VMM/IEM: Implement maskmovq, [v]maskmovdqu instruction decoding, dispatch & emulation...
[vbox.git] / src / VBox / VMM / include / IEMInternal.h
blob79f648156d3b98314c8e455a1cf32cf75ea85fff
1 /* $Id$ */
2 /** @file
3 * IEM - Internal header file.
4 */
6 /*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
25 * SPDX-License-Identifier: GPL-3.0-only
28 #ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29 #define VMM_INCLUDED_SRC_include_IEMInternal_h
30 #ifndef RT_WITHOUT_PRAGMA_ONCE
31 # pragma once
32 #endif
34 #ifndef RT_IN_ASSEMBLER
35 # include <VBox/vmm/cpum.h>
36 # include <VBox/vmm/iem.h>
37 # include <VBox/vmm/pgm.h>
38 # include <VBox/vmm/stam.h>
39 # include <VBox/param.h>
41 # include <iprt/setjmp-without-sigmask.h>
42 # include <iprt/list.h>
43 #endif /* !RT_IN_ASSEMBLER */
46 RT_C_DECLS_BEGIN
49 /** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
55 /* Make doxygen happy w/o overcomplicating the #if checks. */
56 #ifdef DOXYGEN_RUNNING
57 # define IEM_WITH_THROW_CATCH
58 # define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59 #endif
61 /** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63 #ifndef IEM_STATIC
64 # define IEM_STATIC static
65 #endif
67 /** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
74 #if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75 # define IEM_WITH_SETJMP
76 #endif
78 /** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
91 #if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92 # define IEM_WITH_THROW_CATCH
93 #endif /*ASM-NOINC-END*/
95 /** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
98 #if defined(DOXYGEN_RUNNING) || 1
99 # define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100 #endif
102 /** Enables the SIMD register allocator @bugref{10614}. */
103 #if defined(DOXYGEN_RUNNING) || 1
104 # define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105 #endif
106 /** Enables access to even callee saved registers. */
107 //# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
109 #if defined(DOXYGEN_RUNNING) || 1
110 /** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112 # define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113 #endif
115 /** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
116 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
117 * executing native translation blocks.
119 * This exploits the fact that we save all non-volatile registers in the TB
120 * prologue and thus just need to do the same as the TB epilogue to get the
121 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
122 * non-volatile (and does something even more crazy for ARM), this probably
123 * won't work reliably on Windows. */
124 #ifdef RT_ARCH_ARM64
125 # ifndef RT_OS_WINDOWS
126 # define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
127 # endif
128 #endif
129 /* ASM-NOINC-START */
130 #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
131 # if !defined(IN_RING3) \
132 || !defined(VBOX_WITH_IEM_RECOMPILER) \
133 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
134 # undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
135 # elif defined(RT_OS_WINDOWS)
136 # pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
137 # endif
138 #endif
141 /** @def IEM_DO_LONGJMP
143 * Wrapper around longjmp / throw.
145 * @param a_pVCpu The CPU handle.
146 * @param a_rc The status code jump back with / throw.
148 #if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
149 # ifdef IEM_WITH_THROW_CATCH
150 # ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
151 # define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
152 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
153 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
154 throw int(a_rc); \
155 } while (0)
156 # else
157 # define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
158 # endif
159 # else
160 # define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
161 # endif
162 #endif
164 /** For use with IEM function that may do a longjmp (when enabled).
166 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
167 * attribute. So, we indicate that function that may be part of a longjmp may
168 * throw "exceptions" and that the compiler should definitely not generate and
169 * std::terminate calling unwind code.
171 * Here is one example of this ending in std::terminate:
172 * @code{.txt}
173 00 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
174 01 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
175 02 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
176 03 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
177 04 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
178 05 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
179 06 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
180 07 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
181 08 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
182 09 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
183 0a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
184 0b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
185 0c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
186 0d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
187 0e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
188 0f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
189 10 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
190 @endcode
192 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
194 #if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
195 # define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
196 #else
197 # define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
198 #endif
199 /* ASM-NOINC-END */
201 #define IEM_IMPLEMENTS_TASKSWITCH
203 /** @def IEM_WITH_3DNOW
204 * Includes the 3DNow decoding. */
205 #if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
206 # ifndef IEM_WITHOUT_3DNOW
207 # define IEM_WITH_3DNOW
208 # endif
209 #endif
211 /** @def IEM_WITH_THREE_0F_38
212 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
213 #if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
214 # ifndef IEM_WITHOUT_THREE_0F_38
215 # define IEM_WITH_THREE_0F_38
216 # endif
217 #endif
219 /** @def IEM_WITH_THREE_0F_3A
220 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
221 #if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
222 # ifndef IEM_WITHOUT_THREE_0F_3A
223 # define IEM_WITH_THREE_0F_3A
224 # endif
225 #endif
227 /** @def IEM_WITH_VEX
228 * Includes the VEX decoding. */
229 #if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
230 # ifndef IEM_WITHOUT_VEX
231 # define IEM_WITH_VEX
232 # endif
233 #endif
235 /** @def IEM_CFG_TARGET_CPU
236 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
238 * By default we allow this to be configured by the user via the
239 * CPUM/GuestCpuName config string, but this comes at a slight cost during
240 * decoding. So, for applications of this code where there is no need to
241 * be dynamic wrt target CPU, just modify this define.
243 #if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
244 # define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
245 #endif
247 //#define IEM_WITH_CODE_TLB // - work in progress
248 //#define IEM_WITH_DATA_TLB // - work in progress
251 /** @def IEM_USE_UNALIGNED_DATA_ACCESS
252 * Use unaligned accesses instead of elaborate byte assembly. */
253 #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
254 # define IEM_USE_UNALIGNED_DATA_ACCESS
255 #endif /*ASM-NOINC*/
257 //#define IEM_LOG_MEMORY_WRITES
261 #ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
263 # if !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
264 /** Instruction statistics. */
265 typedef struct IEMINSTRSTATS
267 # define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
268 # include "IEMInstructionStatisticsTmpl.h"
269 # undef IEM_DO_INSTR_STAT
270 } IEMINSTRSTATS;
271 #else
272 struct IEMINSTRSTATS;
273 typedef struct IEMINSTRSTATS IEMINSTRSTATS;
274 #endif
275 /** Pointer to IEM instruction statistics. */
276 typedef IEMINSTRSTATS *PIEMINSTRSTATS;
279 /** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
280 * @{ */
281 #define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
282 #define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
283 #define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
284 #define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
285 #define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
286 /** Selects the right variant from a_aArray.
287 * pVCpu is implicit in the caller context. */
288 #define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
289 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
290 /** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
291 * be used because the host CPU does not support the operation. */
292 #define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
293 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
294 /** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
295 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
296 * into the two.
297 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
298 #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
299 # define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
300 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
301 #else
302 # define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
303 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
304 #endif
305 /** @} */
308 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
309 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
311 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
312 * indicator.
314 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
316 #if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
317 # define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
318 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
319 #else
320 # define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
321 #endif
325 * Branch types.
327 typedef enum IEMBRANCH
329 IEMBRANCH_JUMP = 1,
330 IEMBRANCH_CALL,
331 IEMBRANCH_TRAP,
332 IEMBRANCH_SOFTWARE_INT,
333 IEMBRANCH_HARDWARE_INT
334 } IEMBRANCH;
335 AssertCompileSize(IEMBRANCH, 4);
339 * INT instruction types.
341 typedef enum IEMINT
343 /** INT n instruction (opcode 0xcd imm). */
344 IEMINT_INTN = 0,
345 /** Single byte INT3 instruction (opcode 0xcc). */
346 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
347 /** Single byte INTO instruction (opcode 0xce). */
348 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
349 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
350 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
351 } IEMINT;
352 AssertCompileSize(IEMINT, 4);
356 * A FPU result.
358 typedef struct IEMFPURESULT
360 /** The output value. */
361 RTFLOAT80U r80Result;
362 /** The output status. */
363 uint16_t FSW;
364 } IEMFPURESULT;
365 AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
366 /** Pointer to a FPU result. */
367 typedef IEMFPURESULT *PIEMFPURESULT;
368 /** Pointer to a const FPU result. */
369 typedef IEMFPURESULT const *PCIEMFPURESULT;
373 * A FPU result consisting of two output values and FSW.
375 typedef struct IEMFPURESULTTWO
377 /** The first output value. */
378 RTFLOAT80U r80Result1;
379 /** The output status. */
380 uint16_t FSW;
381 /** The second output value. */
382 RTFLOAT80U r80Result2;
383 } IEMFPURESULTTWO;
384 AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
385 AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
386 /** Pointer to a FPU result consisting of two output values and FSW. */
387 typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
388 /** Pointer to a const FPU result consisting of two output values and FSW. */
389 typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
393 * IEM TLB entry.
395 * Lookup assembly:
396 * @code{.asm}
397 ; Calculate tag.
398 mov rax, [VA]
399 shl rax, 16
400 shr rax, 16 + X86_PAGE_SHIFT
401 or rax, [uTlbRevision]
403 ; Do indexing.
404 movzx ecx, al
405 lea rcx, [pTlbEntries + rcx]
407 ; Check tag.
408 cmp [rcx + IEMTLBENTRY.uTag], rax
409 jne .TlbMiss
411 ; Check access.
412 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
413 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
414 cmp rax, [uTlbPhysRev]
415 jne .TlbMiss
417 ; Calc address and we're done.
418 mov eax, X86_PAGE_OFFSET_MASK
419 and eax, [VA]
420 or rax, [rcx + IEMTLBENTRY.pMappingR3]
421 %ifdef VBOX_WITH_STATISTICS
422 inc qword [cTlbHits]
423 %endif
424 jmp .Done
426 .TlbMiss:
427 mov r8d, ACCESS_FLAGS
428 mov rdx, [VA]
429 mov rcx, [pVCpu]
430 call iemTlbTypeMiss
431 .Done:
433 @endcode
436 typedef struct IEMTLBENTRY
438 /** The TLB entry tag.
439 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
440 * is ASSUMING a virtual address width of 48 bits.
442 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
444 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
445 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
446 * revision wraps around though, the tags needs to be zeroed.
448 * @note Try use SHRD instruction? After seeing
449 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
451 * @todo This will need to be reorganized for 57-bit wide virtual address and
452 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
453 * have to move the TLB entry versioning entirely to the
454 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
455 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
456 * consumed by PCID and ASID (12 + 6 = 18).
458 uint64_t uTag;
459 /** Access flags and physical TLB revision.
461 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
462 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
463 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
464 * - Bit 3 - pgm phys/virt - not directly writable.
465 * - Bit 4 - pgm phys page - not directly readable.
466 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
467 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
468 * - Bit 7 - tlb entry - pMappingR3 member not valid.
469 * - Bits 63 thru 8 are used for the physical TLB revision number.
471 * We're using complemented bit meanings here because it makes it easy to check
472 * whether special action is required. For instance a user mode write access
473 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
474 * non-zero result would mean special handling needed because either it wasn't
475 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
476 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
477 * need to check any PTE flag.
479 uint64_t fFlagsAndPhysRev;
480 /** The guest physical page address. */
481 uint64_t GCPhys;
482 /** Pointer to the ring-3 mapping. */
483 R3PTRTYPE(uint8_t *) pbMappingR3;
484 #if HC_ARCH_BITS == 32
485 uint32_t u32Padding1;
486 #endif
487 } IEMTLBENTRY;
488 AssertCompileSize(IEMTLBENTRY, 32);
489 /** Pointer to an IEM TLB entry. */
490 typedef IEMTLBENTRY *PIEMTLBENTRY;
492 /** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
493 * @{ */
494 #define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
495 #define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
496 #define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
497 #define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
498 #define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
499 #define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
500 #define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
501 #define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(7) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
502 #define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(8) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
503 #define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(9) /**< Phys page: Code page. */
504 #define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffffc00) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
505 /** @} */
509 * An IEM TLB.
511 * We've got two of these, one for data and one for instructions.
513 typedef struct IEMTLB
515 /** The TLB revision.
516 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
517 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
518 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
519 * (The revision zero indicates an invalid TLB entry.)
521 * The initial value is choosen to cause an early wraparound. */
522 uint64_t uTlbRevision;
523 /** The TLB physical address revision - shadow of PGM variable.
525 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
526 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
527 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
528 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
530 * The initial value is choosen to cause an early wraparound. */
531 uint64_t volatile uTlbPhysRev;
533 /* Statistics: */
535 /** TLB hits (VBOX_WITH_STATISTICS only). */
536 uint64_t cTlbHits;
537 /** TLB misses. */
538 uint32_t cTlbMisses;
539 /** Slow read path. */
540 uint32_t cTlbSlowReadPath;
541 /** Safe read path. */
542 uint32_t cTlbSafeReadPath;
543 /** Safe write path. */
544 uint32_t cTlbSafeWritePath;
545 #if 0
546 /** TLB misses because of tag mismatch. */
547 uint32_t cTlbMissesTag;
548 /** TLB misses because of virtual access violation. */
549 uint32_t cTlbMissesVirtAccess;
550 /** TLB misses because of dirty bit. */
551 uint32_t cTlbMissesDirty;
552 /** TLB misses because of MMIO */
553 uint32_t cTlbMissesMmio;
554 /** TLB misses because of write access handlers. */
555 uint32_t cTlbMissesWriteHandler;
556 /** TLB misses because no r3(/r0) mapping. */
557 uint32_t cTlbMissesMapping;
558 #endif
559 /** Alignment padding. */
560 uint32_t au32Padding[6];
562 /** The TLB entries.
563 * We've choosen 256 because that way we can obtain the result directly from a
564 * 8-bit register without an additional AND instruction. */
565 IEMTLBENTRY aEntries[256];
566 } IEMTLB;
567 AssertCompileSizeAlignment(IEMTLB, 64);
568 /** IEMTLB::uTlbRevision increment. */
569 #define IEMTLB_REVISION_INCR RT_BIT_64(36)
570 /** IEMTLB::uTlbRevision mask. */
571 #define IEMTLB_REVISION_MASK (~(RT_BIT_64(36) - 1))
572 /** IEMTLB::uTlbPhysRev increment.
573 * @sa IEMTLBE_F_PHYS_REV */
574 #define IEMTLB_PHYS_REV_INCR RT_BIT_64(10)
576 * Calculates the TLB tag for a virtual address.
577 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
578 * @param a_pTlb The TLB.
579 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
580 * the clearing of the top 16 bits won't work (if 32-bit
581 * we'll end up with mostly zeros).
583 #define IEMTLB_CALC_TAG(a_pTlb, a_GCPtr) ( IEMTLB_CALC_TAG_NO_REV(a_GCPtr) | (a_pTlb)->uTlbRevision )
585 * Calculates the TLB tag for a virtual address but without TLB revision.
586 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
587 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
588 * the clearing of the top 16 bits won't work (if 32-bit
589 * we'll end up with mostly zeros).
591 #define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
593 * Converts a TLB tag value into a TLB index.
594 * @returns Index into IEMTLB::aEntries.
595 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
597 #define IEMTLB_TAG_TO_INDEX(a_uTag) ( (uint8_t)(a_uTag) )
599 * Converts a TLB tag value into a TLB index.
600 * @returns Index into IEMTLB::aEntries.
601 * @param a_pTlb The TLB.
602 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
604 #define IEMTLB_TAG_TO_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_INDEX(a_uTag)] )
607 /** @name IEM_MC_F_XXX - MC block flags/clues.
608 * @todo Merge with IEM_CIMPL_F_XXX
609 * @{ */
610 #define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
611 #define IEM_MC_F_MIN_186 RT_BIT_32(1)
612 #define IEM_MC_F_MIN_286 RT_BIT_32(2)
613 #define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
614 #define IEM_MC_F_MIN_386 RT_BIT_32(3)
615 #define IEM_MC_F_MIN_486 RT_BIT_32(4)
616 #define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
617 #define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
618 #define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
619 #define IEM_MC_F_64BIT RT_BIT_32(6)
620 #define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
621 /** This is set by IEMAllN8vePython.py to indicate a variation without the
622 * flags-clearing-and-checking, when there is also a variation with that.
623 * @note Do not use this manully, it's only for python and for testing in
624 * the native recompiler! */
625 #define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
626 /** @} */
628 /** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
630 * These clues are mainly for the recompiler, so that it can emit correct code.
632 * They are processed by the python script and which also automatically
633 * calculates flags for MC blocks based on the statements, extending the use of
634 * these flags to describe MC block behavior to the recompiler core. The python
635 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
636 * error checking purposes. The script emits the necessary fEndTb = true and
637 * similar statements as this reduces compile time a tiny bit.
639 * @{ */
640 /** Flag set if direct branch, clear if absolute or indirect. */
641 #define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
642 /** Flag set if indirect branch, clear if direct or relative.
643 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
644 * as well as for return instructions (RET, IRET, RETF). */
645 #define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
646 /** Flag set if relative branch, clear if absolute or indirect. */
647 #define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
648 /** Flag set if conditional branch, clear if unconditional. */
649 #define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
650 /** Flag set if it's a far branch (changes CS). */
651 #define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
652 /** Convenience: Testing any kind of branch. */
653 #define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
655 /** Execution flags may change (IEMCPU::fExec). */
656 #define IEM_CIMPL_F_MODE RT_BIT_32(5)
657 /** May change significant portions of RFLAGS. */
658 #define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
659 /** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
660 #define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
661 /** May trigger interrupt shadowing. */
662 #define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
663 /** May enable interrupts, so recheck IRQ immediately afterwards executing
664 * the instruction. */
665 #define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
666 /** May disable interrupts, so recheck IRQ immediately before executing the
667 * instruction. */
668 #define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
669 /** Convenience: Check for IRQ both before and after an instruction. */
670 #define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
671 /** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
672 #define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
673 /** May modify FPU state.
