
6570 able to reach and the offset of the instruction into the function.
6572 Having built the table we then group the fixes together to form
6573 tables that are as large as possible (subject to addressing
6574 constraints) and emit each table of constants after the last
6575 barrier that is within range of all the instructions in the group.
6576 If a group does not contain a barrier, then we forcibly create one
6577 by inserting a jump instruction into the flow. Once the table has
6578 been inserted, the insns are then modified to reference the
6579 relevant entry in the pool.
6581 Possible enhancements to the algorithm (not implemented) are:
6583 1) For some processors and object formats, there may be benefit in
6584 aligning the pools to the start of cache lines; this alignment
6585 would need to be taken into account when calculating addressability
6586 of a pool. */
6588 /* These typedefs are located at the start of this file, so that
6589 they can be used in the prototypes there. This comment is to
6590 remind readers of that fact so that the following structures
6591 can be understood more easily.
6593 typedef struct minipool_node Mnode;
6594 typedef struct minipool_fixup Mfix; */
6596 struct minipool_node
6598 /* Doubly linked chain of entries. */
6599 Mnode * next;
6600 Mnode * prev;
6601 /* The maximum offset into the code that this entry can be placed. While
6602 pushing fixes for forward references, all entries are sorted in order
6603 of increasing max_address. */
6604 HOST_WIDE_INT max_address;
6605 /* Similarly for an entry inserted for a backwards ref. */
6606 HOST_WIDE_INT min_address;
6607 /* The number of fixes referencing this entry. This can become zero
6608 if we "unpush" an entry. In this case we ignore the entry when we
6609 come to emit the code. */
6610 int refcount;
6611 /* The offset from the start of the minipool. */
6612 HOST_WIDE_INT offset;
6613 /* The value in table. */
6614 rtx value;
6615 /* The mode of value. */
6616 enum machine_mode mode;
6617 /* The size of the value. With iWMMXt enabled
6618 sizes > 4 also imply an alignment of 8-bytes. */
6619 int fix_size;
6622 struct minipool_fixup
6624 Mfix * next;
6625 rtx insn;
6626 HOST_WIDE_INT address;
6627 rtx * loc;
6628 enum machine_mode mode;
6629 int fix_size;
6630 rtx value;
6631 Mnode * minipool;
6632 HOST_WIDE_INT forwards;
6633 HOST_WIDE_INT backwards;
6636 /* Fixes less than a word need padding out to a word boundary. */
6637 #define MINIPOOL_FIX_SIZE(mode) \
6638 (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)
6640 static Mnode * minipool_vector_head;
6641 static Mnode * minipool_vector_tail;
6642 static rtx minipool_vector_label;
6644 /* The linked list of all minipool fixes required for this function. */
6645 Mfix * minipool_fix_head;
6646 Mfix * minipool_fix_tail;
6647 /* The fix entry for the current minipool, once it has been placed. */
6648 Mfix * minipool_barrier;
6650 /* Determines if INSN is the start of a jump table. Returns the end
6651 of the TABLE or NULL_RTX. */
6652 static rtx
6653 is_jump_table (rtx insn)
6655 rtx table;
6657 if (GET_CODE (insn) == JUMP_INSN
6658 && JUMP_LABEL (insn) != NULL
6659 && ((table = next_real_insn (JUMP_LABEL (insn)))
6660 == next_real_insn (insn))
6661 && table != NULL
6662 && GET_CODE (table) == JUMP_INSN
6663 && (GET_CODE (PATTERN (table)) == ADDR_VEC
6664 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
6665 return table;
6667 return NULL_RTX;
6670 #ifndef JUMP_TABLES_IN_TEXT_SECTION
6671 #define JUMP_TABLES_IN_TEXT_SECTION 0
6672 #endif
6674 static HOST_WIDE_INT
6675 get_jump_table_size (rtx insn)
6677 /* ADDR_VECs only take room if read-only data does into the text
6678 section. */
6679 if (JUMP_TABLES_IN_TEXT_SECTION
6680 #if !defined(READONLY_DATA_SECTION) && !defined(READONLY_DATA_SECTION_ASM_OP)
6681 || 1
6682 #endif
6685 rtx body = PATTERN (insn);
6686 int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0;
6688 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt);
6691 return 0;
6694 /* Move a minipool fix MP from its current location to before MAX_MP.
6695 If MAX_MP is NULL, then MP doesn't need moving, but the addressing
6696 constraints may need updating. */
6697 static Mnode *
6698 move_minipool_fix_forward_ref (Mnode *mp, Mnode *max_mp,
6699 HOST_WIDE_INT max_address)
6701 /* This should never be true and the code below assumes these are
6702 different. */
6703 if (mp == max_mp)
6704 abort ();
6706 if (max_mp == NULL)
6708 if (max_address < mp->max_address)
6709 mp->max_address = max_address;
6711 else
6713 if (max_address > max_mp->max_address - mp->fix_size)
6714 mp->max_address = max_mp->max_address - mp->fix_size;
6715 else
6716 mp->max_address = max_address;
6718 /* Unlink MP from its current position. Since max_mp is non-null,
6719 mp->prev must be non-null. */
6720 mp->prev->next = mp->next;
6721 if (mp->next != NULL)
6722 mp->next->prev = mp->prev;
6723 else
6724 minipool_vector_tail = mp->prev;
6726 /* Re-insert it before MAX_MP. */
6727 mp->next = max_mp;
6728 mp->prev = max_mp->prev;
6729 max_mp->prev = mp;
6731 if (mp->prev != NULL)
6732 mp->prev->next = mp;
6733 else
6734 minipool_vector_head = mp;
6737 /* Save the new entry. */
6738 max_mp = mp;
6740 /* Scan over the preceding entries and adjust their addresses as
6741 required. */
6742 while (mp->prev != NULL
6743 && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
6745 mp->prev->max_address = mp->max_address - mp->prev->fix_size;
6746 mp = mp->prev;
6749 return max_mp;
6752 /* Add a constant to the minipool for a forward reference. Returns the
6753 node added or NULL if the constant will not fit in this pool. */
6754 static Mnode *
6755 add_minipool_forward_ref (Mfix *fix)
6757 /* If set, max_mp is the first pool_entry that has a lower
6758 constraint than the one we are trying to add. */
6759 Mnode * max_mp = NULL;
6760 HOST_WIDE_INT max_address = fix->address + fix->forwards;
6761 Mnode * mp;
6763 /* If this fix's address is greater than the address of the first
6764 entry, then we can't put the fix in this pool. We subtract the
6765 size of the current fix to ensure that if the table is fully
6766 packed we still have enough room to insert this value by suffling
6767 the other fixes forwards. */
6768 if (minipool_vector_head &&
6769 fix->address >= minipool_vector_head->max_address - fix->fix_size)
6770 return NULL;
6772 /* Scan the pool to see if a constant with the same value has
6773 already been added. While we are doing this, also note the
6774 location where we must insert the constant if it doesn't already
6775 exist. */
6776 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
6778 if (GET_CODE (fix->value) == GET_CODE (mp->value)
6779 && fix->mode == mp->mode
6780 && (GET_CODE (fix->value) != CODE_LABEL
6781 || (CODE_LABEL_NUMBER (fix->value)
6782 == CODE_LABEL_NUMBER (mp->value)))
6783 && rtx_equal_p (fix->value, mp->value))
6785 /* More than one fix references this entry. */
6786 mp->refcount++;
6787 return move_minipool_fix_forward_ref (mp, max_mp, max_address);
6790 /* Note the insertion point if necessary. */
6791 if (max_mp == NULL
6792 && mp->max_address > max_address)
6793 max_mp = mp;
6795 /* If we are inserting an 8-bytes aligned quantity and
6796 we have not already found an insertion point, then
6797 make sure that all such 8-byte aligned quantities are
6798 placed at the start of the pool. */
6799 if (ARM_DOUBLEWORD_ALIGN
6800 && max_mp == NULL
6801 && fix->fix_size == 8
6802 && mp->fix_size != 8)
6804 max_mp = mp;
6805 max_address = mp->max_address;
6809 /* The value is not currently in the minipool, so we need to create
6810 a new entry for it. If MAX_MP is NULL, the entry will be put on
6811 the end of the list since the placement is less constrained than
6812 any existing entry. Otherwise, we insert the new fix before
6813 MAX_MP and, if necessary, adjust the constraints on the other
6814 entries. */
6815 mp = xmalloc (sizeof (* mp));
6816 mp->fix_size = fix->fix_size;
6817 mp->mode = fix->mode;
6818 mp->value = fix->value;
6819 mp->refcount = 1;
6820 /* Not yet required for a backwards ref. */
6821 mp->min_address = -65536;
6823 if (max_mp == NULL)
6825 mp->max_address = max_address;
6826 mp->next = NULL;
6827 mp->prev = minipool_vector_tail;
6829 if (mp->prev == NULL)
6831 minipool_vector_head = mp;
6832 minipool_vector_label = gen_label_rtx ();
6834 else
6835 mp->prev->next = mp;
6837 minipool_vector_tail = mp;
6839 else
6841 if (max_address > max_mp->max_address - mp->fix_size)
6842 mp->max_address = max_mp->max_address - mp->fix_size;
6843 else
6844 mp->max_address = max_address;
6846 mp->next = max_mp;
6847 mp->prev = max_mp->prev;
6848 max_mp->prev = mp;
6849 if (mp->prev != NULL)
6850 mp->prev->next = mp;
6851 else
6852 minipool_vector_head = mp;
6855 /* Save the new entry. */
6856 max_mp = mp;
6858 /* Scan over the preceding entries and adjust their addresses as
6859 required. */
6860 while (mp->prev != NULL
6861 && mp->prev->max_address > mp->max_address - mp->prev->fix_size)
6863 mp->prev->max_address = mp->max_address - mp->prev->fix_size;
6864 mp = mp->prev;
6867 return max_mp;
6870 static Mnode *
6871 move_minipool_fix_backward_ref (Mnode *mp, Mnode *min_mp,
6872 HOST_WIDE_INT min_address)
6874 HOST_WIDE_INT offset;
6876 /* This should never be true, and the code below assumes these are
6877 different. */
6878 if (mp == min_mp)
6879 abort ();
6881 if (min_mp == NULL)
6883 if (min_address > mp->min_address)
6884 mp->min_address = min_address;
6886 else
6888 /* We will adjust this below if it is too loose. */
6889 mp->min_address = min_address;
6891 /* Unlink MP from its current position. Since min_mp is non-null,
6892 mp->next must be non-null. */
6893 mp->next->prev = mp->prev;
6894 if (mp->prev != NULL)
6895 mp->prev->next = mp->next;
6896 else
6897 minipool_vector_head = mp->next;
6899 /* Reinsert it after MIN_MP. */
6900 mp->prev = min_mp;
6901 mp->next = min_mp->next;
6902 min_mp->next = mp;
6903 if (mp->next != NULL)
6904 mp->next->prev = mp;
6905 else
6906 minipool_vector_tail = mp;
6909 min_mp = mp;
6911 offset = 0;
6912 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
6914 mp->offset = offset;
6915 if (mp->refcount > 0)
6916 offset += mp->fix_size;
6918 if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size)
6919 mp->next->min_address = mp->min_address + mp->fix_size;
6922 return min_mp;
6925 /* Add a constant to the minipool for a backward reference. Returns the
6926 node added or NULL if the constant will not fit in this pool.
6928 Note that the code for insertion for a backwards reference can be
6929 somewhat confusing because the calculated offsets for each fix do
6930 not take into account the size of the pool (which is still under
6931 construction. */
6932 static Mnode *
6933 add_minipool_backward_ref (Mfix *fix)
6935 /* If set, min_mp is the last pool_entry that has a lower constraint
6936 than the one we are trying to add. */
6937 Mnode *min_mp = NULL;
6938 /* This can be negative, since it is only a constraint. */
6939 HOST_WIDE_INT min_address = fix->address - fix->backwards;
6940 Mnode *mp;
6942 /* If we can't reach the current pool from this insn, or if we can't
6943 insert this entry at the end of the pool without pushing other
6944 fixes out of range, then we don't try. This ensures that we
6945 can't fail later on. */
6946 if (min_address >= minipool_barrier->address
6947 || (minipool_vector_tail->min_address + fix->fix_size
6948 >= minipool_barrier->address))
6949 return NULL;
6951 /* Scan the pool to see if a constant with the same value has
6952 already been added. While we are doing this, also note the
6953 location where we must insert the constant if it doesn't already
6954 exist. */
6955 for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev)
6957 if (GET_CODE (fix->value) == GET_CODE (mp->value)
6958 && fix->mode == mp->mode
6959 && (GET_CODE (fix->value) != CODE_LABEL
6960 || (CODE_LABEL_NUMBER (fix->value)
6961 == CODE_LABEL_NUMBER (mp->value)))
6962 && rtx_equal_p (fix->value, mp->value)
6963 /* Check that there is enough slack to move this entry to the
6964 end of the table (this is conservative). */
6965 && (mp->max_address
6966 > (minipool_barrier->address
6967 + minipool_vector_tail->offset
6968 + minipool_vector_tail->fix_size)))
6970 mp->refcount++;
6971 return move_minipool_fix_backward_ref (mp, min_mp, min_address);
6974 if (min_mp != NULL)
6975 mp->min_address += fix->fix_size;
6976 else
6978 /* Note the insertion point if necessary. */
6979 if (mp->min_address < min_address)
6981 /* For now, we do not allow the insertion of 8-byte alignment
6982 requiring nodes anywhere but at the start of the pool. */
6983 if (ARM_DOUBLEWORD_ALIGN
6984 && fix->fix_size == 8 && mp->fix_size != 8)
6985 return NULL;
6986 else
6987 min_mp = mp;
6989 else if (mp->max_address
6990 < minipool_barrier->address + mp->offset + fix->fix_size)
6992 /* Inserting before this entry would push the fix beyond
6993 its maximum address (which can happen if we have
6994 re-located a forwards fix); force the new fix to come
6995 after it. */
6996 min_mp = mp;
6997 min_address = mp->min_address + fix->fix_size;
6999 /* If we are inserting an 8-bytes aligned quantity and
7000 we have not already found an insertion point, then
7001 make sure that all such 8-byte aligned quantities are
7002 placed at the start of the pool. */
7003 else if (ARM_DOUBLEWORD_ALIGN
7004 && min_mp == NULL
7005 && fix->fix_size == 8
7006 && mp->fix_size < 8)
7008 min_mp = mp;
7009 min_address = mp->min_address + fix->fix_size;
7014 /* We need to create a new entry. */
7015 mp = xmalloc (sizeof (* mp));
7016 mp->fix_size = fix->fix_size;
7017 mp->mode = fix->mode;
7018 mp->value = fix->value;
7019 mp->refcount = 1;
7020 mp->max_address = minipool_barrier->address + 65536;
7022 mp->min_address = min_address;
7024 if (min_mp == NULL)
7026 mp->prev = NULL;
7027 mp->next = minipool_vector_head;
7029 if (mp->next == NULL)
7031 minipool_vector_tail = mp;
7032 minipool_vector_label = gen_label_rtx ();
7034 else
7035 mp->next->prev = mp;
7037 minipool_vector_head = mp;
7039 else
7041 mp->next = min_mp->next;
7042 mp->prev = min_mp;
7043 min_mp->next = mp;
7045 if (mp->next != NULL)
7046 mp->next->prev = mp;
7047 else
7048 minipool_vector_tail = mp;
7051 /* Save the new entry. */
7052 min_mp = mp;
7054 if (mp->prev)
7055 mp = mp->prev;
7056 else
7057 mp->offset = 0;
7059 /* Scan over the following entries and adjust their offsets. */
7060 while (mp->next != NULL)
7062 if (mp->next->min_address < mp->min_address + mp->fix_size)
7063 mp->next->min_address = mp->min_address + mp->fix_size;
7065 if (mp->refcount)
7066 mp->next->offset = mp->offset + mp->fix_size;
7067 else
7068 mp->next->offset = mp->offset;
7070 mp = mp->next;
7073 return min_mp;
7076 static void
7077 assign_minipool_offsets (Mfix *barrier)
7079 HOST_WIDE_INT offset = 0;
7080 Mnode *mp;
7082 minipool_barrier = barrier;
7084 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
7086 mp->offset = offset;
7088 if (mp->refcount > 0)
7089 offset += mp->fix_size;
7093 /* Output the literal table */
7094 static void
7095 dump_minipool (rtx scan)
7097 Mnode * mp;
7098 Mnode * nmp;
7099 int align64 = 0;
7101 if (ARM_DOUBLEWORD_ALIGN)
7102 for (mp = minipool_vector_head; mp != NULL; mp = mp->next)
7103 if (mp->refcount > 0 && mp->fix_size == 8)
7105 align64 = 1;
7106 break;
7109 if (dump_file)
7110 fprintf (dump_file,
7111 ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n",
7112 INSN_UID (scan), (unsigned long) minipool_barrier->address, align64 ? 8 : 4);
7114 scan = emit_label_after (gen_label_rtx (), scan);
7115 scan = emit_insn_after (align64 ? gen_align_8 () : gen_align_4 (), scan);
7116 scan = emit_label_after (minipool_vector_label, scan);
7118 for (mp = minipool_vector_head; mp != NULL; mp = nmp)
7120 if (mp->refcount > 0)
7122 if (dump_file)
7124 fprintf (dump_file,
7125 ";; Offset %u, min %ld, max %ld ",
7126 (unsigned) mp->offset, (unsigned long) mp->min_address,
7127 (unsigned long) mp->max_address);
7128 arm_print_value (dump_file, mp->value);
7129 fputc ('\n', dump_file);
7132 switch (mp->fix_size)
7134 #ifdef HAVE_consttable_1
7135 case 1:
7136 scan = emit_insn_after (gen_consttable_1 (mp->value), scan);
7137 break;
7139 #endif
7140 #ifdef HAVE_consttable_2
7141 case 2:
7142 scan = emit_insn_after (gen_consttable_2 (mp->value), scan);
7143 break;
7145 #endif
7146 #ifdef HAVE_consttable_4
7147 case 4:
7148 scan = emit_insn_after (gen_consttable_4 (mp->value), scan);
7149 break;
7151 #endif
7152 #ifdef HAVE_consttable_8
7153 case 8:
7154 scan = emit_insn_after (gen_consttable_8 (mp->value), scan);
7155 break;
7157 #endif
7158 default:
7159 abort ();
7160 break;
7164 nmp = mp->next;
7165 free (mp);
7168 minipool_vector_head = minipool_vector_tail = NULL;
7169 scan = emit_insn_after (gen_consttable_end (), scan);
7170 scan = emit_barrier_after (scan);
7173 /* Return the cost of forcibly inserting a barrier after INSN. */
7174 static int
7175 arm_barrier_cost (rtx insn)
7177 /* Basing the location of the pool on the loop depth is preferable,
7178 but at the moment, the basic block information seems to be
7179 corrupt by this stage of the compilation. */
7180 int base_cost = 50;
7181 rtx next = next_nonnote_insn (insn);
7183 if (next != NULL && GET_CODE (next) == CODE_LABEL)
7184 base_cost -= 20;
7186 switch (GET_CODE (insn))
7188 case CODE_LABEL:
7189 /* It will always be better to place the table before the label, rather
7190 than after it. */
7191 return 50;
7193 case INSN:
7194 case CALL_INSN:
7195 return base_cost;
7197 case JUMP_INSN:
7198 return base_cost - 10;
7200 default:
7201 return base_cost + 10;
7205 /* Find the best place in the insn stream in the range
7206 (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier.
7207 Create the barrier by inserting a jump and add a new fix entry for
7208 it. */
7209 static Mfix *
7210 create_fix_barrier (Mfix *fix, HOST_WIDE_INT max_address)
7212 HOST_WIDE_INT count = 0;
7213 rtx barrier;
7214 rtx from = fix->insn;
7215 rtx selected = from;
7216 int selected_cost;
7217 HOST_WIDE_INT selected_address;
7218 Mfix * new_fix;
7219 HOST_WIDE_INT max_count = max_address - fix->address;
7220 rtx label = gen_label_rtx ();
7222 selected_cost = arm_barrier_cost (from);
7223 selected_address = fix->address;
7225 while (from && count < max_count)
7227 rtx tmp;
7228 int new_cost;
7230 /* This code shouldn't have been called if there was a natural barrier
7231 within range. */
7232 if (GET_CODE (from) == BARRIER)
7233 abort ();
7235 /* Count the length of this insn. */
7236 count += get_attr_length (from);
7238 /* If there is a jump table, add its length. */
7239 tmp = is_jump_table (from);
7240 if (tmp != NULL)
7242 count += get_jump_table_size (tmp);
7244 /* Jump tables aren't in a basic block, so base the cost on
7245 the dispatch insn. If we select this location, we will
7246 still put the pool after the table. */
7247 new_cost = arm_barrier_cost (from);
7249 if (count < max_count && new_cost <= selected_cost)
7251 selected = tmp;
7252 selected_cost = new_cost;
7253 selected_address = fix->address + count;
7256 /* Continue after the dispatch table. */
7257 from = NEXT_INSN (tmp);
7258 continue;
7261 new_cost = arm_barrier_cost (from);
7263 if (count < max_count && new_cost <= selected_cost)
7265 selected = from;
7266 selected_cost = new_cost;
7267 selected_address = fix->address + count;
7270 from = NEXT_INSN (from);
7273 /* Create a new JUMP_INSN that branches around a barrier. */
7274 from = emit_jump_insn_after (gen_jump (label), selected);
7275 JUMP_LABEL (from) = label;
7276 barrier = emit_barrier_after (from);
7277 emit_label_after (label, barrier);
7279 /* Create a minipool barrier entry for the new barrier. */
7280 new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* new_fix));
7281 new_fix->insn = barrier;
7282 new_fix->address = selected_address;
7283 new_fix->next = fix->next;
7284 fix->next = new_fix;
7286 return new_fix;
7289 /* Record that there is a natural barrier in the insn stream at
7290 ADDRESS. */
7291 static void
7292 push_minipool_barrier (rtx insn, HOST_WIDE_INT address)
7294 Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
7296 fix->insn = insn;
7297 fix->address = address;
7299 fix->next = NULL;
7300 if (minipool_fix_head != NULL)
7301 minipool_fix_tail->next = fix;
7302 else
7303 minipool_fix_head = fix;
7305 minipool_fix_tail = fix;
7308 /* Record INSN, which will need fixing up to load a value from the
7309 minipool. ADDRESS is the offset of the insn since the start of the
7310 function; LOC is a pointer to the part of the insn which requires
7311 fixing; VALUE is the constant that must be loaded, which is of type
7312 MODE. */
7313 static void
7314 push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx *loc,
7315 enum machine_mode mode, rtx value)
7317 Mfix * fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (* fix));
7319 #ifdef AOF_ASSEMBLER
7320 /* PIC symbol references need to be converted into offsets into the
7321 based area. */
7322 /* XXX This shouldn't be done here. */
7323 if (flag_pic && GET_CODE (value) == SYMBOL_REF)
7324 value = aof_pic_entry (value);
7325 #endif /* AOF_ASSEMBLER */
7327 fix->insn = insn;
7328 fix->address = address;
7329 fix->loc = loc;
7330 fix->mode = mode;
7331 fix->fix_size = MINIPOOL_FIX_SIZE (mode);
7332 fix->value = value;
7333 fix->forwards = get_attr_pool_range (insn);
7334 fix->backwards = get_attr_neg_pool_range (insn);
7335 fix->minipool = NULL;
7337 /* If an insn doesn't have a range defined for it, then it isn't
7338 expecting to be reworked by this code. Better to abort now than
7339 to generate duff assembly code. */
7340 if (fix->forwards == 0 && fix->backwards == 0)
7341 abort ();
7343 /* With AAPCS/iWMMXt enabled, the pool is aligned to an 8-byte boundary.
7344 So there might be an empty word before the start of the pool.
7345 Hence we reduce the forward range by 4 to allow for this
7346 possibility. */
7347 if (ARM_DOUBLEWORD_ALIGN && fix->fix_size == 8)
7348 fix->forwards -= 4;
7350 if (dump_file)
7352 fprintf (dump_file,
7353 ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ",
7354 GET_MODE_NAME (mode),
7355 INSN_UID (insn), (unsigned long) address,
7356 -1 * (long)fix->backwards, (long)fix->forwards);
7357 arm_print_value (dump_file, fix->value);
7358 fprintf (dump_file, "\n");
7361 /* Add it to the chain of fixes. */
7362 fix->next = NULL;
7364 if (minipool_fix_head != NULL)
7365 minipool_fix_tail->next = fix;
7366 else
7367 minipool_fix_head = fix;
7369 minipool_fix_tail = fix;
7372 /* Return the cost of synthesizing the const_double VAL inline.
7373 Returns the number of insns needed, or 99 if we don't know how to
7374 do it. */
7376 arm_const_double_inline_cost (rtx val)
7378 long parts[2];
7380 if (GET_MODE (val) == DFmode)
7382 REAL_VALUE_TYPE r;
7383 if (!TARGET_SOFT_FLOAT)
7384 return 99;
7385 REAL_VALUE_FROM_CONST_DOUBLE (r, val);
7386 REAL_VALUE_TO_TARGET_DOUBLE (r, parts);
7388 else if (GET_MODE (val) != VOIDmode)
7389 return 99;
7390 else
7392 parts[0] = CONST_DOUBLE_LOW (val);
7393 parts[1] = CONST_DOUBLE_HIGH (val);
7396 return (arm_gen_constant (SET, SImode, NULL_RTX, parts[0],
7397 NULL_RTX, NULL_RTX, 0, 0)
7398 + arm_gen_constant (SET, SImode, NULL_RTX, parts[1],
7399 NULL_RTX, NULL_RTX, 0, 0));
7402 /* Determine if a CONST_DOUBLE should be pushed to the minipool */
7403 static bool
7404 const_double_needs_minipool (rtx val)
7406 /* thumb only knows to load a CONST_DOUBLE from memory at the moment */
7407 if (TARGET_THUMB)
7408 return true;
7410 /* Don't push anything to the minipool if a CONST_DOUBLE can be built with
7411 a few ALU insns directly. On balance, the optimum is likely to be around
7412 3 insns, except when there are no load delay slots where it should be 4.
7413 When optimizing for size, a limit of 3 allows saving at least one word
7414 except for cases where a single minipool entry could be shared more than
7415 2 times which is rather unlikely to outweight the overall savings. */
7416 return (arm_const_double_inline_cost (val)
7417 > ((optimize_size || arm_ld_sched) ? 3 : 4));
7420 /* Scan INSN and note any of its operands that need fixing.
7421 If DO_PUSHES is false we do not actually push any of the fixups
7422 needed. The function returns TRUE is any fixups were needed/pushed.
7423 This is used by arm_memory_load_p() which needs to know about loads
7424 of constants that will be converted into minipool loads. */
7425 static bool
7426 note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes)
7428 bool result = false;
7429 int opno;
7431 extract_insn (insn);
7433 if (!constrain_operands (1))
7434 fatal_insn_not_found (insn);
7436 if (recog_data.n_alternatives == 0)
7437 return false;
7439 /* Fill in recog_op_alt with information about the constraints of this insn. */
7440 preprocess_constraints ();
7442 for (opno = 0; opno < recog_data.n_operands; opno++)
7444 /* Things we need to fix can only occur in inputs. */
7445 if (recog_data.operand_type[opno] != OP_IN)
7446 continue;
7448 /* If this alternative is a memory reference, then any mention
7449 of constants in this alternative is really to fool reload
7450 into allowing us to accept one there. We need to fix them up
7451 now so that we output the right code. */
7452 if (recog_op_alt[opno][which_alternative].memory_ok)
7454 rtx op = recog_data.operand[opno];
7456 if (CONSTANT_P (op)
7457 && (GET_CODE (op) != CONST_DOUBLE
7458 || const_double_needs_minipool (op)))
7460 if (do_pushes)
7461 push_minipool_fix (insn, address, recog_data.operand_loc[opno],
7462 recog_data.operand_mode[opno], op);
7463 result = true;
7465 else if (GET_CODE (op) == MEM
7466 && GET_CODE (XEXP (op, 0)) == SYMBOL_REF
7467 && CONSTANT_POOL_ADDRESS_P (XEXP (op, 0)))
7469 if (do_pushes)
7471 rtx cop = avoid_constant_pool_reference (op);
7473 /* Casting the address of something to a mode narrower
7474 than a word can cause avoid_constant_pool_reference()
7475 to return the pool reference itself. That's no good to
7476 us here. Lets just hope that we can use the
7477 constant pool value directly. */
7478 if (op == cop)
7479 cop = get_pool_constant (XEXP (op, 0));
7481 push_minipool_fix (insn, address,
7482 recog_data.operand_loc[opno],
7483 recog_data.operand_mode[opno], cop);
7486 result = true;
7491 return result;
7494 /* Gcc puts the pool in the wrong place for ARM, since we can only
7495 load addresses a limited distance around the pc. We do some
7496 special munging to move the constant pool values to the correct
7497 point in the code. */
7498 static void
7499 arm_reorg (void)
7501 rtx insn;
7502 HOST_WIDE_INT address = 0;
7503 Mfix * fix;
7505 minipool_fix_head = minipool_fix_tail = NULL;
7507 /* The first insn must always be a note, or the code below won't
7508 scan it properly. */
7509 insn = get_insns ();
7510 if (GET_CODE (insn) != NOTE)
7511 abort ();
7513 /* Scan all the insns and record the operands that will need fixing. */
7514 for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn))
7516 if (TARGET_CIRRUS_FIX_INVALID_INSNS
7517 && (arm_cirrus_insn_p (insn)
7518 || GET_CODE (insn) == JUMP_INSN
7519 || arm_memory_load_p (insn)))
7520 cirrus_reorg (insn);
7522 if (GET_CODE (insn) == BARRIER)
7523 push_minipool_barrier (insn, address);
7524 else if (INSN_P (insn))
7526 rtx table;
7528 note_invalid_constants (insn, address, true);
7529 address += get_attr_length (insn);
7531 /* If the insn is a vector jump, add the size of the table
7532 and skip the table. */
7533 if ((table = is_jump_table (insn)) != NULL)
7535 address += get_jump_table_size (table);
7536 insn = table;
7541 fix = minipool_fix_head;
7543 /* Now scan the fixups and perform the required changes. */
7544 while (fix)
7546 Mfix * ftmp;
7547 Mfix * fdel;
7548 Mfix * last_added_fix;
7549 Mfix * last_barrier = NULL;
7550 Mfix * this_fix;
7552 /* Skip any further barriers before the next fix. */
7553 while (fix && GET_CODE (fix->insn) == BARRIER)
7554 fix = fix->next;
7556 /* No more fixes. */
7557 if (fix == NULL)
7558 break;
7560 last_added_fix = NULL;
7562 for (ftmp = fix; ftmp; ftmp = ftmp->next)
7564 if (GET_CODE (ftmp->insn) == BARRIER)
7566 if (ftmp->address >= minipool_vector_head->max_address)
7567 break;
7569 last_barrier = ftmp;
7571 else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL)
7572 break;
7574 last_added_fix = ftmp; /* Keep track of the last fix added. */
7577 /* If we found a barrier, drop back to that; any fixes that we
7578 could have reached but come after the barrier will now go in
7579 the next mini-pool. */
7580 if (last_barrier != NULL)
7582 /* Reduce the refcount for those fixes that won't go into this
7583 pool after all. */
7584 for (fdel = last_barrier->next;
7585 fdel && fdel != ftmp;
7586 fdel = fdel->next)
7588 fdel->minipool->refcount--;
7589 fdel->minipool = NULL;
7592 ftmp = last_barrier;
7594 else
7596 /* ftmp is first fix that we can't fit into this pool and
7597 there no natural barriers that we could use. Insert a
7598 new barrier in the code somewhere between the previous
7599 fix and this one, and arrange to jump around it. */
7600 HOST_WIDE_INT max_address;
7602 /* The last item on the list of fixes must be a barrier, so
7603 we can never run off the end of the list of fixes without
7604 last_barrier being set. */
7605 if (ftmp == NULL)
7606 abort ();
7608 max_address = minipool_vector_head->max_address;
7609 /* Check that there isn't another fix that is in range that
7610 we couldn't fit into this pool because the pool was
7611 already too large: we need to put the pool before such an
7612 instruction. */
7613 if (ftmp->address < max_address)
7614 max_address = ftmp->address;
7616 last_barrier = create_fix_barrier (last_added_fix, max_address);
7619 assign_minipool_offsets (last_barrier);
7621 while (ftmp)
7623 if (GET_CODE (ftmp->insn) != BARRIER
7624 && ((ftmp->minipool = add_minipool_backward_ref (ftmp))
7625 == NULL))
7626 break;
7628 ftmp = ftmp->next;
7631 /* Scan over the fixes we have identified for this pool, fixing them
7632 up and adding the constants to the pool itself. */
7633 for (this_fix = fix; this_fix && ftmp != this_fix;
7634 this_fix = this_fix->next)
7635 if (GET_CODE (this_fix->insn) != BARRIER)
7637 rtx addr
7638 = plus_constant (gen_rtx_LABEL_REF (VOIDmode,
7639 minipool_vector_label),
7640 this_fix->minipool->offset);
7641 *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr);
7644 dump_minipool (last_barrier->insn);
7645 fix = ftmp;
7648 /* From now on we must synthesize any constants that we can't handle
7649 directly. This can happen if the RTL gets split during final
7650 instruction generation. */
7651 after_arm_reorg = 1;
7653 /* Free the minipool memory. */
7654 obstack_free (&minipool_obstack, minipool_startobj);
7657 /* Routines to output assembly language. */
7659 /* If the rtx is the correct value then return the string of the number.
7660 In this way we can ensure that valid double constants are generated even
7661 when cross compiling. */
7662 const char *
7663 fp_immediate_constant (rtx x)
7665 REAL_VALUE_TYPE r;
7666 int i;
7668 if (!fp_consts_inited)
7669 init_fp_table ();
7671 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
7672 for (i = 0; i < 8; i++)
7673 if (REAL_VALUES_EQUAL (r, values_fp[i]))
7674 return strings_fp[i];
7676 abort ();
7679 /* As for fp_immediate_constant, but value is passed directly, not in rtx. */
7680 static const char *
7681 fp_const_from_val (REAL_VALUE_TYPE *r)
7683 int i;
7685 if (!fp_consts_inited)
7686 init_fp_table ();
7688 for (i = 0; i < 8; i++)
7689 if (REAL_VALUES_EQUAL (*r, values_fp[i]))
7690 return strings_fp[i];
7692 abort ();
7695 /* Output the operands of a LDM/STM instruction to STREAM.