674 * @todo Not sure if this is useful yet. */
675 #define IEM_CIMPL_F_FPU RT_BIT_32(12)
676 /** REP prefixed instruction which may yield before updating PC.
677 * @todo Not sure if this is useful, REP functions now return non-zero
678 * status if they don't update the PC. */
679 #define IEM_CIMPL_F_REP RT_BIT_32(13)
680 /** I/O instruction.
681 * @todo Not sure if this is useful yet. */
682 #define IEM_CIMPL_F_IO RT_BIT_32(14)
683 /** Force end of TB after the instruction. */
684 #define IEM_CIMPL_F_END_TB RT_BIT_32(15)
685 /** Flag set if a branch may also modify the stack (push/pop return address). */
686 #define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
687 /** Flag set if a branch may also modify the stack (push/pop return address)
688 * and switch it (load/restore SS:RSP). */
689 #define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
690 /** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
691 #define IEM_CIMPL_F_XCPT \
692 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
693 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
695 /** The block calls a C-implementation instruction function with two implicit arguments.
696 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
697 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
698 * @note The python scripts will add this if missing. */
699 #define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
700 /** The block calls an ASM-implementation instruction function.
701 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
702 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
703 * @note The python scripts will add this if missing. */
704 #define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
705 /** The block calls an ASM-implementation instruction function with an implicit
706 * X86FXSTATE pointer argument.
707 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
708 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
709 * @note The python scripts will add this if missing. */
710 #define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
711 /** The block calls an ASM-implementation instruction function with an implicit
712 * X86XSAVEAREA pointer argument.
713 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
714 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
715 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
716 * @note The python scripts will add this if missing. */
717 #define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
718 /** @} */
721 /** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
723 * These flags are set when entering IEM and adjusted as code is executed, such
724 * that they will always contain the current values as instructions are
725 * finished.
727 * In recompiled execution mode, (most of) these flags are included in the
728 * translation block selection key and stored in IEMTB::fFlags alongside the
729 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
730 * in IEMCPU::fExec.
732 * @{ */
733 /** Mode: The block target mode mask. */
734 #define IEM_F_MODE_MASK UINT32_C(0x0000001f)
735 /** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
736 #define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
737 /** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
738 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
739 * 32-bit mode (for simplifying most memory accesses). */
740 #define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
741 /** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
742 #define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
743 /** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
744 #define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
746 /** X86 Mode: 16-bit on 386 or later. */
747 #define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
748 /** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
749 #define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
750 /** X86 Mode: 16-bit protected mode on 386 or later. */
751 #define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
752 /** X86 Mode: 16-bit protected mode on 386 or later. */
753 #define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
754 /** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
755 #define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
757 /** X86 Mode: 32-bit on 386 or later. */
758 #define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
759 /** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
760 #define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
761 /** X86 Mode: 32-bit protected mode. */
762 #define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
763 /** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
764 #define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
766 /** X86 Mode: 64-bit (includes protected, but not the flat bit). */
767 #define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
769 /** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
770 #define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
771 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
772 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
774 /** Bypass access handlers when set. */
775 #define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
776 /** Have pending hardware instruction breakpoints. */
777 #define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
778 /** Have pending hardware data breakpoints. */
779 #define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
781 /** X86: Have pending hardware I/O breakpoints. */
782 #define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
783 /** X86: Disregard the lock prefix (implied or not) when set. */
784 #define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
786 /** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
787 #define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
789 /** Caller configurable options. */
790 #define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
792 /** X86: The current protection level (CPL) shift factor. */
793 #define IEM_F_X86_CPL_SHIFT 8
794 /** X86: The current protection level (CPL) mask. */
795 #define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
796 /** X86: The current protection level (CPL) shifted mask. */
797 #define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
799 /** X86 execution context.
800 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
801 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
802 * mode. */
803 #define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
804 /** X86 context: Plain regular execution context. */
805 #define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
806 /** X86 context: VT-x enabled. */
807 #define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
808 /** X86 context: AMD-V enabled. */
809 #define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
810 /** X86 context: In AMD-V or VT-x guest mode. */
811 #define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
812 /** X86 context: System management mode (SMM). */
813 #define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
815 /** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
816 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
817 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
818 * alread). */
820 /** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
821 * iemRegFinishClearingRF() most for most situations
822 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
823 * the IEM_F_PENDING_BRK_XXX bits alread). */
825 /** @} */
828 /** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
830 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
831 * translation block flags. The combined flag mask (subject to
832 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
834 * @{ */
835 /** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
836 #define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
838 /** Type: The block type mask. */
839 #define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
840 /** Type: Purly threaded recompiler (via tables). */
841 #define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
842 /** Type: Native recompilation. */
843 #define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
845 /** Set when we're starting the block in an "interrupt shadow".
846 * We don't need to distingish between the two types of this mask, thus the one.
847 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
848 #define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
849 /** Set when we're currently inhibiting NMIs
850 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
851 #define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
853 /** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
854 * we're close the limit before starting a TB, as determined by
855 * iemGetTbFlagsForCurrentPc(). */
856 #define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
858 /** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
860 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
861 * don't implement), because we don't currently generate any context
862 * specific code - that's all handled in CIMPL functions.
864 * For the threaded recompiler we don't generate any CPL specific code
865 * either, but the native recompiler does for memory access (saves getting
866 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
867 * Since most OSes will not share code between rings, this shouldn't
868 * have any real effect on TB/memory/recompiling load.
870 #define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
871 /** @} */
873 AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
874 AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
875 AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
876 AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
877 AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
878 AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
879 AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
880 AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
881 AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
882 AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
883 AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
884 AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
885 AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
886 AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
887 AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
888 AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
889 AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
890 AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
891 AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
893 AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
894 AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
895 AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
896 AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
897 AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
898 AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
899 AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
900 AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
901 AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
902 AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
903 AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
904 AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
906 AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
907 AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
908 AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
910 /** Native instruction type for use with the native code generator.
911 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
912 #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
913 typedef uint8_t IEMNATIVEINSTR;
914 #else
915 typedef uint32_t IEMNATIVEINSTR;
916 #endif
917 /** Pointer to a native instruction unit. */
918 typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
919 /** Pointer to a const native instruction unit. */
920 typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
923 * A call for the threaded call table.
925 typedef struct IEMTHRDEDCALLENTRY
927 /** The function to call (IEMTHREADEDFUNCS). */
928 uint16_t enmFunction;
930 /** Instruction number in the TB (for statistics). */
931 uint8_t idxInstr;
932 /** The opcode length. */
933 uint8_t cbOpcode;
934 /** Offset into IEMTB::pabOpcodes. */
935 uint16_t offOpcode;
937 /** TB lookup table index (7 bits) and large size (1 bits).
939 * The default size is 1 entry, but for indirect calls and returns we set the
940 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
941 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
942 * lookup isn't that slow compared to sequentially trying out 4 TBs.
944 * By default lookup table entry 0 for a TB is reserved as a fallback for
945 * calltable entries w/o explicit entreis, so this member will be non-zero if
946 * there is a lookup entry associated with this call.
948 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
950 uint8_t uTbLookup;
952 /** Unused atm. */
953 uint8_t uUnused0;
955 /** Generic parameters. */
956 uint64_t auParams[3];
957 } IEMTHRDEDCALLENTRY;
958 AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
959 /** Pointer to a threaded call entry. */
960 typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
961 /** Pointer to a const threaded call entry. */
962 typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
964 /** The number of TB lookup table entries for a large allocation
965 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
966 #define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
967 /** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
968 #define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
969 /** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
970 #define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
971 /** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
972 #define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
973 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
975 /** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
976 #define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
979 * Native IEM TB 'function' typedef.
981 * This will throw/longjmp on occation.
983 * @note AMD64 doesn't have that many non-volatile registers and does sport
984 * 32-bit address displacments, so we don't need pCtx.
986 * On ARM64 pCtx allows us to directly address the whole register
987 * context without requiring a separate indexing register holding the
988 * offset. This saves an instruction loading the offset for each guest
989 * CPU context access, at the cost of a non-volatile register.
990 * Fortunately, ARM64 has quite a lot more registers.
992 typedef
993 #ifdef RT_ARCH_AMD64
994 int FNIEMTBNATIVE(PVMCPUCC pVCpu)
995 #else
996 int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
997 #endif
998 #if RT_CPLUSPLUS_PREREQ(201700)
999 IEM_NOEXCEPT_MAY_LONGJMP
1000 #endif
1002 /** Pointer to a native IEM TB entry point function.
1003 * This will throw/longjmp on occation. */
1004 typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1008 * Translation block debug info entry type.
1010 typedef enum IEMTBDBGENTRYTYPE
1012 kIemTbDbgEntryType_Invalid = 0,
1013 /** The entry is for marking a native code position.
1014 * Entries following this all apply to this position. */
1015 kIemTbDbgEntryType_NativeOffset,
1016 /** The entry is for a new guest instruction. */
1017 kIemTbDbgEntryType_GuestInstruction,
1018 /** Marks the start of a threaded call. */
1019 kIemTbDbgEntryType_ThreadedCall,
1020 /** Marks the location of a label. */
1021 kIemTbDbgEntryType_Label,
1022 /** Info about a host register shadowing a guest register. */
1023 kIemTbDbgEntryType_GuestRegShadowing,
1024 #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1025 /** Info about a host SIMD register shadowing a guest SIMD register. */
1026 kIemTbDbgEntryType_GuestSimdRegShadowing,
1027 #endif
1028 #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1029 /** Info about a delayed RIP update. */
1030 kIemTbDbgEntryType_DelayedPcUpdate,
1031 #endif
1032 #if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1033 /** Info about a shadowed guest register becoming dirty. */
1034 kIemTbDbgEntryType_GuestRegDirty,
1035 /** Info about register writeback/flush oepration. */
1036 kIemTbDbgEntryType_GuestRegWriteback,
1037 #endif
1038 kIemTbDbgEntryType_End
1039 } IEMTBDBGENTRYTYPE;
1042 * Translation block debug info entry.
1044 typedef union IEMTBDBGENTRY
1046 /** Plain 32-bit view. */
1047 uint32_t u;
1049 /** Generic view for getting at the type field. */
1050 struct
1052 /** IEMTBDBGENTRYTYPE */
1053 uint32_t uType : 4;
1054 uint32_t uTypeSpecific : 28;
1055 } Gen;
1057 struct
1059 /** kIemTbDbgEntryType_ThreadedCall1. */
1060 uint32_t uType : 4;
1061 /** Native code offset. */
1062 uint32_t offNative : 28;
1063 } NativeOffset;
1065 struct
1067 /** kIemTbDbgEntryType_GuestInstruction. */
1068 uint32_t uType : 4;
1069 uint32_t uUnused : 4;
1070 /** The IEM_F_XXX flags. */
1071 uint32_t fExec : 24;
1072 } GuestInstruction;
1074 struct
1076 /* kIemTbDbgEntryType_ThreadedCall. */
1077 uint32_t uType : 4;
1078 /** Set if the call was recompiled to native code, clear if just calling
1079 * threaded function. */
1080 uint32_t fRecompiled : 1;
1081 uint32_t uUnused : 11;
1082 /** The threaded call number (IEMTHREADEDFUNCS). */
1083 uint32_t enmCall : 16;
1084 } ThreadedCall;
1086 struct
1088 /* kIemTbDbgEntryType_Label. */
1089 uint32_t uType : 4;
1090 uint32_t uUnused : 4;
1091 /** The label type (IEMNATIVELABELTYPE). */
1092 uint32_t enmLabel : 8;
1093 /** The label data. */
1094 uint32_t uData : 16;
1095 } Label;
1097 struct
1099 /* kIemTbDbgEntryType_GuestRegShadowing. */
1100 uint32_t uType : 4;
1101 uint32_t uUnused : 4;
1102 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1103 uint32_t idxGstReg : 8;
1104 /** The host new register number, UINT8_MAX if dropped. */
1105 uint32_t idxHstReg : 8;
1106 /** The previous host register number, UINT8_MAX if new. */
1107 uint32_t idxHstRegPrev : 8;
1108 } GuestRegShadowing;
1110 #ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1111 struct
1113 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1114 uint32_t uType : 4;
1115 uint32_t uUnused : 4;
1116 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1117 uint32_t idxGstSimdReg : 8;
1118 /** The host new register number, UINT8_MAX if dropped. */
1119 uint32_t idxHstSimdReg : 8;
1120 /** The previous host register number, UINT8_MAX if new. */
1121 uint32_t idxHstSimdRegPrev : 8;
1122 } GuestSimdRegShadowing;
1123 #endif
1125 #ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1126 struct
1128 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1129 uint32_t uType : 4;
1130 /* The instruction offset added to the program counter. */
1131 uint32_t offPc : 14;
1132 /** Number of instructions skipped. */
1133 uint32_t cInstrSkipped : 14;
1134 } DelayedPcUpdate;
1135 #endif
1137 #if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1138 struct
1140 /* kIemTbDbgEntryType_GuestRegDirty. */
1141 uint32_t uType : 4;
1142 uint32_t uUnused : 11;
1143 /** Flag whether this is about a SIMD (true) or general (false) register. */
1144 uint32_t fSimdReg : 1;
1145 /** The guest register index being marked as dirty. */
1146 uint32_t idxGstReg : 8;
1147 /** The host register number this register is shadowed in .*/
1148 uint32_t idxHstReg : 8;
1149 } GuestRegDirty;
1151 struct
1153 /* kIemTbDbgEntryType_GuestRegWriteback. */
1154 uint32_t uType : 4;
1155 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1156 uint32_t fSimdReg : 1;
1157 /** The mask shift. */
1158 uint32_t cShift : 2;
1159 /** The guest register mask being written back. */
1160 uint32_t fGstReg : 25;
1161 } GuestRegWriteback;
1162 #endif
1164 } IEMTBDBGENTRY;
1165 AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1166 /** Pointer to a debug info entry. */
1167 typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1168 /** Pointer to a const debug info entry. */
1169 typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1172 * Translation block debug info.
1174 typedef struct IEMTBDBG
1176 /** Number of entries in aEntries. */
1177 uint32_t cEntries;
1178 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1179 uint32_t offNativeLast;
1180 /** Debug info entries. */
1181 RT_FLEXIBLE_ARRAY_EXTENSION
1182 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1183 } IEMTBDBG;
1184 /** Pointer to TB debug info. */
1185 typedef IEMTBDBG *PIEMTBDBG;
1186 /** Pointer to const TB debug info. */
1187 typedef IEMTBDBG const *PCIEMTBDBG;
1191 * Translation block.
1193 * The current plan is to just keep TBs and associated lookup hash table private
1194 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1195 * avoids using expensive atomic primitives for updating lists and stuff.
1197 #pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1198 typedef struct IEMTB
1200 /** Next block with the same hash table entry. */
1201 struct IEMTB *pNext;
1202 /** Usage counter. */
1203 uint32_t cUsed;
1204 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1205 uint32_t msLastUsed;
1207 /** @name What uniquely identifies the block.
1208 * @{ */
1209 RTGCPHYS GCPhysPc;
1210 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1211 uint32_t fFlags;
1212 union
1214 struct
1216 /**< Relevant CS X86DESCATTR_XXX bits. */
1217 uint16_t fAttr;
1218 } x86;
1220 /** @} */
1222 /** Number of opcode ranges. */
1223 uint8_t cRanges;
1224 /** Statistics: Number of instructions in the block. */
1225 uint8_t cInstructions;
1227 /** Type specific info. */
1228 union
1230 struct
1232 /** The call sequence table. */
1233 PIEMTHRDEDCALLENTRY paCalls;
1234 /** Number of calls in paCalls. */
1235 uint16_t cCalls;
1236 /** Number of calls allocated. */
1237 uint16_t cAllocated;
1238 } Thrd;
1239 struct
1241 /** The native instructions (PFNIEMTBNATIVE). */
1242 PIEMNATIVEINSTR paInstructions;
1243 /** Number of instructions pointed to by paInstructions. */
1244 uint32_t cInstructions;
1245 } Native;
1246 /** Generic view for zeroing when freeing. */
1247 struct
1249 uintptr_t uPtr;
1250 uint32_t uData;
1251 } Gen;
1254 /** The allocation chunk this TB belongs to. */
1255 uint8_t idxAllocChunk;
1256 /** The number of entries in the lookup table.
1257 * Because we're out of space, the TB lookup table is located before the
1258 * opcodes pointed to by pabOpcodes. */
1259 uint8_t cTbLookupEntries;
1261 /** Number of bytes of opcodes stored in pabOpcodes.
1262 * @todo this field isn't really needed, aRanges keeps the actual info. */
1263 uint16_t cbOpcodes;
1264 /** Pointer to the opcode bytes this block was recompiled from.
1265 * This also points to the TB lookup table, which starts cTbLookupEntries
1266 * entries before the opcodes (we don't have room atm for another point). */
1267 uint8_t *pabOpcodes;
1269 /** Debug info if enabled.
1270 * This is only generated by the native recompiler. */
1271 PIEMTBDBG pDbgInfo;
1273 /* --- 64 byte cache line end --- */
1275 /** Opcode ranges.
1277 * The opcode checkers and maybe TLB loading functions will use this to figure
1278 * out what to do. The parameter will specify an entry and the opcode offset to
1279 * start at and the minimum number of bytes to verify (instruction length).
1281 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1282 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1283 * code TLB (must have a valid entry for that address) and scan the ranges to
1284 * locate the corresponding opcodes. Probably.
1286 struct IEMTBOPCODERANGE
1288 /** Offset within pabOpcodes. */
1289 uint16_t offOpcodes;
1290 /** Number of bytes. */
1291 uint16_t cbOpcodes;
1292 /** The page offset. */
1293 RT_GCC_EXTENSION
1294 uint16_t offPhysPage : 12;
1295 /** Unused bits. */
1296 RT_GCC_EXTENSION
1297 uint16_t u2Unused : 2;
1298 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1299 RT_GCC_EXTENSION
1300 uint16_t idxPhysPage : 2;
1301 } aRanges[8];
1303 /** Physical pages that this TB covers.
1304 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1305 RTGCPHYS aGCPhysPages[2];
1306 } IEMTB;
1307 #pragma pack()
1308 AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1309 AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1310 AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1311 AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1312 AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1313 AssertCompileMemberOffset(IEMTB, aRanges, 64);
1314 AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1315 #if 1
1316 AssertCompileSize(IEMTB, 128);
1317 # define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1318 #else
1319 AssertCompileSize(IEMTB, 168);
1320 # undef IEMTB_SIZE_IS_POWER_OF_TWO
1321 #endif
1323 /** Pointer to a translation block. */
1324 typedef IEMTB *PIEMTB;
1325 /** Pointer to a const translation block. */
1326 typedef IEMTB const *PCIEMTB;
1328 /** Gets address of the given TB lookup table entry. */
1329 #define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1330 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1334 * A chunk of memory in the TB allocator.
1336 typedef struct IEMTBCHUNK
1338 /** Pointer to the translation blocks in this chunk. */
1339 PIEMTB paTbs;
1340 #ifdef IN_RING0
1341 /** Allocation handle. */
1342 RTR0MEMOBJ hMemObj;
1343 #endif
1344 } IEMTBCHUNK;
1347 * A per-CPU translation block allocator.
1349 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1350 * the length of the collision list, and of course also for cache line alignment
1351 * reasons, the TBs must be allocated with at least 64-byte alignment.
1352 * Memory is there therefore allocated using one of the page aligned allocators.
1355 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1356 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1357 * that enables us to quickly calculate the allocation bitmap position when
1358 * freeing the translation block.
1360 typedef struct IEMTBALLOCATOR
1362 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1363 uint32_t uMagic;
1365 #ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1366 /** Mask corresponding to cTbsPerChunk - 1. */
1367 uint32_t fChunkMask;
1368 /** Shift count corresponding to cTbsPerChunk. */
1369 uint8_t cChunkShift;
1370 #else
1371 uint32_t uUnused;
1372 uint8_t bUnused;
1373 #endif
1374 /** Number of chunks we're allowed to allocate. */
1375 uint8_t cMaxChunks;
1376 /** Number of chunks currently populated. */
1377 uint16_t cAllocatedChunks;
1378 /** Number of translation blocks per chunk. */
1379 uint32_t cTbsPerChunk;
1380 /** Chunk size. */
1381 uint32_t cbPerChunk;
1383 /** The maximum number of TBs. */
1384 uint32_t cMaxTbs;
1385 /** Total number of TBs in the populated chunks.
1386 * (cAllocatedChunks * cTbsPerChunk) */
1387 uint32_t cTotalTbs;
1388 /** The current number of TBs in use.
1389 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1390 uint32_t cInUseTbs;
1391 /** Statistics: Number of the cInUseTbs that are native ones. */
1392 uint32_t cNativeTbs;
1393 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1394 uint32_t cThreadedTbs;
1396 /** Where to start pruning TBs from when we're out.
1397 * See iemTbAllocatorAllocSlow for details. */
1398 uint32_t iPruneFrom;
1399 /** Hint about which bit to start scanning the bitmap from. */
1400 uint32_t iStartHint;
1401 /** Where to start pruning native TBs from when we're out of executable memory.
1402 * See iemTbAllocatorFreeupNativeSpace for details. */
1403 uint32_t iPruneNativeFrom;
1404 uint32_t uPadding;
1406 /** Statistics: Number of TB allocation calls. */
1407 STAMCOUNTER StatAllocs;
1408 /** Statistics: Number of TB free calls. */
1409 STAMCOUNTER StatFrees;
1410 /** Statistics: Time spend pruning. */
1411 STAMPROFILE StatPrune;
1412 /** Statistics: Time spend pruning native TBs. */
1413 STAMPROFILE StatPruneNative;
1415 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1416 PIEMTB pDelayedFreeHead;
1418 /** Allocation chunks. */
1419 IEMTBCHUNK aChunks[256];
1421 /** Allocation bitmap for all possible chunk chunks. */
1422 RT_FLEXIBLE_ARRAY_EXTENSION
1423 uint64_t bmAllocated[RT_FLEXIBLE_ARRAY];
1424 } IEMTBALLOCATOR;
1425 /** Pointer to a TB allocator. */
1426 typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1428 /** Magic value for the TB allocator (Emmet Harley Cohen). */
1429 #define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1433 * A per-CPU translation block cache (hash table).
1435 * The hash table is allocated once during IEM initialization and size double
1436 * the max TB count, rounded up to the nearest power of two (so we can use and
1437 * AND mask rather than a rest division when hashing).
1439 typedef struct IEMTBCACHE
1441 /** Magic value (IEMTBCACHE_MAGIC). */
1442 uint32_t uMagic;
1443 /** Size of the hash table. This is a power of two. */
1444 uint32_t cHash;
1445 /** The mask corresponding to cHash. */
1446 uint32_t uHashMask;
1447 uint32_t uPadding;
1449 /** @name Statistics
1450 * @{ */
1451 /** Number of collisions ever. */
1452 STAMCOUNTER cCollisions;
1454 /** Statistics: Number of TB lookup misses. */
1455 STAMCOUNTER cLookupMisses;
1456 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1457 STAMCOUNTER cLookupHits;
1458 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1459 STAMCOUNTER cLookupHitsViaTbLookupTable;
1460 STAMCOUNTER auPadding2[2];
1461 /** Statistics: Collision list length pruning. */
1462 STAMPROFILE StatPrune;
1463 /** @} */
1465 /** The hash table itself.
1466 * @note The lower 6 bits of the pointer is used for keeping the collision
1467 * list length, so we can take action when it grows too long.
1468 * This works because TBs are allocated using a 64 byte (or
1469 * higher) alignment from page aligned chunks of memory, so the lower
1470 * 6 bits of the address will always be zero.
1471 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1473 RT_FLEXIBLE_ARRAY_EXTENSION
1474 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1475 } IEMTBCACHE;
1476 /** Pointer to a per-CPU translation block cahce. */
1477 typedef IEMTBCACHE *PIEMTBCACHE;
1479 /** Magic value for IEMTBCACHE (Johnny O'Neal). */
1480 #define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1482 /** The collision count mask for IEMTBCACHE::apHash entries. */
1483 #define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1484 /** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1485 #define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1486 /** Combine a TB pointer and a collision list length into a value for an
1487 * IEMTBCACHE::apHash entry. */
1488 #define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1489 /** Combine a TB pointer and a collision list length into a value for an
1490 * IEMTBCACHE::apHash entry. */
1491 #define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1492 /** Combine a TB pointer and a collision list length into a value for an
1493 * IEMTBCACHE::apHash entry. */
1494 #define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1497 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1499 #define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1500 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1503 * Calculates the hash table slot for a TB from physical PC address and TB
1504 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1506 #define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1507 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1510 /** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1512 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1514 * @{ */
1515 /** Value if no branching happened recently. */
1516 #define IEMBRANCHED_F_NO UINT8_C(0x00)
1517 /** Flag set if direct branch, clear if absolute or indirect. */
1518 #define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1519 /** Flag set if indirect branch, clear if direct or relative. */
1520 #define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1521 /** Flag set if relative branch, clear if absolute or indirect. */
1522 #define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1523 /** Flag set if conditional branch, clear if unconditional. */
1524 #define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1525 /** Flag set if it's a far branch. */
1526 #define IEMBRANCHED_F_FAR UINT8_C(0x10)
1527 /** Flag set if the stack pointer is modified. */
1528 #define IEMBRANCHED_F_STACK UINT8_C(0x20)
1529 /** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1530 #define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1531 /** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1532 #define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1533 /** @} */
1537 * The per-CPU IEM state.
1539 typedef struct IEMCPU
1541 /** Info status code that needs to be propagated to the IEM caller.
1542 * This cannot be passed internally, as it would complicate all success
1543 * checks within the interpreter making the code larger and almost impossible
1544 * to get right. Instead, we'll store status codes to pass on here. Each
1545 * source of these codes will perform appropriate sanity checks. */
1546 int32_t rcPassUp; /* 0x00 */
1547 /** Execution flag, IEM_F_XXX. */
1548 uint32_t fExec; /* 0x04 */
1550 /** @name Decoder state.
1551 * @{ */
1552 #ifdef IEM_WITH_CODE_TLB
1553 /** The offset of the next instruction byte. */
1554 uint32_t offInstrNextByte; /* 0x08 */
1555 /** The number of bytes available at pbInstrBuf for the current instruction.
1556 * This takes the max opcode length into account so that doesn't need to be
1557 * checked separately. */
1558 uint32_t cbInstrBuf; /* 0x0c */
1559 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1560 * This can be NULL if the page isn't mappable for some reason, in which
1561 * case we'll do fallback stuff.
1563 * If we're executing an instruction from a user specified buffer,
1564 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1565 * aligned pointer but pointer to the user data.
1567 * For instructions crossing pages, this will start on the first page and be
1568 * advanced to the next page by the time we've decoded the instruction. This
1569 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1571 uint8_t const *pbInstrBuf; /* 0x10 */
1572 # if ARCH_BITS == 32
1573 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1574 # endif
1575 /** The program counter corresponding to pbInstrBuf.
1576 * This is set to a non-canonical address when we need to invalidate it. */
1577 uint64_t uInstrBufPc; /* 0x18 */
1578 /** The guest physical address corresponding to pbInstrBuf. */
1579 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1580 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1581 * This takes the CS segment limit into account.
1582 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1583 uint16_t cbInstrBufTotal; /* 0x28 */
1584 # ifndef IEM_WITH_OPAQUE_DECODER_STATE
1585 /** Offset into pbInstrBuf of the first byte of the current instruction.
1586 * Can be negative to efficiently handle cross page instructions. */
1587 int16_t offCurInstrStart; /* 0x2a */
1589 /** The prefix mask (IEM_OP_PRF_XXX). */
1590 uint32_t fPrefixes; /* 0x2c */
1591 /** The extra REX ModR/M register field bit (REX.R << 3). */
1592 uint8_t uRexReg; /* 0x30 */
1593 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1594 * (REX.B << 3). */
1595 uint8_t uRexB; /* 0x31 */
1596 /** The extra REX SIB index field bit (REX.X << 3). */
1597 uint8_t uRexIndex; /* 0x32 */
1599 /** The effective segment register (X86_SREG_XXX). */
1600 uint8_t iEffSeg; /* 0x33 */
1602 /** The offset of the ModR/M byte relative to the start of the instruction. */
1603 uint8_t offModRm; /* 0x34 */
1605 # ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1606 /** The current offset into abOpcode. */
1607 uint8_t offOpcode; /* 0x35 */
1608 # else
1609 uint8_t bUnused; /* 0x35 */
1610 # endif
1611 # else /* IEM_WITH_OPAQUE_DECODER_STATE */
1612 uint8_t abOpaqueDecoderPart1[0x36 - 0x2a];
1613 # endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1615 #else /* !IEM_WITH_CODE_TLB */
1616 # ifndef IEM_WITH_OPAQUE_DECODER_STATE
1617 /** The size of what has currently been fetched into abOpcode. */
1618 uint8_t cbOpcode; /* 0x08 */
1619 /** The current offset into abOpcode. */
1620 uint8_t offOpcode; /* 0x09 */
1621 /** The offset of the ModR/M byte relative to the start of the instruction. */
1622 uint8_t offModRm; /* 0x0a */
1624 /** The effective segment register (X86_SREG_XXX). */
1625 uint8_t iEffSeg; /* 0x0b */
1627 /** The prefix mask (IEM_OP_PRF_XXX). */
1628 uint32_t fPrefixes; /* 0x0c */
1629 /** The extra REX ModR/M register field bit (REX.R << 3). */
1630 uint8_t uRexReg; /* 0x10 */
1631 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1632 * (REX.B << 3). */
1633 uint8_t uRexB; /* 0x11 */
1634 /** The extra REX SIB index field bit (REX.X << 3). */
1635 uint8_t uRexIndex; /* 0x12 */
1637 # else /* IEM_WITH_OPAQUE_DECODER_STATE */
1638 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1639 # endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1640 #endif /* !IEM_WITH_CODE_TLB */
1642 #ifndef IEM_WITH_OPAQUE_DECODER_STATE
1643 /** The effective operand mode. */
1644 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1645 /** The default addressing mode. */
1646 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1647 /** The effective addressing mode. */
1648 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1649 /** The default operand mode. */
1650 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1652 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1653 uint8_t idxPrefix; /* 0x3a, 0x17 */
1654 /** 3rd VEX/EVEX/XOP register.
1655 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1656 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1657 /** The VEX/EVEX/XOP length field. */
1658 uint8_t uVexLength; /* 0x3c, 0x19 */
1659 /** Additional EVEX stuff. */
1660 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1662 # ifndef IEM_WITH_CODE_TLB
1663 /** Explicit alignment padding. */
1664 uint8_t abAlignment2a[1]; /* 0x1b */
1665 # endif
1666 /** The FPU opcode (FOP). */
1667 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1668 # ifndef IEM_WITH_CODE_TLB
1669 /** Explicit alignment padding. */
1670 uint8_t abAlignment2b[2]; /* 0x1e */
1671 # endif
1673 /** The opcode bytes. */
1674 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1675 /** Explicit alignment padding. */
1676 # ifdef IEM_WITH_CODE_TLB
1677 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1678 # else
1679 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1680 # endif
1682 #else /* IEM_WITH_OPAQUE_DECODER_STATE */
1683 # ifdef IEM_WITH_CODE_TLB
1684 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1685 # else
1686 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1687 # endif
1688 #endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1689 /** @} */
1692 /** The number of active guest memory mappings. */
1693 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1695 /** Records for tracking guest memory mappings. */
1696 struct
1698 /** The address of the mapped bytes. */
1699 R3R0PTRTYPE(void *) pv;
1700 /** The access flags (IEM_ACCESS_XXX).
1701 * IEM_ACCESS_INVALID if the entry is unused. */
1702 uint32_t fAccess;
1703 #if HC_ARCH_BITS == 64
1704 uint32_t u32Alignment4; /**< Alignment padding. */
1705 #endif
1706 } aMemMappings[3]; /* 0x50 LB 0x30 */
1708 /** Locking records for the mapped memory. */
1709 union
1711 PGMPAGEMAPLOCK Lock;
1712 uint64_t au64Padding[2];
1713 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1715 /** Bounce buffer info.
1716 * This runs in parallel to aMemMappings. */
1717 struct
1719 /** The physical address of the first byte. */
1720 RTGCPHYS GCPhysFirst;
1721 /** The physical address of the second page. */
1722 RTGCPHYS GCPhysSecond;
1723 /** The number of bytes in the first page. */
1724 uint16_t cbFirst;
1725 /** The number of bytes in the second page. */
1726 uint16_t cbSecond;
1727 /** Whether it's unassigned memory. */
1728 bool fUnassigned;
1729 /** Explicit alignment padding. */
1730 bool afAlignment5[3];
1731 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1733 /** The flags of the current exception / interrupt. */
1734 uint32_t fCurXcpt; /* 0xf8 */
1735 /** The current exception / interrupt. */
1736 uint8_t uCurXcpt; /* 0xfc */
1737 /** Exception / interrupt recursion depth. */
1738 int8_t cXcptRecursions; /* 0xfb */
1740 /** The next unused mapping index.
1741 * @todo try find room for this up with cActiveMappings. */
1742 uint8_t iNextMapping; /* 0xfd */
1743 uint8_t abAlignment7[1];
1745 /** Bounce buffer storage.
1746 * This runs in parallel to aMemMappings and aMemBbMappings. */
1747 struct
1749 uint8_t ab[512];
1750 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1753 /** Pointer set jump buffer - ring-3 context. */
1754 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1755 /** Pointer set jump buffer - ring-0 context. */
1756 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1758 /** @todo Should move this near @a fCurXcpt later. */
1759 /** The CR2 for the current exception / interrupt. */
1760 uint64_t uCurXcptCr2;
1761 /** The error code for the current exception / interrupt. */
1762 uint32_t uCurXcptErr;
1764 /** @name Statistics
1765 * @{ */
1766 /** The number of instructions we've executed. */
1767 uint32_t cInstructions;
1768 /** The number of potential exits. */
1769 uint32_t cPotentialExits;
1770 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
1771 * This may contain uncommitted writes. */
1772 uint32_t cbWritten;
1773 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
1774 uint32_t cRetInstrNotImplemented;
1775 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
1776 uint32_t cRetAspectNotImplemented;
1777 /** Counts informational statuses returned (other than VINF_SUCCESS). */
1778 uint32_t cRetInfStatuses;
1779 /** Counts other error statuses returned. */
1780 uint32_t cRetErrStatuses;
1781 /** Number of times rcPassUp has been used. */
1782 uint32_t cRetPassUpStatus;
1783 /** Number of times RZ left with instruction commit pending for ring-3. */
1784 uint32_t cPendingCommit;
1785 /** Number of misaligned (host sense) atomic instruction accesses. */
1786 uint32_t cMisalignedAtomics;
1787 /** Number of long jumps. */
1788 uint32_t cLongJumps;
1789 /** @} */
1791 /** @name Target CPU information.