7696 MASK is the ARM register set mask of which only bits 0-15 are important.
7697 REG is the base register, either the frame pointer or the stack pointer,
7698 INSTR is the possibly suffixed load or store instruction. */
7700 static void
7701 print_multi_reg (FILE *stream, const char *instr, unsigned reg,
7702 unsigned long mask)
7704 unsigned i;
7705 bool not_first = FALSE;
7707 fputc ('\t', stream);
7708 asm_fprintf (stream, instr, reg);
7709 fputs (", {", stream);
7711 for (i = 0; i <= LAST_ARM_REGNUM; i++)
7712 if (mask & (1 << i))
7714 if (not_first)
7715 fprintf (stream, ", ");
7717 asm_fprintf (stream, "%r", i);
7718 not_first = TRUE;
7721 fprintf (stream, "}\n");
7725 /* Output a FLDMX instruction to STREAM.
7726 BASE if the register containing the address.
7727 REG and COUNT specify the register range.
7728 Extra registers may be added to avoid hardware bugs. */
7730 static void
7731 arm_output_fldmx (FILE * stream, unsigned int base, int reg, int count)
7733 int i;
7735 /* Workaround ARM10 VFPr1 bug. */
7736 if (count == 2 && !arm_arch6)
7738 if (reg == 15)
7739 reg--;
7740 count++;
7743 fputc ('\t', stream);
7744 asm_fprintf (stream, "fldmfdx\t%r!, {", base);
7746 for (i = reg; i < reg + count; i++)
7748 if (i > reg)
7749 fputs (", ", stream);
7750 asm_fprintf (stream, "d%d", i);
7752 fputs ("}\n", stream);
7757 /* Output the assembly for a store multiple. */
7759 const char *
7760 vfp_output_fstmx (rtx * operands)
7762 char pattern[100];
7763 int p;
7764 int base;
7765 int i;
7767 strcpy (pattern, "fstmfdx\t%m0!, {%P1");
7768 p = strlen (pattern);
7770 if (GET_CODE (operands[1]) != REG)
7771 abort ();
7773 base = (REGNO (operands[1]) - FIRST_VFP_REGNUM) / 2;
7774 for (i = 1; i < XVECLEN (operands[2], 0); i++)
7776 p += sprintf (&pattern[p], ", d%d", base + i);
7778 strcpy (&pattern[p], "}");
7780 output_asm_insn (pattern, operands);
7781 return "";
7785 /* Emit RTL to save block of VFP register pairs to the stack. Returns the
7786 number of bytes pushed. */
7788 static int
7789 vfp_emit_fstmx (int base_reg, int count)
7791 rtx par;
7792 rtx dwarf;
7793 rtx tmp, reg;
7794 int i;
7796 /* Workaround ARM10 VFPr1 bug. Data corruption can occur when exactly two
7797 register pairs are stored by a store multiple insn. We avoid this
7798 by pushing an extra pair. */
7799 if (count == 2 && !arm_arch6)
7801 if (base_reg == LAST_VFP_REGNUM - 3)
7802 base_reg -= 2;
7803 count++;
7806 /* ??? The frame layout is implementation defined. We describe
7807 standard format 1 (equivalent to a FSTMD insn and unused pad word).
7808 We really need some way of representing the whole block so that the
7809 unwinder can figure it out at runtime. */
7810 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
7811 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
7813 reg = gen_rtx_REG (DFmode, base_reg);
7814 base_reg += 2;
7816 XVECEXP (par, 0, 0)
7817 = gen_rtx_SET (VOIDmode,
7818 gen_rtx_MEM (BLKmode,
7819 gen_rtx_PRE_DEC (BLKmode, stack_pointer_rtx)),
7820 gen_rtx_UNSPEC (BLKmode,
7821 gen_rtvec (1, reg),
7822 UNSPEC_PUSH_MULT));
7824 tmp = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
7825 gen_rtx_PLUS (SImode, stack_pointer_rtx,
7826 GEN_INT (-(count * 8 + 4))));
7827 RTX_FRAME_RELATED_P (tmp) = 1;
7828 XVECEXP (dwarf, 0, 0) = tmp;
7830 tmp = gen_rtx_SET (VOIDmode,
7831 gen_rtx_MEM (DFmode, stack_pointer_rtx),
7832 reg);
7833 RTX_FRAME_RELATED_P (tmp) = 1;
7834 XVECEXP (dwarf, 0, 1) = tmp;
7836 for (i = 1; i < count; i++)
7838 reg = gen_rtx_REG (DFmode, base_reg);
7839 base_reg += 2;
7840 XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
7842 tmp = gen_rtx_SET (VOIDmode,
7843 gen_rtx_MEM (DFmode,
7844 gen_rtx_PLUS (SImode,
7845 stack_pointer_rtx,
7846 GEN_INT (i * 8))),
7847 reg);
7848 RTX_FRAME_RELATED_P (tmp) = 1;
7849 XVECEXP (dwarf, 0, i + 1) = tmp;
7852 par = emit_insn (par);
7853 REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
7854 REG_NOTES (par));
7855 RTX_FRAME_RELATED_P (par) = 1;
7857 return count * 8 + 4;
7861 /* Output a 'call' insn. */
7862 const char *
7863 output_call (rtx *operands)
7865 if (arm_arch5)
7866 abort (); /* Patterns should call blx <reg> directly. */
7868 /* Handle calls to lr using ip (which may be clobbered in subr anyway). */
7869 if (REGNO (operands[0]) == LR_REGNUM)
7871 operands[0] = gen_rtx_REG (SImode, IP_REGNUM);
7872 output_asm_insn ("mov%?\t%0, %|lr", operands);
7875 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
7877 if (TARGET_INTERWORK || arm_arch4t)
7878 output_asm_insn ("bx%?\t%0", operands);
7879 else
7880 output_asm_insn ("mov%?\t%|pc, %0", operands);
7882 return "";
7885 /* Output a 'call' insn that is a reference in memory. */
7886 const char *
7887 output_call_mem (rtx *operands)
7889 if (TARGET_INTERWORK && !arm_arch5)
7891 output_asm_insn ("ldr%?\t%|ip, %0", operands);
7892 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
7893 output_asm_insn ("bx%?\t%|ip", operands);
7895 else if (regno_use_in (LR_REGNUM, operands[0]))
7897 /* LR is used in the memory address. We load the address in the
7898 first instruction. It's safe to use IP as the target of the
7899 load since the call will kill it anyway. */
7900 output_asm_insn ("ldr%?\t%|ip, %0", operands);
7901 if (arm_arch5)
7902 output_asm_insn ("blx%?\t%|ip", operands);
7903 else
7905 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
7906 if (arm_arch4t)
7907 output_asm_insn ("bx%?\t%|ip", operands);
7908 else
7909 output_asm_insn ("mov%?\t%|pc, %|ip", operands);
7912 else
7914 output_asm_insn ("mov%?\t%|lr, %|pc", operands);
7915 output_asm_insn ("ldr%?\t%|pc, %0", operands);
7918 return "";
7922 /* Output a move from arm registers to an fpa registers.
7923 OPERANDS[0] is an fpa register.
7924 OPERANDS[1] is the first registers of an arm register pair. */
7925 const char *
7926 output_mov_long_double_fpa_from_arm (rtx *operands)
7928 int arm_reg0 = REGNO (operands[1]);
7929 rtx ops[3];
7931 if (arm_reg0 == IP_REGNUM)
7932 abort ();
7934 ops[0] = gen_rtx_REG (SImode, arm_reg0);
7935 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
7936 ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
7938 output_asm_insn ("stm%?fd\t%|sp!, {%0, %1, %2}", ops);
7939 output_asm_insn ("ldf%?e\t%0, [%|sp], #12", operands);
7941 return "";
7944 /* Output a move from an fpa register to arm registers.
7945 OPERANDS[0] is the first registers of an arm register pair.
7946 OPERANDS[1] is an fpa register. */
7947 const char *
7948 output_mov_long_double_arm_from_fpa (rtx *operands)
7950 int arm_reg0 = REGNO (operands[0]);
7951 rtx ops[3];
7953 if (arm_reg0 == IP_REGNUM)
7954 abort ();
7956 ops[0] = gen_rtx_REG (SImode, arm_reg0);
7957 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
7958 ops[2] = gen_rtx_REG (SImode, 2 + arm_reg0);
7960 output_asm_insn ("stf%?e\t%1, [%|sp, #-12]!", operands);
7961 output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1, %2}", ops);
7962 return "";
7965 /* Output a move from arm registers to arm registers of a long double
7966 OPERANDS[0] is the destination.
7967 OPERANDS[1] is the source. */
7968 const char *
7969 output_mov_long_double_arm_from_arm (rtx *operands)
7971 /* We have to be careful here because the two might overlap. */
7972 int dest_start = REGNO (operands[0]);
7973 int src_start = REGNO (operands[1]);
7974 rtx ops[2];
7975 int i;
7977 if (dest_start < src_start)
7979 for (i = 0; i < 3; i++)
7981 ops[0] = gen_rtx_REG (SImode, dest_start + i);
7982 ops[1] = gen_rtx_REG (SImode, src_start + i);
7983 output_asm_insn ("mov%?\t%0, %1", ops);
7986 else
7988 for (i = 2; i >= 0; i--)
7990 ops[0] = gen_rtx_REG (SImode, dest_start + i);
7991 ops[1] = gen_rtx_REG (SImode, src_start + i);
7992 output_asm_insn ("mov%?\t%0, %1", ops);
7996 return "";
8000 /* Output a move from arm registers to an fpa registers.
8001 OPERANDS[0] is an fpa register.
8002 OPERANDS[1] is the first registers of an arm register pair. */
8003 const char *
8004 output_mov_double_fpa_from_arm (rtx *operands)
8006 int arm_reg0 = REGNO (operands[1]);
8007 rtx ops[2];
8009 if (arm_reg0 == IP_REGNUM)
8010 abort ();
8012 ops[0] = gen_rtx_REG (SImode, arm_reg0);
8013 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
8014 output_asm_insn ("stm%?fd\t%|sp!, {%0, %1}", ops);
8015 output_asm_insn ("ldf%?d\t%0, [%|sp], #8", operands);
8016 return "";
8019 /* Output a move from an fpa register to arm registers.
8020 OPERANDS[0] is the first registers of an arm register pair.
8021 OPERANDS[1] is an fpa register. */
8022 const char *
8023 output_mov_double_arm_from_fpa (rtx *operands)
8025 int arm_reg0 = REGNO (operands[0]);
8026 rtx ops[2];
8028 if (arm_reg0 == IP_REGNUM)
8029 abort ();
8031 ops[0] = gen_rtx_REG (SImode, arm_reg0);
8032 ops[1] = gen_rtx_REG (SImode, 1 + arm_reg0);
8033 output_asm_insn ("stf%?d\t%1, [%|sp, #-8]!", operands);
8034 output_asm_insn ("ldm%?fd\t%|sp!, {%0, %1}", ops);
8035 return "";
8038 /* Output a move between double words.
8039 It must be REG<-REG, REG<-CONST_DOUBLE, REG<-CONST_INT, REG<-MEM
8040 or MEM<-REG and all MEMs must be offsettable addresses. */
8041 const char *
8042 output_move_double (rtx *operands)
8044 enum rtx_code code0 = GET_CODE (operands[0]);
8045 enum rtx_code code1 = GET_CODE (operands[1]);
8046 rtx otherops[3];
8048 if (code0 == REG)
8050 int reg0 = REGNO (operands[0]);
8052 otherops[0] = gen_rtx_REG (SImode, 1 + reg0);
8054 if (code1 == REG)
8056 int reg1 = REGNO (operands[1]);
8057 if (reg1 == IP_REGNUM)
8058 abort ();
8060 /* Ensure the second source is not overwritten. */
8061 if (reg1 == reg0 + (WORDS_BIG_ENDIAN ? -1 : 1))
8062 output_asm_insn ("mov%?\t%Q0, %Q1\n\tmov%?\t%R0, %R1", operands);
8063 else
8064 output_asm_insn ("mov%?\t%R0, %R1\n\tmov%?\t%Q0, %Q1", operands);
8066 else if (code1 == CONST_VECTOR)
8068 HOST_WIDE_INT hint = 0;
8070 switch (GET_MODE (operands[1]))
8072 case V2SImode:
8073 otherops[1] = GEN_INT (INTVAL (CONST_VECTOR_ELT (operands[1], 1)));
8074 operands[1] = GEN_INT (INTVAL (CONST_VECTOR_ELT (operands[1], 0)));
8075 break;
8077 case V4HImode:
8078 if (BYTES_BIG_ENDIAN)
8080 hint = INTVAL (CONST_VECTOR_ELT (operands[1], 2));
8081 hint <<= 16;
8082 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 3));
8084 else
8086 hint = INTVAL (CONST_VECTOR_ELT (operands[1], 3));
8087 hint <<= 16;
8088 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 2));
8091 otherops[1] = GEN_INT (hint);
8092 hint = 0;
8094 if (BYTES_BIG_ENDIAN)
8096 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 0));
8097 hint <<= 16;
8098 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 1));
8100 else
8102 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 1));
8103 hint <<= 16;
8104 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 0));
8107 operands[1] = GEN_INT (hint);
8108 break;
8110 case V8QImode:
8111 if (BYTES_BIG_ENDIAN)
8113 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 4));
8114 hint <<= 8;
8115 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 5));
8116 hint <<= 8;
8117 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 6));
8118 hint <<= 8;
8119 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 7));
8121 else
8123 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 7));
8124 hint <<= 8;
8125 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 6));
8126 hint <<= 8;
8127 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 5));
8128 hint <<= 8;
8129 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 4));
8132 otherops[1] = GEN_INT (hint);
8133 hint = 0;
8135 if (BYTES_BIG_ENDIAN)
8137 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 0));
8138 hint <<= 8;
8139 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 1));
8140 hint <<= 8;
8141 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 2));
8142 hint <<= 8;
8143 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 3));
8145 else
8147 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 3));
8148 hint <<= 8;
8149 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 2));
8150 hint <<= 8;
8151 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 1));
8152 hint <<= 8;
8153 hint |= INTVAL (CONST_VECTOR_ELT (operands[1], 0));
8156 operands[1] = GEN_INT (hint);
8157 break;
8159 default:
8160 abort ();
8162 output_mov_immediate (operands);
8163 output_mov_immediate (otherops);
8165 else if (code1 == CONST_DOUBLE)
8167 if (GET_MODE (operands[1]) == DFmode)
8169 REAL_VALUE_TYPE r;
8170 long l[2];
8172 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
8173 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
8174 otherops[1] = GEN_INT (l[1]);
8175 operands[1] = GEN_INT (l[0]);
8177 else if (GET_MODE (operands[1]) != VOIDmode)
8178 abort ();
8179 else if (WORDS_BIG_ENDIAN)
8181 otherops[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
8182 operands[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
8184 else
8186 otherops[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
8187 operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
8190 output_mov_immediate (operands);
8191 output_mov_immediate (otherops);
8193 else if (code1 == CONST_INT)
8195 #if HOST_BITS_PER_WIDE_INT > 32
8196 /* If HOST_WIDE_INT is more than 32 bits, the intval tells us
8197 what the upper word is. */
8198 if (WORDS_BIG_ENDIAN)
8200 otherops[1] = GEN_INT (ARM_SIGN_EXTEND (INTVAL (operands[1])));
8201 operands[1] = GEN_INT (INTVAL (operands[1]) >> 32);
8203 else
8205 otherops[1] = GEN_INT (INTVAL (operands[1]) >> 32);
8206 operands[1] = GEN_INT (ARM_SIGN_EXTEND (INTVAL (operands[1])));
8208 #else
8209 /* Sign extend the intval into the high-order word. */
8210 if (WORDS_BIG_ENDIAN)
8212 otherops[1] = operands[1];
8213 operands[1] = (INTVAL (operands[1]) < 0
8214 ? constm1_rtx : const0_rtx);
8216 else
8217 otherops[1] = INTVAL (operands[1]) < 0 ? constm1_rtx : const0_rtx;
8218 #endif
8219 output_mov_immediate (otherops);
8220 output_mov_immediate (operands);
8222 else if (code1 == MEM)
8224 switch (GET_CODE (XEXP (operands[1], 0)))
8226 case REG:
8227 output_asm_insn ("ldm%?ia\t%m1, %M0", operands);
8228 break;
8230 case PRE_INC:
8231 if (!TARGET_LDRD)
8232 abort (); /* Should never happen now. */
8233 output_asm_insn ("ldr%?d\t%0, [%m1, #8]!", operands);
8234 break;
8236 case PRE_DEC:
8237 output_asm_insn ("ldm%?db\t%m1!, %M0", operands);
8238 break;
8240 case POST_INC:
8241 output_asm_insn ("ldm%?ia\t%m1!, %M0", operands);
8242 break;
8244 case POST_DEC:
8245 if (!TARGET_LDRD)
8246 abort (); /* Should never happen now. */
8247 output_asm_insn ("ldr%?d\t%0, [%m1], #-8", operands);
8248 break;
8250 case PRE_MODIFY:
8251 case POST_MODIFY:
8252 otherops[0] = operands[0];
8253 otherops[1] = XEXP (XEXP (XEXP (operands[1], 0), 1), 0);
8254 otherops[2] = XEXP (XEXP (XEXP (operands[1], 0), 1), 1);
8256 if (GET_CODE (XEXP (operands[1], 0)) == PRE_MODIFY)
8258 if (reg_overlap_mentioned_p (otherops[0], otherops[2]))
8260 /* Registers overlap so split out the increment. */
8261 output_asm_insn ("add%?\t%1, %1, %2", otherops);
8262 output_asm_insn ("ldr%?d\t%0, [%1] @split", otherops);
8264 else
8265 output_asm_insn ("ldr%?d\t%0, [%1, %2]!", otherops);
8267 else
8269 /* We only allow constant increments, so this is safe. */
8270 output_asm_insn ("ldr%?d\t%0, [%1], %2", otherops);
8272 break;
8274 case LABEL_REF:
8275 case CONST:
8276 output_asm_insn ("adr%?\t%0, %1", operands);
8277 output_asm_insn ("ldm%?ia\t%0, %M0", operands);
8278 break;
8280 default:
8281 if (arm_add_operand (XEXP (XEXP (operands[1], 0), 1),
8282 GET_MODE (XEXP (XEXP (operands[1], 0), 1))))
8284 otherops[0] = operands[0];
8285 otherops[1] = XEXP (XEXP (operands[1], 0), 0);
8286 otherops[2] = XEXP (XEXP (operands[1], 0), 1);
8288 if (GET_CODE (XEXP (operands[1], 0)) == PLUS)
8290 if (GET_CODE (otherops[2]) == CONST_INT)
8292 switch ((int) INTVAL (otherops[2]))
8294 case -8:
8295 output_asm_insn ("ldm%?db\t%1, %M0", otherops);
8296 return "";
8297 case -4:
8298 output_asm_insn ("ldm%?da\t%1, %M0", otherops);
8299 return "";
8300 case 4:
8301 output_asm_insn ("ldm%?ib\t%1, %M0", otherops);
8302 return "";
8305 if (TARGET_LDRD
8306 && (GET_CODE (otherops[2]) == REG
8307 || (GET_CODE (otherops[2]) == CONST_INT
8308 && INTVAL (otherops[2]) > -256
8309 && INTVAL (otherops[2]) < 256)))
8311 if (reg_overlap_mentioned_p (otherops[0],
8312 otherops[2]))
8314 /* Swap base and index registers over to
8315 avoid a conflict. */
8316 otherops[1] = XEXP (XEXP (operands[1], 0), 1);
8317 otherops[2] = XEXP (XEXP (operands[1], 0), 0);
8320 /* If both registers conflict, it will usually
8321 have been fixed by a splitter. */
8322 if (reg_overlap_mentioned_p (otherops[0],
8323 otherops[2]))
8325 output_asm_insn ("add%?\t%1, %1, %2", otherops);
8326 output_asm_insn ("ldr%?d\t%0, [%1]",
8327 otherops);
8328 return "";
8330 else
8332 output_asm_insn ("ldr%?d\t%0, [%1, %2]",
8333 otherops);
8334 return "";
8337 if (GET_CODE (otherops[2]) == CONST_INT)
8339 if (!(const_ok_for_arm (INTVAL (otherops[2]))))
8340 output_asm_insn ("sub%?\t%0, %1, #%n2", otherops);
8341 else
8342 output_asm_insn ("add%?\t%0, %1, %2", otherops);
8344 else
8345 output_asm_insn ("add%?\t%0, %1, %2", otherops);
8347 else
8348 output_asm_insn ("sub%?\t%0, %1, %2", otherops);
8350 return "ldm%?ia\t%0, %M0";
8352 else
8354 otherops[1] = adjust_address (operands[1], SImode, 4);
8355 /* Take care of overlapping base/data reg. */
8356 if (reg_mentioned_p (operands[0], operands[1]))
8358 output_asm_insn ("ldr%?\t%0, %1", otherops);
8359 output_asm_insn ("ldr%?\t%0, %1", operands);
8361 else
8363 output_asm_insn ("ldr%?\t%0, %1", operands);
8364 output_asm_insn ("ldr%?\t%0, %1", otherops);
8369 else
8370 abort (); /* Constraints should prevent this. */
8372 else if (code0 == MEM && code1 == REG)
8374 if (REGNO (operands[1]) == IP_REGNUM)
8375 abort ();
8377 switch (GET_CODE (XEXP (operands[0], 0)))
8379 case REG:
8380 output_asm_insn ("stm%?ia\t%m0, %M1", operands);
8381 break;
8383 case PRE_INC:
8384 if (!TARGET_LDRD)
8385 abort (); /* Should never happen now. */
8386 output_asm_insn ("str%?d\t%1, [%m0, #8]!", operands);
8387 break;
8389 case PRE_DEC:
8390 output_asm_insn ("stm%?db\t%m0!, %M1", operands);
8391 break;
8393 case POST_INC:
8394 output_asm_insn ("stm%?ia\t%m0!, %M1", operands);
8395 break;
8397 case POST_DEC:
8398 if (!TARGET_LDRD)
8399 abort (); /* Should never happen now. */
8400 output_asm_insn ("str%?d\t%1, [%m0], #-8", operands);
8401 break;
8403 case PRE_MODIFY:
8404 case POST_MODIFY:
8405 otherops[0] = operands[1];
8406 otherops[1] = XEXP (XEXP (XEXP (operands[0], 0), 1), 0);
8407 otherops[2] = XEXP (XEXP (XEXP (operands[0], 0), 1), 1);
8409 if (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY)
8410 output_asm_insn ("str%?d\t%0, [%1, %2]!", otherops);
8411 else
8412 output_asm_insn ("str%?d\t%0, [%1], %2", otherops);
8413 break;
8415 case PLUS:
8416 otherops[2] = XEXP (XEXP (operands[0], 0), 1);
8417 if (GET_CODE (otherops[2]) == CONST_INT)
8419 switch ((int) INTVAL (XEXP (XEXP (operands[0], 0), 1)))
8421 case -8:
8422 output_asm_insn ("stm%?db\t%m0, %M1", operands);
8423 return "";
8425 case -4:
8426 output_asm_insn ("stm%?da\t%m0, %M1", operands);
8427 return "";
8429 case 4:
8430 output_asm_insn ("stm%?ib\t%m0, %M1", operands);
8431 return "";
8434 if (TARGET_LDRD
8435 && (GET_CODE (otherops[2]) == REG
8436 || (GET_CODE (otherops[2]) == CONST_INT
8437 && INTVAL (otherops[2]) > -256
8438 && INTVAL (otherops[2]) < 256)))
8440 otherops[0] = operands[1];
8441 otherops[1] = XEXP (XEXP (operands[0], 0), 0);
8442 output_asm_insn ("str%?d\t%0, [%1, %2]", otherops);
8443 return "";
8445 /* Fall through */
8447 default:
8448 otherops[0] = adjust_address (operands[0], SImode, 4);
8449 otherops[1] = gen_rtx_REG (SImode, 1 + REGNO (operands[1]));
8450 output_asm_insn ("str%?\t%1, %0", operands);
8451 output_asm_insn ("str%?\t%1, %0", otherops);
8454 else
8455 /* Constraints should prevent this. */
8456 abort ();
8458 return "";
8462 /* Output an arbitrary MOV reg, #n.
8463 OPERANDS[0] is a register. OPERANDS[1] is a const_int. */
8464 const char *
8465 output_mov_immediate (rtx *operands)
8467 HOST_WIDE_INT n = INTVAL (operands[1]);
8469 /* Try to use one MOV. */
8470 if (const_ok_for_arm (n))
8471 output_asm_insn ("mov%?\t%0, %1", operands);
8473 /* Try to use one MVN. */
8474 else if (const_ok_for_arm (~n))
8476 operands[1] = GEN_INT (~n);
8477 output_asm_insn ("mvn%?\t%0, %1", operands);
8479 else
8481 int n_ones = 0;
8482 int i;
8484 /* If all else fails, make it out of ORRs or BICs as appropriate. */
8485 for (i = 0; i < 32; i++)
8486 if (n & 1 << i)
8487 n_ones++;
8489 if (n_ones > 16) /* Shorter to use MVN with BIC in this case. */
8490 output_multi_immediate (operands, "mvn%?\t%0, %1", "bic%?\t%0, %0, %1", 1, ~ n);
8491 else
8492 output_multi_immediate (operands, "mov%?\t%0, %1", "orr%?\t%0, %0, %1", 1, n);
8495 return "";
8498 /* Output an ADD r, s, #n where n may be too big for one instruction.
8499 If adding zero to one register, output nothing. */
8500 const char *
8501 output_add_immediate (rtx *operands)
8503 HOST_WIDE_INT n = INTVAL (operands[2]);
8505 if (n != 0 || REGNO (operands[0]) != REGNO (operands[1]))
8507 if (n < 0)
8508 output_multi_immediate (operands,
8509 "sub%?\t%0, %1, %2", "sub%?\t%0, %0, %2", 2,
8510 -n);
8511 else
8512 output_multi_immediate (operands,
8513 "add%?\t%0, %1, %2", "add%?\t%0, %0, %2", 2,
8517 return "";
8520 /* Output a multiple immediate operation.
8521 OPERANDS is the vector of operands referred to in the output patterns.
8522 INSTR1 is the output pattern to use for the first constant.
8523 INSTR2 is the output pattern to use for subsequent constants.
8524 IMMED_OP is the index of the constant slot in OPERANDS.
8525 N is the constant value. */
8526 static const char *
8527 output_multi_immediate (rtx *operands, const char *instr1, const char *instr2,
8528 int immed_op, HOST_WIDE_INT n)
8530 #if HOST_BITS_PER_WIDE_INT > 32
8531 n &= 0xffffffff;
8532 #endif
8534 if (n == 0)
8536 /* Quick and easy output. */
8537 operands[immed_op] = const0_rtx;
8538 output_asm_insn (instr1, operands);
8540 else
8542 int i;
8543 const char * instr = instr1;
8545 /* Note that n is never zero here (which would give no output). */
8546 for (i = 0; i < 32; i += 2)
8548 if (n & (3 << i))
8550 operands[immed_op] = GEN_INT (n & (255 << i));
8551 output_asm_insn (instr, operands);
8552 instr = instr2;
8553 i += 6;
8558 return "";
8561 /* Return the appropriate ARM instruction for the operation code.
8562 The returned result should not be overwritten. OP is the rtx of the
8563 operation. SHIFT_FIRST_ARG is TRUE if the first argument of the operator
8564 was shifted. */
8565 const char *
8566 arithmetic_instr (rtx op, int shift_first_arg)
8568 switch (GET_CODE (op))
8570 case PLUS:
8571 return "add";
8573 case MINUS:
8574 return shift_first_arg ? "rsb" : "sub";
8576 case IOR:
8577 return "orr";
8579 case XOR:
8580 return "eor";
8582 case AND:
8583 return "and";
8585 default:
8586 abort ();
8590 /* Ensure valid constant shifts and return the appropriate shift mnemonic
8591 for the operation code. The returned result should not be overwritten.
8592 OP is the rtx code of the shift.
8593 On exit, *AMOUNTP will be -1 if the shift is by a register, or a constant
8594 shift. */
8595 static const char *
8596 shift_op (rtx op, HOST_WIDE_INT *amountp)
8598 const char * mnem;
8599 enum rtx_code code = GET_CODE (op);
8601 if (GET_CODE (XEXP (op, 1)) == REG || GET_CODE (XEXP (op, 1)) == SUBREG)
8602 *amountp = -1;
8603 else if (GET_CODE (XEXP (op, 1)) == CONST_INT)
8604 *amountp = INTVAL (XEXP (op, 1));
8605 else
8606 abort ();
8608 switch (code)
8610 case ASHIFT:
8611 mnem = "asl";
8612 break;
8614 case ASHIFTRT:
8615 mnem = "asr";
8616 break;
8618 case LSHIFTRT:
8619 mnem = "lsr";
8620 break;
8622 case ROTATE:
8623 if (*amountp == -1)
8624 abort ();
8625 *amountp = 32 - *amountp;
8627 /* Fall through. */
8629 case ROTATERT:
8630 mnem = "ror";
8631 break;
8633 case MULT:
8634 /* We never have to worry about the amount being other than a
8635 power of 2, since this case can never be reloaded from a reg. */
8636 if (*amountp != -1)
8637 *amountp = int_log2 (*amountp);
8638 else
8639 abort ();
8640 return "asl";
8642 default:
8643 abort ();
8646 if (*amountp != -1)
8648 /* This is not 100% correct, but follows from the desire to merge
8649 multiplication by a power of 2 with the recognizer for a
8650 shift. >=32 is not a valid shift for "asl", so we must try and
8651 output a shift that produces the correct arithmetical result.
8652 Using lsr #32 is identical except for the fact that the carry bit
8653 is not set correctly if we set the flags; but we never use the
8654 carry bit from such an operation, so we can ignore that. */
8655 if (code == ROTATERT)
8656 /* Rotate is just modulo 32. */
8657 *amountp &= 31;
8658 else if (*amountp != (*amountp & 31))
8660 if (code == ASHIFT)
8661 mnem = "lsr";
8662 *amountp = 32;
8665 /* Shifts of 0 are no-ops. */
8666 if (*amountp == 0)
8667 return NULL;
8670 return mnem;
8673 /* Obtain the shift from the POWER of two. */
8675 static HOST_WIDE_INT
8676 int_log2 (HOST_WIDE_INT power)
8678 HOST_WIDE_INT shift = 0;
8680 while ((((HOST_WIDE_INT) 1 << shift) & power) == 0)
8682 if (shift > 31)
8683 abort ();
8684 shift++;
8687 return shift;
8690 /* Output a .ascii pseudo-op, keeping track of lengths. This is
8691 because /bin/as is horribly restrictive. The judgement about
8692 whether or not each character is 'printable' (and can be output as
8693 is) or not (and must be printed with an octal escape) must be made
8694 with reference to the *host* character set -- the situation is
8695 similar to that discussed in the comments above pp_c_char in
8696 c-pretty-print.c. */
8698 #define MAX_ASCII_LEN 51
8700 void
8701 output_ascii_pseudo_op (FILE *stream, const unsigned char *p, int len)
8703 int i;
8704 int len_so_far = 0;
8706 fputs ("\t.ascii\t\"", stream);
8708 for (i = 0; i < len; i++)
8710 int c = p[i];
8712 if (len_so_far >= MAX_ASCII_LEN)
8714 fputs ("\"\n\t.ascii\t\"", stream);
8715 len_so_far = 0;
8718 if (ISPRINT (c))
8720 if (c == '\\' || c == '\"')
8722 putc ('\\', stream);
8723 len_so_far++;
8725 putc (c, stream);
8726 len_so_far++;
8728 else
8730 fprintf (stream, "\\%03o", c);
8731 len_so_far += 4;
8735 fputs ("\"\n", stream);
8738 /* Compute the register save mask for registers 0 through 12
8739 inclusive. This code is used by arm_compute_save_reg_mask. */
8741 static unsigned long
8742 arm_compute_save_reg0_reg12_mask (void)
8744 unsigned long func_type = arm_current_func_type ();
8745 unsigned long save_reg_mask = 0;
8746 unsigned int reg;
8748 if (IS_INTERRUPT (func_type))
8750 unsigned int max_reg;
8751 /* Interrupt functions must not corrupt any registers,
8752 even call clobbered ones. If this is a leaf function
8753 we can just examine the registers used by the RTL, but
8754 otherwise we have to assume that whatever function is
8755 called might clobber anything, and so we have to save
8756 all the call-clobbered registers as well. */
8757 if (ARM_FUNC_TYPE (func_type) == ARM_FT_FIQ)
8758 /* FIQ handlers have registers r8 - r12 banked, so
8759 we only need to check r0 - r7, Normal ISRs only
8760 bank r14 and r15, so we must check up to r12.