1792 * @{ */
1793 #if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
1794 /** The target CPU. */
1795 uint8_t uTargetCpu;
1796 #else
1797 uint8_t bTargetCpuPadding;
1798 #endif
1799 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
1800 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
1801 * native host support and the 2nd for when there is.
1803 * The two values are typically indexed by a g_CpumHostFeatures bit.
1805 * This is for instance used for the BSF & BSR instructions where AMD and
1806 * Intel CPUs produce different EFLAGS. */
1807 uint8_t aidxTargetCpuEflFlavour[2];
1809 /** The CPU vendor. */
1810 CPUMCPUVENDOR enmCpuVendor;
1811 /** @} */
1813 /** @name Host CPU information.
1814 * @{ */
1815 /** The CPU vendor. */
1816 CPUMCPUVENDOR enmHostCpuVendor;
1817 /** @} */
1819 /** Counts RDMSR \#GP(0) LogRel(). */
1820 uint8_t cLogRelRdMsr;
1821 /** Counts WRMSR \#GP(0) LogRel(). */
1822 uint8_t cLogRelWrMsr;
1823 /** Alignment padding. */
1824 uint8_t abAlignment9[42];
1826 /** @name Recompilation
1827 * @{ */
1828 /** Pointer to the current translation block.
1829 * This can either be one being executed or one being compiled. */
1830 R3PTRTYPE(PIEMTB) pCurTbR3;
1831 #ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
1832 /** Frame pointer for the last native TB to execute. */
1833 R3PTRTYPE(void *) pvTbFramePointerR3;
1834 #else
1835 R3PTRTYPE(void *) pvUnusedR3;
1836 #endif
1837 /** Fixed TB used for threaded recompilation.
1838 * This is allocated once with maxed-out sizes and re-used afterwards. */
1839 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
1840 /** Pointer to the ring-3 TB cache for this EMT. */
1841 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
1842 /** Pointer to the ring-3 TB lookup entry.
1843 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
1844 * entry, thus it can always safely be used w/o NULL checking. */
1845 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
1846 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
1847 * The TBs are based on physical addresses, so this is needed to correleated
1848 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
1849 uint64_t uCurTbStartPc;
1850 /** Number of threaded TBs executed. */
1851 uint64_t cTbExecThreaded;
1852 /** Number of native TBs executed. */
1853 uint64_t cTbExecNative;
1854 /** Whether we need to check the opcode bytes for the current instruction.
1855 * This is set by a previous instruction if it modified memory or similar. */
1856 bool fTbCheckOpcodes;
1857 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
1858 uint8_t fTbBranched;
1859 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
1860 bool fTbCrossedPage;
1861 /** Whether to end the current TB. */
1862 bool fEndTb;
1863 /** Number of instructions before we need emit an IRQ check call again.
1864 * This helps making sure we don't execute too long w/o checking for
1865 * interrupts and immediately following instructions that may enable
1866 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
1867 * required to make sure we check following the next instruction as well, see
1868 * fTbCurInstrIsSti. */
1869 uint8_t cInstrTillIrqCheck;
1870 /** Indicates that the current instruction is an STI. This is set by the
1871 * iemCImpl_sti code and subsequently cleared by the recompiler. */
1872 bool fTbCurInstrIsSti;
1873 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
1874 uint16_t cbOpcodesAllocated;
1875 /** The current instruction number in a native TB.
1876 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
1877 * and will be picked up by the TB execution loop. Only used when
1878 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
1879 uint8_t idxTbCurInstr;
1880 /** Spaced reserved for recompiler data / alignment. */
1881 bool afRecompilerStuff1[3];
1882 /** The virtual sync time at the last timer poll call. */
1883 uint32_t msRecompilerPollNow;
1884 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
1885 uint32_t uTbNativeRecompileAtUsedCount;
1886 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
1887 uint32_t fTbCurInstr;
1888 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
1889 uint32_t fTbPrevInstr;
1890 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
1891 * currently not up to date in EFLAGS. */
1892 uint32_t fSkippingEFlags;
1893 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
1894 RTGCPHYS GCPhysInstrBufPrev;
1895 /** Pointer to the ring-3 TB allocator for this EMT. */
1896 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
1897 /** Pointer to the ring-3 executable memory allocator for this EMT. */
1898 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
1899 /** Pointer to the native recompiler state for ring-3. */
1900 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
1901 /** Dummy entry for ppTbLookupEntryR3. */
1902 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
1904 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
1905 STAMCOUNTER StatTbThreadedExecBreaks;
1906 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
1907 STAMCOUNTER StatCheckIrqBreaks;
1908 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
1909 STAMCOUNTER StatCheckModeBreaks;
1910 /** Threaded TB statistics: Times execution break on call with lookup entries. */
1911 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
1912 /** Threaded TB statistics: Times execution break on call without lookup entries. */
1913 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
1914 /** Statistics: Times a post jump target check missed and had to find new TB. */
1915 STAMCOUNTER StatCheckBranchMisses;
1916 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
1917 STAMCOUNTER StatCheckNeedCsLimChecking;
1918 /** Statistics: Times a loop was detected within a TB.. */
1919 STAMCOUNTER StatTbLoopInTbDetected;
1920 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
1921 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
1922 /** Native TB statistics: Number of fully recompiled TBs. */
1923 STAMCOUNTER StatNativeFullyRecompiledTbs;
1924 /** TB statistics: Number of instructions per TB. */
1925 STAMPROFILE StatTbInstr;
1926 /** TB statistics: Number of TB lookup table entries per TB. */
1927 STAMPROFILE StatTbLookupEntries;
1928 /** Threaded TB statistics: Number of calls per TB. */
1929 STAMPROFILE StatTbThreadedCalls;
1930 /** Native TB statistics: Native code size per TB. */
1931 STAMPROFILE StatTbNativeCode;
1932 /** Native TB statistics: Profiling native recompilation. */
1933 STAMPROFILE StatNativeRecompilation;
1934 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
1935 STAMPROFILE StatNativeCallsRecompiled;
1936 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
1937 STAMPROFILE StatNativeCallsThreaded;
1938 /** Native recompiled execution: TLB hits for data fetches. */
1939 STAMCOUNTER StatNativeTlbHitsForFetch;
1940 /** Native recompiled execution: TLB hits for data stores. */
1941 STAMCOUNTER StatNativeTlbHitsForStore;
1942 /** Native recompiled execution: TLB hits for stack accesses. */
1943 STAMCOUNTER StatNativeTlbHitsForStack;
1944 /** Native recompiled execution: TLB hits for mapped accesses. */
1945 STAMCOUNTER StatNativeTlbHitsForMapped;
1946 /** Native recompiled execution: Code TLB misses for new page. */
1947 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
1948 /** Native recompiled execution: Code TLB hits for new page. */
1949 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
1950 /** Native recompiled execution: Code TLB misses for new page with offset. */
1951 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
1952 /** Native recompiled execution: Code TLB hits for new page with offset. */
1953 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
1955 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
1956 STAMCOUNTER StatNativeRegFindFree;
1957 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
1958 * to free a variable. */
1959 STAMCOUNTER StatNativeRegFindFreeVar;
1960 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
1961 * not need to free any variables. */
1962 STAMCOUNTER StatNativeRegFindFreeNoVar;
1963 /** Native recompiler: Liveness info freed shadowed guest registers in
1964 * iemNativeRegAllocFindFree. */
1965 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
1966 /** Native recompiler: Liveness info helped with the allocation in
1967 * iemNativeRegAllocFindFree. */
1968 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
1970 /** Native recompiler: Number of times status flags calc has been skipped. */
1971 STAMCOUNTER StatNativeEflSkippedArithmetic;
1972 /** Native recompiler: Number of times status flags calc has been skipped. */
1973 STAMCOUNTER StatNativeEflSkippedLogical;
1975 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
1976 STAMCOUNTER StatNativeLivenessEflCfSkippable;
1977 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
1978 STAMCOUNTER StatNativeLivenessEflPfSkippable;
1979 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
1980 STAMCOUNTER StatNativeLivenessEflAfSkippable;
1981 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
1982 STAMCOUNTER StatNativeLivenessEflZfSkippable;
1983 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
1984 STAMCOUNTER StatNativeLivenessEflSfSkippable;
1985 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
1986 STAMCOUNTER StatNativeLivenessEflOfSkippable;
1987 /** Native recompiler: Number of required EFLAGS.CF updates. */
1988 STAMCOUNTER StatNativeLivenessEflCfRequired;
1989 /** Native recompiler: Number of required EFLAGS.PF updates. */
1990 STAMCOUNTER StatNativeLivenessEflPfRequired;
1991 /** Native recompiler: Number of required EFLAGS.AF updates. */
1992 STAMCOUNTER StatNativeLivenessEflAfRequired;
1993 /** Native recompiler: Number of required EFLAGS.ZF updates. */
1994 STAMCOUNTER StatNativeLivenessEflZfRequired;
1995 /** Native recompiler: Number of required EFLAGS.SF updates. */
1996 STAMCOUNTER StatNativeLivenessEflSfRequired;
1997 /** Native recompiler: Number of required EFLAGS.OF updates. */
1998 STAMCOUNTER StatNativeLivenessEflOfRequired;
1999 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2000 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2001 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2002 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2003 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2004 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2005 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2006 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2007 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2008 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2009 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2010 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2012 /** Native recompiler: Number of potential PC updates in total. */
2013 STAMCOUNTER StatNativePcUpdateTotal;
2014 /** Native recompiler: Number of PC updates which could be delayed. */
2015 STAMCOUNTER StatNativePcUpdateDelayed;
2017 //#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2018 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2019 STAMCOUNTER StatNativeSimdRegFindFree;
2020 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2021 * to free a variable. */
2022 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2023 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2024 * not need to free any variables. */
2025 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2026 /** Native recompiler: Liveness info freed shadowed guest registers in
2027 * iemNativeSimdRegAllocFindFree. */
2028 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2029 /** Native recompiler: Liveness info helped with the allocation in
2030 * iemNativeSimdRegAllocFindFree. */
2031 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2033 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2034 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2035 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2036 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2037 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2038 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2039 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2040 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2042 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2043 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2044 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2045 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2046 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2047 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2048 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2049 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2050 //#endif
2052 /** Native recompiler: The TB finished executing completely without jumping to a an exit label. */
2053 STAMCOUNTER StatNativeTbFinished;
2054 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2055 STAMCOUNTER StatNativeTbExitReturnBreak;
2056 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2057 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2058 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2059 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2060 /** Native recompiler: The TB finished executing with other non-zero status. */
2061 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2062 /** Native recompiler: The TB finished executing via throw / long jump. */
2063 STAMCOUNTER StatNativeTbExitLongJump;
2065 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2066 STAMCOUNTER StatNativeTbExitRaiseDe;
2067 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2068 STAMCOUNTER StatNativeTbExitRaiseUd;
2069 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2070 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2071 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2072 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2073 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2074 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2075 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2076 STAMCOUNTER StatNativeTbExitRaiseNm;
2077 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2078 STAMCOUNTER StatNativeTbExitRaiseGp0;
2079 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2080 STAMCOUNTER StatNativeTbExitRaiseMf;
2081 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2082 STAMCOUNTER StatNativeTbExitRaiseXf;
2083 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2084 STAMCOUNTER StatNativeTbExitObsoleteTb;
2086 uint64_t au64Padding[1];
2087 /** @} */
2089 /** Data TLB.
2090 * @remarks Must be 64-byte aligned. */
2091 IEMTLB DataTlb;
2092 /** Instruction TLB.
2093 * @remarks Must be 64-byte aligned. */
2094 IEMTLB CodeTlb;
2096 /** Exception statistics. */
2097 STAMCOUNTER aStatXcpts[32];
2098 /** Interrupt statistics. */
2099 uint32_t aStatInts[256];
2101 #if defined(VBOX_WITH_STATISTICS) && !defined(IN_TSTVMSTRUCT) && !defined(DOXYGEN_RUNNING)
2102 /** Instruction statistics for ring-0/raw-mode. */
2103 IEMINSTRSTATS StatsRZ;
2104 /** Instruction statistics for ring-3. */
2105 IEMINSTRSTATS StatsR3;
2106 # ifdef VBOX_WITH_IEM_RECOMPILER
2107 /** Statistics per threaded function call.
2108 * Updated by both the threaded and native recompilers. */
2109 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2110 # endif
2111 #endif
2112 } IEMCPU;
2113 AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2114 AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2115 AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2116 AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2117 AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2118 AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2120 /** Pointer to the per-CPU IEM state. */
2121 typedef IEMCPU *PIEMCPU;
2122 /** Pointer to the const per-CPU IEM state. */
2123 typedef IEMCPU const *PCIEMCPU;
2126 /** @def IEM_GET_CTX
2127 * Gets the guest CPU context for the calling EMT.
2128 * @returns PCPUMCTX
2129 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2131 #define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2133 /** @def IEM_CTX_ASSERT
2134 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2135 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2136 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2138 #define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2139 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2140 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2141 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2143 /** @def IEM_CTX_IMPORT_RET
2144 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2146 * Will call the keep to import the bits as needed.
2148 * Returns on import failure.
2150 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2151 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2153 #define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2154 do { \
2155 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2156 { /* likely */ } \
2157 else \
2159 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2160 AssertRCReturn(rcCtxImport, rcCtxImport); \
2162 } while (0)
2164 /** @def IEM_CTX_IMPORT_NORET
2165 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2167 * Will call the keep to import the bits as needed.
2169 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2170 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2172 #define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2173 do { \
2174 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2175 { /* likely */ } \
2176 else \
2178 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2179 AssertLogRelRC(rcCtxImport); \
2181 } while (0)
2183 /** @def IEM_CTX_IMPORT_JMP
2184 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2186 * Will call the keep to import the bits as needed.
2188 * Jumps on import failure.
2190 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2191 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2193 #define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2194 do { \
2195 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2196 { /* likely */ } \
2197 else \
2199 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2200 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2202 } while (0)
2206 /** @def IEM_GET_TARGET_CPU
2207 * Gets the current IEMTARGETCPU value.
2208 * @returns IEMTARGETCPU value.
2209 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2211 #if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2212 # define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2213 #else
2214 # define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2215 #endif
2217 /** @def IEM_GET_INSTR_LEN
2218 * Gets the instruction length. */
2219 #ifdef IEM_WITH_CODE_TLB
2220 # define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2221 #else
2222 # define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2223 #endif
2225 /** @def IEM_TRY_SETJMP
2226 * Wrapper around setjmp / try, hiding all the ugly differences.
2228 * @note Use with extreme care as this is a fragile macro.
2229 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2230 * @param a_rcTarget The variable that should receive the status code in case
2231 * of a longjmp/throw.
2233 /** @def IEM_TRY_SETJMP_AGAIN
2234 * For when setjmp / try is used again in the same variable scope as a previous
2235 * IEM_TRY_SETJMP invocation.
2237 /** @def IEM_CATCH_LONGJMP_BEGIN
2238 * Start wrapper for catch / setjmp-else.
2240 * This will set up a scope.
2242 * @note Use with extreme care as this is a fragile macro.
2243 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2244 * @param a_rcTarget The variable that should receive the status code in case
2245 * of a longjmp/throw.
2247 /** @def IEM_CATCH_LONGJMP_END
2248 * End wrapper for catch / setjmp-else.
2250 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2251 * state.
2253 * @note Use with extreme care as this is a fragile macro.
2254 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2256 #if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2257 # ifdef IEM_WITH_THROW_CATCH
2258 # define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2259 a_rcTarget = VINF_SUCCESS; \
2261 # define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2262 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2263 # define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2264 catch (int rcThrown) \
2266 a_rcTarget = rcThrown
2267 # define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2269 ((void)0)
2270 # else /* !IEM_WITH_THROW_CATCH */
2271 # define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2272 jmp_buf JmpBuf; \
2273 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2274 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2275 if ((rcStrict = setjmp(JmpBuf)) == 0)
2276 # define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2277 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2278 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2279 if ((rcStrict = setjmp(JmpBuf)) == 0)
2280 # define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2281 else \
2283 ((void)0)
2284 # define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2286 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2287 # endif /* !IEM_WITH_THROW_CATCH */
2288 #endif /* IEM_WITH_SETJMP */
2292 * Shared per-VM IEM data.
2294 typedef struct IEM
2296 /** The VMX APIC-access page handler type. */
2297 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2298 #ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2299 /** Set if the CPUID host call functionality is enabled. */
2300 bool fCpuIdHostCall;
2301 #endif
2302 } IEM;
2306 /** @name IEM_ACCESS_XXX - Access details.
2307 * @{ */
2308 #define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2309 #define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2310 #define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2311 #define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2312 #define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2313 #define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2314 #define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2315 #define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2316 #define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2317 #define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2318 /** The writes are partial, so if initialize the bounce buffer with the
2319 * orignal RAM content. */
2320 #define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2321 /** Used in aMemMappings to indicate that the entry is bounce buffered. */
2322 #define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2323 /** Bounce buffer with ring-3 write pending, first page. */
2324 #define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2325 /** Bounce buffer with ring-3 write pending, second page. */
2326 #define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2327 /** Not locked, accessed via the TLB. */
2328 #define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2329 /** Atomic access.
2330 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2331 * fallback for misaligned stuff. See @bugref{10547}. */
2332 #define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2333 /** Valid bit mask. */
2334 #define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2335 /** Shift count for the TLB flags (upper word). */
2336 #define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2338 /** Atomic read+write data alias. */
2339 #define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2340 /** Read+write data alias. */
2341 #define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2342 /** Write data alias. */
2343 #define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2344 /** Read data alias. */
2345 #define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2346 /** Instruction fetch alias. */
2347 #define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2348 /** Stack write alias. */
2349 #define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2350 /** Stack read alias. */
2351 #define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2352 /** Stack read+write alias. */
2353 #define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2354 /** Read system table alias. */
2355 #define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2356 /** Read+write system table alias. */
2357 #define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2358 /** @} */
2360 /** @name Prefix constants (IEMCPU::fPrefixes)
2361 * @{ */
2362 #define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2363 #define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2364 #define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2365 #define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2366 #define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2367 #define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2368 #define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2370 #define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2371 #define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2372 #define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2374 #define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2375 #define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2376 #define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2378 #define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2379 #define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2380 #define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2381 #define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2382 /** Mask with all the REX prefix flags.
2383 * This is generally for use when needing to undo the REX prefixes when they
2384 * are followed legacy prefixes and therefore does not immediately preceed
2385 * the first opcode byte.
2386 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2387 #define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2389 #define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2390 #define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2391 #define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2392 /** @} */
2394 /** @name IEMOPFORM_XXX - Opcode forms
2395 * @note These are ORed together with IEMOPHINT_XXX.
2396 * @{ */
2397 /** ModR/M: reg, r/m */
2398 #define IEMOPFORM_RM 0
2399 /** ModR/M: reg, r/m (register) */
2400 #define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2401 /** ModR/M: reg, r/m (memory) */
2402 #define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2403 /** ModR/M: reg, r/m, imm */
2404 #define IEMOPFORM_RMI 1
2405 /** ModR/M: reg, r/m (register), imm */
2406 #define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2407 /** ModR/M: reg, r/m (memory), imm */
2408 #define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2409 /** ModR/M: reg, r/m, xmm0 */
2410 #define IEMOPFORM_RM0 2
2411 /** ModR/M: reg, r/m (register), xmm0 */
2412 #define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2413 /** ModR/M: reg, r/m (memory), xmm0 */
2414 #define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2415 /** ModR/M: r/m, reg */
2416 #define IEMOPFORM_MR 3
2417 /** ModR/M: r/m (register), reg */
2418 #define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2419 /** ModR/M: r/m (memory), reg */
2420 #define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2421 /** ModR/M: r/m, reg, imm */
2422 #define IEMOPFORM_MRI 4
2423 /** ModR/M: r/m (register), reg, imm */
2424 #define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2425 /** ModR/M: r/m (memory), reg, imm */
2426 #define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2427 /** ModR/M: r/m only */
2428 #define IEMOPFORM_M 5
2429 /** ModR/M: r/m only (register). */
2430 #define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2431 /** ModR/M: r/m only (memory). */
2432 #define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2433 /** ModR/M: r/m, imm */
2434 #define IEMOPFORM_MI 6
2435 /** ModR/M: r/m (register), imm */
2436 #define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2437 /** ModR/M: r/m (memory), imm */
2438 #define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2439 /** ModR/M: r/m, 1 (shift and rotate instructions) */
2440 #define IEMOPFORM_M1 7
2441 /** ModR/M: r/m (register), 1. */
2442 #define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2443 /** ModR/M: r/m (memory), 1. */
2444 #define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2445 /** ModR/M: r/m, CL (shift and rotate instructions)
2446 * @todo This should just've been a generic fixed register. But the python
2447 * code doesn't needs more convincing. */
2448 #define IEMOPFORM_M_CL 8
2449 /** ModR/M: r/m (register), CL. */
2450 #define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2451 /** ModR/M: r/m (memory), CL. */
2452 #define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2453 /** ModR/M: reg only */
2454 #define IEMOPFORM_R 9
2456 /** VEX+ModR/M: reg, r/m */
2457 #define IEMOPFORM_VEX_RM 16
2458 /** VEX+ModR/M: reg, r/m (register) */
2459 #define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2460 /** VEX+ModR/M: reg, r/m (memory) */
2461 #define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2462 /** VEX+ModR/M: r/m, reg */
2463 #define IEMOPFORM_VEX_MR 17
2464 /** VEX+ModR/M: r/m (register), reg */
2465 #define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2466 /** VEX+ModR/M: r/m (memory), reg */
2467 #define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2468 /** VEX+ModR/M: r/m, reg, imm8 */
2469 #define IEMOPFORM_VEX_MRI 18
2470 /** VEX+ModR/M: r/m (register), reg, imm8 */
2471 #define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2472 /** VEX+ModR/M: r/m (memory), reg, imm8 */
2473 #define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2474 /** VEX+ModR/M: r/m only */
2475 #define IEMOPFORM_VEX_M 19
2476 /** VEX+ModR/M: r/m only (register). */
2477 #define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2478 /** VEX+ModR/M: r/m only (memory). */
2479 #define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2480 /** VEX+ModR/M: reg only */
2481 #define IEMOPFORM_VEX_R 20
2482 /** VEX+ModR/M: reg, vvvv, r/m */
2483 #define IEMOPFORM_VEX_RVM 21
2484 /** VEX+ModR/M: reg, vvvv, r/m (register). */
2485 #define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2486 /** VEX+ModR/M: reg, vvvv, r/m (memory). */
2487 #define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2488 /** VEX+ModR/M: reg, vvvv, r/m, imm */
2489 #define IEMOPFORM_VEX_RVMI 22
2490 /** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2491 #define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2492 /** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2493 #define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2494 /** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2495 #define IEMOPFORM_VEX_RVMR 23
2496 /** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2497 #define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2498 /** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2499 #define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2500 /** VEX+ModR/M: reg, r/m, vvvv */
2501 #define IEMOPFORM_VEX_RMV 24
2502 /** VEX+ModR/M: reg, r/m, vvvv (register). */
2503 #define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2504 /** VEX+ModR/M: reg, r/m, vvvv (memory). */
2505 #define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2506 /** VEX+ModR/M: reg, r/m, imm8 */
2507 #define IEMOPFORM_VEX_RMI 25
2508 /** VEX+ModR/M: reg, r/m, imm8 (register). */
2509 #define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2510 /** VEX+ModR/M: reg, r/m, imm8 (memory). */
2511 #define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2512 /** VEX+ModR/M: r/m, vvvv, reg */
2513 #define IEMOPFORM_VEX_MVR 26
2514 /** VEX+ModR/M: r/m, vvvv, reg (register) */
2515 #define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2516 /** VEX+ModR/M: r/m, vvvv, reg (memory) */
2517 #define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2518 /** VEX+ModR/M+/n: vvvv, r/m */
2519 #define IEMOPFORM_VEX_VM 27
2520 /** VEX+ModR/M+/n: vvvv, r/m (register) */
2521 #define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2522 /** VEX+ModR/M+/n: vvvv, r/m (memory) */
2523 #define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2524 /** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2525 #define IEMOPFORM_VEX_VMI 28
2526 /** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2527 #define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2528 /** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2529 #define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2531 /** Fixed register instruction, no R/M. */
2532 #define IEMOPFORM_FIXED 32
2534 /** The r/m is a register. */
2535 #define IEMOPFORM_MOD3 RT_BIT_32(8)
2536 /** The r/m is a memory access. */
2537 #define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2538 /** @} */
2540 /** @name IEMOPHINT_XXX - Additional Opcode Hints
2541 * @note These are ORed together with IEMOPFORM_XXX.
2542 * @{ */
2543 /** Ignores the operand size prefix (66h). */
2544 #define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2545 /** Ignores REX.W (aka WIG). */
2546 #define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2547 /** Both the operand size prefixes (66h + REX.W) are ignored. */
2548 #define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2549 /** Allowed with the lock prefix. */
2550 #define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2551 /** The VEX.L value is ignored (aka LIG). */
2552 #define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2553 /** The VEX.L value must be zero (i.e. 128-bit width only). */
2554 #define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2555 /** The VEX.L value must be one (i.e. 256-bit width only). */
2556 #define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2557 /** The VEX.V value must be zero. */
2558 #define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2559 /** The REX.W/VEX.V value must be zero. */
2560 #define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2561 #define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2562 /** The REX.W/VEX.V value must be one. */
2563 #define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2564 #define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2566 /** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2567 #define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2568 /** @} */
2571 * Possible hardware task switch sources.
2573 typedef enum IEMTASKSWITCH
2575 /** Task switch caused by an interrupt/exception. */
2576 IEMTASKSWITCH_INT_XCPT = 1,
2577 /** Task switch caused by a far CALL. */
2578 IEMTASKSWITCH_CALL,
2579 /** Task switch caused by a far JMP. */
2580 IEMTASKSWITCH_JUMP,
2581 /** Task switch caused by an IRET. */
2582 IEMTASKSWITCH_IRET
2583 } IEMTASKSWITCH;
2584 AssertCompileSize(IEMTASKSWITCH, 4);
2587 * Possible CrX load (write) sources.
2589 typedef enum IEMACCESSCRX
2591 /** CrX access caused by 'mov crX' instruction. */
2592 IEMACCESSCRX_MOV_CRX,
2593 /** CrX (CR0) write caused by 'lmsw' instruction. */
2594 IEMACCESSCRX_LMSW,
2595 /** CrX (CR0) write caused by 'clts' instruction. */
2596 IEMACCESSCRX_CLTS,
2597 /** CrX (CR0) read caused by 'smsw' instruction. */
2598 IEMACCESSCRX_SMSW
2599 } IEMACCESSCRX;
2601 #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2602 /** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2604 * These flags provide further context to SLAT page-walk failures that could not be
2605 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2607 * @{
2609 /** Translating a nested-guest linear address failed accessing a nested-guest
2610 * physical address. */
2611 # define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2612 /** Translating a nested-guest linear address failed accessing a
2613 * paging-structure entry or updating accessed/dirty bits. */
2614 # define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2615 /** @} */
2617 DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2618 # ifndef IN_RING3
2619 DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2620 # endif
2621 #endif
2624 * Indicates to the verifier that the given flag set is undefined.
2626 * Can be invoked again to add more flags.
2628 * This is a NOOP if the verifier isn't compiled in.
2630 * @note We're temporarily keeping this until code is converted to new
2631 * disassembler style opcode handling.
2633 #define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2636 /** @def IEM_DECL_IMPL_TYPE
2637 * For typedef'ing an instruction implementation function.
2639 * @param a_RetType The return type.
2640 * @param a_Name The name of the type.
2641 * @param a_ArgList The argument list enclosed in parentheses.
2644 /** @def IEM_DECL_IMPL_DEF
2645 * For defining an instruction implementation function.
2647 * @param a_RetType The return type.
2648 * @param a_Name The name of the type.
2649 * @param a_ArgList The argument list enclosed in parentheses.
2652 #if defined(__GNUC__) && defined(RT_ARCH_X86)
2653 # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2654 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2655 # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2656 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2657 # define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2658 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2660 #elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2661 # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2662 a_RetType (__fastcall a_Name) a_ArgList
2663 # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2664 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2665 # define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2666 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2668 #elif __cplusplus >= 201700 /* P0012R1 support */
2669 # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2670 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2671 # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2672 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2673 # define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2674 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2676 #else
2677 # define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2678 a_RetType (VBOXCALL a_Name) a_ArgList
2679 # define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2680 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2681 # define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2682 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
2684 #endif
2686 /** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
2687 RT_C_DECLS_BEGIN
2688 extern uint8_t const g_afParity[256];
2689 RT_C_DECLS_END
2692 /** @name Arithmetic assignment operations on bytes (binary).
2693 * @{ */
2694 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
2695 typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
2696 FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
2697 FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
2698 FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
2699 FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
2700 FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
2701 FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
2702 FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
2703 /** @} */
2705 /** @name Arithmetic assignment operations on words (binary).
2706 * @{ */
2707 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
2708 typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
2709 FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
2710 FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
2711 FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
2712 FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
2713 FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
2714 FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
2715 FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
2716 /** @} */
2719 /** @name Arithmetic assignment operations on double words (binary).
2720 * @{ */
2721 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
2722 typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
2723 FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
2724 FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
2725 FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
2726 FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
2727 FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
2728 FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
2729 FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
2730 FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
2731 FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
2732 FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
2733 /** @} */
2735 /** @name Arithmetic assignment operations on quad words (binary).
2736 * @{ */
2737 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
2738 typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
2739 FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
2740 FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
2741 FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
2742 FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
2743 FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
2744 FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
2745 FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
2746 FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
2747 FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
2748 FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
2749 /** @} */
2751 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
2752 typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
2753 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
2754 typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
2755 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
2756 typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
2757 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
2758 typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
2760 /** @name Compare operations (thrown in with the binary ops).
2761 * @{ */
2762 FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
2763 FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
2764 FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
2765 FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
2766 /** @} */
2768 /** @name Test operations (thrown in with the binary ops).
2769 * @{ */
2770 FNIEMAIMPLBINROU8 iemAImpl_test_u8;
2771 FNIEMAIMPLBINROU16 iemAImpl_test_u16;
2772 FNIEMAIMPLBINROU32 iemAImpl_test_u32;
2773 FNIEMAIMPLBINROU64 iemAImpl_test_u64;
2774 /** @} */
2776 /** @name Bit operations operations (thrown in with the binary ops).
2777 * @{ */
2778 FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
2779 FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
2780 FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
2781 FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
2782 FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
2783 FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
2784 FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
2785 FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
2786 FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
2787 FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
2788 FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
2789 FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
2790 /** @} */
2792 /** @name Arithmetic three operand operations on double words (binary).
2793 * @{ */
2794 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
2795 typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
2796 FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
2797 FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
2798 FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
2799 /** @} */
2801 /** @name Arithmetic three operand operations on quad words (binary).
2802 * @{ */
2803 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
2804 typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
2805 FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
2806 FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
2807 FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
2808 /** @} */
2810 /** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
2811 * @{ */
2812 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
2813 typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
2814 FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
2815 FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
2816 FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
2817 FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
2818 FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
2819 FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
2820 /** @} */
2822 /** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
2823 * @{ */
2824 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
2825 typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
2826 FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
2827 FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
2828 FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
2829 FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
2830 FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
2831 FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
2832 /** @} */
2834 /** @name MULX 32-bit and 64-bit.
2835 * @{ */
2836 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
2837 typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
2838 FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
2840 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
2841 typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
2842 FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
2843 /** @} */
2846 /** @name Exchange memory with register operations.
2847 * @{ */
2848 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2849 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2850 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2851 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2852 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
2853 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
2854 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
2855 IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
2856 /** @} */
2858 /** @name Exchange and add operations.
2859 * @{ */
2860 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2861 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2862 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2863 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2864 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
2865 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
2866 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
2867 IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
2868 /** @} */
2870 /** @name Compare and exchange.
2871 * @{ */
2872 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2873 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
2874 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2875 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
2876 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2877 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
2878 #if ARCH_BITS == 32
2879 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2880 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
2881 #else
2882 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2883 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
2884 #endif
2885 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2886 uint32_t *pEFlags));
2887 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
2888 uint32_t *pEFlags));
2889 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2890 uint32_t *pEFlags));
2891 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
2892 uint32_t *pEFlags));
2893 #ifndef RT_ARCH_ARM64
2894 IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
2895 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
2896 #endif
2897 /** @} */
2899 /** @name Memory ordering
2900 * @{ */
2901 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
2902 typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
2903 IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
2904 IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
2905 IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
2906 #ifndef RT_ARCH_ARM64
2907 IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
2908 #endif
2909 /** @} */
2911 /** @name Double precision shifts
2912 * @{ */
2913 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
2914 typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
2915 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
2916 typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
2917 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
2918 typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
2919 FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
2920 FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
2921 FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
2922 FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
2923 FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
2924 FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
2925 /** @} */
2928 /** @name Bit search operations (thrown in with the binary ops).
2929 * @{ */
2930 FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
2931 FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
2932 FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
2933 FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
2934 FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
2935 FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
2936 FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
2937 FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
2938 FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
2939 FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
2940 FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
2941 FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
2942 FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
2943 FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
2944 FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
2945 /** @} */
2947 /** @name Signed multiplication operations (thrown in with the binary ops).
2948 * @{ */
2949 FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
2950 FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
2951 FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
2952 /** @} */
2954 /** @name Arithmetic assignment operations on bytes (unary).
2955 * @{ */
2956 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
2957 typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
2958 FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
2959 FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
2960 FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
2961 FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
2962 /** @} */
2964 /** @name Arithmetic assignment operations on words (unary).
2965 * @{ */
2966 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
2967 typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
2968 FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
2969 FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
2970 FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
2971 FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
2972 /** @} */
2974 /** @name Arithmetic assignment operations on double words (unary).
2975 * @{ */
2976 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
2977 typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
2978 FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
2979 FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
2980 FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
2981 FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
2982 /** @} */
2984 /** @name Arithmetic assignment operations on quad words (unary).
2985 * @{ */
2986 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
2987 typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
2988 FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
2989 FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
2990 FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
2991 FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
2992 /** @} */
2995 /** @name Shift operations on bytes (Group 2).
2996 * @{ */
2997 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
2998 typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
2999 FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3000 FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3001 FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3002 FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3003 FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3004 FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3005 FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3006 /** @} */
3008 /** @name Shift operations on words (Group 2).
3009 * @{ */
3010 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3011 typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3012 FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3013 FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3014 FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3015 FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3016 FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3017 FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3018 FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3019 /** @} */
3021 /** @name Shift operations on double words (Group 2).
3022 * @{ */
3023 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3024 typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3025 FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3026 FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3027 FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3028 FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3029 FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3030 FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3031 FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3032 /** @} */
3034 /** @name Shift operations on words (Group 2).
3035 * @{ */
3036 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3037 typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3038 FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3039 FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3040 FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3041 FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3042 FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3043 FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3044 FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3045 /** @} */
3047 /** @name Multiplication and division operations.