8761 r13 is the stack pointer which is always preserved,
8762 so we do not need to consider it here. */
8763 max_reg = 7;
8764 else
8765 max_reg = 12;
8767 for (reg = 0; reg <= max_reg; reg++)
8768 if (regs_ever_live[reg]
8769 || (! current_function_is_leaf && call_used_regs [reg]))
8770 save_reg_mask |= (1 << reg);
8772 /* Also save the pic base register if necessary. */
8773 if (flag_pic
8774 && !TARGET_SINGLE_PIC_BASE
8775 && current_function_uses_pic_offset_table)
8776 save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
8778 else
8780 /* In the normal case we only need to save those registers
8781 which are call saved and which are used by this function. */
8782 for (reg = 0; reg <= 10; reg++)
8783 if (regs_ever_live[reg] && ! call_used_regs [reg])
8784 save_reg_mask |= (1 << reg);
8786 /* Handle the frame pointer as a special case. */
8787 if (! TARGET_APCS_FRAME
8788 && ! frame_pointer_needed
8789 && regs_ever_live[HARD_FRAME_POINTER_REGNUM]
8790 && ! call_used_regs[HARD_FRAME_POINTER_REGNUM])
8791 save_reg_mask |= 1 << HARD_FRAME_POINTER_REGNUM;
8793 /* If we aren't loading the PIC register,
8794 don't stack it even though it may be live. */
8795 if (flag_pic
8796 && !TARGET_SINGLE_PIC_BASE
8797 && (regs_ever_live[PIC_OFFSET_TABLE_REGNUM]
8798 || current_function_uses_pic_offset_table))
8799 save_reg_mask |= 1 << PIC_OFFSET_TABLE_REGNUM;
8802 /* Save registers so the exception handler can modify them. */
8803 if (current_function_calls_eh_return)
8805 unsigned int i;
8807 for (i = 0; ; i++)
8809 reg = EH_RETURN_DATA_REGNO (i);
8810 if (reg == INVALID_REGNUM)
8811 break;
8812 save_reg_mask |= 1 << reg;
8816 return save_reg_mask;
8819 /* Compute a bit mask of which registers need to be
8820 saved on the stack for the current function. */
8822 static unsigned long
8823 arm_compute_save_reg_mask (void)
8825 unsigned int save_reg_mask = 0;
8826 unsigned long func_type = arm_current_func_type ();
8828 if (IS_NAKED (func_type))
8829 /* This should never really happen. */
8830 return 0;
8832 /* If we are creating a stack frame, then we must save the frame pointer,
8833 IP (which will hold the old stack pointer), LR and the PC. */
8834 if (frame_pointer_needed)
8835 save_reg_mask |=
8836 (1 << ARM_HARD_FRAME_POINTER_REGNUM)
8837 | (1 << IP_REGNUM)
8838 | (1 << LR_REGNUM)
8839 | (1 << PC_REGNUM);
8841 /* Volatile functions do not return, so there
8842 is no need to save any other registers. */
8843 if (IS_VOLATILE (func_type))
8844 return save_reg_mask;
8846 save_reg_mask |= arm_compute_save_reg0_reg12_mask ();
8848 /* Decide if we need to save the link register.
8849 Interrupt routines have their own banked link register,
8850 so they never need to save it.
8851 Otherwise if we do not use the link register we do not need to save
8852 it. If we are pushing other registers onto the stack however, we
8853 can save an instruction in the epilogue by pushing the link register
8854 now and then popping it back into the PC. This incurs extra memory
8855 accesses though, so we only do it when optimizing for size, and only
8856 if we know that we will not need a fancy return sequence. */
8857 if (regs_ever_live [LR_REGNUM]
8858 || (save_reg_mask
8859 && optimize_size
8860 && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
8861 && !current_function_calls_eh_return))
8862 save_reg_mask |= 1 << LR_REGNUM;
8864 if (cfun->machine->lr_save_eliminated)
8865 save_reg_mask &= ~ (1 << LR_REGNUM);
8867 if (TARGET_REALLY_IWMMXT
8868 && ((bit_count (save_reg_mask)
8869 + ARM_NUM_INTS (current_function_pretend_args_size)) % 2) != 0)
8871 unsigned int reg;
8873 /* The total number of registers that are going to be pushed
8874 onto the stack is odd. We need to ensure that the stack
8875 is 64-bit aligned before we start to save iWMMXt registers,
8876 and also before we start to create locals. (A local variable
8877 might be a double or long long which we will load/store using
8878 an iWMMXt instruction). Therefore we need to push another
8879 ARM register, so that the stack will be 64-bit aligned. We
8880 try to avoid using the arg registers (r0 -r3) as they might be
8881 used to pass values in a tail call. */
8882 for (reg = 4; reg <= 12; reg++)
8883 if ((save_reg_mask & (1 << reg)) == 0)
8884 break;
8886 if (reg <= 12)
8887 save_reg_mask |= (1 << reg);
8888 else
8890 cfun->machine->sibcall_blocked = 1;
8891 save_reg_mask |= (1 << 3);
8895 return save_reg_mask;
8899 /* Compute a bit mask of which registers need to be
8900 saved on the stack for the current function. */
8901 static unsigned long
8902 thumb_compute_save_reg_mask (void)
8904 unsigned long mask;
8905 unsigned reg;
8907 mask = 0;
8908 for (reg = 0; reg < 12; reg ++)
8909 if (regs_ever_live[reg] && !call_used_regs[reg])
8910 mask |= 1 << reg;
8912 if (flag_pic && !TARGET_SINGLE_PIC_BASE)
8913 mask |= (1 << PIC_OFFSET_TABLE_REGNUM);
8915 if (TARGET_SINGLE_PIC_BASE)
8916 mask &= ~(1 << arm_pic_register);
8918 /* See if we might need r11 for calls to _interwork_r11_call_via_rN(). */
8919 if (!frame_pointer_needed && CALLER_INTERWORKING_SLOT_SIZE > 0)
8920 mask |= 1 << ARM_HARD_FRAME_POINTER_REGNUM;
8922 /* LR will also be pushed if any lo regs are pushed. */
8923 if (mask & 0xff || thumb_force_lr_save ())
8924 mask |= (1 << LR_REGNUM);
8926 /* Make sure we have a low work register if we need one.
8927 We will need one if we are going to push a high register,
8928 but we are not currently intending to push a low register. */
8929 if ((mask & 0xff) == 0
8930 && ((mask & 0x0f00) || TARGET_BACKTRACE))
8932 /* Use thumb_find_work_register to choose which register
8933 we will use. If the register is live then we will
8934 have to push it. Use LAST_LO_REGNUM as our fallback
8935 choice for the register to select. */
8936 reg = thumb_find_work_register (1 << LAST_LO_REGNUM);
8938 if (! call_used_regs[reg])
8939 mask |= 1 << reg;
8942 return mask;
8946 /* Return the number of bytes required to save VFP registers. */
8947 static int
8948 arm_get_vfp_saved_size (void)
8950 unsigned int regno;
8951 int count;
8952 int saved;
8954 saved = 0;
8955 /* Space for saved VFP registers. */
8956 if (TARGET_HARD_FLOAT && TARGET_VFP)
8958 count = 0;
8959 for (regno = FIRST_VFP_REGNUM;
8960 regno < LAST_VFP_REGNUM;
8961 regno += 2)
8963 if ((!regs_ever_live[regno] || call_used_regs[regno])
8964 && (!regs_ever_live[regno + 1] || call_used_regs[regno + 1]))
8966 if (count > 0)
8968 /* Workaround ARM10 VFPr1 bug. */
8969 if (count == 2 && !arm_arch6)
8970 count++;
8971 saved += count * 8 + 4;
8973 count = 0;
8975 else
8976 count++;
8978 if (count > 0)
8980 if (count == 2 && !arm_arch6)
8981 count++;
8982 saved += count * 8 + 4;
8985 return saved;
8989 /* Generate a function exit sequence. If REALLY_RETURN is false, then do
8990 everything bar the final return instruction. */
8991 const char *
8992 output_return_instruction (rtx operand, int really_return, int reverse)
8994 char conditional[10];
8995 char instr[100];
8996 unsigned reg;
8997 unsigned long live_regs_mask;
8998 unsigned long func_type;
8999 arm_stack_offsets *offsets;
9001 func_type = arm_current_func_type ();
9003 if (IS_NAKED (func_type))
9004 return "";
9006 if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
9008 /* If this function was declared non-returning, and we have
9009 found a tail call, then we have to trust that the called
9010 function won't return. */
9011 if (really_return)
9013 rtx ops[2];
9015 /* Otherwise, trap an attempted return by aborting. */
9016 ops[0] = operand;
9017 ops[1] = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)"
9018 : "abort");
9019 assemble_external_libcall (ops[1]);
9020 output_asm_insn (reverse ? "bl%D0\t%a1" : "bl%d0\t%a1", ops);
9023 return "";
9026 if (current_function_calls_alloca && !really_return)
9027 abort ();
9029 sprintf (conditional, "%%?%%%c0", reverse ? 'D' : 'd');
9031 return_used_this_function = 1;
9033 live_regs_mask = arm_compute_save_reg_mask ();
9035 if (live_regs_mask)
9037 const char * return_reg;
9039 /* If we do not have any special requirements for function exit
9040 (e.g. interworking, or ISR) then we can load the return address
9041 directly into the PC. Otherwise we must load it into LR. */
9042 if (really_return
9043 && ! TARGET_INTERWORK)
9044 return_reg = reg_names[PC_REGNUM];
9045 else
9046 return_reg = reg_names[LR_REGNUM];
9048 if ((live_regs_mask & (1 << IP_REGNUM)) == (1 << IP_REGNUM))
9050 /* There are three possible reasons for the IP register
9051 being saved. 1) a stack frame was created, in which case
9052 IP contains the old stack pointer, or 2) an ISR routine
9053 corrupted it, or 3) it was saved to align the stack on
9054 iWMMXt. In case 1, restore IP into SP, otherwise just
9055 restore IP. */
9056 if (frame_pointer_needed)
9058 live_regs_mask &= ~ (1 << IP_REGNUM);
9059 live_regs_mask |= (1 << SP_REGNUM);
9061 else
9063 if (! IS_INTERRUPT (func_type)
9064 && ! TARGET_REALLY_IWMMXT)
9065 abort ();
9069 /* On some ARM architectures it is faster to use LDR rather than
9070 LDM to load a single register. On other architectures, the
9071 cost is the same. In 26 bit mode, or for exception handlers,
9072 we have to use LDM to load the PC so that the CPSR is also
9073 restored. */
9074 for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
9075 if (live_regs_mask == (1U << reg))
9076 break;
9078 if (reg <= LAST_ARM_REGNUM
9079 && (reg != LR_REGNUM
9080 || ! really_return
9081 || ! IS_INTERRUPT (func_type)))
9083 sprintf (instr, "ldr%s\t%%|%s, [%%|sp], #4", conditional,
9084 (reg == LR_REGNUM) ? return_reg : reg_names[reg]);
9086 else
9088 char *p;
9089 int first = 1;
9091 /* Generate the load multiple instruction to restore the
9092 registers. Note we can get here, even if
9093 frame_pointer_needed is true, but only if sp already
9094 points to the base of the saved core registers. */
9095 if (live_regs_mask & (1 << SP_REGNUM))
9097 unsigned HOST_WIDE_INT stack_adjust;
9099 offsets = arm_get_frame_offsets ();
9100 stack_adjust = offsets->outgoing_args - offsets->saved_regs;
9101 if (stack_adjust != 0 && stack_adjust != 4)
9102 abort ();
9104 if (stack_adjust && arm_arch5)
9105 sprintf (instr, "ldm%sib\t%%|sp, {", conditional);
9106 else
9108 /* If we can't use ldmib (SA110 bug),
9109 then try to pop r3 instead. */
9110 if (stack_adjust)
9111 live_regs_mask |= 1 << 3;
9112 sprintf (instr, "ldm%sfd\t%%|sp, {", conditional);
9115 else
9116 sprintf (instr, "ldm%sfd\t%%|sp!, {", conditional);
9118 p = instr + strlen (instr);
9120 for (reg = 0; reg <= SP_REGNUM; reg++)
9121 if (live_regs_mask & (1 << reg))
9123 int l = strlen (reg_names[reg]);
9125 if (first)
9126 first = 0;
9127 else
9129 memcpy (p, ", ", 2);
9130 p += 2;
9133 memcpy (p, "%|", 2);
9134 memcpy (p + 2, reg_names[reg], l);
9135 p += l + 2;
9138 if (live_regs_mask & (1 << LR_REGNUM))
9140 sprintf (p, "%s%%|%s}", first ? "" : ", ", return_reg);
9141 /* If returning from an interrupt, restore the CPSR. */
9142 if (IS_INTERRUPT (func_type))
9143 strcat (p, "^");
9145 else
9146 strcpy (p, "}");
9149 output_asm_insn (instr, & operand);
9151 /* See if we need to generate an extra instruction to
9152 perform the actual function return. */
9153 if (really_return
9154 && func_type != ARM_FT_INTERWORKED
9155 && (live_regs_mask & (1 << LR_REGNUM)) != 0)
9157 /* The return has already been handled
9158 by loading the LR into the PC. */
9159 really_return = 0;
9163 if (really_return)
9165 switch ((int) ARM_FUNC_TYPE (func_type))
9167 case ARM_FT_ISR:
9168 case ARM_FT_FIQ:
9169 sprintf (instr, "sub%ss\t%%|pc, %%|lr, #4", conditional);
9170 break;
9172 case ARM_FT_INTERWORKED:
9173 sprintf (instr, "bx%s\t%%|lr", conditional);
9174 break;
9176 case ARM_FT_EXCEPTION:
9177 sprintf (instr, "mov%ss\t%%|pc, %%|lr", conditional);
9178 break;
9180 default:
9181 /* Use bx if it's available. */
9182 if (arm_arch5 || arm_arch4t)
9183 sprintf (instr, "bx%s\t%%|lr", conditional);
9184 else
9185 sprintf (instr, "mov%s\t%%|pc, %%|lr", conditional);
9186 break;
9189 output_asm_insn (instr, & operand);
9192 return "";
9195 /* Write the function name into the code section, directly preceding
9196 the function prologue.
9198 Code will be output similar to this:
9200 .ascii "arm_poke_function_name", 0
9201 .align
9203 .word 0xff000000 + (t1 - t0)
9204 arm_poke_function_name
9205 mov ip, sp
9206 stmfd sp!, {fp, ip, lr, pc}
9207 sub fp, ip, #4
9209 When performing a stack backtrace, code can inspect the value
9210 of 'pc' stored at 'fp' + 0. If the trace function then looks
9211 at location pc - 12 and the top 8 bits are set, then we know
9212 that there is a function name embedded immediately preceding this
9213 location and has length ((pc[-3]) & 0xff000000).
9215 We assume that pc is declared as a pointer to an unsigned long.
9217 It is of no benefit to output the function name if we are assembling
9218 a leaf function. These function types will not contain a stack
9219 backtrace structure, therefore it is not possible to determine the
9220 function name. */
9221 void
9222 arm_poke_function_name (FILE *stream, const char *name)
9224 unsigned long alignlength;
9225 unsigned long length;
9226 rtx x;
9228 length = strlen (name) + 1;
9229 alignlength = ROUND_UP_WORD (length);
9231 ASM_OUTPUT_ASCII (stream, name, length);
9232 ASM_OUTPUT_ALIGN (stream, 2);
9233 x = GEN_INT ((unsigned HOST_WIDE_INT) 0xff000000 + alignlength);
9234 assemble_aligned_integer (UNITS_PER_WORD, x);
9237 /* Place some comments into the assembler stream
9238 describing the current function. */
9239 static void
9240 arm_output_function_prologue (FILE *f, HOST_WIDE_INT frame_size)
9242 unsigned long func_type;
9244 if (!TARGET_ARM)
9246 thumb_output_function_prologue (f, frame_size);
9247 return;
9250 /* Sanity check. */
9251 if (arm_ccfsm_state || arm_target_insn)
9252 abort ();
9254 func_type = arm_current_func_type ();
9256 switch ((int) ARM_FUNC_TYPE (func_type))
9258 default:
9259 case ARM_FT_NORMAL:
9260 break;
9261 case ARM_FT_INTERWORKED:
9262 asm_fprintf (f, "\t%@ Function supports interworking.\n");
9263 break;
9264 case ARM_FT_ISR:
9265 asm_fprintf (f, "\t%@ Interrupt Service Routine.\n");
9266 break;
9267 case ARM_FT_FIQ:
9268 asm_fprintf (f, "\t%@ Fast Interrupt Service Routine.\n");
9269 break;
9270 case ARM_FT_EXCEPTION:
9271 asm_fprintf (f, "\t%@ ARM Exception Handler.\n");
9272 break;
9275 if (IS_NAKED (func_type))
9276 asm_fprintf (f, "\t%@ Naked Function: prologue and epilogue provided by programmer.\n");
9278 if (IS_VOLATILE (func_type))
9279 asm_fprintf (f, "\t%@ Volatile: function does not return.\n");
9281 if (IS_NESTED (func_type))
9282 asm_fprintf (f, "\t%@ Nested: function declared inside another function.\n");
9284 asm_fprintf (f, "\t%@ args = %d, pretend = %d, frame = %wd\n",
9285 current_function_args_size,
9286 current_function_pretend_args_size, frame_size);
9288 asm_fprintf (f, "\t%@ frame_needed = %d, uses_anonymous_args = %d\n",
9289 frame_pointer_needed,
9290 cfun->machine->uses_anonymous_args);
9292 if (cfun->machine->lr_save_eliminated)
9293 asm_fprintf (f, "\t%@ link register save eliminated.\n");
9295 if (current_function_calls_eh_return)
9296 asm_fprintf (f, "\t@ Calls __builtin_eh_return.\n");
9298 #ifdef AOF_ASSEMBLER
9299 if (flag_pic)
9300 asm_fprintf (f, "\tmov\t%r, %r\n", IP_REGNUM, PIC_OFFSET_TABLE_REGNUM);
9301 #endif
9303 return_used_this_function = 0;
9306 const char *
9307 arm_output_epilogue (rtx sibling)
9309 int reg;
9310 unsigned long saved_regs_mask;
9311 unsigned long func_type;
9312 /* Floats_offset is the offset from the "virtual" frame. In an APCS
9313 frame that is $fp + 4 for a non-variadic function. */
9314 int floats_offset = 0;
9315 rtx operands[3];
9316 FILE * f = asm_out_file;
9317 unsigned int lrm_count = 0;
9318 int really_return = (sibling == NULL);
9319 int start_reg;
9320 arm_stack_offsets *offsets;
9322 /* If we have already generated the return instruction
9323 then it is futile to generate anything else. */
9324 if (use_return_insn (FALSE, sibling) && return_used_this_function)
9325 return "";
9327 func_type = arm_current_func_type ();
9329 if (IS_NAKED (func_type))
9330 /* Naked functions don't have epilogues. */
9331 return "";
9333 if (IS_VOLATILE (func_type) && TARGET_ABORT_NORETURN)
9335 rtx op;
9337 /* A volatile function should never return. Call abort. */
9338 op = gen_rtx_SYMBOL_REF (Pmode, NEED_PLT_RELOC ? "abort(PLT)" : "abort");
9339 assemble_external_libcall (op);
9340 output_asm_insn ("bl\t%a0", &op);
9342 return "";
9345 if (current_function_calls_eh_return
9346 && ! really_return)
9347 /* If we are throwing an exception, then we really must
9348 be doing a return, so we can't tail-call. */
9349 abort ();
9351 offsets = arm_get_frame_offsets ();
9352 saved_regs_mask = arm_compute_save_reg_mask ();
9354 if (TARGET_IWMMXT)
9355 lrm_count = bit_count (saved_regs_mask);
9357 floats_offset = offsets->saved_args;
9358 /* Compute how far away the floats will be. */
9359 for (reg = 0; reg <= LAST_ARM_REGNUM; reg++)
9360 if (saved_regs_mask & (1 << reg))
9361 floats_offset += 4;
9363 if (frame_pointer_needed)
9365 /* This variable is for the Virtual Frame Pointer, not VFP regs. */
9366 int vfp_offset = offsets->frame;
9368 if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
9370 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
9371 if (regs_ever_live[reg] && !call_used_regs[reg])
9373 floats_offset += 12;
9374 asm_fprintf (f, "\tldfe\t%r, [%r, #-%d]\n",
9375 reg, FP_REGNUM, floats_offset - vfp_offset);
9378 else
9380 start_reg = LAST_FPA_REGNUM;
9382 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
9384 if (regs_ever_live[reg] && !call_used_regs[reg])
9386 floats_offset += 12;
9388 /* We can't unstack more than four registers at once. */
9389 if (start_reg - reg == 3)
9391 asm_fprintf (f, "\tlfm\t%r, 4, [%r, #-%d]\n",
9392 reg, FP_REGNUM, floats_offset - vfp_offset);
9393 start_reg = reg - 1;
9396 else
9398 if (reg != start_reg)
9399 asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
9400 reg + 1, start_reg - reg,
9401 FP_REGNUM, floats_offset - vfp_offset);
9402 start_reg = reg - 1;
9406 /* Just in case the last register checked also needs unstacking. */
9407 if (reg != start_reg)
9408 asm_fprintf (f, "\tlfm\t%r, %d, [%r, #-%d]\n",
9409 reg + 1, start_reg - reg,
9410 FP_REGNUM, floats_offset - vfp_offset);
9413 if (TARGET_HARD_FLOAT && TARGET_VFP)
9415 int saved_size;
9417 /* The fldmx insn does not have base+offset addressing modes,
9418 so we use IP to hold the address. */
9419 saved_size = arm_get_vfp_saved_size ();
9421 if (saved_size > 0)
9423 floats_offset += saved_size;
9424 asm_fprintf (f, "\tsub\t%r, %r, #%d\n", IP_REGNUM,
9425 FP_REGNUM, floats_offset - vfp_offset);
9427 start_reg = FIRST_VFP_REGNUM;
9428 for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
9430 if ((!regs_ever_live[reg] || call_used_regs[reg])
9431 && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
9433 if (start_reg != reg)
9434 arm_output_fldmx (f, IP_REGNUM,
9435 (start_reg - FIRST_VFP_REGNUM) / 2,
9436 (reg - start_reg) / 2);
9437 start_reg = reg + 2;
9440 if (start_reg != reg)
9441 arm_output_fldmx (f, IP_REGNUM,
9442 (start_reg - FIRST_VFP_REGNUM) / 2,
9443 (reg - start_reg) / 2);
9446 if (TARGET_IWMMXT)
9448 /* The frame pointer is guaranteed to be non-double-word aligned.
9449 This is because it is set to (old_stack_pointer - 4) and the
9450 old_stack_pointer was double word aligned. Thus the offset to
9451 the iWMMXt registers to be loaded must also be non-double-word
9452 sized, so that the resultant address *is* double-word aligned.
9453 We can ignore floats_offset since that was already included in
9454 the live_regs_mask. */
9455 lrm_count += (lrm_count % 2 ? 2 : 1);
9457 for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
9458 if (regs_ever_live[reg] && !call_used_regs[reg])
9460 asm_fprintf (f, "\twldrd\t%r, [%r, #-%d]\n",
9461 reg, FP_REGNUM, lrm_count * 4);
9462 lrm_count += 2;
9466 /* saved_regs_mask should contain the IP, which at the time of stack
9467 frame generation actually contains the old stack pointer. So a
9468 quick way to unwind the stack is just pop the IP register directly
9469 into the stack pointer. */
9470 if ((saved_regs_mask & (1 << IP_REGNUM)) == 0)
9471 abort ();
9472 saved_regs_mask &= ~ (1 << IP_REGNUM);
9473 saved_regs_mask |= (1 << SP_REGNUM);
9475 /* There are two registers left in saved_regs_mask - LR and PC. We
9476 only need to restore the LR register (the return address), but to
9477 save time we can load it directly into the PC, unless we need a
9478 special function exit sequence, or we are not really returning. */
9479 if (really_return
9480 && ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
9481 && !current_function_calls_eh_return)
9482 /* Delete the LR from the register mask, so that the LR on
9483 the stack is loaded into the PC in the register mask. */
9484 saved_regs_mask &= ~ (1 << LR_REGNUM);
9485 else
9486 saved_regs_mask &= ~ (1 << PC_REGNUM);
9488 /* We must use SP as the base register, because SP is one of the
9489 registers being restored. If an interrupt or page fault
9490 happens in the ldm instruction, the SP might or might not
9491 have been restored. That would be bad, as then SP will no
9492 longer indicate the safe area of stack, and we can get stack
9493 corruption. Using SP as the base register means that it will
9494 be reset correctly to the original value, should an interrupt
9495 occur. If the stack pointer already points at the right
9496 place, then omit the subtraction. */
9497 if (offsets->outgoing_args != (1 + (int) bit_count (saved_regs_mask))
9498 || current_function_calls_alloca)
9499 asm_fprintf (f, "\tsub\t%r, %r, #%d\n", SP_REGNUM, FP_REGNUM,
9500 4 * bit_count (saved_regs_mask));
9501 print_multi_reg (f, "ldmfd\t%r", SP_REGNUM, saved_regs_mask);
9503 if (IS_INTERRUPT (func_type))
9504 /* Interrupt handlers will have pushed the
9505 IP onto the stack, so restore it now. */
9506 print_multi_reg (f, "ldmfd\t%r!", SP_REGNUM, 1 << IP_REGNUM);
9508 else
9510 /* Restore stack pointer if necessary. */
9511 if (offsets->outgoing_args != offsets->saved_regs)
9513 operands[0] = operands[1] = stack_pointer_rtx;
9514 operands[2] = GEN_INT (offsets->outgoing_args - offsets->saved_regs);
9515 output_add_immediate (operands);
9518 if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
9520 for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
9521 if (regs_ever_live[reg] && !call_used_regs[reg])
9522 asm_fprintf (f, "\tldfe\t%r, [%r], #12\n",
9523 reg, SP_REGNUM);
9525 else
9527 start_reg = FIRST_FPA_REGNUM;
9529 for (reg = FIRST_FPA_REGNUM; reg <= LAST_FPA_REGNUM; reg++)
9531 if (regs_ever_live[reg] && !call_used_regs[reg])
9533 if (reg - start_reg == 3)
9535 asm_fprintf (f, "\tlfmfd\t%r, 4, [%r]!\n",
9536 start_reg, SP_REGNUM);
9537 start_reg = reg + 1;
9540 else
9542 if (reg != start_reg)
9543 asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
9544 start_reg, reg - start_reg,
9545 SP_REGNUM);
9547 start_reg = reg + 1;
9551 /* Just in case the last register checked also needs unstacking. */
9552 if (reg != start_reg)
9553 asm_fprintf (f, "\tlfmfd\t%r, %d, [%r]!\n",
9554 start_reg, reg - start_reg, SP_REGNUM);
9557 if (TARGET_HARD_FLOAT && TARGET_VFP)
9559 start_reg = FIRST_VFP_REGNUM;
9560 for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
9562 if ((!regs_ever_live[reg] || call_used_regs[reg])
9563 && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
9565 if (start_reg != reg)
9566 arm_output_fldmx (f, SP_REGNUM,
9567 (start_reg - FIRST_VFP_REGNUM) / 2,
9568 (reg - start_reg) / 2);
9569 start_reg = reg + 2;
9572 if (start_reg != reg)
9573 arm_output_fldmx (f, SP_REGNUM,
9574 (start_reg - FIRST_VFP_REGNUM) / 2,
9575 (reg - start_reg) / 2);
9577 if (TARGET_IWMMXT)
9578 for (reg = FIRST_IWMMXT_REGNUM; reg <= LAST_IWMMXT_REGNUM; reg++)
9579 if (regs_ever_live[reg] && !call_used_regs[reg])
9580 asm_fprintf (f, "\twldrd\t%r, [%r], #8\n", reg, SP_REGNUM);
9582 /* If we can, restore the LR into the PC. */
9583 if (ARM_FUNC_TYPE (func_type) == ARM_FT_NORMAL
9584 && really_return
9585 && current_function_pretend_args_size == 0
9586 && saved_regs_mask & (1 << LR_REGNUM)
9587 && !current_function_calls_eh_return)
9589 saved_regs_mask &= ~ (1 << LR_REGNUM);
9590 saved_regs_mask |= (1 << PC_REGNUM);
9593 /* Load the registers off the stack. If we only have one register
9594 to load use the LDR instruction - it is faster. */
9595 if (saved_regs_mask == (1 << LR_REGNUM))
9597 asm_fprintf (f, "\tldr\t%r, [%r], #4\n", LR_REGNUM, SP_REGNUM);
9599 else if (saved_regs_mask)
9601 if (saved_regs_mask & (1 << SP_REGNUM))
9602 /* Note - write back to the stack register is not enabled
9603 (i.e. "ldmfd sp!..."). We know that the stack pointer is
9604 in the list of registers and if we add writeback the
9605 instruction becomes UNPREDICTABLE. */
9606 print_multi_reg (f, "ldmfd\t%r", SP_REGNUM, saved_regs_mask);
9607 else
9608 print_multi_reg (f, "ldmfd\t%r!", SP_REGNUM, saved_regs_mask);
9611 if (current_function_pretend_args_size)
9613 /* Unwind the pre-pushed regs. */
9614 operands[0] = operands[1] = stack_pointer_rtx;
9615 operands[2] = GEN_INT (current_function_pretend_args_size);
9616 output_add_immediate (operands);
9620 /* We may have already restored PC directly from the stack. */
9621 if (!really_return || saved_regs_mask & (1 << PC_REGNUM))
9622 return "";
9624 /* Stack adjustment for exception handler. */
9625 if (current_function_calls_eh_return)
9626 asm_fprintf (f, "\tadd\t%r, %r, %r\n", SP_REGNUM, SP_REGNUM,
9627 ARM_EH_STACKADJ_REGNUM);
9629 /* Generate the return instruction. */
9630 switch ((int) ARM_FUNC_TYPE (func_type))
9632 case ARM_FT_ISR:
9633 case ARM_FT_FIQ:
9634 asm_fprintf (f, "\tsubs\t%r, %r, #4\n", PC_REGNUM, LR_REGNUM);
9635 break;
9637 case ARM_FT_EXCEPTION:
9638 asm_fprintf (f, "\tmovs\t%r, %r\n", PC_REGNUM, LR_REGNUM);
9639 break;
9641 case ARM_FT_INTERWORKED:
9642 asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
9643 break;
9645 default:
9646 if (arm_arch5 || arm_arch4t)
9647 asm_fprintf (f, "\tbx\t%r\n", LR_REGNUM);
9648 else
9649 asm_fprintf (f, "\tmov\t%r, %r\n", PC_REGNUM, LR_REGNUM);
9650 break;
9653 return "";
9656 static void
9657 arm_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
9658 HOST_WIDE_INT frame_size ATTRIBUTE_UNUSED)
9660 arm_stack_offsets *offsets;
9662 if (TARGET_THUMB)
9664 int regno;
9666 /* Emit any call-via-reg trampolines that are needed for v4t support
9667 of call_reg and call_value_reg type insns. */
9668 for (regno = 0; regno < SP_REGNUM; regno++)
9670 rtx label = cfun->machine->call_via[regno];
9672 if (label != NULL)
9674 function_section (current_function_decl);
9675 targetm.asm_out.internal_label (asm_out_file, "L",
9676 CODE_LABEL_NUMBER (label));
9677 asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
9681 /* ??? Probably not safe to set this here, since it assumes that a
9682 function will be emitted as assembly immediately after we generate
9683 RTL for it. This does not happen for inline functions. */
9684 return_used_this_function = 0;
9686 else
9688 /* We need to take into account any stack-frame rounding. */
9689 offsets = arm_get_frame_offsets ();
9691 if (use_return_insn (FALSE, NULL)
9692 && return_used_this_function
9693 && offsets->saved_regs != offsets->outgoing_args
9694 && !frame_pointer_needed)
9695 abort ();
9697 /* Reset the ARM-specific per-function variables. */
9698 after_arm_reorg = 0;
9702 /* Generate and emit an insn that we will recognize as a push_multi.
9703 Unfortunately, since this insn does not reflect very well the actual
9704 semantics of the operation, we need to annotate the insn for the benefit
9705 of DWARF2 frame unwind information. */
9706 static rtx
9707 emit_multi_reg_push (unsigned long mask)
9709 int num_regs = 0;
9710 int num_dwarf_regs;
9711 int i, j;
9712 rtx par;
9713 rtx dwarf;
9714 int dwarf_par_index;
9715 rtx tmp, reg;
9717 for (i = 0; i <= LAST_ARM_REGNUM; i++)
9718 if (mask & (1 << i))
9719 num_regs++;
9721 if (num_regs == 0 || num_regs > 16)
9722 abort ();
9724 /* We don't record the PC in the dwarf frame information. */
9725 num_dwarf_regs = num_regs;
9726 if (mask & (1 << PC_REGNUM))
9727 num_dwarf_regs--;
9729 /* For the body of the insn we are going to generate an UNSPEC in
9730 parallel with several USEs. This allows the insn to be recognized
9731 by the push_multi pattern in the arm.md file. The insn looks
9732 something like this:
9734 (parallel [
9735 (set (mem:BLK (pre_dec:BLK (reg:SI sp)))
9736 (unspec:BLK [(reg:SI r4)] UNSPEC_PUSH_MULT))
9737 (use (reg:SI 11 fp))
9738 (use (reg:SI 12 ip))
9739 (use (reg:SI 14 lr))
9740 (use (reg:SI 15 pc))
9743 For the frame note however, we try to be more explicit and actually
9744 show each register being stored into the stack frame, plus a (single)
9745 decrement of the stack pointer. We do it this way in order to be
9746 friendly to the stack unwinding code, which only wants to see a single
9747 stack decrement per instruction. The RTL we generate for the note looks
9748 something like this:
9750 (sequence [
9751 (set (reg:SI sp) (plus:SI (reg:SI sp) (const_int -20)))
9752 (set (mem:SI (reg:SI sp)) (reg:SI r4))
9753 (set (mem:SI (plus:SI (reg:SI sp) (const_int 4))) (reg:SI fp))
9754 (set (mem:SI (plus:SI (reg:SI sp) (const_int 8))) (reg:SI ip))
9755 (set (mem:SI (plus:SI (reg:SI sp) (const_int 12))) (reg:SI lr))
9758 This sequence is used both by the code to support stack unwinding for
9759 exceptions handlers and the code to generate dwarf2 frame debugging. */
9761 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_regs));
9762 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (num_dwarf_regs + 1));
9763 dwarf_par_index = 1;
9765 for (i = 0; i <= LAST_ARM_REGNUM; i++)
9767 if (mask & (1 << i))
9769 reg = gen_rtx_REG (SImode, i);
9771 XVECEXP (par, 0, 0)
9772 = gen_rtx_SET (VOIDmode,
9773 gen_rtx_MEM (BLKmode,
9774 gen_rtx_PRE_DEC (BLKmode,
9775 stack_pointer_rtx)),
9776 gen_rtx_UNSPEC (BLKmode,
9777 gen_rtvec (1, reg),
9778 UNSPEC_PUSH_MULT));
9780 if (i != PC_REGNUM)
9782 tmp = gen_rtx_SET (VOIDmode,
9783 gen_rtx_MEM (SImode, stack_pointer_rtx),
9784 reg);
9785 RTX_FRAME_RELATED_P (tmp) = 1;
9786 XVECEXP (dwarf, 0, dwarf_par_index) = tmp;
9787 dwarf_par_index++;
9790 break;
9794 for (j = 1, i++; j < num_regs; i++)
9796 if (mask & (1 << i))
9798 reg = gen_rtx_REG (SImode, i);
9800 XVECEXP (par, 0, j) = gen_rtx_USE (VOIDmode, reg);
9802 if (i != PC_REGNUM)
9804 tmp = gen_rtx_SET (VOIDmode,
9805 gen_rtx_MEM (SImode,
9806 plus_constant (stack_pointer_rtx,
9807 4 * j)),
9808 reg);
9809 RTX_FRAME_RELATED_P (tmp) = 1;
9810 XVECEXP (dwarf, 0, dwarf_par_index++) = tmp;
9813 j++;
9817 par = emit_insn (par);
9819 tmp = gen_rtx_SET (SImode,
9820 stack_pointer_rtx,
9821 gen_rtx_PLUS (SImode,
9822 stack_pointer_rtx,
9823 GEN_INT (-4 * num_regs)));
9824 RTX_FRAME_RELATED_P (tmp) = 1;
9825 XVECEXP (dwarf, 0, 0) = tmp;
9827 REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
9828 REG_NOTES (par));
9829 return par;
9832 static rtx
9833 emit_sfm (int base_reg, int count)
9835 rtx par;
9836 rtx dwarf;
9837 rtx tmp, reg;
9838 int i;
9840 par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
9841 dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (count + 1));
9843 reg = gen_rtx_REG (XFmode, base_reg++);
9845 XVECEXP (par, 0, 0)
9846 = gen_rtx_SET (VOIDmode,
9847 gen_rtx_MEM (BLKmode,
9848 gen_rtx_PRE_DEC (BLKmode, stack_pointer_rtx)),
9849 gen_rtx_UNSPEC (BLKmode,
9850 gen_rtvec (1, reg),
9851 UNSPEC_PUSH_MULT));
9852 tmp = gen_rtx_SET (VOIDmode,
9853 gen_rtx_MEM (XFmode, stack_pointer_rtx), reg);
9854 RTX_FRAME_RELATED_P (tmp) = 1;
9855 XVECEXP (dwarf, 0, 1) = tmp;
9857 for (i = 1; i < count; i++)
9859 reg = gen_rtx_REG (XFmode, base_reg++);
9860 XVECEXP (par, 0, i) = gen_rtx_USE (VOIDmode, reg);
9862 tmp = gen_rtx_SET (VOIDmode,
9863 gen_rtx_MEM (XFmode,
9864 plus_constant (stack_pointer_rtx,
9865 i * 12)),
9866 reg);
9867 RTX_FRAME_RELATED_P (tmp) = 1;
9868 XVECEXP (dwarf, 0, i + 1) = tmp;
9871 tmp = gen_rtx_SET (VOIDmode,
9872 stack_pointer_rtx,
9873 gen_rtx_PLUS (SImode,
9874 stack_pointer_rtx,
9875 GEN_INT (-12 * count)));
9876 RTX_FRAME_RELATED_P (tmp) = 1;
9877 XVECEXP (dwarf, 0, 0) = tmp;
9879 par = emit_insn (par);
9880 REG_NOTES (par) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
9881 REG_NOTES (par));
9882 return par;
9886 /* Return true if the current function needs to save/restore LR. */
9888 static bool
9889 thumb_force_lr_save (void)
9891 return !cfun->machine->lr_save_eliminated
9892 && (!leaf_function_p ()
9893 || thumb_far_jump_used_p ()
9894 || regs_ever_live [LR_REGNUM]);
9898 /* Compute the distance from register FROM to register TO.