3048 * @{ */
3049 typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3050 typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3051 FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3052 FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3053 FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3054 FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3056 typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3057 typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3058 FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3059 FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3060 FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3061 FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3063 typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3064 typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3065 FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3066 FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3067 FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3068 FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3070 typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3071 typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3072 FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3073 FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3074 FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3075 FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3076 /** @} */
3078 /** @name Byte Swap.
3079 * @{ */
3080 IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3081 IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3082 IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3083 /** @} */
3085 /** @name Misc.
3086 * @{ */
3087 FNIEMAIMPLBINU16 iemAImpl_arpl;
3088 /** @} */
3090 /** @name RDRAND and RDSEED
3091 * @{ */
3092 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3093 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3094 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3095 typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3096 typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3097 typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3099 FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3100 FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3101 FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3102 FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3103 FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3104 FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3105 /** @} */
3107 /** @name ADOX and ADCX
3108 * @{ */
3109 FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3110 FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3111 FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3112 FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3113 /** @} */
3115 /** @name FPU operations taking a 32-bit float argument
3116 * @{ */
3117 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3118 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3119 typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3121 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3122 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3123 typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3125 FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3126 FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3127 FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3128 FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3129 FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3130 FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3131 FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3133 IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3134 IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3135 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3136 /** @} */
3138 /** @name FPU operations taking a 64-bit float argument
3139 * @{ */
3140 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3141 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3142 typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3144 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3145 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3146 typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3148 FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3149 FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3150 FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3151 FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3152 FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3153 FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3154 FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3156 IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3157 IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3158 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3159 /** @} */
3161 /** @name FPU operations taking a 80-bit float argument
3162 * @{ */
3163 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3164 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3165 typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3166 FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3167 FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3168 FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3169 FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3170 FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3171 FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3172 FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3173 FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3174 FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3176 FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3177 FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3178 FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3180 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3181 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3182 typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3183 FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3184 FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3186 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3187 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3188 typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3189 FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3190 FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3192 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3193 typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3194 FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3195 FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3196 FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3197 FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3198 FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3199 FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3200 FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3202 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3203 typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3204 FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3205 FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3207 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3208 typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3209 FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3210 FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3211 FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3212 FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3213 FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3214 FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3215 FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3217 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3218 PCRTFLOAT80U pr80Val));
3219 typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3220 FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3221 FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3222 FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3224 IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3225 IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3226 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3228 IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3229 IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3230 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3232 /** @} */
3234 /** @name FPU operations taking a 16-bit signed integer argument
3235 * @{ */
3236 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3237 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3238 typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3239 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3240 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3241 typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3243 FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3244 FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3245 FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3246 FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3247 FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3248 FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3250 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3251 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3252 typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3253 FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3255 IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3256 FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3257 FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3258 /** @} */
3260 /** @name FPU operations taking a 32-bit signed integer argument
3261 * @{ */
3262 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3263 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3264 typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3265 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3266 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3267 typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3269 FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3270 FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3271 FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3272 FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3273 FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3274 FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3276 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3277 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3278 typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3279 FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3281 IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3282 FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3283 FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3284 /** @} */
3286 /** @name FPU operations taking a 64-bit signed integer argument
3287 * @{ */
3288 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3289 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3290 typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3292 IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3293 FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3294 FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3295 /** @} */
3298 /** Temporary type representing a 256-bit vector register. */
3299 typedef struct { uint64_t au64[4]; } IEMVMM256;
3300 /** Temporary type pointing to a 256-bit vector register. */
3301 typedef IEMVMM256 *PIEMVMM256;
3302 /** Temporary type pointing to a const 256-bit vector register. */
3303 typedef IEMVMM256 *PCIEMVMM256;
3306 /** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3307 * @{ */
3308 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3309 typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3310 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U128,(PCX86FXSTATE pFpuState, PRTUINT128U puDst, PCRTUINT128U puSrc));
3311 typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3312 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U128,(PX86XSAVEAREA pExtState, PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3313 typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3314 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF3U256,(PX86XSAVEAREA pExtState, PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3315 typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3316 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3317 typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3318 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3319 typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3320 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3321 typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3322 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3323 typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3324 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3325 typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3326 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3327 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3328 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3329 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3330 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3331 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3332 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3333 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3334 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3335 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3336 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3337 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3338 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3339 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3340 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3341 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3342 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3343 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3344 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3345 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3346 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3347 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3348 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3349 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3350 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3351 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3352 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3353 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3354 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3355 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3356 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3357 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3358 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3359 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3360 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3361 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3362 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3363 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3364 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3366 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3367 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3368 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3369 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3370 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3371 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3372 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3373 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3374 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3375 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3376 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3377 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3378 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3379 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3380 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3381 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3382 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3383 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3384 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3385 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3386 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3387 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3388 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3389 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3390 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3391 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3392 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3393 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3394 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3395 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3396 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3397 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3398 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3399 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3400 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3401 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3402 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3403 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3404 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3405 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3406 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3407 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3408 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3409 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3410 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3411 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3412 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3413 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3414 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3415 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3416 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3417 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3418 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3419 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3420 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3421 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3422 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3423 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3425 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3426 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3427 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3428 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3429 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3430 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3431 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3432 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3433 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3434 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3435 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3436 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3437 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3438 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3439 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3440 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3441 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3442 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3443 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3444 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3445 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3446 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3447 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3448 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3449 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3450 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3451 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3452 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3453 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3454 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3455 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3456 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3457 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3458 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3459 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3460 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3461 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3462 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3463 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3464 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3465 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3466 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3467 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3468 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3469 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3470 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3471 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3472 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3473 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3474 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3475 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3476 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3477 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3478 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3479 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3480 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3481 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3482 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3483 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3484 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3485 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3486 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3487 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3488 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3489 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3490 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3491 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3492 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3493 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3494 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3495 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3496 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3497 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3498 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3500 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3501 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3502 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3503 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3505 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3506 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3507 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3508 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3509 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3510 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3511 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3512 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3513 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3514 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3515 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3516 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3517 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3518 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3519 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3520 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3521 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3522 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3523 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3524 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3525 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3526 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3527 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3528 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3529 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3530 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3531 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3532 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3533 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3534 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3535 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3536 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3537 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3538 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3539 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3540 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3541 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3542 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3543 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3544 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3545 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3546 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3547 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3548 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3549 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3550 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3551 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3552 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3553 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3554 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3555 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3556 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3557 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3558 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3559 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3560 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3561 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3562 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3563 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3564 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3565 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3566 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3567 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3568 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3569 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3570 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3571 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3572 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3573 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3574 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3575 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3576 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3577 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3578 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3580 FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3581 FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3582 FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3583 /** @} */
3585 /** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3586 * @{ */
3587 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3588 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3589 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3590 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3591 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3592 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3593 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3594 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3595 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3596 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3598 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3599 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3600 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3601 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3602 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3603 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3604 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3605 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3606 /** @} */
3608 /** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3609 * @{ */
3610 FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3611 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3612 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3613 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3614 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3615 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3616 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3617 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3618 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3619 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3620 /** @} */
3622 /** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3623 * @{ */
3624 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3625 typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3626 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3627 typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3628 IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3629 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3630 #ifndef IEM_WITHOUT_ASSEMBLY
3631 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3632 #endif
3633 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3634 /** @} */
3636 /** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3637 * @{ */
3638 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3639 typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3640 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3641 typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3642 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3643 typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3644 FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3645 FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3646 FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3647 FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3648 FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3649 FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3650 FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3651 /** @} */
3653 /** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3654 * @{ */
3655 IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
3656 IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
3657 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3658 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3659 #ifndef IEM_WITHOUT_ASSEMBLY
3660 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3661 #endif
3662 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3663 /** @} */
3665 /** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3666 * @{ */
3667 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3668 typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3669 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
3670 typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
3671 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
3672 typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
3674 FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
3675 FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
3676 FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
3677 FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
3678 FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
3679 FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
3681 FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
3682 FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
3683 FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
3684 FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
3685 FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
3686 FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
3688 FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
3689 FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
3690 FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
3691 FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
3692 FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
3693 FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
3694 /** @} */
3697 /** @name Media (SSE/MMX/AVX) operation: Sort this later
3698 * @{ */
3699 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3700 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3701 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3702 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3703 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3705 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3706 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3707 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3708 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3709 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3711 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3712 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3713 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3714 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3715 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3717 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3718 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3719 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3720 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3721 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3723 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3724 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3725 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3726 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3727 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3729 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3730 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3731 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3732 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3733 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3735 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3736 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
3737 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3738 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3739 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3741 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3742 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
3743 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3744 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3745 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3747 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3748 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
3749 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
3750 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3751 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3753 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3754 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
3755 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3756 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3757 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3759 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3760 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
3761 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
3762 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3763 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3765 IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3766 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
3767 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
3768 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3769 IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
3771 IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3772 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3773 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3774 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3775 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3777 IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3778 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3779 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3780 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3781 IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3783 IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3784 IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
3786 IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3787 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3788 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3789 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3790 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3792 IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3793 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3794 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
3795 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3796 IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
3799 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3800 typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
3801 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3802 typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
3803 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
3804 typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
3805 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
3806 typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
3808 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
3809 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
3810 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
3811 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
3813 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
3814 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
3815 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
3816 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
3817 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
3819 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
3820 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
3821 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
3822 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
3823 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
3824 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
3825 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
3827 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
3828 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
3829 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
3830 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
3831 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
3833 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
3834 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
3835 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
3836 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
3837 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
3839 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
3841 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
3843 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
3844 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
3845 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
3846 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
3847 FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
3848 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
3849 IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3850 IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
3852 typedef struct IEMPCMPISTRXSRC
3854 RTUINT128U uSrc1;
3855 RTUINT128U uSrc2;
3856 } IEMPCMPISTRXSRC;
3857 typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
3858 typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
3860 typedef struct IEMPCMPESTRXSRC
3862 RTUINT128U uSrc1;
3863 RTUINT128U uSrc2;
3864 uint64_t u64Rax;
3865 uint64_t u64Rdx;
3866 } IEMPCMPESTRXSRC;
3867 typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
3868 typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
3870 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
3871 typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
3872 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3873 typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
3875 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
3876 typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
3877 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
3878 typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
3880 FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
3881 FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
3882 FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
3883 FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
3885 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
3886 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
3888 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
3889 FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
3890 FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
3892 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
3893 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
3894 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
3895 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
3896 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
3897 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
3898 IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3899 IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3900 IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3901 IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3903 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
3904 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
3905 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
3906 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
3908 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
3909 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
3910 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
3911 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
3912 FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
3913 FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
3914 IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3915 IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
3916 IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3917 IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
3919 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
3920 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
3921 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
3922 FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
3924 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
3925 FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
3926 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
3927 FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
3929 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
3930 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
3931 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
3932 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
3933 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
3934 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
3935 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
3936 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
3937 FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
3938 FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
3939 /** @} */
3941 /** @name Media Odds and Ends
3942 * @{ */
3943 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
3944 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
3945 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
3946 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
3947 FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
3948 FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
3949 FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
3950 FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
3952 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
3953 typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
3954 typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
3955 typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
3956 FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
3957 FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
3958 FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
3959 FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
3960 FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
3961 FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
3963 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3964 typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
3965 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
3966 typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
3967 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3968 typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
3969 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
3970 typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
3972 FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
3973 FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
3975 FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
3976 FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
3978 FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
3979 FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
3981 FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
3982 FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
3984 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
3985 typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
3986 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
3987 typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
3989 FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
3990 FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
3992 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
3993 typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
3994 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
3995 typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
3997 FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
3998 FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4001 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4002 typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4004 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4005 typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4007 FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4008 FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4010 FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4011 FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4013 FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4014 FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4016 FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4017 FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4020 typedef struct IEMMEDIAF2XMMSRC
4022 X86XMMREG uSrc1;
4023 X86XMMREG uSrc2;
4024 } IEMMEDIAF2XMMSRC;
4025 typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4026 typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4028 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRF2XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4029 typedef FNIEMAIMPLMXCSRF2XMMIMM8 *PFNIEMAIMPLMXCSRF2XMMIMM8;
4031 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpps_u128;
4032 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmppd_u128;
4033 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpss_u128;
4034 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_cmpsd_u128;
4035 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundss_u128;
4036 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundsd_u128;
4038 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4039 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4041 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4042 FNIEMAIMPLMXCSRF2XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4044 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4045 typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4047 FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4048 FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4050 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4051 typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4053 FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4054 FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4056 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4057 typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4059 FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4060 FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4062 /** @} */
4065 /** @name Function tables.
4066 * @{
4070 * Function table for a binary operator providing implementation based on
4071 * operand size.
4073 typedef struct IEMOPBINSIZES
4075 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4076 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4077 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4078 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4079 } IEMOPBINSIZES;
4080 /** Pointer to a binary operator function table. */
4081 typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4085 * Function table for a unary operator providing implementation based on
4086 * operand size.
4088 typedef struct IEMOPUNARYSIZES
4090 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4091 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4092 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4093 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4094 } IEMOPUNARYSIZES;
4095 /** Pointer to a unary operator function table. */
4096 typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4100 * Function table for a shift operator providing implementation based on
4101 * operand size.
4103 typedef struct IEMOPSHIFTSIZES
4105 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4106 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4107 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4108 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4109 } IEMOPSHIFTSIZES;
4110 /** Pointer to a shift operator function table. */
4111 typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4115 * Function table for a multiplication or division operation.
4117 typedef struct IEMOPMULDIVSIZES
4119 PFNIEMAIMPLMULDIVU8 pfnU8;
4120 PFNIEMAIMPLMULDIVU16 pfnU16;
4121 PFNIEMAIMPLMULDIVU32 pfnU32;
4122 PFNIEMAIMPLMULDIVU64 pfnU64;
4123 } IEMOPMULDIVSIZES;
4124 /** Pointer to a multiplication or division operation function table. */
4125 typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4129 * Function table for a double precision shift operator providing implementation
4130 * based on operand size.
4132 typedef struct IEMOPSHIFTDBLSIZES
4134 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4135 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4136 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4137 } IEMOPSHIFTDBLSIZES;
4138 /** Pointer to a double precision shift function table. */
4139 typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4143 * Function table for media instruction taking two full sized media source
4144 * registers and one full sized destination register (AVX).
4146 typedef struct IEMOPMEDIAF3
4148 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4149 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4150 } IEMOPMEDIAF3;
4151 /** Pointer to a media operation function table for 3 full sized ops (AVX). */
4152 typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4154 /** @def IEMOPMEDIAF3_INIT_VARS_EX
4155 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4156 * given functions as initializers. For use in AVX functions where a pair of
4157 * functions are only used once and the function table need not be public. */
4158 #ifndef TST_IEM_CHECK_MC
4159 # if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4160 # define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4161 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4162 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4163 # else
4164 # define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4165 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4166 # endif
4167 #else
4168 # define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4169 #endif
4170 /** @def IEMOPMEDIAF3_INIT_VARS
4171 * Generate AVX function tables for the @a a_InstrNm instruction.
4172 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4173 #define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4174 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4175 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4178 * Function table for media instruction taking two full sized media source
4179 * registers and one full sized destination register, but no additional state
4180 * (AVX).
4182 typedef struct IEMOPMEDIAOPTF3
4184 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4185 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4186 } IEMOPMEDIAOPTF3;
4187 /** Pointer to a media operation function table for 3 full sized ops (AVX). */
4188 typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4190 /** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4191 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4192 * given functions as initializers. For use in AVX functions where a pair of
4193 * functions are only used once and the function table need not be public. */
4194 #ifndef TST_IEM_CHECK_MC
4195 # if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4196 # define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4197 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4198 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4199 # else
4200 # define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4201 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4202 # endif
4203 #else
4204 # define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4205 #endif
4206 /** @def IEMOPMEDIAOPTF3_INIT_VARS
4207 * Generate AVX function tables for the @a a_InstrNm instruction.
4208 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4209 #define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4210 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4211 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4214 * Function table for media instruction taking one full sized media source
4215 * registers and one full sized destination register, but no additional state
4216 * (AVX).
4218 typedef struct IEMOPMEDIAOPTF2
4220 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4221 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4222 } IEMOPMEDIAOPTF2;
4223 /** Pointer to a media operation function table for 2 full sized ops (AVX). */
4224 typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4226 /** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4227 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4228 * given functions as initializers. For use in AVX functions where a pair of
4229 * functions are only used once and the function table need not be public. */
4230 #ifndef TST_IEM_CHECK_MC
4231 # if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4232 # define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4233 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4234 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4235 # else
4236 # define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4237 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4238 # endif
4239 #else
4240 # define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4241 #endif
4242 /** @def IEMOPMEDIAOPTF2_INIT_VARS
4243 * Generate AVX function tables for the @a a_InstrNm instruction.
4244 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4245 #define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4246 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4247 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4250 * Function table for media instruction taking one full sized media source
4251 * register and one full sized destination register and an 8-bit immediate, but no additional state
4252 * (AVX).
4254 typedef struct IEMOPMEDIAOPTF2IMM8
4256 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4257 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4258 } IEMOPMEDIAOPTF2IMM8;
4259 /** Pointer to a media operation function table for 2 full sized ops (AVX). */
4260 typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4262 /** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4263 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4264 * given functions as initializers. For use in AVX functions where a pair of
4265 * functions are only used once and the function table need not be public. */
4266 #ifndef TST_IEM_CHECK_MC
4267 # if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4268 # define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4269 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4270 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4271 # else
4272 # define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4273 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4274 # endif
4275 #else
4276 # define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4277 #endif
4278 /** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4279 * Generate AVX function tables for the @a a_InstrNm instruction.