9899 These can be the arg pointer (26), the soft frame pointer (25),
9900 the stack pointer (13) or the hard frame pointer (11).
9901 In thumb mode r7 is used as the soft frame pointer, if needed.
9902 Typical stack layout looks like this:
9904 old stack pointer -> | |
9905 ----
9906 | | \
9907 | | saved arguments for
9908 | | vararg functions
9909 | | /
9911 hard FP & arg pointer -> | | \
9912 | | stack
9913 | | frame
9914 | | /
9916 | | \
9917 | | call saved
9918 | | registers
9919 soft frame pointer -> | | /
9921 | | \
9922 | | local
9923 | | variables
9924 | | /
9926 | | \
9927 | | outgoing
9928 | | arguments
9929 current stack pointer -> | | /
9932 For a given function some or all of these stack components
9933 may not be needed, giving rise to the possibility of
9934 eliminating some of the registers.
9936 The values returned by this function must reflect the behavior
9937 of arm_expand_prologue() and arm_compute_save_reg_mask().
9939 The sign of the number returned reflects the direction of stack
9940 growth, so the values are positive for all eliminations except
9941 from the soft frame pointer to the hard frame pointer.
9943 SFP may point just inside the local variables block to ensure correct
9944 alignment. */
9947 /* Calculate stack offsets. These are used to calculate register elimination
9948 offsets and in prologue/epilogue code. */
9950 static arm_stack_offsets *
9951 arm_get_frame_offsets (void)
9953 struct arm_stack_offsets *offsets;
9954 unsigned long func_type;
9955 int leaf;
9956 int saved;
9957 HOST_WIDE_INT frame_size;
9959 offsets = &cfun->machine->stack_offsets;
9961 /* We need to know if we are a leaf function. Unfortunately, it
9962 is possible to be called after start_sequence has been called,
9963 which causes get_insns to return the insns for the sequence,
9964 not the function, which will cause leaf_function_p to return
9965 the incorrect result.
9967 to know about leaf functions once reload has completed, and the
9968 frame size cannot be changed after that time, so we can safely
9969 use the cached value. */
9971 if (reload_completed)
9972 return offsets;
9974 /* Initially this is the size of the local variables. It will translated
9975 into an offset once we have determined the size of preceding data. */
9976 frame_size = ROUND_UP_WORD (get_frame_size ());
9978 leaf = leaf_function_p ();
9980 /* Space for variadic functions. */
9981 offsets->saved_args = current_function_pretend_args_size;
9983 offsets->frame = offsets->saved_args + (frame_pointer_needed ? 4 : 0);
9985 if (TARGET_ARM)
9987 unsigned int regno;
9989 saved = bit_count (arm_compute_save_reg_mask ()) * 4;
9991 /* We know that SP will be doubleword aligned on entry, and we must
9992 preserve that condition at any subroutine call. We also require the
9993 soft frame pointer to be doubleword aligned. */
9995 if (TARGET_REALLY_IWMMXT)
9997 /* Check for the call-saved iWMMXt registers. */
9998 for (regno = FIRST_IWMMXT_REGNUM;
9999 regno <= LAST_IWMMXT_REGNUM;
10000 regno++)
10001 if (regs_ever_live [regno] && ! call_used_regs [regno])
10002 saved += 8;
10005 func_type = arm_current_func_type ();
10006 if (! IS_VOLATILE (func_type))
10008 /* Space for saved FPA registers. */
10009 for (regno = FIRST_FPA_REGNUM; regno <= LAST_FPA_REGNUM; regno++)
10010 if (regs_ever_live[regno] && ! call_used_regs[regno])
10011 saved += 12;
10013 /* Space for saved VFP registers. */
10014 if (TARGET_HARD_FLOAT && TARGET_VFP)
10015 saved += arm_get_vfp_saved_size ();
10018 else /* TARGET_THUMB */
10020 saved = bit_count (thumb_compute_save_reg_mask ()) * 4;
10021 if (TARGET_BACKTRACE)
10022 saved += 16;
10025 /* Saved registers include the stack frame. */
10026 offsets->saved_regs = offsets->saved_args + saved;
10027 offsets->soft_frame = offsets->saved_regs + CALLER_INTERWORKING_SLOT_SIZE;
10028 /* A leaf function does not need any stack alignment if it has nothing
10029 on the stack. */
10030 if (leaf && frame_size == 0)
10032 offsets->outgoing_args = offsets->soft_frame;
10033 return offsets;
10036 /* Ensure SFP has the correct alignment. */
10037 if (ARM_DOUBLEWORD_ALIGN
10038 && (offsets->soft_frame & 7))
10039 offsets->soft_frame += 4;
10041 offsets->outgoing_args = offsets->soft_frame + frame_size
10042 + current_function_outgoing_args_size;
10044 if (ARM_DOUBLEWORD_ALIGN)
10046 /* Ensure SP remains doubleword aligned. */
10047 if (offsets->outgoing_args & 7)
10048 offsets->outgoing_args += 4;
10049 if (offsets->outgoing_args & 7)
10050 abort ();
10053 return offsets;
10057 /* Calculate the relative offsets for the different stack pointers. Positive
10058 offsets are in the direction of stack growth. */
10060 HOST_WIDE_INT
10061 arm_compute_initial_elimination_offset (unsigned int from, unsigned int to)
10063 arm_stack_offsets *offsets;
10065 offsets = arm_get_frame_offsets ();
10067 /* OK, now we have enough information to compute the distances.
10068 There must be an entry in these switch tables for each pair
10069 of registers in ELIMINABLE_REGS, even if some of the entries
10070 seem to be redundant or useless. */
10071 switch (from)
10073 case ARG_POINTER_REGNUM:
10074 switch (to)
10076 case THUMB_HARD_FRAME_POINTER_REGNUM:
10077 return 0;
10079 case FRAME_POINTER_REGNUM:
10080 /* This is the reverse of the soft frame pointer
10081 to hard frame pointer elimination below. */
10082 return offsets->soft_frame - offsets->saved_args;
10084 case ARM_HARD_FRAME_POINTER_REGNUM:
10085 /* If there is no stack frame then the hard
10086 frame pointer and the arg pointer coincide. */
10087 if (offsets->frame == offsets->saved_regs)
10088 return 0;
10089 /* FIXME: Not sure about this. Maybe we should always return 0 ? */
10090 return (frame_pointer_needed
10091 && cfun->static_chain_decl != NULL
10092 && ! cfun->machine->uses_anonymous_args) ? 4 : 0;
10094 case STACK_POINTER_REGNUM:
10095 /* If nothing has been pushed on the stack at all
10096 then this will return -4. This *is* correct! */
10097 return offsets->outgoing_args - (offsets->saved_args + 4);
10099 default:
10100 abort ();
10102 break;
10104 case FRAME_POINTER_REGNUM:
10105 switch (to)
10107 case THUMB_HARD_FRAME_POINTER_REGNUM:
10108 return 0;
10110 case ARM_HARD_FRAME_POINTER_REGNUM:
10111 /* The hard frame pointer points to the top entry in the
10112 stack frame. The soft frame pointer to the bottom entry
10113 in the stack frame. If there is no stack frame at all,
10114 then they are identical. */
10116 return offsets->frame - offsets->soft_frame;
10118 case STACK_POINTER_REGNUM:
10119 return offsets->outgoing_args - offsets->soft_frame;
10121 default:
10122 abort ();
10124 break;
10126 default:
10127 /* You cannot eliminate from the stack pointer.
10128 In theory you could eliminate from the hard frame
10129 pointer to the stack pointer, but this will never
10130 happen, since if a stack frame is not needed the
10131 hard frame pointer will never be used. */
10132 abort ();
10137 /* Generate the prologue instructions for entry into an ARM function. */
10138 void
10139 arm_expand_prologue (void)
10141 int reg;
10142 rtx amount;
10143 rtx insn;
10144 rtx ip_rtx;
10145 unsigned long live_regs_mask;
10146 unsigned long func_type;
10147 int fp_offset = 0;
10148 int saved_pretend_args = 0;
10149 int saved_regs = 0;
10150 unsigned HOST_WIDE_INT args_to_push;
10151 arm_stack_offsets *offsets;
10153 func_type = arm_current_func_type ();
10155 /* Naked functions don't have prologues. */
10156 if (IS_NAKED (func_type))
10157 return;
10159 /* Make a copy of c_f_p_a_s as we may need to modify it locally. */
10160 args_to_push = current_function_pretend_args_size;
10162 /* Compute which register we will have to save onto the stack. */
10163 live_regs_mask = arm_compute_save_reg_mask ();
10165 ip_rtx = gen_rtx_REG (SImode, IP_REGNUM);
10167 if (frame_pointer_needed)
10169 if (IS_INTERRUPT (func_type))
10171 /* Interrupt functions must not corrupt any registers.
10172 Creating a frame pointer however, corrupts the IP
10173 register, so we must push it first. */
10174 insn = emit_multi_reg_push (1 << IP_REGNUM);
10176 /* Do not set RTX_FRAME_RELATED_P on this insn.
10177 The dwarf stack unwinding code only wants to see one
10178 stack decrement per function, and this is not it. If
10179 this instruction is labeled as being part of the frame
10180 creation sequence then dwarf2out_frame_debug_expr will
10181 abort when it encounters the assignment of IP to FP
10182 later on, since the use of SP here establishes SP as
10183 the CFA register and not IP.
10185 Anyway this instruction is not really part of the stack
10186 frame creation although it is part of the prologue. */
10188 else if (IS_NESTED (func_type))
10190 /* The Static chain register is the same as the IP register
10191 used as a scratch register during stack frame creation.
10192 To get around this need to find somewhere to store IP
10193 whilst the frame is being created. We try the following
10194 places in order:
10196 1. The last argument register.
10197 2. A slot on the stack above the frame. (This only
10198 works if the function is not a varargs function).
10199 3. Register r3, after pushing the argument registers
10200 onto the stack.
10202 Note - we only need to tell the dwarf2 backend about the SP
10203 adjustment in the second variant; the static chain register
10204 doesn't need to be unwound, as it doesn't contain a value
10205 inherited from the caller. */
10207 if (regs_ever_live[3] == 0)
10209 insn = gen_rtx_REG (SImode, 3);
10210 insn = gen_rtx_SET (SImode, insn, ip_rtx);
10211 insn = emit_insn (insn);
10213 else if (args_to_push == 0)
10215 rtx dwarf;
10216 insn = gen_rtx_PRE_DEC (SImode, stack_pointer_rtx);
10217 insn = gen_rtx_MEM (SImode, insn);
10218 insn = gen_rtx_SET (VOIDmode, insn, ip_rtx);
10219 insn = emit_insn (insn);
10221 fp_offset = 4;
10223 /* Just tell the dwarf backend that we adjusted SP. */
10224 dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
10225 gen_rtx_PLUS (SImode, stack_pointer_rtx,
10226 GEN_INT (-fp_offset)));
10227 RTX_FRAME_RELATED_P (insn) = 1;
10228 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
10229 dwarf, REG_NOTES (insn));
10231 else
10233 /* Store the args on the stack. */
10234 if (cfun->machine->uses_anonymous_args)
10235 insn = emit_multi_reg_push
10236 ((0xf0 >> (args_to_push / 4)) & 0xf);
10237 else
10238 insn = emit_insn
10239 (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
10240 GEN_INT (- args_to_push)));
10242 RTX_FRAME_RELATED_P (insn) = 1;
10244 saved_pretend_args = 1;
10245 fp_offset = args_to_push;
10246 args_to_push = 0;
10248 /* Now reuse r3 to preserve IP. */
10249 insn = gen_rtx_REG (SImode, 3);
10250 insn = gen_rtx_SET (SImode, insn, ip_rtx);
10251 (void) emit_insn (insn);
10255 if (fp_offset)
10257 insn = gen_rtx_PLUS (SImode, stack_pointer_rtx, GEN_INT (fp_offset));
10258 insn = gen_rtx_SET (SImode, ip_rtx, insn);
10260 else
10261 insn = gen_movsi (ip_rtx, stack_pointer_rtx);
10263 insn = emit_insn (insn);
10264 RTX_FRAME_RELATED_P (insn) = 1;
10267 if (args_to_push)
10269 /* Push the argument registers, or reserve space for them. */
10270 if (cfun->machine->uses_anonymous_args)
10271 insn = emit_multi_reg_push
10272 ((0xf0 >> (args_to_push / 4)) & 0xf);
10273 else
10274 insn = emit_insn
10275 (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
10276 GEN_INT (- args_to_push)));
10277 RTX_FRAME_RELATED_P (insn) = 1;
10280 /* If this is an interrupt service routine, and the link register
10281 is going to be pushed, and we are not creating a stack frame,
10282 (which would involve an extra push of IP and a pop in the epilogue)
10283 subtracting four from LR now will mean that the function return
10284 can be done with a single instruction. */
10285 if ((func_type == ARM_FT_ISR || func_type == ARM_FT_FIQ)
10286 && (live_regs_mask & (1 << LR_REGNUM)) != 0
10287 && ! frame_pointer_needed)
10288 emit_insn (gen_rtx_SET (SImode,
10289 gen_rtx_REG (SImode, LR_REGNUM),
10290 gen_rtx_PLUS (SImode,
10291 gen_rtx_REG (SImode, LR_REGNUM),
10292 GEN_INT (-4))));
10294 if (live_regs_mask)
10296 insn = emit_multi_reg_push (live_regs_mask);
10297 saved_regs += bit_count (live_regs_mask) * 4;
10298 RTX_FRAME_RELATED_P (insn) = 1;
10301 if (TARGET_IWMMXT)
10302 for (reg = LAST_IWMMXT_REGNUM; reg >= FIRST_IWMMXT_REGNUM; reg--)
10303 if (regs_ever_live[reg] && ! call_used_regs [reg])
10305 insn = gen_rtx_PRE_DEC (V2SImode, stack_pointer_rtx);
10306 insn = gen_rtx_MEM (V2SImode, insn);
10307 insn = emit_insn (gen_rtx_SET (VOIDmode, insn,
10308 gen_rtx_REG (V2SImode, reg)));
10309 RTX_FRAME_RELATED_P (insn) = 1;
10310 saved_regs += 8;
10313 if (! IS_VOLATILE (func_type))
10315 int start_reg;
10317 /* Save any floating point call-saved registers used by this
10318 function. */
10319 if (arm_fpu_arch == FPUTYPE_FPA_EMU2)
10321 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
10322 if (regs_ever_live[reg] && !call_used_regs[reg])
10324 insn = gen_rtx_PRE_DEC (XFmode, stack_pointer_rtx);
10325 insn = gen_rtx_MEM (XFmode, insn);
10326 insn = emit_insn (gen_rtx_SET (VOIDmode, insn,
10327 gen_rtx_REG (XFmode, reg)));
10328 RTX_FRAME_RELATED_P (insn) = 1;
10329 saved_regs += 12;
10332 else
10334 start_reg = LAST_FPA_REGNUM;
10336 for (reg = LAST_FPA_REGNUM; reg >= FIRST_FPA_REGNUM; reg--)
10338 if (regs_ever_live[reg] && !call_used_regs[reg])
10340 if (start_reg - reg == 3)
10342 insn = emit_sfm (reg, 4);
10343 RTX_FRAME_RELATED_P (insn) = 1;
10344 saved_regs += 48;
10345 start_reg = reg - 1;
10348 else
10350 if (start_reg != reg)
10352 insn = emit_sfm (reg + 1, start_reg - reg);
10353 RTX_FRAME_RELATED_P (insn) = 1;
10354 saved_regs += (start_reg - reg) * 12;
10356 start_reg = reg - 1;
10360 if (start_reg != reg)
10362 insn = emit_sfm (reg + 1, start_reg - reg);
10363 saved_regs += (start_reg - reg) * 12;
10364 RTX_FRAME_RELATED_P (insn) = 1;
10367 if (TARGET_HARD_FLOAT && TARGET_VFP)
10369 start_reg = FIRST_VFP_REGNUM;
10371 for (reg = FIRST_VFP_REGNUM; reg < LAST_VFP_REGNUM; reg += 2)
10373 if ((!regs_ever_live[reg] || call_used_regs[reg])
10374 && (!regs_ever_live[reg + 1] || call_used_regs[reg + 1]))
10376 if (start_reg != reg)
10377 saved_regs += vfp_emit_fstmx (start_reg,
10378 (reg - start_reg) / 2);
10379 start_reg = reg + 2;
10382 if (start_reg != reg)
10383 saved_regs += vfp_emit_fstmx (start_reg,
10384 (reg - start_reg) / 2);
10388 if (frame_pointer_needed)
10390 /* Create the new frame pointer. */
10391 insn = GEN_INT (-(4 + args_to_push + fp_offset));
10392 insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, ip_rtx, insn));
10393 RTX_FRAME_RELATED_P (insn) = 1;
10395 if (IS_NESTED (func_type))
10397 /* Recover the static chain register. */
10398 if (regs_ever_live [3] == 0
10399 || saved_pretend_args)
10400 insn = gen_rtx_REG (SImode, 3);
10401 else /* if (current_function_pretend_args_size == 0) */
10403 insn = gen_rtx_PLUS (SImode, hard_frame_pointer_rtx,
10404 GEN_INT (4));
10405 insn = gen_rtx_MEM (SImode, insn);
10408 emit_insn (gen_rtx_SET (SImode, ip_rtx, insn));
10409 /* Add a USE to stop propagate_one_insn() from barfing. */
10410 emit_insn (gen_prologue_use (ip_rtx));
10414 offsets = arm_get_frame_offsets ();
10415 if (offsets->outgoing_args != offsets->saved_args + saved_regs)
10417 /* This add can produce multiple insns for a large constant, so we
10418 need to get tricky. */
10419 rtx last = get_last_insn ();
10421 amount = GEN_INT (offsets->saved_args + saved_regs
10422 - offsets->outgoing_args);
10424 insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
10425 amount));
10428 last = last ? NEXT_INSN (last) : get_insns ();
10429 RTX_FRAME_RELATED_P (last) = 1;
10431 while (last != insn);
10433 /* If the frame pointer is needed, emit a special barrier that
10434 will prevent the scheduler from moving stores to the frame
10435 before the stack adjustment. */
10436 if (frame_pointer_needed)
10437 insn = emit_insn (gen_stack_tie (stack_pointer_rtx,
10438 hard_frame_pointer_rtx));
10442 if (flag_pic)
10443 arm_load_pic_register (INVALID_REGNUM);
10445 /* If we are profiling, make sure no instructions are scheduled before
10446 the call to mcount. Similarly if the user has requested no
10447 scheduling in the prolog. */
10448 if (current_function_profile || TARGET_NO_SCHED_PRO)
10449 emit_insn (gen_blockage ());
10451 /* If the link register is being kept alive, with the return address in it,
10452 then make sure that it does not get reused by the ce2 pass. */
10453 if ((live_regs_mask & (1 << LR_REGNUM)) == 0)
10455 emit_insn (gen_prologue_use (gen_rtx_REG (SImode, LR_REGNUM)));
10456 cfun->machine->lr_save_eliminated = 1;
10460 /* If CODE is 'd', then the X is a condition operand and the instruction
10461 should only be executed if the condition is true.
10462 if CODE is 'D', then the X is a condition operand and the instruction
10463 should only be executed if the condition is false: however, if the mode
10464 of the comparison is CCFPEmode, then always execute the instruction -- we
10465 do this because in these circumstances !GE does not necessarily imply LT;
10466 in these cases the instruction pattern will take care to make sure that
10467 an instruction containing %d will follow, thereby undoing the effects of
10468 doing this instruction unconditionally.
10469 If CODE is 'N' then X is a floating point operand that must be negated
10470 before output.
10471 If CODE is 'B' then output a bitwise inverted value of X (a const int).
10472 If X is a REG and CODE is `M', output a ldm/stm style multi-reg. */
10473 void
10474 arm_print_operand (FILE *stream, rtx x, int code)
10476 switch (code)
10478 case '@':
10479 fputs (ASM_COMMENT_START, stream);
10480 return;
10482 case '_':
10483 fputs (user_label_prefix, stream);
10484 return;
10486 case '|':
10487 fputs (REGISTER_PREFIX, stream);
10488 return;
10490 case '?':
10491 if (arm_ccfsm_state == 3 || arm_ccfsm_state == 4)
10493 if (TARGET_THUMB)
10495 output_operand_lossage ("predicated Thumb instruction");
10496 break;
10498 if (current_insn_predicate != NULL)
10500 output_operand_lossage
10501 ("predicated instruction in conditional sequence");
10502 break;
10505 fputs (arm_condition_codes[arm_current_cc], stream);
10507 else if (current_insn_predicate)
10509 enum arm_cond_code code;
10511 if (TARGET_THUMB)
10513 output_operand_lossage ("predicated Thumb instruction");
10514 break;
10517 code = get_arm_condition_code (current_insn_predicate);
10518 fputs (arm_condition_codes[code], stream);
10520 return;
10522 case 'N':
10524 REAL_VALUE_TYPE r;
10525 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
10526 r = REAL_VALUE_NEGATE (r);
10527 fprintf (stream, "%s", fp_const_from_val (&r));
10529 return;
10531 case 'B':
10532 if (GET_CODE (x) == CONST_INT)
10534 HOST_WIDE_INT val;
10535 val = ARM_SIGN_EXTEND (~INTVAL (x));
10536 fprintf (stream, HOST_WIDE_INT_PRINT_DEC, val);
10538 else
10540 putc ('~', stream);
10541 output_addr_const (stream, x);
10543 return;
10545 case 'i':
10546 fprintf (stream, "%s", arithmetic_instr (x, 1));
10547 return;
10549 /* Truncate Cirrus shift counts. */
10550 case 's':
10551 if (GET_CODE (x) == CONST_INT)
10553 fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0x3f);
10554 return;
10556 arm_print_operand (stream, x, 0);
10557 return;
10559 case 'I':
10560 fprintf (stream, "%s", arithmetic_instr (x, 0));
10561 return;
10563 case 'S':
10565 HOST_WIDE_INT val;
10566 const char * shift = shift_op (x, &val);
10568 if (shift)
10570 fprintf (stream, ", %s ", shift_op (x, &val));
10571 if (val == -1)
10572 arm_print_operand (stream, XEXP (x, 1), 0);
10573 else
10574 fprintf (stream, "#" HOST_WIDE_INT_PRINT_DEC, val);
10577 return;
10579 /* An explanation of the 'Q', 'R' and 'H' register operands:
10581 In a pair of registers containing a DI or DF value the 'Q'
10582 operand returns the register number of the register containing
10583 the least significant part of the value. The 'R' operand returns
10584 the register number of the register containing the most
10585 significant part of the value.
10587 The 'H' operand returns the higher of the two register numbers.
10588 On a run where WORDS_BIG_ENDIAN is true the 'H' operand is the
10589 same as the 'Q' operand, since the most significant part of the
10590 value is held in the lower number register. The reverse is true
10591 on systems where WORDS_BIG_ENDIAN is false.
10593 The purpose of these operands is to distinguish between cases
10594 where the endian-ness of the values is important (for example
10595 when they are added together), and cases where the endian-ness
10596 is irrelevant, but the order of register operations is important.
10597 For example when loading a value from memory into a register
10598 pair, the endian-ness does not matter. Provided that the value
10599 from the lower memory address is put into the lower numbered
10600 register, and the value from the higher address is put into the
10601 higher numbered register, the load will work regardless of whether
10602 the value being loaded is big-wordian or little-wordian. The
10603 order of the two register loads can matter however, if the address
10604 of the memory location is actually held in one of the registers
10605 being overwritten by the load. */
10606 case 'Q':
10607 if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
10609 output_operand_lossage ("invalid operand for code '%c'", code);
10610 return;
10613 asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 1 : 0));
10614 return;
10616 case 'R':
10617 if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
10619 output_operand_lossage ("invalid operand for code '%c'", code);
10620 return;
10623 asm_fprintf (stream, "%r", REGNO (x) + (WORDS_BIG_ENDIAN ? 0 : 1));
10624 return;
10626 case 'H':
10627 if (GET_CODE (x) != REG || REGNO (x) > LAST_ARM_REGNUM)
10629 output_operand_lossage ("invalid operand for code '%c'", code);
10630 return;
10633 asm_fprintf (stream, "%r", REGNO (x) + 1);
10634 return;
10636 case 'm':
10637 asm_fprintf (stream, "%r",
10638 GET_CODE (XEXP (x, 0)) == REG
10639 ? REGNO (XEXP (x, 0)) : REGNO (XEXP (XEXP (x, 0), 0)));
10640 return;
10642 case 'M':
10643 asm_fprintf (stream, "{%r-%r}",
10644 REGNO (x),
10645 REGNO (x) + ARM_NUM_REGS (GET_MODE (x)) - 1);
10646 return;
10648 case 'd':
10649 /* CONST_TRUE_RTX means always -- that's the default. */
10650 if (x == const_true_rtx)
10651 return;
10653 if (!COMPARISON_P (x))
10655 output_operand_lossage ("invalid operand for code '%c'", code);
10656 return;
10659 fputs (arm_condition_codes[get_arm_condition_code (x)],
10660 stream);
10661 return;
10663 case 'D':
10664 /* CONST_TRUE_RTX means not always -- i.e. never. We shouldn't ever
10665 want to do that. */
10666 if (x == const_true_rtx)
10668 output_operand_lossage ("instruction never exectued");
10669 return;
10671 if (!COMPARISON_P (x))
10673 output_operand_lossage ("invalid operand for code '%c'", code);
10674 return;
10677 fputs (arm_condition_codes[ARM_INVERSE_CONDITION_CODE
10678 (get_arm_condition_code (x))],
10679 stream);
10680 return;
10682 /* Cirrus registers can be accessed in a variety of ways:
10683 single floating point (f)
10684 double floating point (d)
10685 32bit integer (fx)
10686 64bit integer (dx). */
10687 case 'W': /* Cirrus register in F mode. */
10688 case 'X': /* Cirrus register in D mode. */
10689 case 'Y': /* Cirrus register in FX mode. */
10690 case 'Z': /* Cirrus register in DX mode. */
10691 if (GET_CODE (x) != REG || REGNO_REG_CLASS (REGNO (x)) != CIRRUS_REGS)
10692 abort ();
10694 fprintf (stream, "mv%s%s",
10695 code == 'W' ? "f"
10696 : code == 'X' ? "d"
10697 : code == 'Y' ? "fx" : "dx", reg_names[REGNO (x)] + 2);
10699 return;
10701 /* Print cirrus register in the mode specified by the register's mode. */
10702 case 'V':
10704 int mode = GET_MODE (x);
10706 if (GET_CODE (x) != REG || REGNO_REG_CLASS (REGNO (x)) != CIRRUS_REGS)
10708 output_operand_lossage ("invalid operand for code '%c'", code);
10709 return;
10712 fprintf (stream, "mv%s%s",
10713 mode == DFmode ? "d"
10714 : mode == SImode ? "fx"
10715 : mode == DImode ? "dx"
10716 : "f", reg_names[REGNO (x)] + 2);
10718 return;
10721 case 'U':
10722 if (GET_CODE (x) != REG
10723 || REGNO (x) < FIRST_IWMMXT_GR_REGNUM
10724 || REGNO (x) > LAST_IWMMXT_GR_REGNUM)
10725 /* Bad value for wCG register number. */
10727 output_operand_lossage ("invalid operand for code '%c'", code);
10728 return;
10731 else
10732 fprintf (stream, "%d", REGNO (x) - FIRST_IWMMXT_GR_REGNUM);
10733 return;
10735 /* Print an iWMMXt control register name. */
10736 case 'w':
10737 if (GET_CODE (x) != CONST_INT
10738 || INTVAL (x) < 0
10739 || INTVAL (x) >= 16)
10740 /* Bad value for wC register number. */
10742 output_operand_lossage ("invalid operand for code '%c'", code);
10743 return;
10746 else
10748 static const char * wc_reg_names [16] =
10750 "wCID", "wCon", "wCSSF", "wCASF",
10751 "wC4", "wC5", "wC6", "wC7",
10752 "wCGR0", "wCGR1", "wCGR2", "wCGR3",
10753 "wC12", "wC13", "wC14", "wC15"
10756 fprintf (stream, wc_reg_names [INTVAL (x)]);
10758 return;
10760 /* Print a VFP double precision register name. */
10761 case 'P':
10763 int mode = GET_MODE (x);
10764 int num;
10766 if (mode != DImode && mode != DFmode)
10768 output_operand_lossage ("invalid operand for code '%c'", code);
10769 return;
10772 if (GET_CODE (x) != REG
10773 || !IS_VFP_REGNUM (REGNO (x)))
10775 output_operand_lossage ("invalid operand for code '%c'", code);
10776 return;
10779 num = REGNO(x) - FIRST_VFP_REGNUM;
10780 if (num & 1)
10782 output_operand_lossage ("invalid operand for code '%c'", code);
10783 return;
10786 fprintf (stream, "d%d", num >> 1);
10788 return;
10790 default:
10791 if (x == 0)
10793 output_operand_lossage ("missing operand");
10794 return;
10797 if (GET_CODE (x) == REG)
10798 asm_fprintf (stream, "%r", REGNO (x));
10799 else if (GET_CODE (x) == MEM)
10801 output_memory_reference_mode = GET_MODE (x);
10802 output_address (XEXP (x, 0));
10804 else if (GET_CODE (x) == CONST_DOUBLE)
10805 fprintf (stream, "#%s", fp_immediate_constant (x));
10806 else if (GET_CODE (x) == NEG)
10807 abort (); /* This should never happen now. */
10808 else
10810 fputc ('#', stream);
10811 output_addr_const (stream, x);
10816 #ifndef AOF_ASSEMBLER
10817 /* Target hook for assembling integer objects. The ARM version needs to
10818 handle word-sized values specially. */
10819 static bool
10820 arm_assemble_integer (rtx x, unsigned int size, int aligned_p)
10822 if (size == UNITS_PER_WORD && aligned_p)
10824 fputs ("\t.word\t", asm_out_file);
10825 output_addr_const (asm_out_file, x);
10827 /* Mark symbols as position independent. We only do this in the
10828 .text segment, not in the .data segment. */
10829 if (NEED_GOT_RELOC && flag_pic && making_const_table &&
10830 (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF))
10832 if (GET_CODE (x) == SYMBOL_REF
10833 && (CONSTANT_POOL_ADDRESS_P (x)
10834 || SYMBOL_REF_LOCAL_P (x)))
10835 fputs ("(GOTOFF)", asm_out_file);
10836 else if (GET_CODE (x) == LABEL_REF)
10837 fputs ("(GOTOFF)", asm_out_file);
10838 else
10839 fputs ("(GOT)", asm_out_file);
10841 fputc ('\n', asm_out_file);
10842 return true;
10845 if (arm_vector_mode_supported_p (GET_MODE (x)))
10847 int i, units;
10849 if (GET_CODE (x) != CONST_VECTOR)
10850 abort ();
10852 units = CONST_VECTOR_NUNITS (x);
10854 switch (GET_MODE (x))
10856 case V2SImode: size = 4; break;
10857 case V4HImode: size = 2; break;
10858 case V8QImode: size = 1; break;
10859 default:
10860 abort ();
10863 for (i = 0; i < units; i++)
10865 rtx elt;
10867 elt = CONST_VECTOR_ELT (x, i);
10868 assemble_integer
10869 (elt, size, i == 0 ? BIGGEST_ALIGNMENT : size * BITS_PER_UNIT, 1);
10872 return true;
10875 return default_assemble_integer (x, size, aligned_p);
10877 #endif
10879 /* A finite state machine takes care of noticing whether or not instructions
10880 can be conditionally executed, and thus decrease execution time and code
10881 size by deleting branch instructions. The fsm is controlled by
10882 final_prescan_insn, and controls the actions of ASM_OUTPUT_OPCODE. */
10884 /* The state of the fsm controlling condition codes are:
10885 0: normal, do nothing special
10886 1: make ASM_OUTPUT_OPCODE not output this instruction
10887 2: make ASM_OUTPUT_OPCODE not output this instruction
10888 3: make instructions conditional
10889 4: make instructions conditional
10891 State transitions (state->state by whom under condition):
10892 0 -> 1 final_prescan_insn if the `target' is a label
10893 0 -> 2 final_prescan_insn if the `target' is an unconditional branch
10894 1 -> 3 ASM_OUTPUT_OPCODE after not having output the conditional branch
10895 2 -> 4 ASM_OUTPUT_OPCODE after not having output the conditional branch
10896 3 -> 0 (*targetm.asm_out.internal_label) if the `target' label is reached
10897 (the target label has CODE_LABEL_NUMBER equal to arm_target_label).