4280 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4281 #define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4282 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4283 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4286 * Function table for media instruction taking two full sized media source
4287 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4288 * (AVX).
4290 typedef struct IEMOPMEDIAOPTF3IMM8
4292 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4293 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4294 } IEMOPMEDIAOPTF3IMM8;
4295 /** Pointer to a media operation function table for 3 full sized ops (AVX). */
4296 typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4298 /** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4299 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4300 * given functions as initializers. For use in AVX functions where a pair of
4301 * functions are only used once and the function table need not be public. */
4302 #ifndef TST_IEM_CHECK_MC
4303 # if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4304 # define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4305 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4306 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4307 # else
4308 # define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4309 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4310 # endif
4311 #else
4312 # define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4313 #endif
4314 /** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4315 * Generate AVX function tables for the @a a_InstrNm instruction.
4316 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4317 #define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4318 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4319 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4320 /** @} */
4324 * Function table for blend type instruction taking three full sized media source
4325 * registers and one full sized destination register, but no additional state
4326 * (AVX).
4328 typedef struct IEMOPBLENDOP
4330 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4331 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4332 } IEMOPBLENDOP;
4333 /** Pointer to a media operation function table for 4 full sized ops (AVX). */
4334 typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4336 /** @def IEMOPBLENDOP_INIT_VARS_EX
4337 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4338 * given functions as initializers. For use in AVX functions where a pair of
4339 * functions are only used once and the function table need not be public. */
4340 #ifndef TST_IEM_CHECK_MC
4341 # if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4342 # define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4343 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4344 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4345 # else
4346 # define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4347 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4348 # endif
4349 #else
4350 # define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4351 #endif
4352 /** @def IEMOPBLENDOP_INIT_VARS
4353 * Generate AVX function tables for the @a a_InstrNm instruction.
4354 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4355 #define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4356 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4357 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4360 /** @name SSE/AVX single/double precision floating point operations.
4361 * @{ */
4362 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4363 typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4364 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4365 typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4366 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4367 typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4369 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4370 typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4371 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4372 typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4373 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4374 typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4376 typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4377 typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4379 FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4380 FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4381 FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4382 FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4383 FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4384 FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4385 FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4386 FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4387 FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4388 FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4389 FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4390 FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4391 FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4392 FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4393 FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4394 FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4395 FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4396 FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4397 FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4398 FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4399 FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4400 FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4401 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4402 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2pd_u128;
4404 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4405 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4406 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4407 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4408 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4409 FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4411 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4412 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4413 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4414 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4415 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4416 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4417 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4418 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4419 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4420 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4421 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4422 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4423 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4424 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4425 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4426 FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4427 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4428 FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4430 FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4431 FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4432 FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4433 FNIEMAIMPLFPAVXF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4434 FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4435 FNIEMAIMPLFPAVXF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4436 FNIEMAIMPLFPAVXF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4437 FNIEMAIMPLFPAVXF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4438 FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4439 FNIEMAIMPLFPAVXF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4440 FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4441 FNIEMAIMPLFPAVXF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4442 FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4443 FNIEMAIMPLFPAVXF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4444 FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4445 FNIEMAIMPLFPAVXF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4446 FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4447 FNIEMAIMPLFPAVXF3U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4448 FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4449 FNIEMAIMPLFPAVXF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4450 FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtpd2ps_u128, iemAImpl_vcvtpd2ps_u128_fallback;
4451 FNIEMAIMPLFPAVXF3U128 iemAImpl_vcvtps2pd_u128, iemAImpl_vcvtps2pd_u128_fallback;
4453 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4454 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4455 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4456 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4457 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4458 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4459 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4460 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4461 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4462 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4463 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4464 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4465 FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4466 FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4468 FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4469 FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4470 FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4471 FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4472 FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
4473 FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
4474 FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
4475 FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
4476 FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
4477 FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
4478 FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
4479 FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
4480 FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
4481 FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
4482 FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
4483 FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
4484 FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubps_u256, iemAImpl_vhaddsubps_u256_fallback;
4485 FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddsubpd_u256, iemAImpl_vhaddsubpd_u256_fallback;
4486 FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtpd2ps_u256, iemAImpl_vcvtpd2ps_u256_fallback;
4487 FNIEMAIMPLFPAVXF3U256 iemAImpl_vcvtps2pd_u256, iemAImpl_vcvtps2pd_u256_fallback;
4488 /** @} */
4490 /** @name C instruction implementations for anything slightly complicated.
4491 * @{ */
4494 * For typedef'ing or declaring a C instruction implementation function taking
4495 * no extra arguments.
4497 * @param a_Name The name of the type.
4499 # define IEM_CIMPL_DECL_TYPE_0(a_Name) \
4500 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4502 * For defining a C instruction implementation function taking no extra
4503 * arguments.
4505 * @param a_Name The name of the function
4507 # define IEM_CIMPL_DEF_0(a_Name) \
4508 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4510 * Prototype version of IEM_CIMPL_DEF_0.
4512 # define IEM_CIMPL_PROTO_0(a_Name) \
4513 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
4515 * For calling a C instruction implementation function taking no extra
4516 * arguments.
4518 * This special call macro adds default arguments to the call and allow us to
4519 * change these later.
4521 * @param a_fn The name of the function.
4523 # define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
4525 /** Type for a C instruction implementation function taking no extra
4526 * arguments. */
4527 typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
4528 /** Function pointer type for a C instruction implementation function taking
4529 * no extra arguments. */
4530 typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
4533 * For typedef'ing or declaring a C instruction implementation function taking
4534 * one extra argument.
4536 * @param a_Name The name of the type.
4537 * @param a_Type0 The argument type.
4538 * @param a_Arg0 The argument name.
4540 # define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
4541 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4543 * For defining a C instruction implementation function taking one extra
4544 * argument.
4546 * @param a_Name The name of the function
4547 * @param a_Type0 The argument type.
4548 * @param a_Arg0 The argument name.
4550 # define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
4551 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4553 * Prototype version of IEM_CIMPL_DEF_1.
4555 # define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
4556 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
4558 * For calling a C instruction implementation function taking one extra
4559 * argument.
4561 * This special call macro adds default arguments to the call and allow us to
4562 * change these later.
4564 * @param a_fn The name of the function.
4565 * @param a0 The name of the 1st argument.
4567 # define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
4570 * For typedef'ing or declaring a C instruction implementation function taking
4571 * two extra arguments.
4573 * @param a_Name The name of the type.
4574 * @param a_Type0 The type of the 1st argument
4575 * @param a_Arg0 The name of the 1st argument.
4576 * @param a_Type1 The type of the 2nd argument.
4577 * @param a_Arg1 The name of the 2nd argument.
4579 # define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4580 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4582 * For defining a C instruction implementation function taking two extra
4583 * arguments.
4585 * @param a_Name The name of the function.
4586 * @param a_Type0 The type of the 1st argument
4587 * @param a_Arg0 The name of the 1st argument.
4588 * @param a_Type1 The type of the 2nd argument.
4589 * @param a_Arg1 The name of the 2nd argument.
4591 # define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4592 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4594 * Prototype version of IEM_CIMPL_DEF_2.
4596 # define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
4597 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
4599 * For calling a C instruction implementation function taking two extra
4600 * arguments.
4602 * This special call macro adds default arguments to the call and allow us to
4603 * change these later.
4605 * @param a_fn The name of the function.
4606 * @param a0 The name of the 1st argument.
4607 * @param a1 The name of the 2nd argument.
4609 # define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
4612 * For typedef'ing or declaring a C instruction implementation function taking
4613 * three extra arguments.
4615 * @param a_Name The name of the type.
4616 * @param a_Type0 The type of the 1st argument
4617 * @param a_Arg0 The name of the 1st argument.
4618 * @param a_Type1 The type of the 2nd argument.
4619 * @param a_Arg1 The name of the 2nd argument.
4620 * @param a_Type2 The type of the 3rd argument.
4621 * @param a_Arg2 The name of the 3rd argument.
4623 # define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4624 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4626 * For defining a C instruction implementation function taking three extra
4627 * arguments.
4629 * @param a_Name The name of the function.
4630 * @param a_Type0 The type of the 1st argument
4631 * @param a_Arg0 The name of the 1st argument.
4632 * @param a_Type1 The type of the 2nd argument.
4633 * @param a_Arg1 The name of the 2nd argument.
4634 * @param a_Type2 The type of the 3rd argument.
4635 * @param a_Arg2 The name of the 3rd argument.
4637 # define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4638 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4640 * Prototype version of IEM_CIMPL_DEF_3.
4642 # define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
4643 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
4645 * For calling a C instruction implementation function taking three extra
4646 * arguments.
4648 * This special call macro adds default arguments to the call and allow us to
4649 * change these later.
4651 * @param a_fn The name of the function.
4652 * @param a0 The name of the 1st argument.
4653 * @param a1 The name of the 2nd argument.
4654 * @param a2 The name of the 3rd argument.
4656 # define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
4660 * For typedef'ing or declaring a C instruction implementation function taking
4661 * four extra arguments.
4663 * @param a_Name The name of the type.
4664 * @param a_Type0 The type of the 1st argument
4665 * @param a_Arg0 The name of the 1st argument.
4666 * @param a_Type1 The type of the 2nd argument.
4667 * @param a_Arg1 The name of the 2nd argument.
4668 * @param a_Type2 The type of the 3rd argument.
4669 * @param a_Arg2 The name of the 3rd argument.
4670 * @param a_Type3 The type of the 4th argument.
4671 * @param a_Arg3 The name of the 4th argument.
4673 # define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4674 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
4676 * For defining a C instruction implementation function taking four extra
4677 * arguments.
4679 * @param a_Name The name of the function.
4680 * @param a_Type0 The type of the 1st argument
4681 * @param a_Arg0 The name of the 1st argument.
4682 * @param a_Type1 The type of the 2nd argument.
4683 * @param a_Arg1 The name of the 2nd argument.
4684 * @param a_Type2 The type of the 3rd argument.
4685 * @param a_Arg2 The name of the 3rd argument.
4686 * @param a_Type3 The type of the 4th argument.
4687 * @param a_Arg3 The name of the 4th argument.
4689 # define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4690 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4691 a_Type2 a_Arg2, a_Type3 a_Arg3))
4693 * Prototype version of IEM_CIMPL_DEF_4.
4695 # define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
4696 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4697 a_Type2 a_Arg2, a_Type3 a_Arg3))
4699 * For calling a C instruction implementation function taking four extra
4700 * arguments.
4702 * This special call macro adds default arguments to the call and allow us to
4703 * change these later.
4705 * @param a_fn The name of the function.
4706 * @param a0 The name of the 1st argument.
4707 * @param a1 The name of the 2nd argument.
4708 * @param a2 The name of the 3rd argument.
4709 * @param a3 The name of the 4th argument.
4711 # define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
4715 * For typedef'ing or declaring a C instruction implementation function taking
4716 * five extra arguments.
4718 * @param a_Name The name of the type.
4719 * @param a_Type0 The type of the 1st argument
4720 * @param a_Arg0 The name of the 1st argument.
4721 * @param a_Type1 The type of the 2nd argument.
4722 * @param a_Arg1 The name of the 2nd argument.
4723 * @param a_Type2 The type of the 3rd argument.
4724 * @param a_Arg2 The name of the 3rd argument.
4725 * @param a_Type3 The type of the 4th argument.
4726 * @param a_Arg3 The name of the 4th argument.
4727 * @param a_Type4 The type of the 5th argument.
4728 * @param a_Arg4 The name of the 5th argument.
4730 # define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4731 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
4732 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
4733 a_Type3 a_Arg3, a_Type4 a_Arg4))
4735 * For defining a C instruction implementation function taking five extra
4736 * arguments.
4738 * @param a_Name The name of the function.
4739 * @param a_Type0 The type of the 1st argument
4740 * @param a_Arg0 The name of the 1st argument.
4741 * @param a_Type1 The type of the 2nd argument.
4742 * @param a_Arg1 The name of the 2nd argument.
4743 * @param a_Type2 The type of the 3rd argument.
4744 * @param a_Arg2 The name of the 3rd argument.
4745 * @param a_Type3 The type of the 4th argument.
4746 * @param a_Arg3 The name of the 4th argument.
4747 * @param a_Type4 The type of the 5th argument.
4748 * @param a_Arg4 The name of the 5th argument.
4750 # define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4751 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4752 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4754 * Prototype version of IEM_CIMPL_DEF_5.
4756 # define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
4757 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
4758 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
4760 * For calling a C instruction implementation function taking five extra
4761 * arguments.
4763 * This special call macro adds default arguments to the call and allow us to
4764 * change these later.
4766 * @param a_fn The name of the function.
4767 * @param a0 The name of the 1st argument.
4768 * @param a1 The name of the 2nd argument.
4769 * @param a2 The name of the 3rd argument.
4770 * @param a3 The name of the 4th argument.
4771 * @param a4 The name of the 5th argument.
4773 # define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
4775 /** @} */
4778 /** @name Opcode Decoder Function Types.
4779 * @{ */
4781 /** @typedef PFNIEMOP
4782 * Pointer to an opcode decoder function.
4785 /** @def FNIEMOP_DEF
4786 * Define an opcode decoder function.
4788 * We're using macors for this so that adding and removing parameters as well as
4789 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
4791 * @param a_Name The function name.
4794 /** @typedef PFNIEMOPRM
4795 * Pointer to an opcode decoder function with RM byte.
4798 /** @def FNIEMOPRM_DEF
4799 * Define an opcode decoder function with RM byte.
4801 * We're using macors for this so that adding and removing parameters as well as
4802 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
4804 * @param a_Name The function name.
4807 #if defined(__GNUC__) && defined(RT_ARCH_X86)
4808 typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
4809 typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4810 # define FNIEMOP_DEF(a_Name) \
4811 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
4812 # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4813 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4814 # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4815 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4817 #elif defined(_MSC_VER) && defined(RT_ARCH_X86)
4818 typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
4819 typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4820 # define FNIEMOP_DEF(a_Name) \
4821 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4822 # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4823 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4824 # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4825 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4827 #elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
4828 typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4829 typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4830 # define FNIEMOP_DEF(a_Name) \
4831 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
4832 # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4833 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
4834 # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4835 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
4837 #else
4838 typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
4839 typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
4840 # define FNIEMOP_DEF(a_Name) \
4841 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
4842 # define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
4843 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
4844 # define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
4845 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
4847 #endif
4848 #define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
4851 * Call an opcode decoder function.
4853 * We're using macors for this so that adding and removing parameters can be
4854 * done as we please. See FNIEMOP_DEF.
4856 #define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
4859 * Call a common opcode decoder function taking one extra argument.
4861 * We're using macors for this so that adding and removing parameters can be
4862 * done as we please. See FNIEMOP_DEF_1.
4864 #define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
4867 * Call a common opcode decoder function taking one extra argument.
4869 * We're using macors for this so that adding and removing parameters can be
4870 * done as we please. See FNIEMOP_DEF_1.
4872 #define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
4873 /** @} */
4876 /** @name Misc Helpers
4877 * @{ */
4879 /** Used to shut up GCC warnings about variables that 'may be used uninitialized'
4880 * due to GCC lacking knowledge about the value range of a switch. */
4881 #if RT_CPLUSPLUS_PREREQ(202000)
4882 # define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4883 #else
4884 # define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
4885 #endif
4887 /** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
4888 #if RT_CPLUSPLUS_PREREQ(202000)
4889 # define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
4890 #else
4891 # define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
4892 #endif
4895 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4896 * occation.
4898 #ifdef LOG_ENABLED
4899 # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4900 do { \
4901 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
4902 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4903 } while (0)
4904 #else
4905 # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
4906 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4907 #endif
4910 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
4911 * occation using the supplied logger statement.
4913 * @param a_LoggerArgs What to log on failure.
4915 #ifdef LOG_ENABLED
4916 # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4917 do { \
4918 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
4919 /*LogFunc(a_LoggerArgs);*/ \
4920 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
4921 } while (0)
4922 #else
4923 # define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
4924 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
4925 #endif
4928 * Gets the CPU mode (from fExec) as a IEMMODE value.
4930 * @returns IEMMODE
4931 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4933 #define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
4936 * Check if we're currently executing in real or virtual 8086 mode.
4938 * @returns @c true if it is, @c false if not.
4939 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4941 #define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
4942 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
4945 * Check if we're currently executing in virtual 8086 mode.
4947 * @returns @c true if it is, @c false if not.
4948 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4950 #define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
4953 * Check if we're currently executing in long mode.
4955 * @returns @c true if it is, @c false if not.
4956 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4958 #define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
4961 * Check if we're currently executing in a 16-bit code segment.
4963 * @returns @c true if it is, @c false if not.
4964 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4966 #define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
4969 * Check if we're currently executing in a 32-bit code segment.
4971 * @returns @c true if it is, @c false if not.
4972 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4974 #define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
4977 * Check if we're currently executing in a 64-bit code segment.
4979 * @returns @c true if it is, @c false if not.
4980 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4982 #define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
4985 * Check if we're currently executing in real mode.
4987 * @returns @c true if it is, @c false if not.
4988 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4990 #define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
4993 * Gets the current protection level (CPL).
4995 * @returns 0..3
4996 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
4998 #define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5001 * Sets the current protection level (CPL).
5003 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5005 #define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5006 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5009 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5010 * @returns PCCPUMFEATURES
5011 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5013 #define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5016 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5017 * @returns PCCPUMFEATURES
5018 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5020 #define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5023 * Evaluates to true if we're presenting an Intel CPU to the guest.
5025 #define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5028 * Evaluates to true if we're presenting an AMD CPU to the guest.