10898 4 -> 0 final_prescan_insn if the `target' unconditional branch is reached
10899 (the target insn is arm_target_insn).
10901 If the jump clobbers the conditions then we use states 2 and 4.
10903 A similar thing can be done with conditional return insns.
10905 XXX In case the `target' is an unconditional branch, this conditionalising
10906 of the instructions always reduces code size, but not always execution
10907 time. But then, I want to reduce the code size to somewhere near what
10908 /bin/cc produces. */
10910 /* Returns the index of the ARM condition code string in
10911 `arm_condition_codes'. COMPARISON should be an rtx like
10912 `(eq (...) (...))'. */
10913 static enum arm_cond_code
10914 get_arm_condition_code (rtx comparison)
10916 enum machine_mode mode = GET_MODE (XEXP (comparison, 0));
10917 int code;
10918 enum rtx_code comp_code = GET_CODE (comparison);
10920 if (GET_MODE_CLASS (mode) != MODE_CC)
10921 mode = SELECT_CC_MODE (comp_code, XEXP (comparison, 0),
10922 XEXP (comparison, 1));
10924 switch (mode)
10926 case CC_DNEmode: code = ARM_NE; goto dominance;
10927 case CC_DEQmode: code = ARM_EQ; goto dominance;
10928 case CC_DGEmode: code = ARM_GE; goto dominance;
10929 case CC_DGTmode: code = ARM_GT; goto dominance;
10930 case CC_DLEmode: code = ARM_LE; goto dominance;
10931 case CC_DLTmode: code = ARM_LT; goto dominance;
10932 case CC_DGEUmode: code = ARM_CS; goto dominance;
10933 case CC_DGTUmode: code = ARM_HI; goto dominance;
10934 case CC_DLEUmode: code = ARM_LS; goto dominance;
10935 case CC_DLTUmode: code = ARM_CC;
10937 dominance:
10938 if (comp_code != EQ && comp_code != NE)
10939 abort ();
10941 if (comp_code == EQ)
10942 return ARM_INVERSE_CONDITION_CODE (code);
10943 return code;
10945 case CC_NOOVmode:
10946 switch (comp_code)
10948 case NE: return ARM_NE;
10949 case EQ: return ARM_EQ;
10950 case GE: return ARM_PL;
10951 case LT: return ARM_MI;
10952 default: abort ();
10955 case CC_Zmode:
10956 switch (comp_code)
10958 case NE: return ARM_NE;
10959 case EQ: return ARM_EQ;
10960 default: abort ();
10963 case CC_Nmode:
10964 switch (comp_code)
10966 case NE: return ARM_MI;
10967 case EQ: return ARM_PL;
10968 default: abort ();
10971 case CCFPEmode:
10972 case CCFPmode:
10973 /* These encodings assume that AC=1 in the FPA system control
10974 byte. This allows us to handle all cases except UNEQ and
10975 LTGT. */
10976 switch (comp_code)
10978 case GE: return ARM_GE;
10979 case GT: return ARM_GT;
10980 case LE: return ARM_LS;
10981 case LT: return ARM_MI;
10982 case NE: return ARM_NE;
10983 case EQ: return ARM_EQ;
10984 case ORDERED: return ARM_VC;
10985 case UNORDERED: return ARM_VS;
10986 case UNLT: return ARM_LT;
10987 case UNLE: return ARM_LE;
10988 case UNGT: return ARM_HI;
10989 case UNGE: return ARM_PL;
10990 /* UNEQ and LTGT do not have a representation. */
10991 case UNEQ: /* Fall through. */
10992 case LTGT: /* Fall through. */
10993 default: abort ();
10996 case CC_SWPmode:
10997 switch (comp_code)
10999 case NE: return ARM_NE;
11000 case EQ: return ARM_EQ;
11001 case GE: return ARM_LE;
11002 case GT: return ARM_LT;
11003 case LE: return ARM_GE;
11004 case LT: return ARM_GT;
11005 case GEU: return ARM_LS;
11006 case GTU: return ARM_CC;
11007 case LEU: return ARM_CS;
11008 case LTU: return ARM_HI;
11009 default: abort ();
11012 case CC_Cmode:
11013 switch (comp_code)
11015 case LTU: return ARM_CS;
11016 case GEU: return ARM_CC;
11017 default: abort ();
11020 case CCmode:
11021 switch (comp_code)
11023 case NE: return ARM_NE;
11024 case EQ: return ARM_EQ;
11025 case GE: return ARM_GE;
11026 case GT: return ARM_GT;
11027 case LE: return ARM_LE;
11028 case LT: return ARM_LT;
11029 case GEU: return ARM_CS;
11030 case GTU: return ARM_HI;
11031 case LEU: return ARM_LS;
11032 case LTU: return ARM_CC;
11033 default: abort ();
11036 default: abort ();
11039 abort ();
11042 void
11043 arm_final_prescan_insn (rtx insn)
11045 /* BODY will hold the body of INSN. */
11046 rtx body = PATTERN (insn);
11048 /* This will be 1 if trying to repeat the trick, and things need to be
11049 reversed if it appears to fail. */
11050 int reverse = 0;
11052 /* JUMP_CLOBBERS will be one implies that the conditions if a branch is
11053 taken are clobbered, even if the rtl suggests otherwise. It also
11054 means that we have to grub around within the jump expression to find
11055 out what the conditions are when the jump isn't taken. */
11056 int jump_clobbers = 0;
11058 /* If we start with a return insn, we only succeed if we find another one. */
11059 int seeking_return = 0;
11061 /* START_INSN will hold the insn from where we start looking. This is the
11062 first insn after the following code_label if REVERSE is true. */
11063 rtx start_insn = insn;
11065 /* If in state 4, check if the target branch is reached, in order to
11066 change back to state 0. */
11067 if (arm_ccfsm_state == 4)
11069 if (insn == arm_target_insn)
11071 arm_target_insn = NULL;
11072 arm_ccfsm_state = 0;
11074 return;
11077 /* If in state 3, it is possible to repeat the trick, if this insn is an
11078 unconditional branch to a label, and immediately following this branch
11079 is the previous target label which is only used once, and the label this
11080 branch jumps to is not too far off. */
11081 if (arm_ccfsm_state == 3)
11083 if (simplejump_p (insn))
11085 start_insn = next_nonnote_insn (start_insn);
11086 if (GET_CODE (start_insn) == BARRIER)
11088 /* XXX Isn't this always a barrier? */
11089 start_insn = next_nonnote_insn (start_insn);
11091 if (GET_CODE (start_insn) == CODE_LABEL
11092 && CODE_LABEL_NUMBER (start_insn) == arm_target_label
11093 && LABEL_NUSES (start_insn) == 1)
11094 reverse = TRUE;
11095 else
11096 return;
11098 else if (GET_CODE (body) == RETURN)
11100 start_insn = next_nonnote_insn (start_insn);
11101 if (GET_CODE (start_insn) == BARRIER)
11102 start_insn = next_nonnote_insn (start_insn);
11103 if (GET_CODE (start_insn) == CODE_LABEL
11104 && CODE_LABEL_NUMBER (start_insn) == arm_target_label
11105 && LABEL_NUSES (start_insn) == 1)
11107 reverse = TRUE;
11108 seeking_return = 1;
11110 else
11111 return;
11113 else
11114 return;
11117 if (arm_ccfsm_state != 0 && !reverse)
11118 abort ();
11119 if (GET_CODE (insn) != JUMP_INSN)
11120 return;
11122 /* This jump might be paralleled with a clobber of the condition codes
11123 the jump should always come first */
11124 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) > 0)
11125 body = XVECEXP (body, 0, 0);
11127 if (reverse
11128 || (GET_CODE (body) == SET && GET_CODE (SET_DEST (body)) == PC
11129 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE))
11131 int insns_skipped;
11132 int fail = FALSE, succeed = FALSE;
11133 /* Flag which part of the IF_THEN_ELSE is the LABEL_REF. */
11134 int then_not_else = TRUE;
11135 rtx this_insn = start_insn, label = 0;
11137 /* If the jump cannot be done with one instruction, we cannot
11138 conditionally execute the instruction in the inverse case. */
11139 if (get_attr_conds (insn) == CONDS_JUMP_CLOB)
11141 jump_clobbers = 1;
11142 return;
11145 /* Register the insn jumped to. */
11146 if (reverse)
11148 if (!seeking_return)
11149 label = XEXP (SET_SRC (body), 0);
11151 else if (GET_CODE (XEXP (SET_SRC (body), 1)) == LABEL_REF)
11152 label = XEXP (XEXP (SET_SRC (body), 1), 0);
11153 else if (GET_CODE (XEXP (SET_SRC (body), 2)) == LABEL_REF)
11155 label = XEXP (XEXP (SET_SRC (body), 2), 0);
11156 then_not_else = FALSE;
11158 else if (GET_CODE (XEXP (SET_SRC (body), 1)) == RETURN)
11159 seeking_return = 1;
11160 else if (GET_CODE (XEXP (SET_SRC (body), 2)) == RETURN)
11162 seeking_return = 1;
11163 then_not_else = FALSE;
11165 else
11166 abort ();
11168 /* See how many insns this branch skips, and what kind of insns. If all
11169 insns are okay, and the label or unconditional branch to the same
11170 label is not too far away, succeed. */
11171 for (insns_skipped = 0;
11172 !fail && !succeed && insns_skipped++ < max_insns_skipped;)
11174 rtx scanbody;
11176 this_insn = next_nonnote_insn (this_insn);
11177 if (!this_insn)
11178 break;
11180 switch (GET_CODE (this_insn))
11182 case CODE_LABEL:
11183 /* Succeed if it is the target label, otherwise fail since
11184 control falls in from somewhere else. */
11185 if (this_insn == label)
11187 if (jump_clobbers)
11189 arm_ccfsm_state = 2;
11190 this_insn = next_nonnote_insn (this_insn);
11192 else
11193 arm_ccfsm_state = 1;
11194 succeed = TRUE;
11196 else
11197 fail = TRUE;
11198 break;
11200 case BARRIER:
11201 /* Succeed if the following insn is the target label.
11202 Otherwise fail.
11203 If return insns are used then the last insn in a function
11204 will be a barrier. */
11205 this_insn = next_nonnote_insn (this_insn);
11206 if (this_insn && this_insn == label)
11208 if (jump_clobbers)
11210 arm_ccfsm_state = 2;
11211 this_insn = next_nonnote_insn (this_insn);
11213 else
11214 arm_ccfsm_state = 1;
11215 succeed = TRUE;
11217 else
11218 fail = TRUE;
11219 break;
11221 case CALL_INSN:
11222 /* The AAPCS says that conditional calls should not be
11223 used since they make interworking inefficient (the
11224 linker can't transform BL<cond> into BLX). That's
11225 only a problem if the machine has BLX. */
11226 if (arm_arch5)
11228 fail = TRUE;
11229 break;
11232 /* Succeed if the following insn is the target label, or
11233 if the following two insns are a barrier and the
11234 target label. */
11235 this_insn = next_nonnote_insn (this_insn);
11236 if (this_insn && GET_CODE (this_insn) == BARRIER)
11237 this_insn = next_nonnote_insn (this_insn);
11239 if (this_insn && this_insn == label
11240 && insns_skipped < max_insns_skipped)
11242 if (jump_clobbers)
11244 arm_ccfsm_state = 2;
11245 this_insn = next_nonnote_insn (this_insn);
11247 else
11248 arm_ccfsm_state = 1;
11249 succeed = TRUE;
11251 else
11252 fail = TRUE;
11253 break;
11255 case JUMP_INSN:
11256 /* If this is an unconditional branch to the same label, succeed.
11257 If it is to another label, do nothing. If it is conditional,
11258 fail. */
11259 /* XXX Probably, the tests for SET and the PC are
11260 unnecessary. */
11262 scanbody = PATTERN (this_insn);
11263 if (GET_CODE (scanbody) == SET
11264 && GET_CODE (SET_DEST (scanbody)) == PC)
11266 if (GET_CODE (SET_SRC (scanbody)) == LABEL_REF
11267 && XEXP (SET_SRC (scanbody), 0) == label && !reverse)
11269 arm_ccfsm_state = 2;
11270 succeed = TRUE;
11272 else if (GET_CODE (SET_SRC (scanbody)) == IF_THEN_ELSE)
11273 fail = TRUE;
11275 /* Fail if a conditional return is undesirable (e.g. on a
11276 StrongARM), but still allow this if optimizing for size. */
11277 else if (GET_CODE (scanbody) == RETURN
11278 && !use_return_insn (TRUE, NULL)
11279 && !optimize_size)
11280 fail = TRUE;
11281 else if (GET_CODE (scanbody) == RETURN
11282 && seeking_return)
11284 arm_ccfsm_state = 2;
11285 succeed = TRUE;
11287 else if (GET_CODE (scanbody) == PARALLEL)
11289 switch (get_attr_conds (this_insn))
11291 case CONDS_NOCOND:
11292 break;
11293 default:
11294 fail = TRUE;
11295 break;
11298 else
11299 fail = TRUE; /* Unrecognized jump (e.g. epilogue). */
11301 break;
11303 case INSN:
11304 /* Instructions using or affecting the condition codes make it
11305 fail. */
11306 scanbody = PATTERN (this_insn);
11307 if (!(GET_CODE (scanbody) == SET
11308 || GET_CODE (scanbody) == PARALLEL)
11309 || get_attr_conds (this_insn) != CONDS_NOCOND)
11310 fail = TRUE;
11312 /* A conditional cirrus instruction must be followed by
11313 a non Cirrus instruction. However, since we
11314 conditionalize instructions in this function and by
11315 the time we get here we can't add instructions
11316 (nops), because shorten_branches() has already been
11317 called, we will disable conditionalizing Cirrus
11318 instructions to be safe. */
11319 if (GET_CODE (scanbody) != USE
11320 && GET_CODE (scanbody) != CLOBBER
11321 && get_attr_cirrus (this_insn) != CIRRUS_NOT)
11322 fail = TRUE;
11323 break;
11325 default:
11326 break;
11329 if (succeed)
11331 if ((!seeking_return) && (arm_ccfsm_state == 1 || reverse))
11332 arm_target_label = CODE_LABEL_NUMBER (label);
11333 else if (seeking_return || arm_ccfsm_state == 2)
11335 while (this_insn && GET_CODE (PATTERN (this_insn)) == USE)
11337 this_insn = next_nonnote_insn (this_insn);
11338 if (this_insn && (GET_CODE (this_insn) == BARRIER
11339 || GET_CODE (this_insn) == CODE_LABEL))
11340 abort ();
11342 if (!this_insn)
11344 /* Oh, dear! we ran off the end.. give up. */
11345 recog (PATTERN (insn), insn, NULL);
11346 arm_ccfsm_state = 0;
11347 arm_target_insn = NULL;
11348 return;
11350 arm_target_insn = this_insn;
11352 else
11353 abort ();
11354 if (jump_clobbers)
11356 if (reverse)
11357 abort ();
11358 arm_current_cc =
11359 get_arm_condition_code (XEXP (XEXP (XEXP (SET_SRC (body),
11360 0), 0), 1));
11361 if (GET_CODE (XEXP (XEXP (SET_SRC (body), 0), 0)) == AND)
11362 arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
11363 if (GET_CODE (XEXP (SET_SRC (body), 0)) == NE)
11364 arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
11366 else
11368 /* If REVERSE is true, ARM_CURRENT_CC needs to be inverted from
11369 what it was. */
11370 if (!reverse)
11371 arm_current_cc = get_arm_condition_code (XEXP (SET_SRC (body),
11372 0));
11375 if (reverse || then_not_else)
11376 arm_current_cc = ARM_INVERSE_CONDITION_CODE (arm_current_cc);
11379 /* Restore recog_data (getting the attributes of other insns can
11380 destroy this array, but final.c assumes that it remains intact
11381 across this call; since the insn has been recognized already we
11382 call recog direct). */
11383 recog (PATTERN (insn), insn, NULL);
11387 /* Returns true if REGNO is a valid register
11388 for holding a quantity of type MODE. */
11390 arm_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode)
11392 if (GET_MODE_CLASS (mode) == MODE_CC)
11393 return regno == CC_REGNUM || regno == VFPCC_REGNUM;
11395 if (TARGET_THUMB)
11396 /* For the Thumb we only allow values bigger than SImode in
11397 registers 0 - 6, so that there is always a second low
11398 register available to hold the upper part of the value.
11399 We probably we ought to ensure that the register is the
11400 start of an even numbered register pair. */
11401 return (ARM_NUM_REGS (mode) < 2) || (regno < LAST_LO_REGNUM);
11403 if (IS_CIRRUS_REGNUM (regno))
11404 /* We have outlawed SI values in Cirrus registers because they
11405 reside in the lower 32 bits, but SF values reside in the
11406 upper 32 bits. This causes gcc all sorts of grief. We can't
11407 even split the registers into pairs because Cirrus SI values
11408 get sign extended to 64bits-- aldyh. */
11409 return (GET_MODE_CLASS (mode) == MODE_FLOAT) || (mode == DImode);
11411 if (IS_VFP_REGNUM (regno))
11413 if (mode == SFmode || mode == SImode)
11414 return TRUE;
11416 /* DFmode values are only valid in even register pairs. */
11417 if (mode == DFmode)
11418 return ((regno - FIRST_VFP_REGNUM) & 1) == 0;
11419 return FALSE;
11422 if (IS_IWMMXT_GR_REGNUM (regno))
11423 return mode == SImode;
11425 if (IS_IWMMXT_REGNUM (regno))
11426 return VALID_IWMMXT_REG_MODE (mode);
11428 /* We allow any value to be stored in the general registers.
11429 Restrict doubleword quantities to even register pairs so that we can
11430 use ldrd. */
11431 if (regno <= LAST_ARM_REGNUM)
11432 return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0);
11434 if ( regno == FRAME_POINTER_REGNUM
11435 || regno == ARG_POINTER_REGNUM)
11436 /* We only allow integers in the fake hard registers. */
11437 return GET_MODE_CLASS (mode) == MODE_INT;
11439 /* The only registers left are the FPA registers
11440 which we only allow to hold FP values. */
11441 return GET_MODE_CLASS (mode) == MODE_FLOAT
11442 && regno >= FIRST_FPA_REGNUM
11443 && regno <= LAST_FPA_REGNUM;
11447 arm_regno_class (int regno)
11449 if (TARGET_THUMB)
11451 if (regno == STACK_POINTER_REGNUM)
11452 return STACK_REG;
11453 if (regno == CC_REGNUM)
11454 return CC_REG;
11455 if (regno < 8)
11456 return LO_REGS;
11457 return HI_REGS;
11460 if ( regno <= LAST_ARM_REGNUM
11461 || regno == FRAME_POINTER_REGNUM
11462 || regno == ARG_POINTER_REGNUM)
11463 return GENERAL_REGS;
11465 if (regno == CC_REGNUM || regno == VFPCC_REGNUM)
11466 return NO_REGS;
11468 if (IS_CIRRUS_REGNUM (regno))
11469 return CIRRUS_REGS;
11471 if (IS_VFP_REGNUM (regno))
11472 return VFP_REGS;
11474 if (IS_IWMMXT_REGNUM (regno))
11475 return IWMMXT_REGS;
11477 if (IS_IWMMXT_GR_REGNUM (regno))
11478 return IWMMXT_GR_REGS;
11480 return FPA_REGS;
11483 /* Handle a special case when computing the offset
11484 of an argument from the frame pointer. */
11486 arm_debugger_arg_offset (int value, rtx addr)
11488 rtx insn;
11490 /* We are only interested if dbxout_parms() failed to compute the offset. */
11491 if (value != 0)
11492 return 0;
11494 /* We can only cope with the case where the address is held in a register. */
11495 if (GET_CODE (addr) != REG)
11496 return 0;
11498 /* If we are using the frame pointer to point at the argument, then
11499 an offset of 0 is correct. */
11500 if (REGNO (addr) == (unsigned) HARD_FRAME_POINTER_REGNUM)
11501 return 0;
11503 /* If we are using the stack pointer to point at the
11504 argument, then an offset of 0 is correct. */
11505 if ((TARGET_THUMB || !frame_pointer_needed)
11506 && REGNO (addr) == SP_REGNUM)
11507 return 0;
11509 /* Oh dear. The argument is pointed to by a register rather
11510 than being held in a register, or being stored at a known
11511 offset from the frame pointer. Since GDB only understands
11512 those two kinds of argument we must translate the address
11513 held in the register into an offset from the frame pointer.
11514 We do this by searching through the insns for the function
11515 looking to see where this register gets its value. If the
11516 register is initialized from the frame pointer plus an offset
11517 then we are in luck and we can continue, otherwise we give up.
11519 This code is exercised by producing debugging information
11520 for a function with arguments like this:
11522 double func (double a, double b, int c, double d) {return d;}
11524 Without this code the stab for parameter 'd' will be set to
11525 an offset of 0 from the frame pointer, rather than 8. */
11527 /* The if() statement says:
11529 If the insn is a normal instruction
11530 and if the insn is setting the value in a register
11531 and if the register being set is the register holding the address of the argument
11532 and if the address is computing by an addition
11533 that involves adding to a register
11534 which is the frame pointer
11535 a constant integer
11537 then... */
11539 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
11541 if ( GET_CODE (insn) == INSN
11542 && GET_CODE (PATTERN (insn)) == SET
11543 && REGNO (XEXP (PATTERN (insn), 0)) == REGNO (addr)
11544 && GET_CODE (XEXP (PATTERN (insn), 1)) == PLUS
11545 && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 0)) == REG
11546 && REGNO (XEXP (XEXP (PATTERN (insn), 1), 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
11547 && GET_CODE (XEXP (XEXP (PATTERN (insn), 1), 1)) == CONST_INT
11550 value = INTVAL (XEXP (XEXP (PATTERN (insn), 1), 1));
11552 break;
11556 if (value == 0)
11558 debug_rtx (addr);
11559 warning ("unable to compute real location of stacked parameter");
11560 value = 8; /* XXX magic hack */
11563 return value;
11566 #define def_mbuiltin(MASK, NAME, TYPE, CODE) \
11567 do \
11569 if ((MASK) & insn_flags) \
11570 lang_hooks.builtin_function ((NAME), (TYPE), (CODE), \
11571 BUILT_IN_MD, NULL, NULL_TREE); \
11573 while (0)
11575 struct builtin_description
11577 const unsigned int mask;
11578 const enum insn_code icode;
11579 const char * const name;
11580 const enum arm_builtins code;
11581 const enum rtx_code comparison;
11582 const unsigned int flag;
11585 static const struct builtin_description bdesc_2arg[] =
11587 #define IWMMXT_BUILTIN(code, string, builtin) \
11588 { FL_IWMMXT, CODE_FOR_##code, "__builtin_arm_" string, \
11589 ARM_BUILTIN_##builtin, 0, 0 },
11591 IWMMXT_BUILTIN (addv8qi3, "waddb", WADDB)
11592 IWMMXT_BUILTIN (addv4hi3, "waddh", WADDH)
11593 IWMMXT_BUILTIN (addv2si3, "waddw", WADDW)
11594 IWMMXT_BUILTIN (subv8qi3, "wsubb", WSUBB)
11595 IWMMXT_BUILTIN (subv4hi3, "wsubh", WSUBH)
11596 IWMMXT_BUILTIN (subv2si3, "wsubw", WSUBW)
11597 IWMMXT_BUILTIN (ssaddv8qi3, "waddbss", WADDSSB)
11598 IWMMXT_BUILTIN (ssaddv4hi3, "waddhss", WADDSSH)
11599 IWMMXT_BUILTIN (ssaddv2si3, "waddwss", WADDSSW)
11600 IWMMXT_BUILTIN (sssubv8qi3, "wsubbss", WSUBSSB)
11601 IWMMXT_BUILTIN (sssubv4hi3, "wsubhss", WSUBSSH)
11602 IWMMXT_BUILTIN (sssubv2si3, "wsubwss", WSUBSSW)
11603 IWMMXT_BUILTIN (usaddv8qi3, "waddbus", WADDUSB)
11604 IWMMXT_BUILTIN (usaddv4hi3, "waddhus", WADDUSH)
11605 IWMMXT_BUILTIN (usaddv2si3, "waddwus", WADDUSW)
11606 IWMMXT_BUILTIN (ussubv8qi3, "wsubbus", WSUBUSB)
11607 IWMMXT_BUILTIN (ussubv4hi3, "wsubhus", WSUBUSH)
11608 IWMMXT_BUILTIN (ussubv2si3, "wsubwus", WSUBUSW)
11609 IWMMXT_BUILTIN (mulv4hi3, "wmulul", WMULUL)
11610 IWMMXT_BUILTIN (smulv4hi3_highpart, "wmulsm", WMULSM)
11611 IWMMXT_BUILTIN (umulv4hi3_highpart, "wmulum", WMULUM)
11612 IWMMXT_BUILTIN (eqv8qi3, "wcmpeqb", WCMPEQB)
11613 IWMMXT_BUILTIN (eqv4hi3, "wcmpeqh", WCMPEQH)
11614 IWMMXT_BUILTIN (eqv2si3, "wcmpeqw", WCMPEQW)
11615 IWMMXT_BUILTIN (gtuv8qi3, "wcmpgtub", WCMPGTUB)
11616 IWMMXT_BUILTIN (gtuv4hi3, "wcmpgtuh", WCMPGTUH)
11617 IWMMXT_BUILTIN (gtuv2si3, "wcmpgtuw", WCMPGTUW)
11618 IWMMXT_BUILTIN (gtv8qi3, "wcmpgtsb", WCMPGTSB)
11619 IWMMXT_BUILTIN (gtv4hi3, "wcmpgtsh", WCMPGTSH)
11620 IWMMXT_BUILTIN (gtv2si3, "wcmpgtsw", WCMPGTSW)
11621 IWMMXT_BUILTIN (umaxv8qi3, "wmaxub", WMAXUB)
11622 IWMMXT_BUILTIN (smaxv8qi3, "wmaxsb", WMAXSB)
11623 IWMMXT_BUILTIN (umaxv4hi3, "wmaxuh", WMAXUH)
11624 IWMMXT_BUILTIN (smaxv4hi3, "wmaxsh", WMAXSH)
11625 IWMMXT_BUILTIN (umaxv2si3, "wmaxuw", WMAXUW)
11626 IWMMXT_BUILTIN (smaxv2si3, "wmaxsw", WMAXSW)
11627 IWMMXT_BUILTIN (uminv8qi3, "wminub", WMINUB)
11628 IWMMXT_BUILTIN (sminv8qi3, "wminsb", WMINSB)
11629 IWMMXT_BUILTIN (uminv4hi3, "wminuh", WMINUH)
11630 IWMMXT_BUILTIN (sminv4hi3, "wminsh", WMINSH)
11631 IWMMXT_BUILTIN (uminv2si3, "wminuw", WMINUW)
11632 IWMMXT_BUILTIN (sminv2si3, "wminsw", WMINSW)
11633 IWMMXT_BUILTIN (iwmmxt_anddi3, "wand", WAND)
11634 IWMMXT_BUILTIN (iwmmxt_nanddi3, "wandn", WANDN)
11635 IWMMXT_BUILTIN (iwmmxt_iordi3, "wor", WOR)
11636 IWMMXT_BUILTIN (iwmmxt_xordi3, "wxor", WXOR)
11637 IWMMXT_BUILTIN (iwmmxt_uavgv8qi3, "wavg2b", WAVG2B)
11638 IWMMXT_BUILTIN (iwmmxt_uavgv4hi3, "wavg2h", WAVG2H)
11639 IWMMXT_BUILTIN (iwmmxt_uavgrndv8qi3, "wavg2br", WAVG2BR)
11640 IWMMXT_BUILTIN (iwmmxt_uavgrndv4hi3, "wavg2hr", WAVG2HR)
11641 IWMMXT_BUILTIN (iwmmxt_wunpckilb, "wunpckilb", WUNPCKILB)
11642 IWMMXT_BUILTIN (iwmmxt_wunpckilh, "wunpckilh", WUNPCKILH)
11643 IWMMXT_BUILTIN (iwmmxt_wunpckilw, "wunpckilw", WUNPCKILW)
11644 IWMMXT_BUILTIN (iwmmxt_wunpckihb, "wunpckihb", WUNPCKIHB)
11645 IWMMXT_BUILTIN (iwmmxt_wunpckihh, "wunpckihh", WUNPCKIHH)
11646 IWMMXT_BUILTIN (iwmmxt_wunpckihw, "wunpckihw", WUNPCKIHW)
11647 IWMMXT_BUILTIN (iwmmxt_wmadds, "wmadds", WMADDS)
11648 IWMMXT_BUILTIN (iwmmxt_wmaddu, "wmaddu", WMADDU)
11650 #define IWMMXT_BUILTIN2(code, builtin) \
11651 { FL_IWMMXT, CODE_FOR_##code, NULL, ARM_BUILTIN_##builtin, 0, 0 },
11653 IWMMXT_BUILTIN2 (iwmmxt_wpackhss, WPACKHSS)
11654 IWMMXT_BUILTIN2 (iwmmxt_wpackwss, WPACKWSS)
11655 IWMMXT_BUILTIN2 (iwmmxt_wpackdss, WPACKDSS)
11656 IWMMXT_BUILTIN2 (iwmmxt_wpackhus, WPACKHUS)
11657 IWMMXT_BUILTIN2 (iwmmxt_wpackwus, WPACKWUS)
11658 IWMMXT_BUILTIN2 (iwmmxt_wpackdus, WPACKDUS)
11659 IWMMXT_BUILTIN2 (ashlv4hi3_di, WSLLH)
11660 IWMMXT_BUILTIN2 (ashlv4hi3, WSLLHI)
11661 IWMMXT_BUILTIN2 (ashlv2si3_di, WSLLW)
11662 IWMMXT_BUILTIN2 (ashlv2si3, WSLLWI)
11663 IWMMXT_BUILTIN2 (ashldi3_di, WSLLD)
11664 IWMMXT_BUILTIN2 (ashldi3_iwmmxt, WSLLDI)
11665 IWMMXT_BUILTIN2 (lshrv4hi3_di, WSRLH)
11666 IWMMXT_BUILTIN2 (lshrv4hi3, WSRLHI)
11667 IWMMXT_BUILTIN2 (lshrv2si3_di, WSRLW)
11668 IWMMXT_BUILTIN2 (lshrv2si3, WSRLWI)
11669 IWMMXT_BUILTIN2 (lshrdi3_di, WSRLD)
11670 IWMMXT_BUILTIN2 (lshrdi3_iwmmxt, WSRLDI)
11671 IWMMXT_BUILTIN2 (ashrv4hi3_di, WSRAH)
11672 IWMMXT_BUILTIN2 (ashrv4hi3, WSRAHI)
11673 IWMMXT_BUILTIN2 (ashrv2si3_di, WSRAW)
11674 IWMMXT_BUILTIN2 (ashrv2si3, WSRAWI)
11675 IWMMXT_BUILTIN2 (ashrdi3_di, WSRAD)
11676 IWMMXT_BUILTIN2 (ashrdi3_iwmmxt, WSRADI)
11677 IWMMXT_BUILTIN2 (rorv4hi3_di, WRORH)
11678 IWMMXT_BUILTIN2 (rorv4hi3, WRORHI)
11679 IWMMXT_BUILTIN2 (rorv2si3_di, WRORW)
11680 IWMMXT_BUILTIN2 (rorv2si3, WRORWI)
11681 IWMMXT_BUILTIN2 (rordi3_di, WRORD)
11682 IWMMXT_BUILTIN2 (rordi3, WRORDI)
11683 IWMMXT_BUILTIN2 (iwmmxt_wmacuz, WMACUZ)
11684 IWMMXT_BUILTIN2 (iwmmxt_wmacsz, WMACSZ)
11687 static const struct builtin_description bdesc_1arg[] =
11689 IWMMXT_BUILTIN (iwmmxt_tmovmskb, "tmovmskb", TMOVMSKB)
11690 IWMMXT_BUILTIN (iwmmxt_tmovmskh, "tmovmskh", TMOVMSKH)
11691 IWMMXT_BUILTIN (iwmmxt_tmovmskw, "tmovmskw", TMOVMSKW)
11692 IWMMXT_BUILTIN (iwmmxt_waccb, "waccb", WACCB)
11693 IWMMXT_BUILTIN (iwmmxt_wacch, "wacch", WACCH)
11694 IWMMXT_BUILTIN (iwmmxt_waccw, "waccw", WACCW)
11695 IWMMXT_BUILTIN (iwmmxt_wunpckehub, "wunpckehub", WUNPCKEHUB)
11696 IWMMXT_BUILTIN (iwmmxt_wunpckehuh, "wunpckehuh", WUNPCKEHUH)
11697 IWMMXT_BUILTIN (iwmmxt_wunpckehuw, "wunpckehuw", WUNPCKEHUW)
11698 IWMMXT_BUILTIN (iwmmxt_wunpckehsb, "wunpckehsb", WUNPCKEHSB)
11699 IWMMXT_BUILTIN (iwmmxt_wunpckehsh, "wunpckehsh", WUNPCKEHSH)
11700 IWMMXT_BUILTIN (iwmmxt_wunpckehsw, "wunpckehsw", WUNPCKEHSW)
11701 IWMMXT_BUILTIN (iwmmxt_wunpckelub, "wunpckelub", WUNPCKELUB)
11702 IWMMXT_BUILTIN (iwmmxt_wunpckeluh, "wunpckeluh", WUNPCKELUH)
11703 IWMMXT_BUILTIN (iwmmxt_wunpckeluw, "wunpckeluw", WUNPCKELUW)
11704 IWMMXT_BUILTIN (iwmmxt_wunpckelsb, "wunpckelsb", WUNPCKELSB)
11705 IWMMXT_BUILTIN (iwmmxt_wunpckelsh, "wunpckelsh", WUNPCKELSH)
11706 IWMMXT_BUILTIN (iwmmxt_wunpckelsw, "wunpckelsw", WUNPCKELSW)
11709 /* Set up all the iWMMXt builtins. This is
11710 not called if TARGET_IWMMXT is zero. */
11712 static void
11713 arm_init_iwmmxt_builtins (void)
11715 const struct builtin_description * d;
11716 size_t i;
11717 tree endlink = void_list_node;
11719 tree V2SI_type_node = build_vector_type_for_mode (intSI_type_node, V2SImode);
11720 tree V4HI_type_node = build_vector_type_for_mode (intHI_type_node, V4HImode);
11721 tree V8QI_type_node = build_vector_type_for_mode (intQI_type_node, V8QImode);
11723 tree int_ftype_int
11724 = build_function_type (integer_type_node,
11725 tree_cons (NULL_TREE, integer_type_node, endlink));
11726 tree v8qi_ftype_v8qi_v8qi_int
11727 = build_function_type (V8QI_type_node,
11728 tree_cons (NULL_TREE, V8QI_type_node,
11729 tree_cons (NULL_TREE, V8QI_type_node,
11730 tree_cons (NULL_TREE,
11731 integer_type_node,
11732 endlink))));
11733 tree v4hi_ftype_v4hi_int
11734 = build_function_type (V4HI_type_node,
11735 tree_cons (NULL_TREE, V4HI_type_node,
11736 tree_cons (NULL_TREE, integer_type_node,
11737 endlink)));
11738 tree v2si_ftype_v2si_int
11739 = build_function_type (V2SI_type_node,
11740 tree_cons (NULL_TREE, V2SI_type_node,
11741 tree_cons (NULL_TREE, integer_type_node,
11742 endlink)));
11743 tree v2si_ftype_di_di
11744 = build_function_type (V2SI_type_node,
11745 tree_cons (NULL_TREE, long_long_integer_type_node,
11746 tree_cons (NULL_TREE, long_long_integer_type_node,
11747 endlink)));
11748 tree di_ftype_di_int
11749 = build_function_type (long_long_integer_type_node,
11750 tree_cons (NULL_TREE, long_long_integer_type_node,
11751 tree_cons (NULL_TREE, integer_type_node,
11752 endlink)));
11753 tree di_ftype_di_int_int
11754 = build_function_type (long_long_integer_type_node,
11755 tree_cons (NULL_TREE, long_long_integer_type_node,
11756 tree_cons (NULL_TREE, integer_type_node,
11757 tree_cons (NULL_TREE,
11758 integer_type_node,
11759 endlink))));
11760 tree int_ftype_v8qi
11761 = build_function_type (integer_type_node,
11762 tree_cons (NULL_TREE, V8QI_type_node,
11763 endlink));
11764 tree int_ftype_v4hi
11765 = build_function_type (integer_type_node,
11766 tree_cons (NULL_TREE, V4HI_type_node,
11767 endlink));
11768 tree int_ftype_v2si
11769 = build_function_type (integer_type_node,
11770 tree_cons (NULL_TREE, V2SI_type_node,
11771 endlink));
11772 tree int_ftype_v8qi_int
11773 = build_function_type (integer_type_node,
11774 tree_cons (NULL_TREE, V8QI_type_node,
11775 tree_cons (NULL_TREE, integer_type_node,
11776 endlink)));
11777 tree int_ftype_v4hi_int
11778 = build_function_type (integer_type_node,
11779 tree_cons (NULL_TREE, V4HI_type_node,
11780 tree_cons (NULL_TREE, integer_type_node,
11781 endlink)));
11782 tree int_ftype_v2si_int
11783 = build_function_type (integer_type_node,
11784 tree_cons (NULL_TREE, V2SI_type_node,
11785 tree_cons (NULL_TREE, integer_type_node,
11786 endlink)));
11787 tree v8qi_ftype_v8qi_int_int
11788 = build_function_type (V8QI_type_node,
11789 tree_cons (NULL_TREE, V8QI_type_node,
11790 tree_cons (NULL_TREE, integer_type_node,
11791 tree_cons (NULL_TREE,
11792 integer_type_node,
11793 endlink))));
11794 tree v4hi_ftype_v4hi_int_int
11795 = build_function_type (V4HI_type_node,
11796 tree_cons (NULL_TREE, V4HI_type_node,
11797 tree_cons (NULL_TREE, integer_type_node,
11798 tree_cons (NULL_TREE,
11799 integer_type_node,
11800 endlink))));
11801 tree v2si_ftype_v2si_int_int
11802 = build_function_type (V2SI_type_node,
11803 tree_cons (NULL_TREE, V2SI_type_node,
11804 tree_cons (NULL_TREE, integer_type_node,
11805 tree_cons (NULL_TREE,
11806 integer_type_node,
11807 endlink))));
11808 /* Miscellaneous. */
11809 tree v8qi_ftype_v4hi_v4hi
11810 = build_function_type (V8QI_type_node,
11811 tree_cons (NULL_TREE, V4HI_type_node,
11812 tree_cons (NULL_TREE, V4HI_type_node,
11813 endlink)));
11814 tree v4hi_ftype_v2si_v2si
11815 = build_function_type (V4HI_type_node,
11816 tree_cons (NULL_TREE, V2SI_type_node,
11817 tree_cons (NULL_TREE, V2SI_type_node,
11818 endlink)));
11819 tree v2si_ftype_v4hi_v4hi
11820 = build_function_type (V2SI_type_node,
11821 tree_cons (NULL_TREE, V4HI_type_node,
11822 tree_cons (NULL_TREE, V4HI_type_node,
11823 endlink)));
11824 tree v2si_ftype_v8qi_v8qi
11825 = build_function_type (V2SI_type_node,
11826 tree_cons (NULL_TREE, V8QI_type_node,
11827 tree_cons (NULL_TREE, V8QI_type_node,
11828 endlink)));
11829 tree v4hi_ftype_v4hi_di
11830 = build_function_type (V4HI_type_node,
11831 tree_cons (NULL_TREE, V4HI_type_node,
11832 tree_cons (NULL_TREE,
11833 long_long_integer_type_node,
11834 endlink)));
11835 tree v2si_ftype_v2si_di
11836 = build_function_type (V2SI_type_node,
11837 tree_cons (NULL_TREE, V2SI_type_node,
11838 tree_cons (NULL_TREE,
11839 long_long_integer_type_node,
11840 endlink)));
11841 tree void_ftype_int_int
11842 = build_function_type (void_type_node,
11843 tree_cons (NULL_TREE, integer_type_node,
11844 tree_cons (NULL_TREE, integer_type_node,
11845 endlink)));
11846 tree di_ftype_void
11847 = build_function_type (long_long_unsigned_type_node, endlink);
11848 tree di_ftype_v8qi
11849 = build_function_type (long_long_integer_type_node,
11850 tree_cons (NULL_TREE, V8QI_type_node,
11851 endlink));
11852 tree di_ftype_v4hi
11853 = build_function_type (long_long_integer_type_node,
11854 tree_cons (NULL_TREE, V4HI_type_node,
11855 endlink));
11856 tree di_ftype_v2si
11857 = build_function_type (long_long_integer_type_node,
11858 tree_cons (NULL_TREE, V2SI_type_node,
11859 endlink));
11860 tree v2si_ftype_v4hi
11861 = build_function_type (V2SI_type_node,
11862 tree_cons (NULL_TREE, V4HI_type_node,
11863 endlink));
11864 tree v4hi_ftype_v8qi
11865 = build_function_type (V4HI_type_node,
11866 tree_cons (NULL_TREE, V8QI_type_node,
11867 endlink));
11869 tree di_ftype_di_v4hi_v4hi
11870 = build_function_type (long_long_unsigned_type_node,
11871 tree_cons (NULL_TREE,
11872 long_long_unsigned_type_node,
11873 tree_cons (NULL_TREE, V4HI_type_node,
11874 tree_cons (NULL_TREE,
11875 V4HI_type_node,
11876 endlink))));
11878 tree di_ftype_v4hi_v4hi
11879 = build_function_type (long_long_unsigned_type_node,
11880 tree_cons (NULL_TREE, V4HI_type_node,
11881 tree_cons (NULL_TREE, V4HI_type_node,
11882 endlink)));
11884 /* Normal vector binops. */
11885 tree v8qi_ftype_v8qi_v8qi
11886 = build_function_type (V8QI_type_node,
11887 tree_cons (NULL_TREE, V8QI_type_node,
11888 tree_cons (NULL_TREE, V8QI_type_node,
11889 endlink)));
11890 tree v4hi_ftype_v4hi_v4hi
11891 = build_function_type (V4HI_type_node,
11892 tree_cons (NULL_TREE, V4HI_type_node,
11893 tree_cons (NULL_TREE, V4HI_type_node,
11894 endlink)));
11895 tree v2si_ftype_v2si_v2si
11896 = build_function_type (V2SI_type_node,
11897 tree_cons (NULL_TREE, V2SI_type_node,
11898 tree_cons (NULL_TREE, V2SI_type_node,
11899 endlink)));
11900 tree di_ftype_di_di
11901 = build_function_type (long_long_unsigned_type_node,
11902 tree_cons (NULL_TREE, long_long_unsigned_type_node,
11903 tree_cons (NULL_TREE,
11904 long_long_unsigned_type_node,
11905 endlink)));
11907 /* Add all builtins that are more or less simple operations on two
11908 operands. */
11909 for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
11911 /* Use one of the operands; the target can have a different mode for
11912 mask-generating compares. */
11913 enum machine_mode mode;
11914 tree type;
11916 if (d->name == 0)
11917 continue;
11919 mode = insn_data[d->icode].operand[1].mode;
11921 switch (mode)
11923 case V8QImode:
11924 type = v8qi_ftype_v8qi_v8qi;
11925 break;
11926 case V4HImode:
11927 type = v4hi_ftype_v4hi_v4hi;
11928 break;
11929 case V2SImode:
11930 type = v2si_ftype_v2si_v2si;
11931 break;
11932 case DImode:
11933 type = di_ftype_di_di;
11934 break;
11936 default:
11937 abort ();
11940 def_mbuiltin (d->mask, d->name, type, d->code);
11943 /* Add the remaining MMX insns with somewhat more complicated types. */
11944 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wzero", di_ftype_void, ARM_BUILTIN_WZERO);
11945 def_mbuiltin (FL_IWMMXT, "__builtin_arm_setwcx", void_ftype_int_int, ARM_BUILTIN_SETWCX);
11946 def_mbuiltin (FL_IWMMXT, "__builtin_arm_getwcx", int_ftype_int, ARM_BUILTIN_GETWCX);
11948 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSLLH);
11949 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllw", v2si_ftype_v2si_di, ARM_BUILTIN_WSLLW);
11950 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wslld", di_ftype_di_di, ARM_BUILTIN_WSLLD);
11951 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSLLHI);
11952 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsllwi", v2si_ftype_v2si_int, ARM_BUILTIN_WSLLWI);
11953 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wslldi", di_ftype_di_int, ARM_BUILTIN_WSLLDI);
11955 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSRLH);
11956 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlw", v2si_ftype_v2si_di, ARM_BUILTIN_WSRLW);
11957 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrld", di_ftype_di_di, ARM_BUILTIN_WSRLD);
11958 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSRLHI);
11959 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrlwi", v2si_ftype_v2si_int, ARM_BUILTIN_WSRLWI);
11960 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrldi", di_ftype_di_int, ARM_BUILTIN_WSRLDI);
11962 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrah", v4hi_ftype_v4hi_di, ARM_BUILTIN_WSRAH);
11963 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsraw", v2si_ftype_v2si_di, ARM_BUILTIN_WSRAW);
11964 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrad", di_ftype_di_di, ARM_BUILTIN_WSRAD);
11965 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrahi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSRAHI);
11966 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsrawi", v2si_ftype_v2si_int, ARM_BUILTIN_WSRAWI);
11967 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsradi", di_ftype_di_int, ARM_BUILTIN_WSRADI);
11969 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorh", v4hi_ftype_v4hi_di, ARM_BUILTIN_WRORH);
11970 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorw", v2si_ftype_v2si_di, ARM_BUILTIN_WRORW);
11971 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrord", di_ftype_di_di, ARM_BUILTIN_WRORD);
11972 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorhi", v4hi_ftype_v4hi_int, ARM_BUILTIN_WRORHI);
11973 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrorwi", v2si_ftype_v2si_int, ARM_BUILTIN_WRORWI);
11974 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wrordi", di_ftype_di_int, ARM_BUILTIN_WRORDI);
11976 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wshufh", v4hi_ftype_v4hi_int, ARM_BUILTIN_WSHUFH);
11978 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadb", v2si_ftype_v8qi_v8qi, ARM_BUILTIN_WSADB);
11979 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadh", v2si_ftype_v4hi_v4hi, ARM_BUILTIN_WSADH);
11980 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadbz", v2si_ftype_v8qi_v8qi, ARM_BUILTIN_WSADBZ);
11981 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wsadhz", v2si_ftype_v4hi_v4hi, ARM_BUILTIN_WSADHZ);
11983 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsb", int_ftype_v8qi_int, ARM_BUILTIN_TEXTRMSB);
11984 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsh", int_ftype_v4hi_int, ARM_BUILTIN_TEXTRMSH);
11985 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmsw", int_ftype_v2si_int, ARM_BUILTIN_TEXTRMSW);
11986 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmub", int_ftype_v8qi_int, ARM_BUILTIN_TEXTRMUB);
11987 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmuh", int_ftype_v4hi_int, ARM_BUILTIN_TEXTRMUH);
11988 def_mbuiltin (FL_IWMMXT, "__builtin_arm_textrmuw", int_ftype_v2si_int, ARM_BUILTIN_TEXTRMUW);
11989 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrb", v8qi_ftype_v8qi_int_int, ARM_BUILTIN_TINSRB);
11990 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrh", v4hi_ftype_v4hi_int_int, ARM_BUILTIN_TINSRH);
11991 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tinsrw", v2si_ftype_v2si_int_int, ARM_BUILTIN_TINSRW);
11993 def_mbuiltin (FL_IWMMXT, "__builtin_arm_waccb", di_ftype_v8qi, ARM_BUILTIN_WACCB);
11994 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wacch", di_ftype_v4hi, ARM_BUILTIN_WACCH);
11995 def_mbuiltin (FL_IWMMXT, "__builtin_arm_waccw", di_ftype_v2si, ARM_BUILTIN_WACCW);
11997 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskb", int_ftype_v8qi, ARM_BUILTIN_TMOVMSKB);
11998 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskh", int_ftype_v4hi, ARM_BUILTIN_TMOVMSKH);
11999 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmovmskw", int_ftype_v2si, ARM_BUILTIN_TMOVMSKW);
12001 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackhss", v8qi_ftype_v4hi_v4hi, ARM_BUILTIN_WPACKHSS);
12002 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackhus", v8qi_ftype_v4hi_v4hi, ARM_BUILTIN_WPACKHUS);
12003 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackwus", v4hi_ftype_v2si_v2si, ARM_BUILTIN_WPACKWUS);
12004 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackwss", v4hi_ftype_v2si_v2si, ARM_BUILTIN_WPACKWSS);
12005 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackdus", v2si_ftype_di_di, ARM_BUILTIN_WPACKDUS);
12006 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wpackdss", v2si_ftype_di_di, ARM_BUILTIN_WPACKDSS);
12008 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehub", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKEHUB);
12009 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehuh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKEHUH);
12010 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehuw", di_ftype_v2si, ARM_BUILTIN_WUNPCKEHUW);
12011 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsb", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKEHSB);
12012 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKEHSH);
12013 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckehsw", di_ftype_v2si, ARM_BUILTIN_WUNPCKEHSW);
12014 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelub", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKELUB);
12015 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckeluh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKELUH);
12016 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckeluw", di_ftype_v2si, ARM_BUILTIN_WUNPCKELUW);
12017 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsb", v4hi_ftype_v8qi, ARM_BUILTIN_WUNPCKELSB);
12018 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsh", v2si_ftype_v4hi, ARM_BUILTIN_WUNPCKELSH);
12019 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wunpckelsw", di_ftype_v2si, ARM_BUILTIN_WUNPCKELSW);
12021 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacs", di_ftype_di_v4hi_v4hi, ARM_BUILTIN_WMACS);
12022 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacsz", di_ftype_v4hi_v4hi, ARM_BUILTIN_WMACSZ);
12023 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacu", di_ftype_di_v4hi_v4hi, ARM_BUILTIN_WMACU);
12024 def_mbuiltin (FL_IWMMXT, "__builtin_arm_wmacuz", di_ftype_v4hi_v4hi, ARM_BUILTIN_WMACUZ);
12026 def_mbuiltin (FL_IWMMXT, "__builtin_arm_walign", v8qi_ftype_v8qi_v8qi_int, ARM_BUILTIN_WALIGN);
12027 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmia", di_ftype_di_int_int, ARM_BUILTIN_TMIA);
12028 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiaph", di_ftype_di_int_int, ARM_BUILTIN_TMIAPH);
12029 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiabb", di_ftype_di_int_int, ARM_BUILTIN_TMIABB);
12030 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiabt", di_ftype_di_int_int, ARM_BUILTIN_TMIABT);
12031 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiatb", di_ftype_di_int_int, ARM_BUILTIN_TMIATB);
12032 def_mbuiltin (FL_IWMMXT, "__builtin_arm_tmiatt", di_ftype_di_int_int, ARM_BUILTIN_TMIATT);
12035 static void
12036 arm_init_builtins (void)
12038 if (TARGET_REALLY_IWMMXT)
12039 arm_init_iwmmxt_builtins ();
12042 /* Errors in the source file can cause expand_expr to return const0_rtx
12043 where we expect a vector. To avoid crashing, use one of the vector
12044 clear instructions. */
12046 static rtx
12047 safe_vector_operand (rtx x, enum machine_mode mode)
12049 if (x != const0_rtx)
12050 return x;
12051 x = gen_reg_rtx (mode);
12053 emit_insn (gen_iwmmxt_clrdi (mode == DImode ? x
12054 : gen_rtx_SUBREG (DImode, x, 0)));
12055 return x;
12058 /* Subroutine of arm_expand_builtin to take care of binop insns. */
12060 static rtx
12061 arm_expand_binop_builtin (enum insn_code icode,
12062 tree arglist, rtx target)
12064 rtx pat;
12065 tree arg0 = TREE_VALUE (arglist);
12066 tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12067 rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12068 rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12069 enum machine_mode tmode = insn_data[icode].operand[0].mode;
12070 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
12071 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
12073 if (VECTOR_MODE_P (mode0))
12074 op0 = safe_vector_operand (op0, mode0);
12075 if (VECTOR_MODE_P (mode1))
12076 op1 = safe_vector_operand (op1, mode1);
12078 if (! target
12079 || GET_MODE (target) != tmode
12080 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12081 target = gen_reg_rtx (tmode);
12083 /* In case the insn wants input operands in modes different from
12084 the result, abort. */
12085 if (GET_MODE (op0) != mode0 || GET_MODE (op1) != mode1)
12086 abort ();
12088 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12089 op0 = copy_to_mode_reg (mode0, op0);
12090 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12091 op1 = copy_to_mode_reg (mode1, op1);
12093 pat = GEN_FCN (icode) (target, op0, op1);
12094 if (! pat)
12095 return 0;
12096 emit_insn (pat);
12097 return target;
12100 /* Subroutine of arm_expand_builtin to take care of unop insns. */
12102 static rtx
12103 arm_expand_unop_builtin (enum insn_code icode,
12104 tree arglist, rtx target, int do_load)
12106 rtx pat;
12107 tree arg0 = TREE_VALUE (arglist);
12108 rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12109 enum machine_mode tmode = insn_data[icode].operand[0].mode;
12110 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
12112 if (! target
12113 || GET_MODE (target) != tmode
12114 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12115 target = gen_reg_rtx (tmode);
12116 if (do_load)
12117 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
12118 else
12120 if (VECTOR_MODE_P (mode0))
12121 op0 = safe_vector_operand (op0, mode0);
12123 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12124 op0 = copy_to_mode_reg (mode0, op0);
12127 pat = GEN_FCN (icode) (target, op0);
12128 if (! pat)
12129 return 0;
12130 emit_insn (pat);
12131 return target;
12134 /* Expand an expression EXP that calls a built-in function,
12135 with result going to TARGET if that's convenient
12136 (and in mode MODE if that's convenient).
12137 SUBTARGET may be used as the target for computing one of EXP's operands.
12138 IGNORE is nonzero if the value is to be ignored. */
12140 static rtx
12141 arm_expand_builtin (tree exp,
12142 rtx target,
12143 rtx subtarget ATTRIBUTE_UNUSED,
12144 enum machine_mode mode ATTRIBUTE_UNUSED,
12145 int ignore ATTRIBUTE_UNUSED)
12147 const struct builtin_description * d;
12148 enum insn_code icode;
12149 tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
12150 tree arglist = TREE_OPERAND (exp, 1);
12151 tree arg0;
12152 tree arg1;
12153 tree arg2;
12154 rtx op0;
12155 rtx op1;
12156 rtx op2;
12157 rtx pat;
12158 int fcode = DECL_FUNCTION_CODE (fndecl);
12159 size_t i;
12160 enum machine_mode tmode;
12161 enum machine_mode mode0;
12162 enum machine_mode mode1;
12163 enum machine_mode mode2;
12165 switch (fcode)
12167 case ARM_BUILTIN_TEXTRMSB:
12168 case ARM_BUILTIN_TEXTRMUB:
12169 case ARM_BUILTIN_TEXTRMSH:
12170 case ARM_BUILTIN_TEXTRMUH:
12171 case ARM_BUILTIN_TEXTRMSW:
12172 case ARM_BUILTIN_TEXTRMUW:
12173 icode = (fcode == ARM_BUILTIN_TEXTRMSB ? CODE_FOR_iwmmxt_textrmsb
12174 : fcode == ARM_BUILTIN_TEXTRMUB ? CODE_FOR_iwmmxt_textrmub
12175 : fcode == ARM_BUILTIN_TEXTRMSH ? CODE_FOR_iwmmxt_textrmsh
12176 : fcode == ARM_BUILTIN_TEXTRMUH ? CODE_FOR_iwmmxt_textrmuh
12177 : CODE_FOR_iwmmxt_textrmw);
12179 arg0 = TREE_VALUE (arglist);
12180 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12181 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12182 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12183 tmode = insn_data[icode].operand[0].mode;
12184 mode0 = insn_data[icode].operand[1].mode;
12185 mode1 = insn_data[icode].operand[2].mode;
12187 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12188 op0 = copy_to_mode_reg (mode0, op0);
12189 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12191 /* @@@ better error message */
12192 error ("selector must be an immediate");
12193 return gen_reg_rtx (tmode);
12195 if (target == 0
12196 || GET_MODE (target) != tmode
12197 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12198 target = gen_reg_rtx (tmode);
12199 pat = GEN_FCN (icode) (target, op0, op1);
12200 if (! pat)
12201 return 0;
12202 emit_insn (pat);
12203 return target;
12205 case ARM_BUILTIN_TINSRB:
12206 case ARM_BUILTIN_TINSRH:
12207 case ARM_BUILTIN_TINSRW:
12208 icode = (fcode == ARM_BUILTIN_TINSRB ? CODE_FOR_iwmmxt_tinsrb
12209 : fcode == ARM_BUILTIN_TINSRH ? CODE_FOR_iwmmxt_tinsrh
12210 : CODE_FOR_iwmmxt_tinsrw);
12211 arg0 = TREE_VALUE (arglist);
12212 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12213 arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
12214 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12215 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12216 op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
12217 tmode = insn_data[icode].operand[0].mode;
12218 mode0 = insn_data[icode].operand[1].mode;
12219 mode1 = insn_data[icode].operand[2].mode;
12220 mode2 = insn_data[icode].operand[3].mode;
12222 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12223 op0 = copy_to_mode_reg (mode0, op0);
12224 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12225 op1 = copy_to_mode_reg (mode1, op1);
12226 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
12228 /* @@@ better error message */
12229 error ("selector must be an immediate");
12230 return const0_rtx;
12232 if (target == 0
12233 || GET_MODE (target) != tmode
12234 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12235 target = gen_reg_rtx (tmode);
12236 pat = GEN_FCN (icode) (target, op0, op1, op2);
12237 if (! pat)
12238 return 0;
12239 emit_insn (pat);
12240 return target;
12242 case ARM_BUILTIN_SETWCX:
12243 arg0 = TREE_VALUE (arglist);
12244 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12245 op0 = force_reg (SImode, expand_expr (arg0, NULL_RTX, VOIDmode, 0));
12246 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12247 emit_insn (gen_iwmmxt_tmcr (op1, op0));
12248 return 0;
12250 case ARM_BUILTIN_GETWCX:
12251 arg0 = TREE_VALUE (arglist);
12252 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12253 target = gen_reg_rtx (SImode);
12254 emit_insn (gen_iwmmxt_tmrc (target, op0));
12255 return target;
12257 case ARM_BUILTIN_WSHUFH:
12258 icode = CODE_FOR_iwmmxt_wshufh;
12259 arg0 = TREE_VALUE (arglist);
12260 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12261 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12262 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12263 tmode = insn_data[icode].operand[0].mode;
12264 mode1 = insn_data[icode].operand[1].mode;
12265 mode2 = insn_data[icode].operand[2].mode;
12267 if (! (*insn_data[icode].operand[1].predicate) (op0, mode1))
12268 op0 = copy_to_mode_reg (mode1, op0);
12269 if (! (*insn_data[icode].operand[2].predicate) (op1, mode2))
12271 /* @@@ better error message */
12272 error ("mask must be an immediate");
12273 return const0_rtx;
12275 if (target == 0
12276 || GET_MODE (target) != tmode
12277 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12278 target = gen_reg_rtx (tmode);
12279 pat = GEN_FCN (icode) (target, op0, op1);
12280 if (! pat)
12281 return 0;
12282 emit_insn (pat);
12283 return target;
12285 case ARM_BUILTIN_WSADB:
12286 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadb, arglist, target);
12287 case ARM_BUILTIN_WSADH:
12288 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadh, arglist, target);
12289 case ARM_BUILTIN_WSADBZ:
12290 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadbz, arglist, target);
12291 case ARM_BUILTIN_WSADHZ:
12292 return arm_expand_binop_builtin (CODE_FOR_iwmmxt_wsadhz, arglist, target);
12294 /* Several three-argument builtins. */
12295 case ARM_BUILTIN_WMACS:
12296 case ARM_BUILTIN_WMACU:
12297 case ARM_BUILTIN_WALIGN:
12298 case ARM_BUILTIN_TMIA:
12299 case ARM_BUILTIN_TMIAPH:
12300 case ARM_BUILTIN_TMIATT:
12301 case ARM_BUILTIN_TMIATB:
12302 case ARM_BUILTIN_TMIABT:
12303 case ARM_BUILTIN_TMIABB:
12304 icode = (fcode == ARM_BUILTIN_WMACS ? CODE_FOR_iwmmxt_wmacs
12305 : fcode == ARM_BUILTIN_WMACU ? CODE_FOR_iwmmxt_wmacu
12306 : fcode == ARM_BUILTIN_TMIA ? CODE_FOR_iwmmxt_tmia
12307 : fcode == ARM_BUILTIN_TMIAPH ? CODE_FOR_iwmmxt_tmiaph
12308 : fcode == ARM_BUILTIN_TMIABB ? CODE_FOR_iwmmxt_tmiabb
12309 : fcode == ARM_BUILTIN_TMIABT ? CODE_FOR_iwmmxt_tmiabt
12310 : fcode == ARM_BUILTIN_TMIATB ? CODE_FOR_iwmmxt_tmiatb
12311 : fcode == ARM_BUILTIN_TMIATT ? CODE_FOR_iwmmxt_tmiatt
12312 : CODE_FOR_iwmmxt_walign);
12313 arg0 = TREE_VALUE (arglist);
12314 arg1 = TREE_VALUE (TREE_CHAIN (arglist));
12315 arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
12316 op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
12317 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
12318 op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
12319 tmode = insn_data[icode].operand[0].mode;
12320 mode0 = insn_data[icode].operand[1].mode;
12321 mode1 = insn_data[icode].operand[2].mode;
12322 mode2 = insn_data[icode].operand[3].mode;
12324 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
12325 op0 = copy_to_mode_reg (mode0, op0);
12326 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
12327 op1 = copy_to_mode_reg (mode1, op1);
12328 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
12329 op2 = copy_to_mode_reg (mode2, op2);
12330 if (target == 0
12331 || GET_MODE (target) != tmode
12332 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
12333 target = gen_reg_rtx (tmode);
12334 pat = GEN_FCN (icode) (target, op0, op1, op2);
12335 if (! pat)
12336 return 0;
12337 emit_insn (pat);
12338 return target;
12340 case ARM_BUILTIN_WZERO:
12341 target = gen_reg_rtx (DImode);
12342 emit_insn (gen_iwmmxt_clrdi (target));
12343 return target;
12345 default:
12346 break;
12349 for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
12350 if (d->code == (const enum arm_builtins) fcode)
12351 return arm_expand_binop_builtin (d->icode, arglist, target);
12353 for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
12354 if (d->code == (const enum arm_builtins) fcode)
12355 return arm_expand_unop_builtin (d->icode, arglist, target, 0);
12357 /* @@@ Should really do something sensible here. */
12358 return NULL_RTX;
12361 /* Recursively search through all of the blocks in a function
12362 checking to see if any of the variables created in that
12363 function match the RTX called 'orig'. If they do then
12364 replace them with the RTX called 'new'. */
12365 static void
12366 replace_symbols_in_block (tree block, rtx orig, rtx new)
12368 for (; block; block = BLOCK_CHAIN (block))
12370 tree sym;
12372 if (!TREE_USED (block))
12373 continue;
12375 for (sym = BLOCK_VARS (block); sym; sym = TREE_CHAIN (sym))
12377 if ( (DECL_NAME (sym) == 0 && TREE_CODE (sym) != TYPE_DECL)
12378 || DECL_IGNORED_P (sym)
12379 || TREE_CODE (sym) != VAR_DECL
12380 || DECL_EXTERNAL (sym)
12381 || !rtx_equal_p (DECL_RTL (sym), orig)
12383 continue;
12385 SET_DECL_RTL (sym, new);
12388 replace_symbols_in_block (BLOCK_SUBBLOCKS (block), orig, new);
12392 /* Return the number (counting from 0) of
12393 the least significant set bit in MASK. */
12395 inline static int
12396 number_of_first_bit_set (unsigned mask)
12398 int bit;
12400 for (bit = 0;
12401 (mask & (1 << bit)) == 0;
12402 ++bit)
12403 continue;
12405 return bit;
12408 /* Emit code to push or pop registers to or from the stack. F is the
12409 assembly file. MASK is the registers to push or pop. PUSH is
12410 nonzero if we should push, and zero if we should pop. For debugging
12411 output, if pushing, adjust CFA_OFFSET by the amount of space added
12412 to the stack. REAL_REGS should have the same number of bits set as
12413 MASK, and will be used instead (in the same order) to describe which
12414 registers were saved - this is used to mark the save slots when we
12415 push high registers after moving them to low registers. */
12416 static void
12417 thumb_pushpop (FILE *f, unsigned long mask, int push, int *cfa_offset,
12418 unsigned long real_regs)
12420 int regno;
12421 int lo_mask = mask & 0xFF;
12422 int pushed_words = 0;
12424 if (mask == 0)
12425 abort ();
12427 if (lo_mask == 0 && !push && (mask & (1 << PC_REGNUM)))
12429 /* Special case. Do not generate a POP PC statement here, do it in
12430 thumb_exit() */
12431 thumb_exit (f, -1);
12432 return;
12435 fprintf (f, "\t%s\t{", push ? "push" : "pop");
12437 /* Look at the low registers first. */
12438 for (regno = 0; regno <= LAST_LO_REGNUM; regno++, lo_mask >>= 1)
12440 if (lo_mask & 1)
12442 asm_fprintf (f, "%r", regno);
12444 if ((lo_mask & ~1) != 0)
12445 fprintf (f, ", ");
12447 pushed_words++;
12451 if (push && (mask & (1 << LR_REGNUM)))
12453 /* Catch pushing the LR. */
12454 if (mask & 0xFF)
12455 fprintf (f, ", ");
12457 asm_fprintf (f, "%r", LR_REGNUM);
12459 pushed_words++;
12461 else if (!push && (mask & (1 << PC_REGNUM)))
12463 /* Catch popping the PC. */
12464 if (TARGET_INTERWORK || TARGET_BACKTRACE
12465 || current_function_calls_eh_return)
12467 /* The PC is never poped directly, instead
12468 it is popped into r3 and then BX is used. */
12469 fprintf (f, "}\n");
12471 thumb_exit (f, -1);
12473 return;
12475 else
12477 if (mask & 0xFF)
12478 fprintf (f, ", ");
12480 asm_fprintf (f, "%r", PC_REGNUM);
12484 fprintf (f, "}\n");
12486 if (push && pushed_words && dwarf2out_do_frame ())
12488 char *l = dwarf2out_cfi_label ();
12489 int pushed_mask = real_regs;
12491 *cfa_offset += pushed_words * 4;
12492 dwarf2out_def_cfa (l, SP_REGNUM, *cfa_offset);
12494 pushed_words = 0;
12495 pushed_mask = real_regs;
12496 for (regno = 0; regno <= 14; regno++, pushed_mask >>= 1)
12498 if (pushed_mask & 1)
12499 dwarf2out_reg_save (l, regno, 4 * pushed_words++ - *cfa_offset);
12504 /* Generate code to return from a thumb function.
12505 If 'reg_containing_return_addr' is -1, then the return address is
12506 actually on the stack, at the stack pointer. */
12507 static void
12508 thumb_exit (FILE *f, int reg_containing_return_addr)
12510 unsigned regs_available_for_popping;
12511 unsigned regs_to_pop;
12512 int pops_needed;
12513 unsigned available;
12514 unsigned required;
12515 int mode;
12516 int size;
12517 int restore_a4 = FALSE;
12519 /* Compute the registers we need to pop. */
12520 regs_to_pop = 0;
12521 pops_needed = 0;
12523 if (reg_containing_return_addr == -1)
12525 regs_to_pop |= 1 << LR_REGNUM;
12526 ++pops_needed;
12529 if (TARGET_BACKTRACE)
12531 /* Restore the (ARM) frame pointer and stack pointer. */
12532 regs_to_pop |= (1 << ARM_HARD_FRAME_POINTER_REGNUM) | (1 << SP_REGNUM);
12533 pops_needed += 2;
12536 /* If there is nothing to pop then just emit the BX instruction and
12537 return. */
12538 if (pops_needed == 0)
12540 if (current_function_calls_eh_return)
12541 asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
12543 asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
12544 return;
12546 /* Otherwise if we are not supporting interworking and we have not created
12547 a backtrace structure and the function was not entered in ARM mode then
12548 just pop the return address straight into the PC. */
12549 else if (!TARGET_INTERWORK
12550 && !TARGET_BACKTRACE
12551 && !is_called_in_ARM_mode (current_function_decl)
12552 && !current_function_calls_eh_return)
12554 asm_fprintf (f, "\tpop\t{%r}\n", PC_REGNUM);
12555 return;
12558 /* Find out how many of the (return) argument registers we can corrupt. */
12559 regs_available_for_popping = 0;
12561 /* If returning via __builtin_eh_return, the bottom three registers
12562 all contain information needed for the return. */
12563 if (current_function_calls_eh_return)
12564 size = 12;
12565 else
12567 /* If we can deduce the registers used from the function's
12568 return value. This is more reliable that examining
12569 regs_ever_live[] because that will be set if the register is
12570 ever used in the function, not just if the register is used
12571 to hold a return value. */
12573 if (current_function_return_rtx != 0)
12574 mode = GET_MODE (current_function_return_rtx);
12575 else
12576 mode = DECL_MODE (DECL_RESULT (current_function_decl));
12578 size = GET_MODE_SIZE (mode);
12580 if (size == 0)
12582 /* In a void function we can use any argument register.
12583 In a function that returns a structure on the stack
12584 we can use the second and third argument registers. */
12585 if (mode == VOIDmode)
12586 regs_available_for_popping =
12587 (1 << ARG_REGISTER (1))
12588 | (1 << ARG_REGISTER (2))
12589 | (1 << ARG_REGISTER (3));
12590 else
12591 regs_available_for_popping =
12592 (1 << ARG_REGISTER (2))
12593 | (1 << ARG_REGISTER (3));
12595 else if (size <= 4)
12596 regs_available_for_popping =
12597 (1 << ARG_REGISTER (2))
12598 | (1 << ARG_REGISTER (3));
12599 else if (size <= 8)
12600 regs_available_for_popping =
12601 (1 << ARG_REGISTER (3));
12604 /* Match registers to be popped with registers into which we pop them. */
12605 for (available = regs_available_for_popping,
12606 required = regs_to_pop;
12607 required != 0 && available != 0;
12608 available &= ~(available & - available),
12609 required &= ~(required & - required))
12610 -- pops_needed;
12612 /* If we have any popping registers left over, remove them. */
12613 if (available > 0)
12614 regs_available_for_popping &= ~available;
12616 /* Otherwise if we need another popping register we can use
12617 the fourth argument register. */
12618 else if (pops_needed)
12620 /* If we have not found any free argument registers and
12621 reg a4 contains the return address, we must move it. */
12622 if (regs_available_for_popping == 0
12623 && reg_containing_return_addr == LAST_ARG_REGNUM)
12625 asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
12626 reg_containing_return_addr = LR_REGNUM;
12628 else if (size > 12)
12630 /* Register a4 is being used to hold part of the return value,
12631 but we have dire need of a free, low register. */
12632 restore_a4 = TRUE;
12634 asm_fprintf (f, "\tmov\t%r, %r\n",IP_REGNUM, LAST_ARG_REGNUM);
12637 if (reg_containing_return_addr != LAST_ARG_REGNUM)
12639 /* The fourth argument register is available. */
12640 regs_available_for_popping |= 1 << LAST_ARG_REGNUM;
12642 --pops_needed;
12646 /* Pop as many registers as we can. */
12647 thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
12648 regs_available_for_popping);
12650 /* Process the registers we popped. */
12651 if (reg_containing_return_addr == -1)
12653 /* The return address was popped into the lowest numbered register. */
12654 regs_to_pop &= ~(1 << LR_REGNUM);
12656 reg_containing_return_addr =
12657 number_of_first_bit_set (regs_available_for_popping);
12659 /* Remove this register for the mask of available registers, so that
12660 the return address will not be corrupted by further pops. */
12661 regs_available_for_popping &= ~(1 << reg_containing_return_addr);
12664 /* If we popped other registers then handle them here. */
12665 if (regs_available_for_popping)
12667 int frame_pointer;
12669 /* Work out which register currently contains the frame pointer. */
12670 frame_pointer = number_of_first_bit_set (regs_available_for_popping);
12672 /* Move it into the correct place. */
12673 asm_fprintf (f, "\tmov\t%r, %r\n",
12674 ARM_HARD_FRAME_POINTER_REGNUM, frame_pointer);
12676 /* (Temporarily) remove it from the mask of popped registers. */
12677 regs_available_for_popping &= ~(1 << frame_pointer);
12678 regs_to_pop &= ~(1 << ARM_HARD_FRAME_POINTER_REGNUM);
12680 if (regs_available_for_popping)
12682 int stack_pointer;
12684 /* We popped the stack pointer as well,
12685 find the register that contains it. */
12686 stack_pointer = number_of_first_bit_set (regs_available_for_popping);
12688 /* Move it into the stack register. */
12689 asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, stack_pointer);
12691 /* At this point we have popped all necessary registers, so
12692 do not worry about restoring regs_available_for_popping
12693 to its correct value:
12695 assert (pops_needed == 0)
12696 assert (regs_available_for_popping == (1 << frame_pointer))
12697 assert (regs_to_pop == (1 << STACK_POINTER)) */
12699 else
12701 /* Since we have just move the popped value into the frame
12702 pointer, the popping register is available for reuse, and
12703 we know that we still have the stack pointer left to pop. */
12704 regs_available_for_popping |= (1 << frame_pointer);
12708 /* If we still have registers left on the stack, but we no longer have
12709 any registers into which we can pop them, then we must move the return
12710 address into the link register and make available the register that
12711 contained it. */
12712 if (regs_available_for_popping == 0 && pops_needed > 0)
12714 regs_available_for_popping |= 1 << reg_containing_return_addr;
12716 asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM,
12717 reg_containing_return_addr);
12719 reg_containing_return_addr = LR_REGNUM;
12722 /* If we have registers left on the stack then pop some more.
12723 We know that at most we will want to pop FP and SP. */
12724 if (pops_needed > 0)
12726 int popped_into;
12727 int move_to;
12729 thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
12730 regs_available_for_popping);
12732 /* We have popped either FP or SP.
12733 Move whichever one it is into the correct register. */
12734 popped_into = number_of_first_bit_set (regs_available_for_popping);
12735 move_to = number_of_first_bit_set (regs_to_pop);
12737 asm_fprintf (f, "\tmov\t%r, %r\n", move_to, popped_into);
12739 regs_to_pop &= ~(1 << move_to);
12741 --pops_needed;
12744 /* If we still have not popped everything then we must have only
12745 had one register available to us and we are now popping the SP. */
12746 if (pops_needed > 0)
12748 int popped_into;
12750 thumb_pushpop (f, regs_available_for_popping, FALSE, NULL,
12751 regs_available_for_popping);
12753 popped_into = number_of_first_bit_set (regs_available_for_popping);
12755 asm_fprintf (f, "\tmov\t%r, %r\n", SP_REGNUM, popped_into);
12757 assert (regs_to_pop == (1 << STACK_POINTER))
12758 assert (pops_needed == 1)
12762 /* If necessary restore the a4 register. */
12763 if (restore_a4)
12765 if (reg_containing_return_addr != LR_REGNUM)
12767 asm_fprintf (f, "\tmov\t%r, %r\n", LR_REGNUM, LAST_ARG_REGNUM);
12768 reg_containing_return_addr = LR_REGNUM;
12771 asm_fprintf (f, "\tmov\t%r, %r\n", LAST_ARG_REGNUM, IP_REGNUM);
12774 if (current_function_calls_eh_return)
12775 asm_fprintf (f, "\tadd\t%r, %r\n", SP_REGNUM, ARM_EH_STACKADJ_REGNUM);
12777 /* Return to caller. */
12778 asm_fprintf (f, "\tbx\t%r\n", reg_containing_return_addr);
12782 void
12783 thumb_final_prescan_insn (rtx insn)
12785 if (flag_print_asm_name)
12786 asm_fprintf (asm_out_file, "%@ 0x%04x\n",
12787 INSN_ADDRESSES (INSN_UID (insn)));
12791 thumb_shiftable_const (unsigned HOST_WIDE_INT val)
12793 unsigned HOST_WIDE_INT mask = 0xff;
12794 int i;
12796 if (val == 0) /* XXX */
12797 return 0;
12799 for (i = 0; i < 25; i++)
12800 if ((val & (mask << i)) == val)
12801 return 1;
12803 return 0;
12806 /* Returns nonzero if the current function contains,
12807 or might contain a far jump. */
12808 static int
12809 thumb_far_jump_used_p (void)
12811 rtx insn;
12813 /* This test is only important for leaf functions. */
12814 /* assert (!leaf_function_p ()); */
12816 /* If we have already decided that far jumps may be used,
12817 do not bother checking again, and always return true even if
12818 it turns out that they are not being used. Once we have made
12819 the decision that far jumps are present (and that hence the link
12820 register will be pushed onto the stack) we cannot go back on it. */
12821 if (cfun->machine->far_jump_used)
12822 return 1;
12824 /* If this function is not being called from the prologue/epilogue
12825 generation code then it must be being called from the
12826 INITIAL_ELIMINATION_OFFSET macro. */
12827 if (!(ARM_DOUBLEWORD_ALIGN || reload_completed))
12829 /* In this case we know that we are being asked about the elimination
12830 of the arg pointer register. If that register is not being used,
12831 then there are no arguments on the stack, and we do not have to
12832 worry that a far jump might force the prologue to push the link
12833 register, changing the stack offsets. In this case we can just
12834 return false, since the presence of far jumps in the function will
12835 not affect stack offsets.
12837 If the arg pointer is live (or if it was live, but has now been
12838 eliminated and so set to dead) then we do have to test to see if
12839 the function might contain a far jump. This test can lead to some
12840 false negatives, since before reload is completed, then length of
12841 branch instructions is not known, so gcc defaults to returning their
12842 longest length, which in turn sets the far jump attribute to true.
12844 A false negative will not result in bad code being generated, but it
12845 will result in a needless push and pop of the link register. We
12846 hope that this does not occur too often.
12848 If we need doubleword stack alignment this could affect the other
12849 elimination offsets so we can't risk getting it wrong. */
12850 if (regs_ever_live [ARG_POINTER_REGNUM])
12851 cfun->machine->arg_pointer_live = 1;
12852 else if (!cfun->machine->arg_pointer_live)
12853 return 0;
12856 /* Check to see if the function contains a branch
12857 insn with the far jump attribute set. */
12858 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
12860 if (GET_CODE (insn) == JUMP_INSN
12861 /* Ignore tablejump patterns. */
12862 && GET_CODE (PATTERN (insn)) != ADDR_VEC
12863 && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
12864 && get_attr_far_jump (insn) == FAR_JUMP_YES
12867 /* Record the fact that we have decided that
12868 the function does use far jumps. */
12869 cfun->machine->far_jump_used = 1;
12870 return 1;
12874 return 0;
12877 /* Return nonzero if FUNC must be entered in ARM mode. */
12879 is_called_in_ARM_mode (tree func)
12881 if (TREE_CODE (func) != FUNCTION_DECL)
12882 abort ();
12884 /* Ignore the problem about functions whoes address is taken. */
12885 if (TARGET_CALLEE_INTERWORKING && TREE_PUBLIC (func))
12886 return TRUE;
12888 #ifdef ARM_PE
12889 return lookup_attribute ("interfacearm", DECL_ATTRIBUTES (func)) != NULL_TREE;
12890 #else
12891 return FALSE;
12892 #endif
12895 /* The bits which aren't usefully expanded as rtl. */
12896 const char *
12897 thumb_unexpanded_epilogue (void)
12899 int regno;
12900 unsigned long live_regs_mask = 0;
12901 int high_regs_pushed = 0;
12902 int had_to_push_lr;
12903 int size;
12904 int mode;
12906 if (return_used_this_function)
12907 return "";
12909 if (IS_NAKED (arm_current_func_type ()))
12910 return "";
12912 live_regs_mask = thumb_compute_save_reg_mask ();
12913 high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
12915 /* If we can deduce the registers used from the function's return value.
12916 This is more reliable that examining regs_ever_live[] because that
12917 will be set if the register is ever used in the function, not just if
12918 the register is used to hold a return value. */
12920 if (current_function_return_rtx != 0)
12921 mode = GET_MODE (current_function_return_rtx);
12922 else
12923 mode = DECL_MODE (DECL_RESULT (current_function_decl));
12925 size = GET_MODE_SIZE (mode);
12927 /* The prolog may have pushed some high registers to use as
12928 work registers. e.g. the testsuite file:
12929 gcc/testsuite/gcc/gcc.c-torture/execute/complex-2.c
12930 compiles to produce:
12931 push {r4, r5, r6, r7, lr}
12932 mov r7, r9
12933 mov r6, r8
12934 push {r6, r7}
12935 as part of the prolog. We have to undo that pushing here. */
12937 if (high_regs_pushed)
12939 unsigned long mask = live_regs_mask & 0xff;
12940 int next_hi_reg;
12942 /* The available low registers depend on the size of the value we are
12943 returning. */
12944 if (size <= 12)
12945 mask |= 1 << 3;
12946 if (size <= 8)
12947 mask |= 1 << 2;
12949 if (mask == 0)
12950 /* Oh dear! We have no low registers into which we can pop
12951 high registers! */
12952 internal_error
12953 ("no low registers available for popping high registers");
12955 for (next_hi_reg = 8; next_hi_reg < 13; next_hi_reg++)
12956 if (live_regs_mask & (1 << next_hi_reg))
12957 break;
12959 while (high_regs_pushed)
12961 /* Find lo register(s) into which the high register(s) can
12962 be popped. */
12963 for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
12965 if (mask & (1 << regno))
12966 high_regs_pushed--;
12967 if (high_regs_pushed == 0)
12968 break;
12971 mask &= (2 << regno) - 1; /* A noop if regno == 8 */
12973 /* Pop the values into the low register(s). */
12974 thumb_pushpop (asm_out_file, mask, 0, NULL, mask);
12976 /* Move the value(s) into the high registers. */
12977 for (regno = 0; regno <= LAST_LO_REGNUM; regno++)
12979 if (mask & (1 << regno))
12981 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", next_hi_reg,
12982 regno);
12984 for (next_hi_reg++; next_hi_reg < 13; next_hi_reg++)
12985 if (live_regs_mask & (1 << next_hi_reg))
12986 break;
12990 live_regs_mask &= ~0x0f00;
12993 had_to_push_lr = (live_regs_mask & (1 << LR_REGNUM)) != 0;
12994 live_regs_mask &= 0xff;
12996 if (current_function_pretend_args_size == 0 || TARGET_BACKTRACE)
12998 /* Pop the return address into the PC. */
12999 if (had_to_push_lr)
13000 live_regs_mask |= 1 << PC_REGNUM;
13002 /* Either no argument registers were pushed or a backtrace
13003 structure was created which includes an adjusted stack
13004 pointer, so just pop everything. */
13005 if (live_regs_mask)
13006 thumb_pushpop (asm_out_file, live_regs_mask, FALSE, NULL,
13007 live_regs_mask);
13009 /* We have either just popped the return address into the
13010 PC or it is was kept in LR for the entire function. */
13011 if (!had_to_push_lr)
13012 thumb_exit (asm_out_file, LR_REGNUM);
13014 else
13016 /* Pop everything but the return address. */
13017 if (live_regs_mask)
13018 thumb_pushpop (asm_out_file, live_regs_mask, FALSE, NULL,
13019 live_regs_mask);
13021 if (had_to_push_lr)
13023 if (size > 12)
13025 /* We have no free low regs, so save one. */
13026 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", IP_REGNUM,
13027 LAST_ARG_REGNUM);
13030 /* Get the return address into a temporary register. */
13031 thumb_pushpop (asm_out_file, 1 << LAST_ARG_REGNUM, 0, NULL,
13032 1 << LAST_ARG_REGNUM);
13034 if (size > 12)
13036 /* Move the return address to lr. */
13037 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LR_REGNUM,
13038 LAST_ARG_REGNUM);
13039 /* Restore the low register. */
13040 asm_fprintf (asm_out_file, "\tmov\t%r, %r\n", LAST_ARG_REGNUM,
13041 IP_REGNUM);
13042 regno = LR_REGNUM;
13044 else
13045 regno = LAST_ARG_REGNUM;
13047 else
13048 regno = LR_REGNUM;
13050 /* Remove the argument registers that were pushed onto the stack. */
13051 asm_fprintf (asm_out_file, "\tadd\t%r, %r, #%d\n",
13052 SP_REGNUM, SP_REGNUM,
13053 current_function_pretend_args_size);
13055 thumb_exit (asm_out_file, regno);
13058 return "";
13061 /* Functions to save and restore machine-specific function data. */
13062 static struct machine_function *
13063 arm_init_machine_status (void)
13065 struct machine_function *machine;
13066 machine = (machine_function *) ggc_alloc_cleared (sizeof (machine_function));
13068 #if ARM_FT_UNKNOWN != 0
13069 machine->func_type = ARM_FT_UNKNOWN;
13070 #endif
13071 return machine;
13074 /* Return an RTX indicating where the return address to the
13075 calling function can be found. */
13077 arm_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
13079 if (count != 0)
13080 return NULL_RTX;
13082 return get_hard_reg_initial_val (Pmode, LR_REGNUM);
13085 /* Do anything needed before RTL is emitted for each function. */
13086 void
13087 arm_init_expanders (void)
13089 /* Arrange to initialize and mark the machine per-function status. */
13090 init_machine_status = arm_init_machine_status;
13092 /* This is to stop the combine pass optimizing away the alignment
13093 adjustment of va_arg. */
13094 /* ??? It is claimed that this should not be necessary. */
13095 if (cfun)
13096 mark_reg_pointer (arg_pointer_rtx, PARM_BOUNDARY);
13100 /* Like arm_compute_initial_elimination offset. Simpler because
13101 THUMB_HARD_FRAME_POINTER isn't actually the ABI specified frame pointer. */
13103 HOST_WIDE_INT
13104 thumb_compute_initial_elimination_offset (unsigned int from, unsigned int to)
13106 arm_stack_offsets *offsets;
13108 offsets = arm_get_frame_offsets ();
13110 switch (from)
13112 case ARG_POINTER_REGNUM:
13113 switch (to)
13115 case STACK_POINTER_REGNUM:
13116 return offsets->outgoing_args - offsets->saved_args;
13118 case FRAME_POINTER_REGNUM:
13119 return offsets->soft_frame - offsets->saved_args;
13121 case THUMB_HARD_FRAME_POINTER_REGNUM:
13122 case ARM_HARD_FRAME_POINTER_REGNUM:
13123 return offsets->saved_regs - offsets->saved_args;
13125 default:
13126 abort();
13128 break;
13130 case FRAME_POINTER_REGNUM:
13131 switch (to)
13133 case STACK_POINTER_REGNUM:
13134 return offsets->outgoing_args - offsets->soft_frame;
13136 case THUMB_HARD_FRAME_POINTER_REGNUM:
13137 case ARM_HARD_FRAME_POINTER_REGNUM:
13138 return offsets->saved_regs - offsets->soft_frame;
13140 default:
13141 abort();
13143 break;
13145 default:
13146 abort ();
13151 /* Generate the rest of a function's prologue. */
13152 void
13153 thumb_expand_prologue (void)
13155 rtx insn, dwarf;
13157 HOST_WIDE_INT amount;
13158 arm_stack_offsets *offsets;
13159 unsigned long func_type;
13160 int regno;
13161 unsigned long live_regs_mask;
13163 func_type = arm_current_func_type ();
13165 /* Naked functions don't have prologues. */
13166 if (IS_NAKED (func_type))
13167 return;
13169 if (IS_INTERRUPT (func_type))
13171 error ("interrupt Service Routines cannot be coded in Thumb mode");
13172 return;
13175 live_regs_mask = thumb_compute_save_reg_mask ();
13176 /* Load the pic register before setting the frame pointer,
13177 so we can use r7 as a temporary work register. */
13178 if (flag_pic)
13179 arm_load_pic_register (thumb_find_work_register (live_regs_mask));
13181 offsets = arm_get_frame_offsets ();
13183 if (frame_pointer_needed)
13185 insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
13186 stack_pointer_rtx));
13187 RTX_FRAME_RELATED_P (insn) = 1;
13189 else if (CALLER_INTERWORKING_SLOT_SIZE > 0)
13190 emit_move_insn (gen_rtx_REG (Pmode, ARM_HARD_FRAME_POINTER_REGNUM),
13191 stack_pointer_rtx);
13193 amount = offsets->outgoing_args - offsets->saved_regs;
13194 if (amount)
13196 if (amount < 512)
13198 insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
13199 GEN_INT (- amount)));
13200 RTX_FRAME_RELATED_P (insn) = 1;
13202 else
13204 rtx reg;
13206 /* The stack decrement is too big for an immediate value in a single
13207 insn. In theory we could issue multiple subtracts, but after
13208 three of them it becomes more space efficient to place the full
13209 value in the constant pool and load into a register. (Also the
13210 ARM debugger really likes to see only one stack decrement per
13211 function). So instead we look for a scratch register into which
13212 we can load the decrement, and then we subtract this from the
13213 stack pointer. Unfortunately on the thumb the only available
13214 scratch registers are the argument registers, and we cannot use
13215 these as they may hold arguments to the function. Instead we
13216 attempt to locate a call preserved register which is used by this
13217 function. If we can find one, then we know that it will have
13218 been pushed at the start of the prologue and so we can corrupt
13219 it now. */
13220 for (regno = LAST_ARG_REGNUM + 1; regno <= LAST_LO_REGNUM; regno++)
13221 if (live_regs_mask & (1 << regno)
13222 && !(frame_pointer_needed
13223 && (regno == THUMB_HARD_FRAME_POINTER_REGNUM)))
13224 break;
13226 if (regno > LAST_LO_REGNUM) /* Very unlikely. */
13228 rtx spare = gen_rtx_REG (SImode, IP_REGNUM);
13230 /* Choose an arbitrary, non-argument low register. */
13231 reg = gen_rtx_REG (SImode, LAST_LO_REGNUM);
13233 /* Save it by copying it into a high, scratch register. */
13234 emit_insn (gen_movsi (spare, reg));
13235 /* Add a USE to stop propagate_one_insn() from barfing. */
13236 emit_insn (gen_prologue_use (spare));
13238 /* Decrement the stack. */
13239 emit_insn (gen_movsi (reg, GEN_INT (- amount)));
13240 insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
13241 stack_pointer_rtx, reg));
13242 RTX_FRAME_RELATED_P (insn) = 1;
13243 dwarf = gen_rtx_SET (SImode, stack_pointer_rtx,
13244 plus_constant (stack_pointer_rtx,
13245 -amount));
13246 RTX_FRAME_RELATED_P (dwarf) = 1;
13247 REG_NOTES (insn)
13248 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
13249 REG_NOTES (insn));
13251 /* Restore the low register's original value. */
13252 emit_insn (gen_movsi (reg, spare));
13254 /* Emit a USE of the restored scratch register, so that flow
13255 analysis will not consider the restore redundant. The
13256 register won't be used again in this function and isn't
13257 restored by the epilogue. */
13258 emit_insn (gen_prologue_use (reg));
13260 else
13262 reg = gen_rtx_REG (SImode, regno);
13264 emit_insn (gen_movsi (reg, GEN_INT (- amount)));
13266 insn = emit_insn (gen_addsi3 (stack_pointer_rtx,
13267 stack_pointer_rtx, reg));
13268 RTX_FRAME_RELATED_P (insn) = 1;
13269 dwarf = gen_rtx_SET (SImode, stack_pointer_rtx,
13270 plus_constant (stack_pointer_rtx,
13271 -amount));
13272 RTX_FRAME_RELATED_P (dwarf) = 1;
13273 REG_NOTES (insn)
13274 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf,
13275 REG_NOTES (insn));
13278 /* If the frame pointer is needed, emit a special barrier that
13279 will prevent the scheduler from moving stores to the frame
13280 before the stack adjustment. */
13281 if (frame_pointer_needed)
13282 emit_insn (gen_stack_tie (stack_pointer_rtx,
13283 hard_frame_pointer_rtx));
13286 if (current_function_profile || TARGET_NO_SCHED_PRO)
13287 emit_insn (gen_blockage ());
13289 cfun->machine->lr_save_eliminated = !thumb_force_lr_save ();
13290 if (live_regs_mask & 0xff)
13291 cfun->machine->lr_save_eliminated = 0;
13293 /* If the link register is being kept alive, with the return address in it,
13294 then make sure that it does not get reused by the ce2 pass. */
13295 if (cfun->machine->lr_save_eliminated)
13296 emit_insn (gen_prologue_use (gen_rtx_REG (SImode, LR_REGNUM)));
13300 void
13301 thumb_expand_epilogue (void)
13303 HOST_WIDE_INT amount;
13304 arm_stack_offsets *offsets;
13305 int regno;
13307 /* Naked functions don't have prologues. */
13308 if (IS_NAKED (arm_current_func_type ()))
13309 return;
13311 offsets = arm_get_frame_offsets ();
13312 amount = offsets->outgoing_args - offsets->saved_regs;
13314 if (frame_pointer_needed)
13315 emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
13316 else if (amount)
13318 if (amount < 512)
13319 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
13320 GEN_INT (amount)));
13321 else
13323 /* r3 is always free in the epilogue. */
13324 rtx reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
13326 emit_insn (gen_movsi (reg, GEN_INT (amount)));
13327 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, reg));
13331 /* Emit a USE (stack_pointer_rtx), so that
13332 the stack adjustment will not be deleted. */
13333 emit_insn (gen_prologue_use (stack_pointer_rtx));
13335 if (current_function_profile || TARGET_NO_SCHED_PRO)
13336 emit_insn (gen_blockage ());
13338 /* Emit a clobber for each insn that will be restored in the epilogue,
13339 so that flow2 will get register lifetimes correct. */
13340 for (regno = 0; regno < 13; regno++)
13341 if (regs_ever_live[regno] && !call_used_regs[regno])
13342 emit_insn (gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, regno)));
13344 if (! regs_ever_live[LR_REGNUM])
13345 emit_insn (gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, LR_REGNUM)));
13348 static void
13349 thumb_output_function_prologue (FILE *f, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
13351 unsigned long live_regs_mask = 0;
13352 unsigned long l_mask;
13353 unsigned high_regs_pushed = 0;
13354 int cfa_offset = 0;
13355 int regno;
13357 if (IS_NAKED (arm_current_func_type ()))
13358 return;
13360 if (is_called_in_ARM_mode (current_function_decl))
13362 const char * name;
13364 if (GET_CODE (DECL_RTL (current_function_decl)) != MEM)
13365 abort ();
13366 if (GET_CODE (XEXP (DECL_RTL (current_function_decl), 0)) != SYMBOL_REF)
13367 abort ();
13368 name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
13370 /* Generate code sequence to switch us into Thumb mode. */
13371 /* The .code 32 directive has already been emitted by
13372 ASM_DECLARE_FUNCTION_NAME. */
13373 asm_fprintf (f, "\torr\t%r, %r, #1\n", IP_REGNUM, PC_REGNUM);
13374 asm_fprintf (f, "\tbx\t%r\n", IP_REGNUM);
13376 /* Generate a label, so that the debugger will notice the
13377 change in instruction sets. This label is also used by
13378 the assembler to bypass the ARM code when this function
13379 is called from a Thumb encoded function elsewhere in the
13380 same file. Hence the definition of STUB_NAME here must
13381 agree with the definition in gas/config/tc-arm.c. */
13383 #define STUB_NAME ".real_start_of"
13385 fprintf (f, "\t.code\t16\n");
13386 #ifdef ARM_PE
13387 if (arm_dllexport_name_p (name))
13388 name = arm_strip_name_encoding (name);
13389 #endif
13390 asm_fprintf (f, "\t.globl %s%U%s\n", STUB_NAME, name);
13391 fprintf (f, "\t.thumb_func\n");
13392 asm_fprintf (f, "%s%U%s:\n", STUB_NAME, name);
13395 if (current_function_pretend_args_size)
13397 if (cfun->machine->uses_anonymous_args)
13399 int num_pushes;
13401 fprintf (f, "\tpush\t{");
13403 num_pushes = ARM_NUM_INTS (current_function_pretend_args_size);
13405 for (regno = LAST_ARG_REGNUM + 1 - num_pushes;
13406 regno <= LAST_ARG_REGNUM;
13407 regno++)
13408 asm_fprintf (f, "%r%s", regno,
13409 regno == LAST_ARG_REGNUM ? "" : ", ");
13411 fprintf (f, "}\n");
13413 else
13414 asm_fprintf (f, "\tsub\t%r, %r, #%d\n",
13415 SP_REGNUM, SP_REGNUM,
13416 current_function_pretend_args_size);
13418 /* We don't need to record the stores for unwinding (would it
13419 help the debugger any if we did?), but record the change in
13420 the stack pointer. */
13421 if (dwarf2out_do_frame ())
13423 char *l = dwarf2out_cfi_label ();
13425 cfa_offset = cfa_offset + current_function_pretend_args_size;
13426 dwarf2out_def_cfa (l, SP_REGNUM, cfa_offset);
13430 /* Get the registers we are going to push. */
13431 live_regs_mask = thumb_compute_save_reg_mask ();
13432 /* Extract a mask of the ones we can give to the Thumb's push instruction. */
13433 l_mask = live_regs_mask & 0x40ff;
13434 /* Then count how many other high registers will need to be pushed. */
13435 high_regs_pushed = bit_count (live_regs_mask & 0x0f00);
13437 if (TARGET_BACKTRACE)
13439 unsigned offset;
13440 unsigned work_register;
13442 /* We have been asked to create a stack backtrace structure.
13443 The code looks like this:
13445 0 .align 2
13446 0 func:
13447 0 sub SP, #16 Reserve space for 4 registers.
13448 2 push {R7} Push low registers.
13449 4 add R7, SP, #20 Get the stack pointer before the push.
13450 6 str R7, [SP, #8] Store the stack pointer (before reserving the space).
13451 8 mov R7, PC Get hold of the start of this code plus 12.
13452 10 str R7, [SP, #16] Store it.
13453 12 mov R7, FP Get hold of the current frame pointer.
13454 14 str R7, [SP, #4] Store it.
13455 16 mov R7, LR Get hold of the current return address.
13456 18 str R7, [SP, #12] Store it.
13457 20 add R7, SP, #16 Point at the start of the backtrace structure.
13458 22 mov FP, R7 Put this value into the frame pointer. */
13460 work_register = thumb_find_work_register (live_regs_mask);
13462 asm_fprintf
13463 (f, "\tsub\t%r, %r, #16\t%@ Create stack backtrace structure\n",
13464 SP_REGNUM, SP_REGNUM);
13466 if (dwarf2out_do_frame ())
13468 char *l = dwarf2out_cfi_label ();
13470 cfa_offset = cfa_offset + 16;
13471 dwarf2out_def_cfa (l, SP_REGNUM, cfa_offset);
13474 if (l_mask)
13476 thumb_pushpop (f, l_mask, 1, &cfa_offset, l_mask);
13477 offset = bit_count (l_mask);
13479 else
13480 offset = 0;
13482 asm_fprintf (f, "\tadd\t%r, %r, #%d\n", work_register, SP_REGNUM,
13483 offset + 16 + current_function_pretend_args_size);
13485 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13486 offset + 4);
13488 /* Make sure that the instruction fetching the PC is in the right place
13489 to calculate "start of backtrace creation code + 12". */
13490 if (l_mask)
13492 asm_fprintf (f, "\tmov\t%r, %r\n", work_register, PC_REGNUM);
13493 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13494 offset + 12);
13495 asm_fprintf (f, "\tmov\t%r, %r\n", work_register,
13496 ARM_HARD_FRAME_POINTER_REGNUM);
13497 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13498 offset);
13500 else
13502 asm_fprintf (f, "\tmov\t%r, %r\n", work_register,
13503 ARM_HARD_FRAME_POINTER_REGNUM);
13504 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13505 offset);
13506 asm_fprintf (f, "\tmov\t%r, %r\n", work_register, PC_REGNUM);
13507 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13508 offset + 12);
13511 asm_fprintf (f, "\tmov\t%r, %r\n", work_register, LR_REGNUM);
13512 asm_fprintf (f, "\tstr\t%r, [%r, #%d]\n", work_register, SP_REGNUM,
13513 offset + 8);
13514 asm_fprintf (f, "\tadd\t%r, %r, #%d\n", work_register, SP_REGNUM,
13515 offset + 12);
13516 asm_fprintf (f, "\tmov\t%r, %r\t\t%@ Backtrace structure created\n",
13517 ARM_HARD_FRAME_POINTER_REGNUM, work_register);
13519 /* Optimisation: If we are not pushing any low registers but we are going
13520 to push some high registers then delay our first push. This will just
13521 be a push of LR and we can combine it with the push of the first high
13522 register. */
13523 else if ((l_mask & 0xff) != 0
13524 || (high_regs_pushed == 0 && l_mask))
13525 thumb_pushpop (f, l_mask, 1, &cfa_offset, l_mask);
13527 if (high_regs_pushed)
13529 unsigned pushable_regs;
13530 unsigned next_hi_reg;
13532 for (next_hi_reg = 12; next_hi_reg > LAST_LO_REGNUM; next_hi_reg--)
13533 if (live_regs_mask & (1 << next_hi_reg))
13534 break;
13536 pushable_regs = l_mask & 0xff;
13538 if (pushable_regs == 0)
13539 pushable_regs = 1 << thumb_find_work_register (live_regs_mask);
13541 while (high_regs_pushed > 0)
13543 unsigned long real_regs_mask = 0;
13545 for (regno = LAST_LO_REGNUM; regno >= 0; regno --)
13547 if (pushable_regs & (1 << regno))
13549 asm_fprintf (f, "\tmov\t%r, %r\n", regno, next_hi_reg);
13551 high_regs_pushed --;
13552 real_regs_mask |= (1 << next_hi_reg);
13554 if (high_regs_pushed)
13556 for (next_hi_reg --; next_hi_reg > LAST_LO_REGNUM;
13557 next_hi_reg --)
13558 if (live_regs_mask & (1 << next_hi_reg))
13559 break;
13561 else
13563 pushable_regs &= ~((1 << regno) - 1);
13564 break;
13569 /* If we had to find a work register and we have not yet
13570 saved the LR then add it to the list of regs to push. */
13571 if (l_mask == (1 << LR_REGNUM))
13573 thumb_pushpop (f, pushable_regs | (1 << LR_REGNUM),
13574 1, &cfa_offset,
13575 real_regs_mask | (1 << LR_REGNUM));
13576 l_mask = 0;
13578 else
13579 thumb_pushpop (f, pushable_regs, 1, &cfa_offset, real_regs_mask);
13584 /* Handle the case of a double word load into a low register from
13585 a computed memory address. The computed address may involve a
13586 register which is overwritten by the load. */
13587 const char *
13588 thumb_load_double_from_address (rtx *operands)
13590 rtx addr;
13591 rtx base;
13592 rtx offset;
13593 rtx arg1;
13594 rtx arg2;
13596 if (GET_CODE (operands[0]) != REG)
13597 abort ();
13599 if (GET_CODE (operands[1]) != MEM)
13600 abort ();
13602 /* Get the memory address. */
13603 addr = XEXP (operands[1], 0);
13605 /* Work out how the memory address is computed. */
13606 switch (GET_CODE (addr))
13608 case REG:
13609 operands[2] = gen_rtx_MEM (SImode,
13610 plus_constant (XEXP (operands[1], 0), 4));
13612 if (REGNO (operands[0]) == REGNO (addr))
13614 output_asm_insn ("ldr\t%H0, %2", operands);
13615 output_asm_insn ("ldr\t%0, %1", operands);
13617 else
13619 output_asm_insn ("ldr\t%0, %1", operands);
13620 output_asm_insn ("ldr\t%H0, %2", operands);
13622 break;
13624 case CONST:
13625 /* Compute <address> + 4 for the high order load. */
13626 operands[2] = gen_rtx_MEM (SImode,
13627 plus_constant (XEXP (operands[1], 0), 4));
13629 output_asm_insn ("ldr\t%0, %1", operands);
13630 output_asm_insn ("ldr\t%H0, %2", operands);
13631 break;
13633 case PLUS:
13634 arg1 = XEXP (addr, 0);
13635 arg2 = XEXP (addr, 1);
13637 if (CONSTANT_P (arg1))
13638 base = arg2, offset = arg1;
13639 else
13640 base = arg1, offset = arg2;
13642 if (GET_CODE (base) != REG)
13643 abort ();
13645 /* Catch the case of <address> = <reg> + <reg> */
13646 if (GET_CODE (offset) == REG)
13648 int reg_offset = REGNO (offset);
13649 int reg_base = REGNO (base);
13650 int reg_dest = REGNO (operands[0]);
13652 /* Add the base and offset registers together into the
13653 higher destination register. */
13654 asm_fprintf (asm_out_file, "\tadd\t%r, %r, %r",
13655 reg_dest + 1, reg_base, reg_offset);
13657 /* Load the lower destination register from the address in
13658 the higher destination register. */
13659 asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #0]",
13660 reg_dest, reg_dest + 1);
13662 /* Load the higher destination register from its own address
13663 plus 4. */
13664 asm_fprintf (asm_out_file, "\tldr\t%r, [%r, #4]",
13665 reg_dest + 1, reg_dest + 1);
13667 else
13669 /* Compute <address> + 4 for the high order load. */
13670 operands[2] = gen_rtx_MEM (SImode,
13671 plus_constant (XEXP (operands[1], 0), 4));
13673 /* If the computed address is held in the low order register
13674 then load the high order register first, otherwise always
13675 load the low order register first. */
13676 if (REGNO (operands[0]) == REGNO (base))
13678 output_asm_insn ("ldr\t%H0, %2", operands);
13679 output_asm_insn ("ldr\t%0, %1", operands);
13681 else
13683 output_asm_insn ("ldr\t%0, %1", operands);
13684 output_asm_insn ("ldr\t%H0, %2", operands);
13687 break;
13689 case LABEL_REF:
13690 /* With no registers to worry about we can just load the value
13691 directly. */
13692 operands[2] = gen_rtx_MEM (SImode,
13693 plus_constant (XEXP (operands[1], 0), 4));
13695 output_asm_insn ("ldr\t%H0, %2", operands);
13696 output_asm_insn ("ldr\t%0, %1", operands);
13697 break;
13699 default:
13700 abort ();
13701 break;
13704 return "";
13707 const char *
13708 thumb_output_move_mem_multiple (int n, rtx *operands)
13710 rtx tmp;
13712 switch (n)
13714 case 2:
13715 if (REGNO (operands[4]) > REGNO (operands[5]))
13717 tmp = operands[4];
13718 operands[4] = operands[5];
13719 operands[5] = tmp;
13721 output_asm_insn ("ldmia\t%1!, {%4, %5}", operands);
13722 output_asm_insn ("stmia\t%0!, {%4, %5}", operands);
13723 break;
13725 case 3:
13726 if (REGNO (operands[4]) > REGNO (operands[5]))
13728 tmp = operands[4];
13729 operands[4] = operands[5];
13730 operands[5] = tmp;
13732 if (REGNO (operands[5]) > REGNO (operands[6]))
13734 tmp = operands[5];
13735 operands[5] = operands[6];
13736 operands[6] = tmp;
13738 if (REGNO (operands[4]) > REGNO (operands[5]))
13740 tmp = operands[4];
13741 operands[4] = operands[5];
13742 operands[5] = tmp;
13745 output_asm_insn ("ldmia\t%1!, {%4, %5, %6}", operands);
13746 output_asm_insn ("stmia\t%0!, {%4, %5, %6}", operands);
13747 break;
13749 default:
13750 abort ();
13753 return "";
13756 /* Output a call-via instruction for thumb state. */
13757 const char *
13758 thumb_call_via_reg (rtx reg)
13760 int regno = REGNO (reg);
13761 rtx *labelp;
13763 gcc_assert (regno < SP_REGNUM);
13765 /* If we are in the normal text section we can use a single instance
13766 per compilation unit. If we are doing function sections, then we need
13767 an entry per section, since we can't rely on reachability. */
13768 if (in_text_section ())
13770 thumb_call_reg_needed = 1;
13772 if (thumb_call_via_label[regno] == NULL)
13773 thumb_call_via_label[regno] = gen_label_rtx ();
13774 labelp = thumb_call_via_label + regno;
13776 else
13778 if (cfun->machine->call_via[regno] == NULL)
13779 cfun->machine->call_via[regno] = gen_label_rtx ();
13780 labelp = cfun->machine->call_via + regno;
13783 output_asm_insn ("bl\t%a0", labelp);
13784 return "";
13787 /* Routines for generating rtl. */
13788 void
13789 thumb_expand_movmemqi (rtx *operands)
13791 rtx out = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
13792 rtx in = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
13793 HOST_WIDE_INT len = INTVAL (operands[2]);
13794 HOST_WIDE_INT offset = 0;
13796 while (len >= 12)
13798 emit_insn (gen_movmem12b (out, in, out, in));
13799 len -= 12;
13802 if (len >= 8)
13804 emit_insn (gen_movmem8b (out, in, out, in));
13805 len -= 8;
13808 if (len >= 4)
13810 rtx reg = gen_reg_rtx (SImode);
13811 emit_insn (gen_movsi (reg, gen_rtx_MEM (SImode, in)));
13812 emit_insn (gen_movsi (gen_rtx_MEM (SImode, out), reg));
13813 len -= 4;
13814 offset += 4;
13817 if (len >= 2)
13819 rtx reg = gen_reg_rtx (HImode);
13820 emit_insn (gen_movhi (reg, gen_rtx_MEM (HImode,
13821 plus_constant (in, offset))));
13822 emit_insn (gen_movhi (gen_rtx_MEM (HImode, plus_constant (out, offset)),
13823 reg));
13824 len -= 2;
13825 offset += 2;
13828 if (len)
13830 rtx reg = gen_reg_rtx (QImode);
13831 emit_insn (gen_movqi (reg, gen_rtx_MEM (QImode,
13832 plus_constant (in, offset))));
13833 emit_insn (gen_movqi (gen_rtx_MEM (QImode, plus_constant (out, offset)),
13834 reg));
13838 void
13839 thumb_reload_out_hi (rtx *operands)
13841 emit_insn (gen_thumb_movhi_clobber (operands[0], operands[1], operands[2]));
13844 /* Handle reading a half-word from memory during reload. */
13845 void
13846 thumb_reload_in_hi (rtx *operands ATTRIBUTE_UNUSED)
13848 abort ();
13851 /* Return the length of a function name prefix
13852 that starts with the character 'c'. */
13853 static int
13854 arm_get_strip_length (int c)
13856 switch (c)
13858 ARM_NAME_ENCODING_LENGTHS
13859 default: return 0;
13863 /* Return a pointer to a function's name with any
13864 and all prefix encodings stripped from it. */
13865 const char *
13866 arm_strip_name_encoding (const char *name)
13868 int skip;
13870 while ((skip = arm_get_strip_length (* name)))
13871 name += skip;
13873 return name;
13876 /* If there is a '*' anywhere in the name's prefix, then
13877 emit the stripped name verbatim, otherwise prepend an
13878 underscore if leading underscores are being used. */
13879 void
13880 arm_asm_output_labelref (FILE *stream, const char *name)
13882 int skip;
13883 int verbatim = 0;
13885 while ((skip = arm_get_strip_length (* name)))
13887 verbatim |= (*name == '*');
13888 name += skip;
13891 if (verbatim)
13892 fputs (name, stream);
13893 else
13894 asm_fprintf (stream, "%U%s", name);
13897 static void
13898 arm_file_end (void)
13900 int regno;
13902 if (! thumb_call_reg_needed)
13903 return;
13905 text_section ();
13906 asm_fprintf (asm_out_file, "\t.code 16\n");
13907 ASM_OUTPUT_ALIGN (asm_out_file, 1);
13909 for (regno = 0; regno < SP_REGNUM; regno++)
13911 rtx label = thumb_call_via_label[regno];
13913 if (label != 0)
13915 targetm.asm_out.internal_label (asm_out_file, "L",
13916 CODE_LABEL_NUMBER (label));
13917 asm_fprintf (asm_out_file, "\tbx\t%r\n", regno);
13922 rtx aof_pic_label;
13924 #ifdef AOF_ASSEMBLER
13925 /* Special functions only needed when producing AOF syntax assembler. */
13927 struct pic_chain
13929 struct pic_chain * next;
13930 const char * symname;
13933 static struct pic_chain * aof_pic_chain = NULL;
13936 aof_pic_entry (rtx x)
13938 struct pic_chain ** chainp;
13939 int offset;
13941 if (aof_pic_label == NULL_RTX)
13943 aof_pic_label = gen_rtx_SYMBOL_REF (Pmode, "x$adcons");
13946 for (offset = 0, chainp = &aof_pic_chain; *chainp;
13947 offset += 4, chainp = &(*chainp)->next)
13948 if ((*chainp)->symname == XSTR (x, 0))
13949 return plus_constant (aof_pic_label, offset);
13951 *chainp = (struct pic_chain *) xmalloc (sizeof (struct pic_chain));
13952 (*chainp)->next = NULL;
13953 (*chainp)->symname = XSTR (x, 0);
13954 return plus_constant (aof_pic_label, offset);
13957 void
13958 aof_dump_pic_table (FILE *f)
13960 struct pic_chain * chain;
13962 if (aof_pic_chain == NULL)
13963 return;
13965 asm_fprintf (f, "\tAREA |%r$$adcons|, BASED %r\n",
13966 PIC_OFFSET_TABLE_REGNUM,
13967 PIC_OFFSET_TABLE_REGNUM);
13968 fputs ("|x$adcons|\n", f);
13970 for (chain = aof_pic_chain; chain; chain = chain->next)
13972 fputs ("\tDCD\t", f);
13973 assemble_name (f, chain->symname);
13974 fputs ("\n", f);
13978 int arm_text_section_count = 1;
13980 char *
13981 aof_text_section (void )
13983 static char buf[100];
13984 sprintf (buf, "\tAREA |C$$code%d|, CODE, READONLY",
13985 arm_text_section_count++);
13986 if (flag_pic)
13987 strcat (buf, ", PIC, REENTRANT");
13988 return buf;
13991 static int arm_data_section_count = 1;
13993 char *
13994 aof_data_section (void)
13996 static char buf[100];
13997 sprintf (buf, "\tAREA |C$$data%d|, DATA", arm_data_section_count++);
13998 return buf;
14001 /* The AOF assembler is religiously strict about declarations of
14002 imported and exported symbols, so that it is impossible to declare
14003 a function as imported near the beginning of the file, and then to
14004 export it later on. It is, however, possible to delay the decision
14005 until all the functions in the file have been compiled. To get
14006 around this, we maintain a list of the imports and exports, and
14007 delete from it any that are subsequently defined. At the end of
14008 compilation we spit the remainder of the list out before the END
14009 directive. */
14011 struct import
14013 struct import * next;
14014 const char * name;
14017 static struct import * imports_list = NULL;
14019 void
14020 aof_add_import (const char *name)
14022 struct import * new;
14024 for (new = imports_list; new; new = new->next)
14025 if (new->name == name)
14026 return;
14028 new = (struct import *) xmalloc (sizeof (struct import));
14029 new->next = imports_list;
14030 imports_list = new;
14031 new->name = name;
14034 void
14035 aof_delete_import (const char *name)
14037 struct import ** old;
14039 for (old = &imports_list; *old; old = & (*old)->next)
14041 if ((*old)->name == name)
14043 *old = (*old)->next;
14044 return;
14049 int arm_main_function = 0;
14051 static void
14052 aof_dump_imports (FILE *f)
14054 /* The AOF assembler needs this to cause the startup code to be extracted
14055 from the library. Brining in __main causes the whole thing to work
14056 automagically. */
14057 if (arm_main_function)
14059 text_section ();
14060 fputs ("\tIMPORT __main\n", f);
14061 fputs ("\tDCD __main\n", f);
14064 /* Now dump the remaining imports. */
14065 while (imports_list)
14067 fprintf (f, "\tIMPORT\t");
14068 assemble_name (f, imports_list->name);
14069 fputc ('\n', f);
14070 imports_list = imports_list->next;
14074 static void
14075 aof_globalize_label (FILE *stream, const char *name)
14077 default_globalize_label (stream, name);
14078 if (! strcmp (name, "main"))
14079 arm_main_function = 1;
14082 static void
14083 aof_file_start (void)
14085 fputs ("__r0\tRN\t0\n", asm_out_file);
14086 fputs ("__a1\tRN\t0\n", asm_out_file);
14087 fputs ("__a2\tRN\t1\n", asm_out_file);
14088 fputs ("__a3\tRN\t2\n", asm_out_file);
14089 fputs ("__a4\tRN\t3\n", asm_out_file);
14090 fputs ("__v1\tRN\t4\n", asm_out_file);
14091 fputs ("__v2\tRN\t5\n", asm_out_file);
14092 fputs ("__v3\tRN\t6\n", asm_out_file);
14093 fputs ("__v4\tRN\t7\n", asm_out_file);
14094 fputs ("__v5\tRN\t8\n", asm_out_file);
14095 fputs ("__v6\tRN\t9\n", asm_out_file);
14096 fputs ("__sl\tRN\t10\n", asm_out_file);
14097 fputs ("__fp\tRN\t11\n", asm_out_file);
14098 fputs ("__ip\tRN\t12\n", asm_out_file);
14099 fputs ("__sp\tRN\t13\n", asm_out_file);
14100 fputs ("__lr\tRN\t14\n", asm_out_file);
14101 fputs ("__pc\tRN\t15\n", asm_out_file);
14102 fputs ("__f0\tFN\t0\n", asm_out_file);
14103 fputs ("__f1\tFN\t1\n", asm_out_file);
14104 fputs ("__f2\tFN\t2\n", asm_out_file);
14105 fputs ("__f3\tFN\t3\n", asm_out_file);
14106 fputs ("__f4\tFN\t4\n", asm_out_file);
14107 fputs ("__f5\tFN\t5\n", asm_out_file);
14108 fputs ("__f6\tFN\t6\n", asm_out_file);
14109 fputs ("__f7\tFN\t7\n", asm_out_file);
14110 text_section ();
14113 static void
14114 aof_file_end (void)
14116 if (flag_pic)
14117 aof_dump_pic_table (asm_out_file);
14118 arm_file_end ();
14119 aof_dump_imports (asm_out_file);
14120 fputs ("\tEND\n", asm_out_file);
14122 #endif /* AOF_ASSEMBLER */
14124 #ifndef ARM_PE
14125 /* Symbols in the text segment can be accessed without indirecting via the
14126 constant pool; it may take an extra binary operation, but this is still
14127 faster than indirecting via memory. Don't do this when not optimizing,
14128 since we won't be calculating al of the offsets necessary to do this
14129 simplification. */
14131 static void
14132 arm_encode_section_info (tree decl, rtx rtl, int first)
14134 /* This doesn't work with AOF syntax, since the string table may be in
14135 a different AREA. */
14136 #ifndef AOF_ASSEMBLER
14137 if (optimize > 0 && TREE_CONSTANT (decl))
14138 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
14139 #endif
14141 /* If we are referencing a function that is weak then encode a long call
14142 flag in the function name, otherwise if the function is static or
14143 or known to be defined in this file then encode a short call flag. */
14144 if (first && DECL_P (decl))
14146 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_WEAK (decl))
14147 arm_encode_call_attribute (decl, LONG_CALL_FLAG_CHAR);
14148 else if (! TREE_PUBLIC (decl))
14149 arm_encode_call_attribute (decl, SHORT_CALL_FLAG_CHAR);
14152 #endif /* !ARM_PE */
14154 static void
14155 arm_internal_label (FILE *stream, const char *prefix, unsigned long labelno)
14157 if (arm_ccfsm_state == 3 && (unsigned) arm_target_label == labelno
14158 && !strcmp (prefix, "L"))
14160 arm_ccfsm_state = 0;
14161 arm_target_insn = NULL;
14163 default_internal_label (stream, prefix, labelno);
14166 /* Output code to add DELTA to the first argument, and then jump
14167 to FUNCTION. Used for C++ multiple inheritance. */
14168 static void
14169 arm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
14170 HOST_WIDE_INT delta,
14171 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
14172 tree function)
14174 static int thunk_label = 0;
14175 char label[256];
14176 int mi_delta = delta;
14177 const char *const mi_op = mi_delta < 0 ? "sub" : "add";
14178 int shift = 0;
14179 int this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
14180 ? 1 : 0);
14181 if (mi_delta < 0)
14182 mi_delta = - mi_delta;
14183 if (TARGET_THUMB)
14185 int labelno = thunk_label++;
14186 ASM_GENERATE_INTERNAL_LABEL (label, "LTHUMBFUNC", labelno);
14187 fputs ("\tldr\tr12, ", file);
14188 assemble_name (file, label);
14189 fputc ('\n', file);
14191 while (mi_delta != 0)
14193 if ((mi_delta & (3 << shift)) == 0)
14194 shift += 2;
14195 else
14197 asm_fprintf (file, "\t%s\t%r, %r, #%d\n",
14198 mi_op, this_regno, this_regno,
14199 mi_delta & (0xff << shift));
14200 mi_delta &= ~(0xff << shift);
14201 shift += 8;
14204 if (TARGET_THUMB)
14206 fprintf (file, "\tbx\tr12\n");
14207 ASM_OUTPUT_ALIGN (file, 2);
14208 assemble_name (file, label);
14209 fputs (":\n", file);
14210 assemble_integer (XEXP (DECL_RTL (function), 0), 4, BITS_PER_WORD, 1);
14212 else
14214 fputs ("\tb\t", file);
14215 assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
14216 if (NEED_PLT_RELOC)
14217 fputs ("(PLT)", file);
14218 fputc ('\n', file);
14223 arm_emit_vector_const (FILE *file, rtx x)
14225 int i;
14226 const char * pattern;
14228 if (GET_CODE (x) != CONST_VECTOR)
14229 abort ();
14231 switch (GET_MODE (x))
14233 case V2SImode: pattern = "%08x"; break;
14234 case V4HImode: pattern = "%04x"; break;
14235 case V8QImode: pattern = "%02x"; break;
14236 default: abort ();
14239 fprintf (file, "0x");
14240 for (i = CONST_VECTOR_NUNITS (x); i--;)
14242 rtx element;
14244 element = CONST_VECTOR_ELT (x, i);
14245 fprintf (file, pattern, INTVAL (element));
14248 return 1;
14251 const char *
14252 arm_output_load_gr (rtx *operands)
14254 rtx reg;
14255 rtx offset;
14256 rtx wcgr;
14257 rtx sum;
14259 if (GET_CODE (operands [1]) != MEM
14260 || GET_CODE (sum = XEXP (operands [1], 0)) != PLUS
14261 || GET_CODE (reg = XEXP (sum, 0)) != REG
14262 || GET_CODE (offset = XEXP (sum, 1)) != CONST_INT
14263 || ((INTVAL (offset) < 1024) && (INTVAL (offset) > -1024)))
14264 return "wldrw%?\t%0, %1";
14266 /* Fix up an out-of-range load of a GR register. */
14267 output_asm_insn ("str%?\t%0, [sp, #-4]!\t@ Start of GR load expansion", & reg);
14268 wcgr = operands[0];
14269 operands[0] = reg;
14270 output_asm_insn ("ldr%?\t%0, %1", operands);
14272 operands[0] = wcgr;
14273 operands[1] = reg;
14274 output_asm_insn ("tmcr%?\t%0, %1", operands);
14275 output_asm_insn ("ldr%?\t%0, [sp], #4\t@ End of GR load expansion", & reg);
14277 return "";
14280 static rtx
14281 arm_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
14282 int incoming ATTRIBUTE_UNUSED)
14284 #if 0
14285 /* FIXME: The ARM backend has special code to handle structure
14286 returns, and will reserve its own hidden first argument. So
14287 if this macro is enabled a *second* hidden argument will be
14288 reserved, which will break binary compatibility with old
14289 toolchains and also thunk handling. One day this should be
14290 fixed. */
14291 return 0;
14292 #else
14293 /* Register in which address to store a structure value
14294 is passed to a function. */
14295 return gen_rtx_REG (Pmode, ARG_REGISTER (1));
14296 #endif
14299 /* Worker function for TARGET_SETUP_INCOMING_VARARGS.
14301 On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
14302 named arg and all anonymous args onto the stack.
14303 XXX I know the prologue shouldn't be pushing registers, but it is faster
14304 that way. */
14306 static void
14307 arm_setup_incoming_varargs (CUMULATIVE_ARGS *cum,
14308 enum machine_mode mode ATTRIBUTE_UNUSED,
14309 tree type ATTRIBUTE_UNUSED,
14310 int *pretend_size,
14311 int second_time ATTRIBUTE_UNUSED)
14313 cfun->machine->uses_anonymous_args = 1;
14314 if (cum->nregs < NUM_ARG_REGS)
14315 *pretend_size = (NUM_ARG_REGS - cum->nregs) * UNITS_PER_WORD;
14318 /* Return nonzero if the CONSUMER instruction (a store) does not need
14319 PRODUCER's value to calculate the address. */
14322 arm_no_early_store_addr_dep (rtx producer, rtx consumer)
14324 rtx value = PATTERN (producer);
14325 rtx addr = PATTERN (consumer);
14327 if (GET_CODE (value) == COND_EXEC)
14328 value = COND_EXEC_CODE (value);
14329 if (GET_CODE (value) == PARALLEL)
14330 value = XVECEXP (value, 0, 0);
14331 value = XEXP (value, 0);
14332 if (GET_CODE (addr) == COND_EXEC)
14333 addr = COND_EXEC_CODE (addr);
14334 if (GET_CODE (addr) == PARALLEL)
14335 addr = XVECEXP (addr, 0, 0);
14336 addr = XEXP (addr, 0);
14338 return !reg_overlap_mentioned_p (value, addr);
14341 /* Return nonzero if the CONSUMER instruction (an ALU op) does not
14342 have an early register shift value or amount dependency on the
14343 result of PRODUCER. */
14346 arm_no_early_alu_shift_dep (rtx producer, rtx consumer)
14348 rtx value = PATTERN (producer);
14349 rtx op = PATTERN (consumer);
14350 rtx early_op;
14352 if (GET_CODE (value) == COND_EXEC)
14353 value = COND_EXEC_CODE (value);
14354 if (GET_CODE (value) == PARALLEL)
14355 value = XVECEXP (value, 0, 0);
14356 value = XEXP (value, 0);
14357 if (GET_CODE (op) == COND_EXEC)
14358 op = COND_EXEC_CODE (op);
14359 if (GET_CODE (op) == PARALLEL)
14360 op = XVECEXP (op, 0, 0);
14361 op = XEXP (op, 1);
14363 early_op = XEXP (op, 0);
14364 /* This is either an actual independent shift, or a shift applied to
14365 the first operand of another operation. We want the whole shift
14366 operation. */
14367 if (GET_CODE (early_op) == REG)
14368 early_op = op;
14370 return !reg_overlap_mentioned_p (value, early_op);
14373 /* Return nonzero if the CONSUMER instruction (an ALU op) does not
14374 have an early register shift value dependency on the result of
14375 PRODUCER. */
14378 arm_no_early_alu_shift_value_dep (rtx producer, rtx consumer)
14380 rtx value = PATTERN (producer);
14381 rtx op = PATTERN (consumer);
14382 rtx early_op;
14384 if (GET_CODE (value) == COND_EXEC)
14385 value = COND_EXEC_CODE (value);
14386 if (GET_CODE (value) == PARALLEL)
14387 value = XVECEXP (value, 0, 0);
14388 value = XEXP (value, 0);
14389 if (GET_CODE (op) == COND_EXEC)
14390 op = COND_EXEC_CODE (op);
14391 if (GET_CODE (op) == PARALLEL)
14392 op = XVECEXP (op, 0, 0);
14393 op = XEXP (op, 1);
14395 early_op = XEXP (op, 0);
14397 /* This is either an actual independent shift, or a shift applied to
14398 the first operand of another operation. We want the value being
14399 shifted, in either case. */
14400 if (GET_CODE (early_op) != REG)
14401 early_op = XEXP (early_op, 0);
14403 return !reg_overlap_mentioned_p (value, early_op);
14406 /* Return nonzero if the CONSUMER (a mul or mac op) does not
14407 have an early register mult dependency on the result of
14408 PRODUCER. */
14411 arm_no_early_mul_dep (rtx producer, rtx consumer)
14413 rtx value = PATTERN (producer);
14414 rtx op = PATTERN (consumer);
14416 if (GET_CODE (value) == COND_EXEC)
14417 value = COND_EXEC_CODE (value);
14418 if (GET_CODE (value) == PARALLEL)
14419 value = XVECEXP (value, 0, 0);
14420 value = XEXP (value, 0);
14421 if (GET_CODE (op) == COND_EXEC)
14422 op = COND_EXEC_CODE (op);
14423 if (GET_CODE (op) == PARALLEL)
14424 op = XVECEXP (op, 0, 0);
14425 op = XEXP (op, 1);
14427 return (GET_CODE (op) == PLUS
14428 && !reg_overlap_mentioned_p (value, XEXP (op, 0)));
14432 /* We can't rely on the caller doing the proper promotion when
14433 using APCS or ATPCS. */
14435 static bool
14436 arm_promote_prototypes (tree t ATTRIBUTE_UNUSED)
14438 return !TARGET_AAPCS_BASED;
14442 /* AAPCS based ABIs use short enums by default. */
14444 static bool
14445 arm_default_short_enums (void)
14447 return TARGET_AAPCS_BASED;
14451 /* AAPCS requires that anonymous bitfields affect structure alignment. */
14453 static bool
14454 arm_align_anon_bitfield (void)
14456 return TARGET_AAPCS_BASED;
14460 /* The generic C++ ABI says 64-bit (long long). The EABI says 32-bit. */
14462 static tree
14463 arm_cxx_guard_type (void)
14465 return TARGET_AAPCS_BASED ? integer_type_node : long_long_integer_type_node;
14469 /* The EABI says test the least significan bit of a guard variable. */
14471 static bool
14472 arm_cxx_guard_mask_bit (void)
14474 return TARGET_AAPCS_BASED;
14478 /* The EABI specifies that all array cookies are 8 bytes long. */
14480 static tree
14481 arm_get_cookie_size (tree type)
14483 tree size;
14485 if (!TARGET_AAPCS_BASED)
14486 return default_cxx_get_cookie_size (type);
14488 size = build_int_cst (sizetype, 8);
14489 return size;
14493 /* The EABI says that array cookies should also contain the element size. */
14495 static bool
14496 arm_cookie_has_size (void)
14498 return TARGET_AAPCS_BASED;
14502 /* The EABI says constructors and destructors should return a pointer to
14503 the object constructed/destroyed. */
14505 static bool
14506 arm_cxx_cdtor_returns_this (void)
14508 return TARGET_AAPCS_BASED;
14511 /* The EABI says that an inline function may never be the key
14512 method. */
14514 static bool
14515 arm_cxx_key_method_may_be_inline (void)
14517 return !TARGET_AAPCS_BASED;
14520 /* The EABI says that the virtual table, etc., for a class must be
14521 exported if it has a key method. The EABI does not specific the
14522 behavior if there is no key method, but there is no harm in
14523 exporting the class data in that case too. */
14525 static bool
14526 arm_cxx_export_class_data (void)
14528 return TARGET_AAPCS_BASED;
14531 void
14532 arm_set_return_address (rtx source, rtx scratch)
14534 arm_stack_offsets *offsets;
14535 HOST_WIDE_INT delta;
14536 rtx addr;
14537 unsigned long saved_regs;
14539 saved_regs = arm_compute_save_reg_mask ();
14541 if ((saved_regs & (1 << LR_REGNUM)) == 0)
14542 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
14543 else
14545 if (frame_pointer_needed)
14546 addr = plus_constant(hard_frame_pointer_rtx, -4);
14547 else
14549 /* LR will be the first saved register. */
14550 offsets = arm_get_frame_offsets ();
14551 delta = offsets->outgoing_args - (offsets->frame + 4);
14554 if (delta >= 4096)
14556 emit_insn (gen_addsi3 (scratch, stack_pointer_rtx,
14557 GEN_INT (delta & ~4095)));
14558 addr = scratch;
14559 delta &= 4095;
14561 else
14562 addr = stack_pointer_rtx;
14564 addr = plus_constant (addr, delta);
14566 emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
14571 void
14572 thumb_set_return_address (rtx source, rtx scratch)
14574 arm_stack_offsets *offsets;
14575 HOST_WIDE_INT delta;
14576 int reg;
14577 rtx addr;
14578 unsigned long mask;
14580 emit_insn (gen_rtx_USE (VOIDmode, source));
14582 mask = thumb_compute_save_reg_mask ();
14583 if (mask & (1 << LR_REGNUM))
14585 offsets = arm_get_frame_offsets ();
14587 /* Find the saved regs. */
14588 if (frame_pointer_needed)
14590 delta = offsets->soft_frame - offsets->saved_args;
14591 reg = THUMB_HARD_FRAME_POINTER_REGNUM;
14593 else
14595 delta = offsets->outgoing_args - offsets->saved_args;
14596 reg = SP_REGNUM;
14598 /* Allow for the stack frame. */
14599 if (TARGET_BACKTRACE)
14600 delta -= 16;
14601 /* The link register is always the first saved register. */
14602 delta -= 4;
14604 /* Construct the address. */
14605 addr = gen_rtx_REG (SImode, reg);
14606 if ((reg != SP_REGNUM && delta >= 128)
14607 || delta >= 1024)
14609 emit_insn (gen_movsi (scratch, GEN_INT (delta)));
14610 emit_insn (gen_addsi3 (scratch, scratch, stack_pointer_rtx));
14611 addr = scratch;
14613 else
14614 addr = plus_constant (addr, delta);
14616 emit_move_insn (gen_rtx_MEM (Pmode, addr), source);
14618 else
14619 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source);
14622 /* Implements target hook vector_mode_supported_p. */
14623 bool
14624 arm_vector_mode_supported_p (enum machine_mode mode)
14626 if ((mode == V2SImode)
14627 || (mode == V4HImode)
14628 || (mode == V8QImode))
14629 return true;
14631 return false;
14634 /* Implement TARGET_SHIFT_TRUNCATION_MASK. SImode shifts use normal
14635 ARM insns and therefore guarantee that the shift count is modulo 256.
14636 DImode shifts (those implemented by lib1funcs.asm or by optabs.c)
14637 guarantee no particular behavior for out-of-range counts. */
14639 static unsigned HOST_WIDE_INT
14640 arm_shift_truncation_mask (enum machine_mode mode)
14642 return mode == SImode ? 255 : 0;
14646 /* Map internal gcc register numbers to DWARF2 register numbers. */
14648 unsigned int
14649 arm_dbx_register_number (unsigned int regno)
14651 if (regno < 16)
14652 return regno;
14654 /* TODO: Legacy targets output FPA regs as registers 16-23 for backwards
14655 compatibility. The EABI defines them as registers 96-103. */
14656 if (IS_FPA_REGNUM (regno))
14657 return (TARGET_AAPCS_BASED ? 96 : 16) + regno - FIRST_FPA_REGNUM;
14659 if (IS_VFP_REGNUM (regno))
14660 return 64 + regno - FIRST_VFP_REGNUM;
14662 if (IS_IWMMXT_GR_REGNUM (regno))
14663 return 104 + regno - FIRST_IWMMXT_GR_REGNUM;
14665 if (IS_IWMMXT_REGNUM (regno))
14666 return 112 + regno - FIRST_IWMMXT_REGNUM;
14668 abort ();