5030 #define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5033 * Check if the address is canonical.
5035 #define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5037 /** Checks if the ModR/M byte is in register mode or not. */
5038 #define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5039 /** Checks if the ModR/M byte is in memory mode or not. */
5040 #define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5043 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5045 * For use during decoding.
5047 #define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5049 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5051 * For use during decoding.
5053 #define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5056 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5058 * For use during decoding.
5060 #define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5062 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5064 * For use during decoding.
5066 #define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5069 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5070 * register index, with REX.R added in.
5072 * For use during decoding.
5074 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5076 #define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5077 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5078 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5079 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5081 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5082 * with REX.B added in.
5084 * For use during decoding.
5086 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5088 #define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5089 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5090 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5091 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5094 * Combines the prefix REX and ModR/M byte for passing to
5095 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5097 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5098 * The two bits are part of the REG sub-field, which isn't needed in
5099 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5101 * For use during decoding/recompiling.
5103 #define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5104 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5105 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5106 AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5107 AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5110 * Gets the effective VEX.VVVV value.
5112 * The 4th bit is ignored if not 64-bit code.
5113 * @returns effective V-register value.
5114 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5116 #define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5117 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5121 * Gets the register (reg) part of a the special 4th register byte used by
5122 * vblendvps and vblendvpd.
5124 * For use during decoding.
5126 #define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5127 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5131 * Checks if we're executing inside an AMD-V or VT-x guest.
5133 #if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5134 # define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5135 #else
5136 # define IEM_IS_IN_GUEST(a_pVCpu) false
5137 #endif
5140 #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5143 * Check if the guest has entered VMX root operation.
5145 # define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5148 * Check if the guest has entered VMX non-root operation.
5150 # define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5151 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5154 * Check if the nested-guest has the given Pin-based VM-execution control set.
5156 # define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5159 * Check if the nested-guest has the given Processor-based VM-execution control set.
5161 # define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5164 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5165 * control set.
5167 # define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5169 /** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5170 # define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5172 /** Whether a shadow VMCS is present for the given VCPU. */
5173 # define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5175 /** Gets the VMXON region pointer. */
5176 # define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5178 /** Gets the guest-physical address of the current VMCS for the given VCPU. */
5179 # define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5181 /** Whether a current VMCS is present for the given VCPU. */
5182 # define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5184 /** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5185 # define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5186 do \
5188 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5189 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5190 } while (0)
5192 /** Clears any current VMCS for the given VCPU. */
5193 # define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5194 do \
5196 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5197 } while (0)
5200 * Invokes the VMX VM-exit handler for an instruction intercept.
5202 # define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5203 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5206 * Invokes the VMX VM-exit handler for an instruction intercept where the
5207 * instruction provides additional VM-exit information.
5209 # define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5210 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5213 * Invokes the VMX VM-exit handler for a task switch.
5215 # define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5216 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5219 * Invokes the VMX VM-exit handler for MWAIT.
5221 # define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5222 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5225 * Invokes the VMX VM-exit handler for EPT faults.
5227 # define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5228 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5231 * Invokes the VMX VM-exit handler.
5233 # define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5234 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5236 #else
5237 # define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5238 # define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5239 # define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5240 # define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5241 # define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5242 # define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5243 # define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5244 # define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5245 # define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5246 # define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5247 # define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5249 #endif
5251 #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5253 * Checks if we're executing a guest using AMD-V.
5255 # define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5256 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5258 * Check if an SVM control/instruction intercept is set.
5260 # define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5261 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5264 * Check if an SVM read CRx intercept is set.
5266 # define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5267 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5270 * Check if an SVM write CRx intercept is set.
5272 # define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5273 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5276 * Check if an SVM read DRx intercept is set.
5278 # define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5279 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5282 * Check if an SVM write DRx intercept is set.
5284 # define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5285 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5288 * Check if an SVM exception intercept is set.
5290 # define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5291 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5294 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5296 # define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5297 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5300 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5301 * corresponding decode assist information.
5303 # define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5304 do \
5306 uint64_t uExitInfo1; \
5307 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5308 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5309 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5310 else \
5311 uExitInfo1 = 0; \
5312 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5313 } while (0)
5315 /** Check and handles SVM nested-guest instruction intercept and updates
5316 * NRIP if needed.
5318 # define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5319 do \
5321 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5323 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5324 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5326 } while (0)
5328 /** Checks and handles SVM nested-guest CR0 read intercept. */
5329 # define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5330 do \
5332 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5333 { /* probably likely */ } \
5334 else \
5336 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5337 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5339 } while (0)
5342 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5344 # define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5345 do { \
5346 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5347 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5348 } while (0)
5350 #else
5351 # define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5352 # define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5353 # define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5354 # define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5355 # define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5356 # define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5357 # define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5358 # define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5359 # define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5360 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5361 # define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5362 # define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5364 #endif
5366 /** @} */
5368 uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5369 VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5373 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5375 typedef union IEMSELDESC
5377 /** The legacy view. */
5378 X86DESC Legacy;
5379 /** The long mode view. */
5380 X86DESC64 Long;
5381 } IEMSELDESC;
5382 /** Pointer to a selector descriptor table entry. */
5383 typedef IEMSELDESC *PIEMSELDESC;
5385 /** @name Raising Exceptions.
5386 * @{ */
5387 VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5388 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5390 VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5391 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5392 #ifdef IEM_WITH_SETJMP
5393 DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5394 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5395 #endif
5396 VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5397 #ifdef IEM_WITH_SETJMP
5398 DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5399 #endif
5400 VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5401 VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5402 VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5403 #ifdef IEM_WITH_SETJMP
5404 DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5405 #endif
5406 VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5407 #ifdef IEM_WITH_SETJMP
5408 DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5409 #endif
5410 VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5411 VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5412 VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5413 VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5414 /*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5415 VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5416 VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5417 VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5418 VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5419 VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5420 VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5421 #ifdef IEM_WITH_SETJMP
5422 DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5423 #endif
5424 VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5425 VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5426 VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5427 #ifdef IEM_WITH_SETJMP
5428 DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5429 #endif
5430 VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5431 #ifdef IEM_WITH_SETJMP
5432 DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5433 #endif
5434 VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5435 #ifdef IEM_WITH_SETJMP
5436 DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5437 #endif
5438 VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5439 #ifdef IEM_WITH_SETJMP
5440 DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5441 #endif
5442 VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5443 #ifdef IEM_WITH_SETJMP
5444 DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5445 #endif
5446 VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5447 #ifdef IEM_WITH_SETJMP
5448 DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5449 #endif
5450 VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5451 #ifdef IEM_WITH_SETJMP
5452 DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5453 #endif
5455 void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5456 void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5458 IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5459 IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5460 IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5463 * Macro for calling iemCImplRaiseDivideError().
5465 * This is for things that will _always_ decode to an \#DE, taking the
5466 * recompiler into consideration and everything.
5468 * @return Strict VBox status code.
5470 #define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
5473 * Macro for calling iemCImplRaiseInvalidLockPrefix().
5475 * This is for things that will _always_ decode to an \#UD, taking the
5476 * recompiler into consideration and everything.
5478 * @return Strict VBox status code.
5480 #define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
5483 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
5485 * This is for things that will _always_ decode to an \#UD, taking the
5486 * recompiler into consideration and everything.
5488 * @return Strict VBox status code.
5490 #define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5493 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
5495 * Using this macro means you've got _buggy_ _code_ and are doing things that
5496 * belongs exclusively in IEMAllCImpl.cpp during decoding.
5498 * @return Strict VBox status code.
5499 * @see IEMOP_RAISE_INVALID_OPCODE_RET
5501 #define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
5503 /** @} */
5505 /** @name Register Access.
5506 * @{ */
5507 VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
5508 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5509 VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
5510 VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
5511 IEMMODE enmEffOpSize) RT_NOEXCEPT;
5512 /** @} */
5514 /** @name FPU access and helpers.
5515 * @{ */
5516 void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5517 void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5518 void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
5519 void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5520 void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5521 void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5522 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5523 void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
5524 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5525 void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5526 void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5527 void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5528 void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5529 void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
5530 void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5531 void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5532 void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5533 void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
5534 void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5535 void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5536 void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5537 void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5538 void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
5539 void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
5540 /** @} */
5542 /** @name SSE+AVX SIMD access and helpers.
5543 * @{ */
5544 void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
5545 /** @} */
5547 /** @name Memory access.
5548 * @{ */
5550 /** Report a \#GP instead of \#AC and do not restrict to ring-3 */
5551 #define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
5552 /** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
5553 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
5554 #define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
5555 /** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
5556 * Users include FXSAVE & FXRSTOR. */
5557 #define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
5559 VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
5560 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
5561 VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5562 #ifndef IN_RING3
5563 VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5564 #endif
5565 void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5566 void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
5567 VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
5568 VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5569 VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
5571 void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
5572 void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
5573 #ifdef IEM_WITH_CODE_TLB
5574 void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
5575 #else
5576 VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
5577 #endif
5578 #ifdef IEM_WITH_SETJMP
5579 uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5580 uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5581 uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5582 uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5583 #else
5584 VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
5585 VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5586 VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5587 VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5588 VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
5589 VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5590 VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5591 VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
5592 VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5593 VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5594 VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
5595 #endif
5597 VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5598 VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5599 VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5600 VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5601 VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5602 VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5603 VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5604 VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5605 VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5606 VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5607 VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5608 VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5609 VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5610 VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5611 VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
5612 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
5613 #ifdef IEM_WITH_SETJMP
5614 uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5615 uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5616 uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5617 uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5618 uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5619 uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5620 void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5621 void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5622 void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5623 void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5624 void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5625 void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5626 void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5627 void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5628 # if 0 /* these are inlined now */
5629 uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5630 uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5631 uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5632 uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5633 uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5634 uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5635 void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5636 void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5637 void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5638 void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5639 void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5640 void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5641 void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5642 # endif
5643 void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5644 #endif
5646 VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5647 VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5648 VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5649 VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5650 VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
5652 VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
5653 VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
5654 VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
5655 VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
5656 VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5657 VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5658 VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
5659 VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5660 VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5661 VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
5662 VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
5663 #ifdef IEM_WITH_SETJMP
5664 void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5665 void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5666 void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5667 void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5668 void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5669 void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5670 void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5671 void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5672 void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5673 void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5674 void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5675 void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
5676 #if 0
5677 void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
5678 void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
5679 void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
5680 void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
5681 void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5682 void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5683 void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5684 void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5685 #endif
5686 void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
5687 void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
5688 #endif
5690 #ifdef IEM_WITH_SETJMP
5691 uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5692 uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5693 uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5694 uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5695 uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5696 uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5697 uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5698 uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5699 uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5700 uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5701 uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5702 uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5703 uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5704 uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5705 uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5706 uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5707 PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5708 PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5709 PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5710 PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5711 PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5712 PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5713 PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5714 PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5715 PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5716 PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5718 void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5719 void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5720 void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5721 void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5722 void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
5723 void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5724 #endif
5726 VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5727 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5728 VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
5729 VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
5730 VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5731 VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
5732 VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5733 VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5734 VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5735 VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
5736 VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
5737 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
5738 VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
5739 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
5740 VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
5741 VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
5742 VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
5743 VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
5744 VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5745 VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5746 VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
5748 #ifdef IEM_WITH_SETJMP
5749 void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5750 void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5751 void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5752 void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5753 void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5754 void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5755 void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5757 void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5758 void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5759 void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5760 void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5761 void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5763 void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5764 void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5765 void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5766 void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
5768 void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5769 void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5770 void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5771 void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
5773 uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5774 uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5775 uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
5777 #endif
5779 /** @} */
5781 /** @name IEMAllCImpl.cpp
5782 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
5783 * @{ */
5784 IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5785 IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5786 IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5787 IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
5788 IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
5789 IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
5790 IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
5791 IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
5792 IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
5793 IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5794 IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5795 typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
5796 typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
5797 IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
5798 IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
5799 IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
5800 IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
5801 IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
5802 IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
5803 IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
5804 IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
5805 IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
5806 IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
5807 IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
5808 IEM_CIMPL_PROTO_0(iemCImpl_syscall);
5809 IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
5810 IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
5811 IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
5812 IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
5813 IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
5814 IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
5815 IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
5816 IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
5817 IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
5818 IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
5819 IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5820 IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5821 IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
5822 IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5823 IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
5824 IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5825 IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5826 IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
5827 IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5828 IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5829 IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
5830 IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
5831 IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5832 IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
5833 IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
5834 IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
5835 IEM_CIMPL_PROTO_0(iemCImpl_clts);
5836 IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
5837 IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
5838 IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
5839 IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
5840 IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
5841 IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
5842 IEM_CIMPL_PROTO_0(iemCImpl_invd);
5843 IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
5844 IEM_CIMPL_PROTO_0(iemCImpl_rsm);
5845 IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
5846 IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
5847 IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
5848 IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
5849 IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
5850 IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5851 IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5852 IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
5853 IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
5854 IEM_CIMPL_PROTO_0(iemCImpl_cli);
5855 IEM_CIMPL_PROTO_0(iemCImpl_sti);
5856 IEM_CIMPL_PROTO_0(iemCImpl_hlt);
5857 IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
5858 IEM_CIMPL_PROTO_0(iemCImpl_mwait);
5859 IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
5860 IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
5861 IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
5862 IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
5863 IEM_CIMPL_PROTO_0(iemCImpl_daa);
5864 IEM_CIMPL_PROTO_0(iemCImpl_das);
5865 IEM_CIMPL_PROTO_0(iemCImpl_aaa);
5866 IEM_CIMPL_PROTO_0(iemCImpl_aas);
5867 IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
5868 IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
5869 IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
5870 IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
5871 IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
5872 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
5873 IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5874 IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
5875 IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5876 IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5877 IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5878 IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
5879 IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5880 IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5881 IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
5882 IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5883 IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
5884 IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5885 IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
5886 IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
5887 IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
5888 IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
5889 IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
5890 IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
5891 /** @} */
5893 /** @name IEMAllCImplStrInstr.cpp.h
5894 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
5895 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
5896 * @{ */
5897 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
5898 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
5899 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
5900 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
5901 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
5902 IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
5903 IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
5904 IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
5905 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
5906 IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5907 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5909 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
5910 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
5911 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
5912 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
5913 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
5914 IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
5915 IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
5916 IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
5917 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
5918 IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5919 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5921 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
5922 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
5923 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
5924 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
5925 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
5926 IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
5927 IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
5928 IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
5929 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
5930 IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5931 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
5934 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
5935 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
5936 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
5937 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
5938 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
5939 IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
5940 IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
5941 IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
5942 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
5943 IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5944 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5946 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
5947 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
5948 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
5949 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
5950 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
5951 IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
5952 IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
5953 IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
5954 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
5955 IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5956 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5958 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
5959 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
5960 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
5961 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
5962 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
5963 IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
5964 IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
5965 IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
5966 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
5967 IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5968 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5970 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
5971 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
5972 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
5973 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
5974 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
5975 IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
5976 IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
5977 IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
5978 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
5979 IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5980 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
5983 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
5984 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
5985 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
5986 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
5987 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
5988 IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
5989 IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
5990 IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
5991 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
5992 IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5993 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
5995 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
5996 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
5997 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
5998 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
5999 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6000 IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6001 IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6002 IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6003 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6004 IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6005 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6007 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6008 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6009 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6010 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6011 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6012 IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6013 IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6014 IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6015 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6016 IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6017 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6019 IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6020 IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6021 IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6022 IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6023 IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6024 IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6025 IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6026 IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6027 IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6028 IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6029 IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6030 /** @} */
6032 #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6033 VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6034 VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6035 VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6036 VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6037 VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6038 VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6039 VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6040 VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6041 VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6042 VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6043 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6044 VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6045 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6046 VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6047 VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6048 VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6049 VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6050 VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6051 VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6052 VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6053 VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6054 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6055 VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6056 VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6057 VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6058 uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6059 void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6060 VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6061 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6062 bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6063 IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6064 IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6065 IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6066 IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6067 IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6068 IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6069 IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6070 IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6071 IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6072 IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6073 IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6074 IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6075 IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6076 IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6077 IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6078 IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6079 #endif
6081 #ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6082 VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6083 VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6084 VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6085 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6086 VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6087 IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6088 IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6089 IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6090 IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6091 IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6092 IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6093 IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6094 IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6095 #endif
6097 IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6098 IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6099 IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6101 extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6102 extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6103 extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6104 extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6105 extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6106 extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6107 extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6110 * Recompiler related stuff.
6112 extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6113 extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6114 extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6115 extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6116 extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6117 extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6118 extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6120 DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6121 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6122 void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6123 DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6124 void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6125 void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6126 DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6127 DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6130 /** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6131 #if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6132 typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6133 typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6134 # define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6135 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6136 # define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6137 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6139 #else
6140 typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6141 typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6142 # define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6143 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6144 # define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6145 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6146 #endif
6149 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6150 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6152 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6154 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6155 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6156 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6157 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6159 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6160 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6161 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6163 /* Branching: */
6164 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6165 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6166 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6168 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6169 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6170 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6172 /* Natural page crossing: */
6173 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6174 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6175 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6177 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6178 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6179 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6181 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6182 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6183 IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6185 bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6186 bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6188 /* Native recompiler public bits: */
6189 DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6190 DECLHIDDEN(void) iemNativeDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6191 int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6192 DECLHIDDEN(void *) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb) RT_NOEXCEPT;
6193 DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6194 void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6195 DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6197 #endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6200 /** @} */
6202 RT_C_DECLS_END
6204 /* ASM-INC: %include "IEMInternalStruct.mac" */
6206 #endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */