9112 Improve allocation performance on high-end systems
[unleashed.git] / usr / src / uts / common / fs / zfs / zil.c
blobd62dc97fc6fd4ce5c99321b9be1297642f1d0cfc
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
51 * 1. they are committed to the pool by the DMU transaction group
52 * (txg), at which point they can be discarded; or
53 * 2. they are committed to the on-disk ZIL for the dataset being
54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 * requirement).
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
66 * - a single, per-dataset, ZIL header; which points to a chain of
67 * - zero or more ZIL blocks; each of which contains
68 * - zero or more ZIL records
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
90 int zfs_commit_timeout_pct = 5;
93 * Disable intent logging replay. This global ZIL switch affects all pools.
95 int zil_replay_disable = 0;
98 * Tunable parameter for debugging or performance analysis. Setting
99 * zfs_nocacheflush will cause corruption on power loss if a volatile
100 * out-of-order write cache is enabled.
102 boolean_t zfs_nocacheflush = B_FALSE;
105 * Limit SLOG write size per commit executed with synchronous priority.
106 * Any writes above that will be executed with lower (asynchronous) priority
107 * to limit potential SLOG device abuse by single active ZIL writer.
109 uint64_t zil_slog_bulk = 768 * 1024;
111 static kmem_cache_t *zil_lwb_cache;
112 static kmem_cache_t *zil_zcw_cache;
114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
126 return (-1);
127 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
128 return (1);
130 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
131 return (-1);
132 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
133 return (1);
135 return (0);
138 static void
139 zil_bp_tree_init(zilog_t *zilog)
141 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
142 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
145 static void
146 zil_bp_tree_fini(zilog_t *zilog)
148 avl_tree_t *t = &zilog->zl_bp_tree;
149 zil_bp_node_t *zn;
150 void *cookie = NULL;
152 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
153 kmem_free(zn, sizeof (zil_bp_node_t));
155 avl_destroy(t);
159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
161 avl_tree_t *t = &zilog->zl_bp_tree;
162 const dva_t *dva;
163 zil_bp_node_t *zn;
164 avl_index_t where;
166 if (BP_IS_EMBEDDED(bp))
167 return (0);
169 dva = BP_IDENTITY(bp);
171 if (avl_find(t, dva, &where) != NULL)
172 return (SET_ERROR(EEXIST));
174 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
175 zn->zn_dva = *dva;
176 avl_insert(t, zn, where);
178 return (0);
181 static zil_header_t *
182 zil_header_in_syncing_context(zilog_t *zilog)
184 return ((zil_header_t *)zilog->zl_header);
187 static void
188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
190 zio_cksum_t *zc = &bp->blk_cksum;
192 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
193 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
194 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
195 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
199 * Read a log block and make sure it's valid.
201 static int
202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
203 char **end)
205 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
206 arc_flags_t aflags = ARC_FLAG_WAIT;
207 arc_buf_t *abuf = NULL;
208 zbookmark_phys_t zb;
209 int error;
211 if (zilog->zl_header->zh_claim_txg == 0)
212 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
214 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
215 zio_flags |= ZIO_FLAG_SPECULATIVE;
217 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
218 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
220 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
221 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
223 if (error == 0) {
224 zio_cksum_t cksum = bp->blk_cksum;
227 * Validate the checksummed log block.
229 * Sequence numbers should be... sequential. The checksum
230 * verifier for the next block should be bp's checksum plus 1.
232 * Also check the log chain linkage and size used.
234 cksum.zc_word[ZIL_ZC_SEQ]++;
236 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
237 zil_chain_t *zilc = abuf->b_data;
238 char *lr = (char *)(zilc + 1);
239 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
241 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
242 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
243 error = SET_ERROR(ECKSUM);
244 } else {
245 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
246 bcopy(lr, dst, len);
247 *end = (char *)dst + len;
248 *nbp = zilc->zc_next_blk;
250 } else {
251 char *lr = abuf->b_data;
252 uint64_t size = BP_GET_LSIZE(bp);
253 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
255 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
256 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
257 (zilc->zc_nused > (size - sizeof (*zilc)))) {
258 error = SET_ERROR(ECKSUM);
259 } else {
260 ASSERT3U(zilc->zc_nused, <=,
261 SPA_OLD_MAXBLOCKSIZE);
262 bcopy(lr, dst, zilc->zc_nused);
263 *end = (char *)dst + zilc->zc_nused;
264 *nbp = zilc->zc_next_blk;
268 arc_buf_destroy(abuf, &abuf);
271 return (error);
275 * Read a TX_WRITE log data block.
277 static int
278 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
280 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
281 const blkptr_t *bp = &lr->lr_blkptr;
282 arc_flags_t aflags = ARC_FLAG_WAIT;
283 arc_buf_t *abuf = NULL;
284 zbookmark_phys_t zb;
285 int error;
287 if (BP_IS_HOLE(bp)) {
288 if (wbuf != NULL)
289 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
290 return (0);
293 if (zilog->zl_header->zh_claim_txg == 0)
294 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
296 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
297 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
299 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
300 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
302 if (error == 0) {
303 if (wbuf != NULL)
304 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
305 arc_buf_destroy(abuf, &abuf);
308 return (error);
312 * Parse the intent log, and call parse_func for each valid record within.
315 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
316 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
318 const zil_header_t *zh = zilog->zl_header;
319 boolean_t claimed = !!zh->zh_claim_txg;
320 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
321 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
322 uint64_t max_blk_seq = 0;
323 uint64_t max_lr_seq = 0;
324 uint64_t blk_count = 0;
325 uint64_t lr_count = 0;
326 blkptr_t blk, next_blk;
327 char *lrbuf, *lrp;
328 int error = 0;
331 * Old logs didn't record the maximum zh_claim_lr_seq.
333 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
334 claim_lr_seq = UINT64_MAX;
337 * Starting at the block pointed to by zh_log we read the log chain.
338 * For each block in the chain we strongly check that block to
339 * ensure its validity. We stop when an invalid block is found.
340 * For each block pointer in the chain we call parse_blk_func().
341 * For each record in each valid block we call parse_lr_func().
342 * If the log has been claimed, stop if we encounter a sequence
343 * number greater than the highest claimed sequence number.
345 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
346 zil_bp_tree_init(zilog);
348 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
349 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
350 int reclen;
351 char *end;
353 if (blk_seq > claim_blk_seq)
354 break;
355 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
356 break;
357 ASSERT3U(max_blk_seq, <, blk_seq);
358 max_blk_seq = blk_seq;
359 blk_count++;
361 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
362 break;
364 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
365 if (error != 0)
366 break;
368 for (lrp = lrbuf; lrp < end; lrp += reclen) {
369 lr_t *lr = (lr_t *)lrp;
370 reclen = lr->lrc_reclen;
371 ASSERT3U(reclen, >=, sizeof (lr_t));
372 if (lr->lrc_seq > claim_lr_seq)
373 goto done;
374 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
375 goto done;
376 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
377 max_lr_seq = lr->lrc_seq;
378 lr_count++;
381 done:
382 zilog->zl_parse_error = error;
383 zilog->zl_parse_blk_seq = max_blk_seq;
384 zilog->zl_parse_lr_seq = max_lr_seq;
385 zilog->zl_parse_blk_count = blk_count;
386 zilog->zl_parse_lr_count = lr_count;
388 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
389 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
391 zil_bp_tree_fini(zilog);
392 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
394 return (error);
397 /* ARGSUSED */
398 static int
399 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
401 ASSERT(!BP_IS_HOLE(bp));
404 * As we call this function from the context of a rewind to a
405 * checkpoint, each ZIL block whose txg is later than the txg
406 * that we rewind to is invalid. Thus, we return -1 so
407 * zil_parse() doesn't attempt to read it.
409 if (bp->blk_birth >= first_txg)
410 return (-1);
412 if (zil_bp_tree_add(zilog, bp) != 0)
413 return (0);
415 zio_free(zilog->zl_spa, first_txg, bp);
416 return (0);
419 /* ARGSUSED */
420 static int
421 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
423 return (0);
426 static int
427 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
430 * Claim log block if not already committed and not already claimed.
431 * If tx == NULL, just verify that the block is claimable.
433 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
434 zil_bp_tree_add(zilog, bp) != 0)
435 return (0);
437 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
438 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
439 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
442 static int
443 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
445 lr_write_t *lr = (lr_write_t *)lrc;
446 int error;
448 if (lrc->lrc_txtype != TX_WRITE)
449 return (0);
452 * If the block is not readable, don't claim it. This can happen
453 * in normal operation when a log block is written to disk before
454 * some of the dmu_sync() blocks it points to. In this case, the
455 * transaction cannot have been committed to anyone (we would have
456 * waited for all writes to be stable first), so it is semantically
457 * correct to declare this the end of the log.
459 if (lr->lr_blkptr.blk_birth >= first_txg &&
460 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
461 return (error);
462 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
465 /* ARGSUSED */
466 static int
467 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
469 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
471 return (0);
474 static int
475 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
477 lr_write_t *lr = (lr_write_t *)lrc;
478 blkptr_t *bp = &lr->lr_blkptr;
481 * If we previously claimed it, we need to free it.
483 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
484 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
485 !BP_IS_HOLE(bp))
486 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
488 return (0);
491 static int
492 zil_lwb_vdev_compare(const void *x1, const void *x2)
494 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
495 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
497 if (v1 < v2)
498 return (-1);
499 if (v1 > v2)
500 return (1);
502 return (0);
505 static lwb_t *
506 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
508 lwb_t *lwb;
510 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
511 lwb->lwb_zilog = zilog;
512 lwb->lwb_blk = *bp;
513 lwb->lwb_slog = slog;
514 lwb->lwb_state = LWB_STATE_CLOSED;
515 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
516 lwb->lwb_max_txg = txg;
517 lwb->lwb_write_zio = NULL;
518 lwb->lwb_root_zio = NULL;
519 lwb->lwb_tx = NULL;
520 lwb->lwb_issued_timestamp = 0;
521 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
522 lwb->lwb_nused = sizeof (zil_chain_t);
523 lwb->lwb_sz = BP_GET_LSIZE(bp);
524 } else {
525 lwb->lwb_nused = 0;
526 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
529 mutex_enter(&zilog->zl_lock);
530 list_insert_tail(&zilog->zl_lwb_list, lwb);
531 mutex_exit(&zilog->zl_lock);
533 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
534 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
535 VERIFY(list_is_empty(&lwb->lwb_waiters));
537 return (lwb);
540 static void
541 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
543 ASSERT(MUTEX_HELD(&zilog->zl_lock));
544 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545 VERIFY(list_is_empty(&lwb->lwb_waiters));
546 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
550 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
551 lwb->lwb_state == LWB_STATE_DONE);
554 * Clear the zilog's field to indicate this lwb is no longer
555 * valid, and prevent use-after-free errors.
557 if (zilog->zl_last_lwb_opened == lwb)
558 zilog->zl_last_lwb_opened = NULL;
560 kmem_cache_free(zil_lwb_cache, lwb);
564 * Called when we create in-memory log transactions so that we know
565 * to cleanup the itxs at the end of spa_sync().
567 void
568 zilog_dirty(zilog_t *zilog, uint64_t txg)
570 dsl_pool_t *dp = zilog->zl_dmu_pool;
571 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
573 ASSERT(spa_writeable(zilog->zl_spa));
575 if (ds->ds_is_snapshot)
576 panic("dirtying snapshot!");
578 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
579 /* up the hold count until we can be written out */
580 dmu_buf_add_ref(ds->ds_dbuf, zilog);
582 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
587 * Determine if the zil is dirty in the specified txg. Callers wanting to
588 * ensure that the dirty state does not change must hold the itxg_lock for
589 * the specified txg. Holding the lock will ensure that the zil cannot be
590 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
591 * state.
593 boolean_t
594 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
596 dsl_pool_t *dp = zilog->zl_dmu_pool;
598 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
599 return (B_TRUE);
600 return (B_FALSE);
604 * Determine if the zil is dirty. The zil is considered dirty if it has
605 * any pending itx records that have not been cleaned by zil_clean().
607 boolean_t
608 zilog_is_dirty(zilog_t *zilog)
610 dsl_pool_t *dp = zilog->zl_dmu_pool;
612 for (int t = 0; t < TXG_SIZE; t++) {
613 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
614 return (B_TRUE);
616 return (B_FALSE);
620 * Create an on-disk intent log.
622 static lwb_t *
623 zil_create(zilog_t *zilog)
625 const zil_header_t *zh = zilog->zl_header;
626 lwb_t *lwb = NULL;
627 uint64_t txg = 0;
628 dmu_tx_t *tx = NULL;
629 blkptr_t blk;
630 int error = 0;
631 boolean_t slog = FALSE;
634 * Wait for any previous destroy to complete.
636 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
638 ASSERT(zh->zh_claim_txg == 0);
639 ASSERT(zh->zh_replay_seq == 0);
641 blk = zh->zh_log;
644 * Allocate an initial log block if:
645 * - there isn't one already
646 * - the existing block is the wrong endianess
648 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
649 tx = dmu_tx_create(zilog->zl_os);
650 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
651 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
652 txg = dmu_tx_get_txg(tx);
654 if (!BP_IS_HOLE(&blk)) {
655 zio_free(zilog->zl_spa, txg, &blk);
656 BP_ZERO(&blk);
659 error = zio_alloc_zil(zilog->zl_spa,
660 zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
661 ZIL_MIN_BLKSZ, &slog);
663 if (error == 0)
664 zil_init_log_chain(zilog, &blk);
668 * Allocate a log write block (lwb) for the first log block.
670 if (error == 0)
671 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
674 * If we just allocated the first log block, commit our transaction
675 * and wait for zil_sync() to stuff the block poiner into zh_log.
676 * (zh is part of the MOS, so we cannot modify it in open context.)
678 if (tx != NULL) {
679 dmu_tx_commit(tx);
680 txg_wait_synced(zilog->zl_dmu_pool, txg);
683 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
685 return (lwb);
689 * In one tx, free all log blocks and clear the log header. If keep_first
690 * is set, then we're replaying a log with no content. We want to keep the
691 * first block, however, so that the first synchronous transaction doesn't
692 * require a txg_wait_synced() in zil_create(). We don't need to
693 * txg_wait_synced() here either when keep_first is set, because both
694 * zil_create() and zil_destroy() will wait for any in-progress destroys
695 * to complete.
697 void
698 zil_destroy(zilog_t *zilog, boolean_t keep_first)
700 const zil_header_t *zh = zilog->zl_header;
701 lwb_t *lwb;
702 dmu_tx_t *tx;
703 uint64_t txg;
706 * Wait for any previous destroy to complete.
708 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
710 zilog->zl_old_header = *zh; /* debugging aid */
712 if (BP_IS_HOLE(&zh->zh_log))
713 return;
715 tx = dmu_tx_create(zilog->zl_os);
716 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
717 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
718 txg = dmu_tx_get_txg(tx);
720 mutex_enter(&zilog->zl_lock);
722 ASSERT3U(zilog->zl_destroy_txg, <, txg);
723 zilog->zl_destroy_txg = txg;
724 zilog->zl_keep_first = keep_first;
726 if (!list_is_empty(&zilog->zl_lwb_list)) {
727 ASSERT(zh->zh_claim_txg == 0);
728 VERIFY(!keep_first);
729 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
730 list_remove(&zilog->zl_lwb_list, lwb);
731 if (lwb->lwb_buf != NULL)
732 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
733 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
734 zil_free_lwb(zilog, lwb);
736 } else if (!keep_first) {
737 zil_destroy_sync(zilog, tx);
739 mutex_exit(&zilog->zl_lock);
741 dmu_tx_commit(tx);
744 void
745 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
747 ASSERT(list_is_empty(&zilog->zl_lwb_list));
748 (void) zil_parse(zilog, zil_free_log_block,
749 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
753 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
755 dmu_tx_t *tx = txarg;
756 zilog_t *zilog;
757 uint64_t first_txg;
758 zil_header_t *zh;
759 objset_t *os;
760 int error;
762 error = dmu_objset_own_obj(dp, ds->ds_object,
763 DMU_OST_ANY, B_FALSE, FTAG, &os);
764 if (error != 0) {
766 * EBUSY indicates that the objset is inconsistent, in which
767 * case it can not have a ZIL.
769 if (error != EBUSY) {
770 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
771 (unsigned long long)ds->ds_object, error);
773 return (0);
776 zilog = dmu_objset_zil(os);
777 zh = zil_header_in_syncing_context(zilog);
778 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
779 first_txg = spa_min_claim_txg(zilog->zl_spa);
782 * If the spa_log_state is not set to be cleared, check whether
783 * the current uberblock is a checkpoint one and if the current
784 * header has been claimed before moving on.
786 * If the current uberblock is a checkpointed uberblock then
787 * one of the following scenarios took place:
789 * 1] We are currently rewinding to the checkpoint of the pool.
790 * 2] We crashed in the middle of a checkpoint rewind but we
791 * did manage to write the checkpointed uberblock to the
792 * vdev labels, so when we tried to import the pool again
793 * the checkpointed uberblock was selected from the import
794 * procedure.
796 * In both cases we want to zero out all the ZIL blocks, except
797 * the ones that have been claimed at the time of the checkpoint
798 * (their zh_claim_txg != 0). The reason is that these blocks
799 * may be corrupted since we may have reused their locations on
800 * disk after we took the checkpoint.
802 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
803 * when we first figure out whether the current uberblock is
804 * checkpointed or not. Unfortunately, that would discard all
805 * the logs, including the ones that are claimed, and we would
806 * leak space.
808 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
809 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
810 zh->zh_claim_txg == 0)) {
811 if (!BP_IS_HOLE(&zh->zh_log)) {
812 (void) zil_parse(zilog, zil_clear_log_block,
813 zil_noop_log_record, tx, first_txg);
815 BP_ZERO(&zh->zh_log);
816 dsl_dataset_dirty(dmu_objset_ds(os), tx);
817 dmu_objset_disown(os, FTAG);
818 return (0);
822 * If we are not rewinding and opening the pool normally, then
823 * the min_claim_txg should be equal to the first txg of the pool.
825 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
828 * Claim all log blocks if we haven't already done so, and remember
829 * the highest claimed sequence number. This ensures that if we can
830 * read only part of the log now (e.g. due to a missing device),
831 * but we can read the entire log later, we will not try to replay
832 * or destroy beyond the last block we successfully claimed.
834 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
835 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
836 (void) zil_parse(zilog, zil_claim_log_block,
837 zil_claim_log_record, tx, first_txg);
838 zh->zh_claim_txg = first_txg;
839 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
840 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
841 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
842 zh->zh_flags |= ZIL_REPLAY_NEEDED;
843 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
844 dsl_dataset_dirty(dmu_objset_ds(os), tx);
847 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
848 dmu_objset_disown(os, FTAG);
849 return (0);
853 * Check the log by walking the log chain.
854 * Checksum errors are ok as they indicate the end of the chain.
855 * Any other error (no device or read failure) returns an error.
857 /* ARGSUSED */
859 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
861 zilog_t *zilog;
862 objset_t *os;
863 blkptr_t *bp;
864 int error;
866 ASSERT(tx == NULL);
868 error = dmu_objset_from_ds(ds, &os);
869 if (error != 0) {
870 cmn_err(CE_WARN, "can't open objset %llu, error %d",
871 (unsigned long long)ds->ds_object, error);
872 return (0);
875 zilog = dmu_objset_zil(os);
876 bp = (blkptr_t *)&zilog->zl_header->zh_log;
878 if (!BP_IS_HOLE(bp)) {
879 vdev_t *vd;
880 boolean_t valid = B_TRUE;
883 * Check the first block and determine if it's on a log device
884 * which may have been removed or faulted prior to loading this
885 * pool. If so, there's no point in checking the rest of the
886 * log as its content should have already been synced to the
887 * pool.
889 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
890 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
891 if (vd->vdev_islog && vdev_is_dead(vd))
892 valid = vdev_log_state_valid(vd);
893 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
895 if (!valid)
896 return (0);
899 * Check whether the current uberblock is checkpointed (e.g.
900 * we are rewinding) and whether the current header has been
901 * claimed or not. If it hasn't then skip verifying it. We
902 * do this because its ZIL blocks may be part of the pool's
903 * state before the rewind, which is no longer valid.
905 zil_header_t *zh = zil_header_in_syncing_context(zilog);
906 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
907 zh->zh_claim_txg == 0)
908 return (0);
912 * Because tx == NULL, zil_claim_log_block() will not actually claim
913 * any blocks, but just determine whether it is possible to do so.
914 * In addition to checking the log chain, zil_claim_log_block()
915 * will invoke zio_claim() with a done func of spa_claim_notify(),
916 * which will update spa_max_claim_txg. See spa_load() for details.
918 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
919 zilog->zl_header->zh_claim_txg ? -1ULL :
920 spa_min_claim_txg(os->os_spa));
922 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
926 * When an itx is "skipped", this function is used to properly mark the
927 * waiter as "done, and signal any thread(s) waiting on it. An itx can
928 * be skipped (and not committed to an lwb) for a variety of reasons,
929 * one of them being that the itx was committed via spa_sync(), prior to
930 * it being committed to an lwb; this can happen if a thread calling
931 * zil_commit() is racing with spa_sync().
933 static void
934 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
936 mutex_enter(&zcw->zcw_lock);
937 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
938 zcw->zcw_done = B_TRUE;
939 cv_broadcast(&zcw->zcw_cv);
940 mutex_exit(&zcw->zcw_lock);
944 * This function is used when the given waiter is to be linked into an
945 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
946 * At this point, the waiter will no longer be referenced by the itx,
947 * and instead, will be referenced by the lwb.
949 static void
950 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
953 * The lwb_waiters field of the lwb is protected by the zilog's
954 * zl_lock, thus it must be held when calling this function.
956 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
958 mutex_enter(&zcw->zcw_lock);
959 ASSERT(!list_link_active(&zcw->zcw_node));
960 ASSERT3P(zcw->zcw_lwb, ==, NULL);
961 ASSERT3P(lwb, !=, NULL);
962 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
963 lwb->lwb_state == LWB_STATE_ISSUED);
965 list_insert_tail(&lwb->lwb_waiters, zcw);
966 zcw->zcw_lwb = lwb;
967 mutex_exit(&zcw->zcw_lock);
971 * This function is used when zio_alloc_zil() fails to allocate a ZIL
972 * block, and the given waiter must be linked to the "nolwb waiters"
973 * list inside of zil_process_commit_list().
975 static void
976 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
978 mutex_enter(&zcw->zcw_lock);
979 ASSERT(!list_link_active(&zcw->zcw_node));
980 ASSERT3P(zcw->zcw_lwb, ==, NULL);
981 list_insert_tail(nolwb, zcw);
982 mutex_exit(&zcw->zcw_lock);
985 void
986 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
988 avl_tree_t *t = &lwb->lwb_vdev_tree;
989 avl_index_t where;
990 zil_vdev_node_t *zv, zvsearch;
991 int ndvas = BP_GET_NDVAS(bp);
992 int i;
994 if (zfs_nocacheflush)
995 return;
997 mutex_enter(&lwb->lwb_vdev_lock);
998 for (i = 0; i < ndvas; i++) {
999 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1000 if (avl_find(t, &zvsearch, &where) == NULL) {
1001 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1002 zv->zv_vdev = zvsearch.zv_vdev;
1003 avl_insert(t, zv, where);
1006 mutex_exit(&lwb->lwb_vdev_lock);
1009 void
1010 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1012 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1016 * This function is a called after all VDEVs associated with a given lwb
1017 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1018 * as the lwb write completes, if "zfs_nocacheflush" is set.
1020 * The intention is for this function to be called as soon as the
1021 * contents of an lwb are considered "stable" on disk, and will survive
1022 * any sudden loss of power. At this point, any threads waiting for the
1023 * lwb to reach this state are signalled, and the "waiter" structures
1024 * are marked "done".
1026 static void
1027 zil_lwb_flush_vdevs_done(zio_t *zio)
1029 lwb_t *lwb = zio->io_private;
1030 zilog_t *zilog = lwb->lwb_zilog;
1031 dmu_tx_t *tx = lwb->lwb_tx;
1032 zil_commit_waiter_t *zcw;
1034 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1036 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1038 mutex_enter(&zilog->zl_lock);
1041 * Ensure the lwb buffer pointer is cleared before releasing the
1042 * txg. If we have had an allocation failure and the txg is
1043 * waiting to sync then we want zil_sync() to remove the lwb so
1044 * that it's not picked up as the next new one in
1045 * zil_process_commit_list(). zil_sync() will only remove the
1046 * lwb if lwb_buf is null.
1048 lwb->lwb_buf = NULL;
1049 lwb->lwb_tx = NULL;
1051 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1052 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1054 lwb->lwb_root_zio = NULL;
1055 lwb->lwb_state = LWB_STATE_DONE;
1057 if (zilog->zl_last_lwb_opened == lwb) {
1059 * Remember the highest committed log sequence number
1060 * for ztest. We only update this value when all the log
1061 * writes succeeded, because ztest wants to ASSERT that
1062 * it got the whole log chain.
1064 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1067 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1068 mutex_enter(&zcw->zcw_lock);
1070 ASSERT(list_link_active(&zcw->zcw_node));
1071 list_remove(&lwb->lwb_waiters, zcw);
1073 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1074 zcw->zcw_lwb = NULL;
1076 zcw->zcw_zio_error = zio->io_error;
1078 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1079 zcw->zcw_done = B_TRUE;
1080 cv_broadcast(&zcw->zcw_cv);
1082 mutex_exit(&zcw->zcw_lock);
1085 mutex_exit(&zilog->zl_lock);
1088 * Now that we've written this log block, we have a stable pointer
1089 * to the next block in the chain, so it's OK to let the txg in
1090 * which we allocated the next block sync.
1092 dmu_tx_commit(tx);
1096 * This is called when an lwb write completes. This means, this specific
1097 * lwb was written to disk, and all dependent lwb have also been
1098 * written to disk.
1100 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1101 * the VDEVs involved in writing out this specific lwb. The lwb will be
1102 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1103 * zio completion callback for the lwb's root zio.
1105 static void
1106 zil_lwb_write_done(zio_t *zio)
1108 lwb_t *lwb = zio->io_private;
1109 spa_t *spa = zio->io_spa;
1110 zilog_t *zilog = lwb->lwb_zilog;
1111 avl_tree_t *t = &lwb->lwb_vdev_tree;
1112 void *cookie = NULL;
1113 zil_vdev_node_t *zv;
1115 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1117 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1118 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1119 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1120 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1121 ASSERT(!BP_IS_GANG(zio->io_bp));
1122 ASSERT(!BP_IS_HOLE(zio->io_bp));
1123 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1125 abd_put(zio->io_abd);
1127 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1129 mutex_enter(&zilog->zl_lock);
1130 lwb->lwb_write_zio = NULL;
1131 mutex_exit(&zilog->zl_lock);
1133 if (avl_numnodes(t) == 0)
1134 return;
1137 * If there was an IO error, we're not going to call zio_flush()
1138 * on these vdevs, so we simply empty the tree and free the
1139 * nodes. We avoid calling zio_flush() since there isn't any
1140 * good reason for doing so, after the lwb block failed to be
1141 * written out.
1143 if (zio->io_error != 0) {
1144 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1145 kmem_free(zv, sizeof (*zv));
1146 return;
1149 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1150 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1151 if (vd != NULL)
1152 zio_flush(lwb->lwb_root_zio, vd);
1153 kmem_free(zv, sizeof (*zv));
1158 * This function's purpose is to "open" an lwb such that it is ready to
1159 * accept new itxs being committed to it. To do this, the lwb's zio
1160 * structures are created, and linked to the lwb. This function is
1161 * idempotent; if the passed in lwb has already been opened, this
1162 * function is essentially a no-op.
1164 static void
1165 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1167 zbookmark_phys_t zb;
1168 zio_priority_t prio;
1170 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1171 ASSERT3P(lwb, !=, NULL);
1172 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1173 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1175 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1176 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1177 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1179 if (lwb->lwb_root_zio == NULL) {
1180 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1181 BP_GET_LSIZE(&lwb->lwb_blk));
1183 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1184 prio = ZIO_PRIORITY_SYNC_WRITE;
1185 else
1186 prio = ZIO_PRIORITY_ASYNC_WRITE;
1188 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1189 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1190 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1192 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1193 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1194 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1195 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1196 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1198 lwb->lwb_state = LWB_STATE_OPENED;
1200 mutex_enter(&zilog->zl_lock);
1203 * The zilog's "zl_last_lwb_opened" field is used to
1204 * build the lwb/zio dependency chain, which is used to
1205 * preserve the ordering of lwb completions that is
1206 * required by the semantics of the ZIL. Each new lwb
1207 * zio becomes a parent of the "previous" lwb zio, such
1208 * that the new lwb's zio cannot complete until the
1209 * "previous" lwb's zio completes.
1211 * This is required by the semantics of zil_commit();
1212 * the commit waiters attached to the lwbs will be woken
1213 * in the lwb zio's completion callback, so this zio
1214 * dependency graph ensures the waiters are woken in the
1215 * correct order (the same order the lwbs were created).
1217 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1218 if (last_lwb_opened != NULL &&
1219 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1220 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1221 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1222 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1223 zio_add_child(lwb->lwb_root_zio,
1224 last_lwb_opened->lwb_root_zio);
1226 zilog->zl_last_lwb_opened = lwb;
1228 mutex_exit(&zilog->zl_lock);
1231 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1232 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1233 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1237 * Define a limited set of intent log block sizes.
1239 * These must be a multiple of 4KB. Note only the amount used (again
1240 * aligned to 4KB) actually gets written. However, we can't always just
1241 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1243 uint64_t zil_block_buckets[] = {
1244 4096, /* non TX_WRITE */
1245 8192+4096, /* data base */
1246 32*1024 + 4096, /* NFS writes */
1247 UINT64_MAX
1251 * Start a log block write and advance to the next log block.
1252 * Calls are serialized.
1254 static lwb_t *
1255 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1257 lwb_t *nlwb = NULL;
1258 zil_chain_t *zilc;
1259 spa_t *spa = zilog->zl_spa;
1260 blkptr_t *bp;
1261 dmu_tx_t *tx;
1262 uint64_t txg;
1263 uint64_t zil_blksz, wsz;
1264 int i, error;
1265 boolean_t slog;
1267 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1268 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1269 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1270 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1272 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1273 zilc = (zil_chain_t *)lwb->lwb_buf;
1274 bp = &zilc->zc_next_blk;
1275 } else {
1276 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1277 bp = &zilc->zc_next_blk;
1280 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1283 * Allocate the next block and save its address in this block
1284 * before writing it in order to establish the log chain.
1285 * Note that if the allocation of nlwb synced before we wrote
1286 * the block that points at it (lwb), we'd leak it if we crashed.
1287 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1288 * We dirty the dataset to ensure that zil_sync() will be called
1289 * to clean up in the event of allocation failure or I/O failure.
1292 tx = dmu_tx_create(zilog->zl_os);
1295 * Since we are not going to create any new dirty data, and we
1296 * can even help with clearing the existing dirty data, we
1297 * should not be subject to the dirty data based delays. We
1298 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1300 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1302 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1303 txg = dmu_tx_get_txg(tx);
1305 lwb->lwb_tx = tx;
1308 * Log blocks are pre-allocated. Here we select the size of the next
1309 * block, based on size used in the last block.
1310 * - first find the smallest bucket that will fit the block from a
1311 * limited set of block sizes. This is because it's faster to write
1312 * blocks allocated from the same metaslab as they are adjacent or
1313 * close.
1314 * - next find the maximum from the new suggested size and an array of
1315 * previous sizes. This lessens a picket fence effect of wrongly
1316 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1317 * requests.
1319 * Note we only write what is used, but we can't just allocate
1320 * the maximum block size because we can exhaust the available
1321 * pool log space.
1323 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1324 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1325 continue;
1326 zil_blksz = zil_block_buckets[i];
1327 if (zil_blksz == UINT64_MAX)
1328 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1329 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1330 for (i = 0; i < ZIL_PREV_BLKS; i++)
1331 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1332 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1334 BP_ZERO(bp);
1336 /* pass the old blkptr in order to spread log blocks across devs */
1337 error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1338 txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1339 if (error == 0) {
1340 ASSERT3U(bp->blk_birth, ==, txg);
1341 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1342 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1345 * Allocate a new log write block (lwb).
1347 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1350 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1351 /* For Slim ZIL only write what is used. */
1352 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1353 ASSERT3U(wsz, <=, lwb->lwb_sz);
1354 zio_shrink(lwb->lwb_write_zio, wsz);
1356 } else {
1357 wsz = lwb->lwb_sz;
1360 zilc->zc_pad = 0;
1361 zilc->zc_nused = lwb->lwb_nused;
1362 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1365 * clear unused data for security
1367 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1369 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1371 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1372 lwb->lwb_issued_timestamp = gethrtime();
1373 lwb->lwb_state = LWB_STATE_ISSUED;
1375 zio_nowait(lwb->lwb_root_zio);
1376 zio_nowait(lwb->lwb_write_zio);
1379 * If there was an allocation failure then nlwb will be null which
1380 * forces a txg_wait_synced().
1382 return (nlwb);
1385 static lwb_t *
1386 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1388 lr_t *lrcb, *lrc;
1389 lr_write_t *lrwb, *lrw;
1390 char *lr_buf;
1391 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1393 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1394 ASSERT3P(lwb, !=, NULL);
1395 ASSERT3P(lwb->lwb_buf, !=, NULL);
1397 zil_lwb_write_open(zilog, lwb);
1399 lrc = &itx->itx_lr;
1400 lrw = (lr_write_t *)lrc;
1403 * A commit itx doesn't represent any on-disk state; instead
1404 * it's simply used as a place holder on the commit list, and
1405 * provides a mechanism for attaching a "commit waiter" onto the
1406 * correct lwb (such that the waiter can be signalled upon
1407 * completion of that lwb). Thus, we don't process this itx's
1408 * log record if it's a commit itx (these itx's don't have log
1409 * records), and instead link the itx's waiter onto the lwb's
1410 * list of waiters.
1412 * For more details, see the comment above zil_commit().
1414 if (lrc->lrc_txtype == TX_COMMIT) {
1415 mutex_enter(&zilog->zl_lock);
1416 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1417 itx->itx_private = NULL;
1418 mutex_exit(&zilog->zl_lock);
1419 return (lwb);
1422 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1423 dlen = P2ROUNDUP_TYPED(
1424 lrw->lr_length, sizeof (uint64_t), uint64_t);
1425 } else {
1426 dlen = 0;
1428 reclen = lrc->lrc_reclen;
1429 zilog->zl_cur_used += (reclen + dlen);
1430 txg = lrc->lrc_txg;
1432 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1434 cont:
1436 * If this record won't fit in the current log block, start a new one.
1437 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1439 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1440 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1441 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1442 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1443 lwb = zil_lwb_write_issue(zilog, lwb);
1444 if (lwb == NULL)
1445 return (NULL);
1446 zil_lwb_write_open(zilog, lwb);
1447 ASSERT(LWB_EMPTY(lwb));
1448 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1449 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1452 dnow = MIN(dlen, lwb_sp - reclen);
1453 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1454 bcopy(lrc, lr_buf, reclen);
1455 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1456 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1459 * If it's a write, fetch the data or get its blkptr as appropriate.
1461 if (lrc->lrc_txtype == TX_WRITE) {
1462 if (txg > spa_freeze_txg(zilog->zl_spa))
1463 txg_wait_synced(zilog->zl_dmu_pool, txg);
1464 if (itx->itx_wr_state != WR_COPIED) {
1465 char *dbuf;
1466 int error;
1468 if (itx->itx_wr_state == WR_NEED_COPY) {
1469 dbuf = lr_buf + reclen;
1470 lrcb->lrc_reclen += dnow;
1471 if (lrwb->lr_length > dnow)
1472 lrwb->lr_length = dnow;
1473 lrw->lr_offset += dnow;
1474 lrw->lr_length -= dnow;
1475 } else {
1476 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1477 dbuf = NULL;
1481 * We pass in the "lwb_write_zio" rather than
1482 * "lwb_root_zio" so that the "lwb_write_zio"
1483 * becomes the parent of any zio's created by
1484 * the "zl_get_data" callback. The vdevs are
1485 * flushed after the "lwb_write_zio" completes,
1486 * so we want to make sure that completion
1487 * callback waits for these additional zio's,
1488 * such that the vdevs used by those zio's will
1489 * be included in the lwb's vdev tree, and those
1490 * vdevs will be properly flushed. If we passed
1491 * in "lwb_root_zio" here, then these additional
1492 * vdevs may not be flushed; e.g. if these zio's
1493 * completed after "lwb_write_zio" completed.
1495 error = zilog->zl_get_data(itx->itx_private,
1496 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1498 if (error == EIO) {
1499 txg_wait_synced(zilog->zl_dmu_pool, txg);
1500 return (lwb);
1502 if (error != 0) {
1503 ASSERT(error == ENOENT || error == EEXIST ||
1504 error == EALREADY);
1505 return (lwb);
1511 * We're actually making an entry, so update lrc_seq to be the
1512 * log record sequence number. Note that this is generally not
1513 * equal to the itx sequence number because not all transactions
1514 * are synchronous, and sometimes spa_sync() gets there first.
1516 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1517 lwb->lwb_nused += reclen + dnow;
1519 zil_lwb_add_txg(lwb, txg);
1521 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1522 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1524 dlen -= dnow;
1525 if (dlen > 0) {
1526 zilog->zl_cur_used += reclen;
1527 goto cont;
1530 return (lwb);
1533 itx_t *
1534 zil_itx_create(uint64_t txtype, size_t lrsize)
1536 itx_t *itx;
1538 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1540 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1541 itx->itx_lr.lrc_txtype = txtype;
1542 itx->itx_lr.lrc_reclen = lrsize;
1543 itx->itx_lr.lrc_seq = 0; /* defensive */
1544 itx->itx_sync = B_TRUE; /* default is synchronous */
1546 return (itx);
1549 void
1550 zil_itx_destroy(itx_t *itx)
1552 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1556 * Free up the sync and async itxs. The itxs_t has already been detached
1557 * so no locks are needed.
1559 static void
1560 zil_itxg_clean(itxs_t *itxs)
1562 itx_t *itx;
1563 list_t *list;
1564 avl_tree_t *t;
1565 void *cookie;
1566 itx_async_node_t *ian;
1568 list = &itxs->i_sync_list;
1569 while ((itx = list_head(list)) != NULL) {
1571 * In the general case, commit itxs will not be found
1572 * here, as they'll be committed to an lwb via
1573 * zil_lwb_commit(), and free'd in that function. Having
1574 * said that, it is still possible for commit itxs to be
1575 * found here, due to the following race:
1577 * - a thread calls zil_commit() which assigns the
1578 * commit itx to a per-txg i_sync_list
1579 * - zil_itxg_clean() is called (e.g. via spa_sync())
1580 * while the waiter is still on the i_sync_list
1582 * There's nothing to prevent syncing the txg while the
1583 * waiter is on the i_sync_list. This normally doesn't
1584 * happen because spa_sync() is slower than zil_commit(),
1585 * but if zil_commit() calls txg_wait_synced() (e.g.
1586 * because zil_create() or zil_commit_writer_stall() is
1587 * called) we will hit this case.
1589 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1590 zil_commit_waiter_skip(itx->itx_private);
1592 list_remove(list, itx);
1593 zil_itx_destroy(itx);
1596 cookie = NULL;
1597 t = &itxs->i_async_tree;
1598 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1599 list = &ian->ia_list;
1600 while ((itx = list_head(list)) != NULL) {
1601 list_remove(list, itx);
1602 /* commit itxs should never be on the async lists. */
1603 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1604 zil_itx_destroy(itx);
1606 list_destroy(list);
1607 kmem_free(ian, sizeof (itx_async_node_t));
1609 avl_destroy(t);
1611 kmem_free(itxs, sizeof (itxs_t));
1614 static int
1615 zil_aitx_compare(const void *x1, const void *x2)
1617 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1618 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1620 if (o1 < o2)
1621 return (-1);
1622 if (o1 > o2)
1623 return (1);
1625 return (0);
1629 * Remove all async itx with the given oid.
1631 static void
1632 zil_remove_async(zilog_t *zilog, uint64_t oid)
1634 uint64_t otxg, txg;
1635 itx_async_node_t *ian;
1636 avl_tree_t *t;
1637 avl_index_t where;
1638 list_t clean_list;
1639 itx_t *itx;
1641 ASSERT(oid != 0);
1642 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1644 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1645 otxg = ZILTEST_TXG;
1646 else
1647 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1649 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1650 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1652 mutex_enter(&itxg->itxg_lock);
1653 if (itxg->itxg_txg != txg) {
1654 mutex_exit(&itxg->itxg_lock);
1655 continue;
1659 * Locate the object node and append its list.
1661 t = &itxg->itxg_itxs->i_async_tree;
1662 ian = avl_find(t, &oid, &where);
1663 if (ian != NULL)
1664 list_move_tail(&clean_list, &ian->ia_list);
1665 mutex_exit(&itxg->itxg_lock);
1667 while ((itx = list_head(&clean_list)) != NULL) {
1668 list_remove(&clean_list, itx);
1669 /* commit itxs should never be on the async lists. */
1670 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1671 zil_itx_destroy(itx);
1673 list_destroy(&clean_list);
1676 void
1677 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1679 uint64_t txg;
1680 itxg_t *itxg;
1681 itxs_t *itxs, *clean = NULL;
1684 * Object ids can be re-instantiated in the next txg so
1685 * remove any async transactions to avoid future leaks.
1686 * This can happen if a fsync occurs on the re-instantiated
1687 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1688 * the new file data and flushes a write record for the old object.
1690 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1691 zil_remove_async(zilog, itx->itx_oid);
1694 * Ensure the data of a renamed file is committed before the rename.
1696 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1697 zil_async_to_sync(zilog, itx->itx_oid);
1699 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1700 txg = ZILTEST_TXG;
1701 else
1702 txg = dmu_tx_get_txg(tx);
1704 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1705 mutex_enter(&itxg->itxg_lock);
1706 itxs = itxg->itxg_itxs;
1707 if (itxg->itxg_txg != txg) {
1708 if (itxs != NULL) {
1710 * The zil_clean callback hasn't got around to cleaning
1711 * this itxg. Save the itxs for release below.
1712 * This should be rare.
1714 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1715 "txg %llu", itxg->itxg_txg);
1716 clean = itxg->itxg_itxs;
1718 itxg->itxg_txg = txg;
1719 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1721 list_create(&itxs->i_sync_list, sizeof (itx_t),
1722 offsetof(itx_t, itx_node));
1723 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1724 sizeof (itx_async_node_t),
1725 offsetof(itx_async_node_t, ia_node));
1727 if (itx->itx_sync) {
1728 list_insert_tail(&itxs->i_sync_list, itx);
1729 } else {
1730 avl_tree_t *t = &itxs->i_async_tree;
1731 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1732 itx_async_node_t *ian;
1733 avl_index_t where;
1735 ian = avl_find(t, &foid, &where);
1736 if (ian == NULL) {
1737 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1738 list_create(&ian->ia_list, sizeof (itx_t),
1739 offsetof(itx_t, itx_node));
1740 ian->ia_foid = foid;
1741 avl_insert(t, ian, where);
1743 list_insert_tail(&ian->ia_list, itx);
1746 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1749 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1750 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1751 * need to be careful to always dirty the ZIL using the "real"
1752 * TXG (not itxg_txg) even when the SPA is frozen.
1754 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1755 mutex_exit(&itxg->itxg_lock);
1757 /* Release the old itxs now we've dropped the lock */
1758 if (clean != NULL)
1759 zil_itxg_clean(clean);
1763 * If there are any in-memory intent log transactions which have now been
1764 * synced then start up a taskq to free them. We should only do this after we
1765 * have written out the uberblocks (i.e. txg has been comitted) so that
1766 * don't inadvertently clean out in-memory log records that would be required
1767 * by zil_commit().
1769 void
1770 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1772 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1773 itxs_t *clean_me;
1775 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1777 mutex_enter(&itxg->itxg_lock);
1778 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1779 mutex_exit(&itxg->itxg_lock);
1780 return;
1782 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1783 ASSERT3U(itxg->itxg_txg, !=, 0);
1784 clean_me = itxg->itxg_itxs;
1785 itxg->itxg_itxs = NULL;
1786 itxg->itxg_txg = 0;
1787 mutex_exit(&itxg->itxg_lock);
1789 * Preferably start a task queue to free up the old itxs but
1790 * if taskq_dispatch can't allocate resources to do that then
1791 * free it in-line. This should be rare. Note, using TQ_SLEEP
1792 * created a bad performance problem.
1794 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1795 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1796 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1797 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1798 zil_itxg_clean(clean_me);
1802 * This function will traverse the queue of itxs that need to be
1803 * committed, and move them onto the ZIL's zl_itx_commit_list.
1805 static void
1806 zil_get_commit_list(zilog_t *zilog)
1808 uint64_t otxg, txg;
1809 list_t *commit_list = &zilog->zl_itx_commit_list;
1811 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1813 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1814 otxg = ZILTEST_TXG;
1815 else
1816 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1819 * This is inherently racy, since there is nothing to prevent
1820 * the last synced txg from changing. That's okay since we'll
1821 * only commit things in the future.
1823 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1824 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1826 mutex_enter(&itxg->itxg_lock);
1827 if (itxg->itxg_txg != txg) {
1828 mutex_exit(&itxg->itxg_lock);
1829 continue;
1833 * If we're adding itx records to the zl_itx_commit_list,
1834 * then the zil better be dirty in this "txg". We can assert
1835 * that here since we're holding the itxg_lock which will
1836 * prevent spa_sync from cleaning it. Once we add the itxs
1837 * to the zl_itx_commit_list we must commit it to disk even
1838 * if it's unnecessary (i.e. the txg was synced).
1840 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1841 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1842 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1844 mutex_exit(&itxg->itxg_lock);
1849 * Move the async itxs for a specified object to commit into sync lists.
1851 static void
1852 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1854 uint64_t otxg, txg;
1855 itx_async_node_t *ian;
1856 avl_tree_t *t;
1857 avl_index_t where;
1859 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1860 otxg = ZILTEST_TXG;
1861 else
1862 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1865 * This is inherently racy, since there is nothing to prevent
1866 * the last synced txg from changing.
1868 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1869 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1871 mutex_enter(&itxg->itxg_lock);
1872 if (itxg->itxg_txg != txg) {
1873 mutex_exit(&itxg->itxg_lock);
1874 continue;
1878 * If a foid is specified then find that node and append its
1879 * list. Otherwise walk the tree appending all the lists
1880 * to the sync list. We add to the end rather than the
1881 * beginning to ensure the create has happened.
1883 t = &itxg->itxg_itxs->i_async_tree;
1884 if (foid != 0) {
1885 ian = avl_find(t, &foid, &where);
1886 if (ian != NULL) {
1887 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1888 &ian->ia_list);
1890 } else {
1891 void *cookie = NULL;
1893 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1894 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1895 &ian->ia_list);
1896 list_destroy(&ian->ia_list);
1897 kmem_free(ian, sizeof (itx_async_node_t));
1900 mutex_exit(&itxg->itxg_lock);
1905 * This function will prune commit itxs that are at the head of the
1906 * commit list (it won't prune past the first non-commit itx), and
1907 * either: a) attach them to the last lwb that's still pending
1908 * completion, or b) skip them altogether.
1910 * This is used as a performance optimization to prevent commit itxs
1911 * from generating new lwbs when it's unnecessary to do so.
1913 static void
1914 zil_prune_commit_list(zilog_t *zilog)
1916 itx_t *itx;
1918 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1920 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1921 lr_t *lrc = &itx->itx_lr;
1922 if (lrc->lrc_txtype != TX_COMMIT)
1923 break;
1925 mutex_enter(&zilog->zl_lock);
1927 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1928 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1930 * All of the itxs this waiter was waiting on
1931 * must have already completed (or there were
1932 * never any itx's for it to wait on), so it's
1933 * safe to skip this waiter and mark it done.
1935 zil_commit_waiter_skip(itx->itx_private);
1936 } else {
1937 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1938 itx->itx_private = NULL;
1941 mutex_exit(&zilog->zl_lock);
1943 list_remove(&zilog->zl_itx_commit_list, itx);
1944 zil_itx_destroy(itx);
1947 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1950 static void
1951 zil_commit_writer_stall(zilog_t *zilog)
1954 * When zio_alloc_zil() fails to allocate the next lwb block on
1955 * disk, we must call txg_wait_synced() to ensure all of the
1956 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1957 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1958 * to zil_process_commit_list()) will have to call zil_create(),
1959 * and start a new ZIL chain.
1961 * Since zil_alloc_zil() failed, the lwb that was previously
1962 * issued does not have a pointer to the "next" lwb on disk.
1963 * Thus, if another ZIL writer thread was to allocate the "next"
1964 * on-disk lwb, that block could be leaked in the event of a
1965 * crash (because the previous lwb on-disk would not point to
1966 * it).
1968 * We must hold the zilog's zl_issuer_lock while we do this, to
1969 * ensure no new threads enter zil_process_commit_list() until
1970 * all lwb's in the zl_lwb_list have been synced and freed
1971 * (which is achieved via the txg_wait_synced() call).
1973 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1974 txg_wait_synced(zilog->zl_dmu_pool, 0);
1975 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1979 * This function will traverse the commit list, creating new lwbs as
1980 * needed, and committing the itxs from the commit list to these newly
1981 * created lwbs. Additionally, as a new lwb is created, the previous
1982 * lwb will be issued to the zio layer to be written to disk.
1984 static void
1985 zil_process_commit_list(zilog_t *zilog)
1987 spa_t *spa = zilog->zl_spa;
1988 list_t nolwb_waiters;
1989 lwb_t *lwb;
1990 itx_t *itx;
1992 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1995 * Return if there's nothing to commit before we dirty the fs by
1996 * calling zil_create().
1998 if (list_head(&zilog->zl_itx_commit_list) == NULL)
1999 return;
2001 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2002 offsetof(zil_commit_waiter_t, zcw_node));
2004 lwb = list_tail(&zilog->zl_lwb_list);
2005 if (lwb == NULL) {
2006 lwb = zil_create(zilog);
2007 } else {
2008 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2009 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2012 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2013 lr_t *lrc = &itx->itx_lr;
2014 uint64_t txg = lrc->lrc_txg;
2016 ASSERT3U(txg, !=, 0);
2018 if (lrc->lrc_txtype == TX_COMMIT) {
2019 DTRACE_PROBE2(zil__process__commit__itx,
2020 zilog_t *, zilog, itx_t *, itx);
2021 } else {
2022 DTRACE_PROBE2(zil__process__normal__itx,
2023 zilog_t *, zilog, itx_t *, itx);
2026 boolean_t synced = txg <= spa_last_synced_txg(spa);
2027 boolean_t frozen = txg > spa_freeze_txg(spa);
2030 * If the txg of this itx has already been synced out, then
2031 * we don't need to commit this itx to an lwb. This is
2032 * because the data of this itx will have already been
2033 * written to the main pool. This is inherently racy, and
2034 * it's still ok to commit an itx whose txg has already
2035 * been synced; this will result in a write that's
2036 * unnecessary, but will do no harm.
2038 * With that said, we always want to commit TX_COMMIT itxs
2039 * to an lwb, regardless of whether or not that itx's txg
2040 * has been synced out. We do this to ensure any OPENED lwb
2041 * will always have at least one zil_commit_waiter_t linked
2042 * to the lwb.
2044 * As a counter-example, if we skipped TX_COMMIT itx's
2045 * whose txg had already been synced, the following
2046 * situation could occur if we happened to be racing with
2047 * spa_sync:
2049 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2050 * itx's txg is 10 and the last synced txg is 9.
2051 * 2. spa_sync finishes syncing out txg 10.
2052 * 3. we move to the next itx in the list, it's a TX_COMMIT
2053 * whose txg is 10, so we skip it rather than committing
2054 * it to the lwb used in (1).
2056 * If the itx that is skipped in (3) is the last TX_COMMIT
2057 * itx in the commit list, than it's possible for the lwb
2058 * used in (1) to remain in the OPENED state indefinitely.
2060 * To prevent the above scenario from occuring, ensuring
2061 * that once an lwb is OPENED it will transition to ISSUED
2062 * and eventually DONE, we always commit TX_COMMIT itx's to
2063 * an lwb here, even if that itx's txg has already been
2064 * synced.
2066 * Finally, if the pool is frozen, we _always_ commit the
2067 * itx. The point of freezing the pool is to prevent data
2068 * from being written to the main pool via spa_sync, and
2069 * instead rely solely on the ZIL to persistently store the
2070 * data; i.e. when the pool is frozen, the last synced txg
2071 * value can't be trusted.
2073 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2074 if (lwb != NULL) {
2075 lwb = zil_lwb_commit(zilog, itx, lwb);
2076 } else if (lrc->lrc_txtype == TX_COMMIT) {
2077 ASSERT3P(lwb, ==, NULL);
2078 zil_commit_waiter_link_nolwb(
2079 itx->itx_private, &nolwb_waiters);
2083 list_remove(&zilog->zl_itx_commit_list, itx);
2084 zil_itx_destroy(itx);
2087 if (lwb == NULL) {
2089 * This indicates zio_alloc_zil() failed to allocate the
2090 * "next" lwb on-disk. When this happens, we must stall
2091 * the ZIL write pipeline; see the comment within
2092 * zil_commit_writer_stall() for more details.
2094 zil_commit_writer_stall(zilog);
2097 * Additionally, we have to signal and mark the "nolwb"
2098 * waiters as "done" here, since without an lwb, we
2099 * can't do this via zil_lwb_flush_vdevs_done() like
2100 * normal.
2102 zil_commit_waiter_t *zcw;
2103 while (zcw = list_head(&nolwb_waiters)) {
2104 zil_commit_waiter_skip(zcw);
2105 list_remove(&nolwb_waiters, zcw);
2107 } else {
2108 ASSERT(list_is_empty(&nolwb_waiters));
2109 ASSERT3P(lwb, !=, NULL);
2110 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2111 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2114 * At this point, the ZIL block pointed at by the "lwb"
2115 * variable is in one of the following states: "closed"
2116 * or "open".
2118 * If its "closed", then no itxs have been committed to
2119 * it, so there's no point in issuing its zio (i.e.
2120 * it's "empty").
2122 * If its "open" state, then it contains one or more
2123 * itxs that eventually need to be committed to stable
2124 * storage. In this case we intentionally do not issue
2125 * the lwb's zio to disk yet, and instead rely on one of
2126 * the following two mechanisms for issuing the zio:
2128 * 1. Ideally, there will be more ZIL activity occuring
2129 * on the system, such that this function will be
2130 * immediately called again (not necessarily by the same
2131 * thread) and this lwb's zio will be issued via
2132 * zil_lwb_commit(). This way, the lwb is guaranteed to
2133 * be "full" when it is issued to disk, and we'll make
2134 * use of the lwb's size the best we can.
2136 * 2. If there isn't sufficient ZIL activity occuring on
2137 * the system, such that this lwb's zio isn't issued via
2138 * zil_lwb_commit(), zil_commit_waiter() will issue the
2139 * lwb's zio. If this occurs, the lwb is not guaranteed
2140 * to be "full" by the time its zio is issued, and means
2141 * the size of the lwb was "too large" given the amount
2142 * of ZIL activity occuring on the system at that time.
2144 * We do this for a couple of reasons:
2146 * 1. To try and reduce the number of IOPs needed to
2147 * write the same number of itxs. If an lwb has space
2148 * available in it's buffer for more itxs, and more itxs
2149 * will be committed relatively soon (relative to the
2150 * latency of performing a write), then it's beneficial
2151 * to wait for these "next" itxs. This way, more itxs
2152 * can be committed to stable storage with fewer writes.
2154 * 2. To try and use the largest lwb block size that the
2155 * incoming rate of itxs can support. Again, this is to
2156 * try and pack as many itxs into as few lwbs as
2157 * possible, without significantly impacting the latency
2158 * of each individual itx.
2164 * This function is responsible for ensuring the passed in commit waiter
2165 * (and associated commit itx) is committed to an lwb. If the waiter is
2166 * not already committed to an lwb, all itxs in the zilog's queue of
2167 * itxs will be processed. The assumption is the passed in waiter's
2168 * commit itx will found in the queue just like the other non-commit
2169 * itxs, such that when the entire queue is processed, the waiter will
2170 * have been commited to an lwb.
2172 * The lwb associated with the passed in waiter is not guaranteed to
2173 * have been issued by the time this function completes. If the lwb is
2174 * not issued, we rely on future calls to zil_commit_writer() to issue
2175 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2177 static void
2178 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2180 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2181 ASSERT(spa_writeable(zilog->zl_spa));
2183 mutex_enter(&zilog->zl_issuer_lock);
2185 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2187 * It's possible that, while we were waiting to acquire
2188 * the "zl_issuer_lock", another thread committed this
2189 * waiter to an lwb. If that occurs, we bail out early,
2190 * without processing any of the zilog's queue of itxs.
2192 * On certain workloads and system configurations, the
2193 * "zl_issuer_lock" can become highly contended. In an
2194 * attempt to reduce this contention, we immediately drop
2195 * the lock if the waiter has already been processed.
2197 * We've measured this optimization to reduce CPU spent
2198 * contending on this lock by up to 5%, using a system
2199 * with 32 CPUs, low latency storage (~50 usec writes),
2200 * and 1024 threads performing sync writes.
2202 goto out;
2205 zil_get_commit_list(zilog);
2206 zil_prune_commit_list(zilog);
2207 zil_process_commit_list(zilog);
2209 out:
2210 mutex_exit(&zilog->zl_issuer_lock);
2213 static void
2214 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2216 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2217 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2218 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2220 lwb_t *lwb = zcw->zcw_lwb;
2221 ASSERT3P(lwb, !=, NULL);
2222 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2225 * If the lwb has already been issued by another thread, we can
2226 * immediately return since there's no work to be done (the
2227 * point of this function is to issue the lwb). Additionally, we
2228 * do this prior to acquiring the zl_issuer_lock, to avoid
2229 * acquiring it when it's not necessary to do so.
2231 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2232 lwb->lwb_state == LWB_STATE_DONE)
2233 return;
2236 * In order to call zil_lwb_write_issue() we must hold the
2237 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2238 * since we're already holding the commit waiter's "zcw_lock",
2239 * and those two locks are aquired in the opposite order
2240 * elsewhere.
2242 mutex_exit(&zcw->zcw_lock);
2243 mutex_enter(&zilog->zl_issuer_lock);
2244 mutex_enter(&zcw->zcw_lock);
2247 * Since we just dropped and re-acquired the commit waiter's
2248 * lock, we have to re-check to see if the waiter was marked
2249 * "done" during that process. If the waiter was marked "done",
2250 * the "lwb" pointer is no longer valid (it can be free'd after
2251 * the waiter is marked "done"), so without this check we could
2252 * wind up with a use-after-free error below.
2254 if (zcw->zcw_done)
2255 goto out;
2257 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2260 * We've already checked this above, but since we hadn't acquired
2261 * the zilog's zl_issuer_lock, we have to perform this check a
2262 * second time while holding the lock.
2264 * We don't need to hold the zl_lock since the lwb cannot transition
2265 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2266 * _can_ transition from ISSUED to DONE, but it's OK to race with
2267 * that transition since we treat the lwb the same, whether it's in
2268 * the ISSUED or DONE states.
2270 * The important thing, is we treat the lwb differently depending on
2271 * if it's ISSUED or OPENED, and block any other threads that might
2272 * attempt to issue this lwb. For that reason we hold the
2273 * zl_issuer_lock when checking the lwb_state; we must not call
2274 * zil_lwb_write_issue() if the lwb had already been issued.
2276 * See the comment above the lwb_state_t structure definition for
2277 * more details on the lwb states, and locking requirements.
2279 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2280 lwb->lwb_state == LWB_STATE_DONE)
2281 goto out;
2283 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2286 * As described in the comments above zil_commit_waiter() and
2287 * zil_process_commit_list(), we need to issue this lwb's zio
2288 * since we've reached the commit waiter's timeout and it still
2289 * hasn't been issued.
2291 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2293 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2296 * Since the lwb's zio hadn't been issued by the time this thread
2297 * reached its timeout, we reset the zilog's "zl_cur_used" field
2298 * to influence the zil block size selection algorithm.
2300 * By having to issue the lwb's zio here, it means the size of the
2301 * lwb was too large, given the incoming throughput of itxs. By
2302 * setting "zl_cur_used" to zero, we communicate this fact to the
2303 * block size selection algorithm, so it can take this informaiton
2304 * into account, and potentially select a smaller size for the
2305 * next lwb block that is allocated.
2307 zilog->zl_cur_used = 0;
2309 if (nlwb == NULL) {
2311 * When zil_lwb_write_issue() returns NULL, this
2312 * indicates zio_alloc_zil() failed to allocate the
2313 * "next" lwb on-disk. When this occurs, the ZIL write
2314 * pipeline must be stalled; see the comment within the
2315 * zil_commit_writer_stall() function for more details.
2317 * We must drop the commit waiter's lock prior to
2318 * calling zil_commit_writer_stall() or else we can wind
2319 * up with the following deadlock:
2321 * - This thread is waiting for the txg to sync while
2322 * holding the waiter's lock; txg_wait_synced() is
2323 * used within txg_commit_writer_stall().
2325 * - The txg can't sync because it is waiting for this
2326 * lwb's zio callback to call dmu_tx_commit().
2328 * - The lwb's zio callback can't call dmu_tx_commit()
2329 * because it's blocked trying to acquire the waiter's
2330 * lock, which occurs prior to calling dmu_tx_commit()
2332 mutex_exit(&zcw->zcw_lock);
2333 zil_commit_writer_stall(zilog);
2334 mutex_enter(&zcw->zcw_lock);
2337 out:
2338 mutex_exit(&zilog->zl_issuer_lock);
2339 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2343 * This function is responsible for performing the following two tasks:
2345 * 1. its primary responsibility is to block until the given "commit
2346 * waiter" is considered "done".
2348 * 2. its secondary responsibility is to issue the zio for the lwb that
2349 * the given "commit waiter" is waiting on, if this function has
2350 * waited "long enough" and the lwb is still in the "open" state.
2352 * Given a sufficient amount of itxs being generated and written using
2353 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2354 * function. If this does not occur, this secondary responsibility will
2355 * ensure the lwb is issued even if there is not other synchronous
2356 * activity on the system.
2358 * For more details, see zil_process_commit_list(); more specifically,
2359 * the comment at the bottom of that function.
2361 static void
2362 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2364 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2365 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2366 ASSERT(spa_writeable(zilog->zl_spa));
2368 mutex_enter(&zcw->zcw_lock);
2371 * The timeout is scaled based on the lwb latency to avoid
2372 * significantly impacting the latency of each individual itx.
2373 * For more details, see the comment at the bottom of the
2374 * zil_process_commit_list() function.
2376 int pct = MAX(zfs_commit_timeout_pct, 1);
2377 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2378 hrtime_t wakeup = gethrtime() + sleep;
2379 boolean_t timedout = B_FALSE;
2381 while (!zcw->zcw_done) {
2382 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2384 lwb_t *lwb = zcw->zcw_lwb;
2387 * Usually, the waiter will have a non-NULL lwb field here,
2388 * but it's possible for it to be NULL as a result of
2389 * zil_commit() racing with spa_sync().
2391 * When zil_clean() is called, it's possible for the itxg
2392 * list (which may be cleaned via a taskq) to contain
2393 * commit itxs. When this occurs, the commit waiters linked
2394 * off of these commit itxs will not be committed to an
2395 * lwb. Additionally, these commit waiters will not be
2396 * marked done until zil_commit_waiter_skip() is called via
2397 * zil_itxg_clean().
2399 * Thus, it's possible for this commit waiter (i.e. the
2400 * "zcw" variable) to be found in this "in between" state;
2401 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2402 * been skipped, so it's "zcw_done" field is still B_FALSE.
2404 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2406 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2407 ASSERT3B(timedout, ==, B_FALSE);
2410 * If the lwb hasn't been issued yet, then we
2411 * need to wait with a timeout, in case this
2412 * function needs to issue the lwb after the
2413 * timeout is reached; responsibility (2) from
2414 * the comment above this function.
2416 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2417 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2418 CALLOUT_FLAG_ABSOLUTE);
2420 if (timeleft >= 0 || zcw->zcw_done)
2421 continue;
2423 timedout = B_TRUE;
2424 zil_commit_waiter_timeout(zilog, zcw);
2426 if (!zcw->zcw_done) {
2428 * If the commit waiter has already been
2429 * marked "done", it's possible for the
2430 * waiter's lwb structure to have already
2431 * been freed. Thus, we can only reliably
2432 * make these assertions if the waiter
2433 * isn't done.
2435 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2436 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2438 } else {
2440 * If the lwb isn't open, then it must have already
2441 * been issued. In that case, there's no need to
2442 * use a timeout when waiting for the lwb to
2443 * complete.
2445 * Additionally, if the lwb is NULL, the waiter
2446 * will soon be signalled and marked done via
2447 * zil_clean() and zil_itxg_clean(), so no timeout
2448 * is required.
2451 IMPLY(lwb != NULL,
2452 lwb->lwb_state == LWB_STATE_ISSUED ||
2453 lwb->lwb_state == LWB_STATE_DONE);
2454 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2458 mutex_exit(&zcw->zcw_lock);
2461 static zil_commit_waiter_t *
2462 zil_alloc_commit_waiter()
2464 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2466 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2467 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2468 list_link_init(&zcw->zcw_node);
2469 zcw->zcw_lwb = NULL;
2470 zcw->zcw_done = B_FALSE;
2471 zcw->zcw_zio_error = 0;
2473 return (zcw);
2476 static void
2477 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2479 ASSERT(!list_link_active(&zcw->zcw_node));
2480 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2481 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2482 mutex_destroy(&zcw->zcw_lock);
2483 cv_destroy(&zcw->zcw_cv);
2484 kmem_cache_free(zil_zcw_cache, zcw);
2488 * This function is used to create a TX_COMMIT itx and assign it. This
2489 * way, it will be linked into the ZIL's list of synchronous itxs, and
2490 * then later committed to an lwb (or skipped) when
2491 * zil_process_commit_list() is called.
2493 static void
2494 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2496 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2497 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2499 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2500 itx->itx_sync = B_TRUE;
2501 itx->itx_private = zcw;
2503 zil_itx_assign(zilog, itx, tx);
2505 dmu_tx_commit(tx);
2509 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2511 * When writing ZIL transactions to the on-disk representation of the
2512 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2513 * itxs can be committed to a single lwb. Once a lwb is written and
2514 * committed to stable storage (i.e. the lwb is written, and vdevs have
2515 * been flushed), each itx that was committed to that lwb is also
2516 * considered to be committed to stable storage.
2518 * When an itx is committed to an lwb, the log record (lr_t) contained
2519 * by the itx is copied into the lwb's zio buffer, and once this buffer
2520 * is written to disk, it becomes an on-disk ZIL block.
2522 * As itxs are generated, they're inserted into the ZIL's queue of
2523 * uncommitted itxs. The semantics of zil_commit() are such that it will
2524 * block until all itxs that were in the queue when it was called, are
2525 * committed to stable storage.
2527 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2528 * itxs, for all objects in the dataset, will be committed to stable
2529 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2530 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2531 * that correspond to the foid passed in, will be committed to stable
2532 * storage prior to zil_commit() returning.
2534 * Generally speaking, when zil_commit() is called, the consumer doesn't
2535 * actually care about _all_ of the uncommitted itxs. Instead, they're
2536 * simply trying to waiting for a specific itx to be committed to disk,
2537 * but the interface(s) for interacting with the ZIL don't allow such
2538 * fine-grained communication. A better interface would allow a consumer
2539 * to create and assign an itx, and then pass a reference to this itx to
2540 * zil_commit(); such that zil_commit() would return as soon as that
2541 * specific itx was committed to disk (instead of waiting for _all_
2542 * itxs to be committed).
2544 * When a thread calls zil_commit() a special "commit itx" will be
2545 * generated, along with a corresponding "waiter" for this commit itx.
2546 * zil_commit() will wait on this waiter's CV, such that when the waiter
2547 * is marked done, and signalled, zil_commit() will return.
2549 * This commit itx is inserted into the queue of uncommitted itxs. This
2550 * provides an easy mechanism for determining which itxs were in the
2551 * queue prior to zil_commit() having been called, and which itxs were
2552 * added after zil_commit() was called.
2554 * The commit it is special; it doesn't have any on-disk representation.
2555 * When a commit itx is "committed" to an lwb, the waiter associated
2556 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2557 * completes, each waiter on the lwb's list is marked done and signalled
2558 * -- allowing the thread waiting on the waiter to return from zil_commit().
2560 * It's important to point out a few critical factors that allow us
2561 * to make use of the commit itxs, commit waiters, per-lwb lists of
2562 * commit waiters, and zio completion callbacks like we're doing:
2564 * 1. The list of waiters for each lwb is traversed, and each commit
2565 * waiter is marked "done" and signalled, in the zio completion
2566 * callback of the lwb's zio[*].
2568 * * Actually, the waiters are signalled in the zio completion
2569 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2570 * that are sent to the vdevs upon completion of the lwb zio.
2572 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2573 * itxs, the order in which they are inserted is preserved[*]; as
2574 * itxs are added to the queue, they are added to the tail of
2575 * in-memory linked lists.
2577 * When committing the itxs to lwbs (to be written to disk), they
2578 * are committed in the same order in which the itxs were added to
2579 * the uncommitted queue's linked list(s); i.e. the linked list of
2580 * itxs to commit is traversed from head to tail, and each itx is
2581 * committed to an lwb in that order.
2583 * * To clarify:
2585 * - the order of "sync" itxs is preserved w.r.t. other
2586 * "sync" itxs, regardless of the corresponding objects.
2587 * - the order of "async" itxs is preserved w.r.t. other
2588 * "async" itxs corresponding to the same object.
2589 * - the order of "async" itxs is *not* preserved w.r.t. other
2590 * "async" itxs corresponding to different objects.
2591 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2592 * versa) is *not* preserved, even for itxs that correspond
2593 * to the same object.
2595 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2596 * zil_get_commit_list(), and zil_process_commit_list().
2598 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2599 * lwb cannot be considered committed to stable storage, until its
2600 * "previous" lwb is also committed to stable storage. This fact,
2601 * coupled with the fact described above, means that itxs are
2602 * committed in (roughly) the order in which they were generated.
2603 * This is essential because itxs are dependent on prior itxs.
2604 * Thus, we *must not* deem an itx as being committed to stable
2605 * storage, until *all* prior itxs have also been committed to
2606 * stable storage.
2608 * To enforce this ordering of lwb zio's, while still leveraging as
2609 * much of the underlying storage performance as possible, we rely
2610 * on two fundamental concepts:
2612 * 1. The creation and issuance of lwb zio's is protected by
2613 * the zilog's "zl_issuer_lock", which ensures only a single
2614 * thread is creating and/or issuing lwb's at a time
2615 * 2. The "previous" lwb is a child of the "current" lwb
2616 * (leveraging the zio parent-child depenency graph)
2618 * By relying on this parent-child zio relationship, we can have
2619 * many lwb zio's concurrently issued to the underlying storage,
2620 * but the order in which they complete will be the same order in
2621 * which they were created.
2623 void
2624 zil_commit(zilog_t *zilog, uint64_t foid)
2627 * We should never attempt to call zil_commit on a snapshot for
2628 * a couple of reasons:
2630 * 1. A snapshot may never be modified, thus it cannot have any
2631 * in-flight itxs that would have modified the dataset.
2633 * 2. By design, when zil_commit() is called, a commit itx will
2634 * be assigned to this zilog; as a result, the zilog will be
2635 * dirtied. We must not dirty the zilog of a snapshot; there's
2636 * checks in the code that enforce this invariant, and will
2637 * cause a panic if it's not upheld.
2639 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2641 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2642 return;
2644 if (!spa_writeable(zilog->zl_spa)) {
2646 * If the SPA is not writable, there should never be any
2647 * pending itxs waiting to be committed to disk. If that
2648 * weren't true, we'd skip writing those itxs out, and
2649 * would break the sematics of zil_commit(); thus, we're
2650 * verifying that truth before we return to the caller.
2652 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2653 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2654 for (int i = 0; i < TXG_SIZE; i++)
2655 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2656 return;
2660 * If the ZIL is suspended, we don't want to dirty it by calling
2661 * zil_commit_itx_assign() below, nor can we write out
2662 * lwbs like would be done in zil_commit_write(). Thus, we
2663 * simply rely on txg_wait_synced() to maintain the necessary
2664 * semantics, and avoid calling those functions altogether.
2666 if (zilog->zl_suspend > 0) {
2667 txg_wait_synced(zilog->zl_dmu_pool, 0);
2668 return;
2671 zil_commit_impl(zilog, foid);
2674 void
2675 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2678 * Move the "async" itxs for the specified foid to the "sync"
2679 * queues, such that they will be later committed (or skipped)
2680 * to an lwb when zil_process_commit_list() is called.
2682 * Since these "async" itxs must be committed prior to this
2683 * call to zil_commit returning, we must perform this operation
2684 * before we call zil_commit_itx_assign().
2686 zil_async_to_sync(zilog, foid);
2689 * We allocate a new "waiter" structure which will initially be
2690 * linked to the commit itx using the itx's "itx_private" field.
2691 * Since the commit itx doesn't represent any on-disk state,
2692 * when it's committed to an lwb, rather than copying the its
2693 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2694 * added to the lwb's list of waiters. Then, when the lwb is
2695 * committed to stable storage, each waiter in the lwb's list of
2696 * waiters will be marked "done", and signalled.
2698 * We must create the waiter and assign the commit itx prior to
2699 * calling zil_commit_writer(), or else our specific commit itx
2700 * is not guaranteed to be committed to an lwb prior to calling
2701 * zil_commit_waiter().
2703 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2704 zil_commit_itx_assign(zilog, zcw);
2706 zil_commit_writer(zilog, zcw);
2707 zil_commit_waiter(zilog, zcw);
2709 if (zcw->zcw_zio_error != 0) {
2711 * If there was an error writing out the ZIL blocks that
2712 * this thread is waiting on, then we fallback to
2713 * relying on spa_sync() to write out the data this
2714 * thread is waiting on. Obviously this has performance
2715 * implications, but the expectation is for this to be
2716 * an exceptional case, and shouldn't occur often.
2718 DTRACE_PROBE2(zil__commit__io__error,
2719 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2720 txg_wait_synced(zilog->zl_dmu_pool, 0);
2723 zil_free_commit_waiter(zcw);
2727 * Called in syncing context to free committed log blocks and update log header.
2729 void
2730 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2732 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2733 uint64_t txg = dmu_tx_get_txg(tx);
2734 spa_t *spa = zilog->zl_spa;
2735 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2736 lwb_t *lwb;
2739 * We don't zero out zl_destroy_txg, so make sure we don't try
2740 * to destroy it twice.
2742 if (spa_sync_pass(spa) != 1)
2743 return;
2745 mutex_enter(&zilog->zl_lock);
2747 ASSERT(zilog->zl_stop_sync == 0);
2749 if (*replayed_seq != 0) {
2750 ASSERT(zh->zh_replay_seq < *replayed_seq);
2751 zh->zh_replay_seq = *replayed_seq;
2752 *replayed_seq = 0;
2755 if (zilog->zl_destroy_txg == txg) {
2756 blkptr_t blk = zh->zh_log;
2758 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2760 bzero(zh, sizeof (zil_header_t));
2761 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2763 if (zilog->zl_keep_first) {
2765 * If this block was part of log chain that couldn't
2766 * be claimed because a device was missing during
2767 * zil_claim(), but that device later returns,
2768 * then this block could erroneously appear valid.
2769 * To guard against this, assign a new GUID to the new
2770 * log chain so it doesn't matter what blk points to.
2772 zil_init_log_chain(zilog, &blk);
2773 zh->zh_log = blk;
2777 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2778 zh->zh_log = lwb->lwb_blk;
2779 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2780 break;
2781 list_remove(&zilog->zl_lwb_list, lwb);
2782 zio_free(spa, txg, &lwb->lwb_blk);
2783 zil_free_lwb(zilog, lwb);
2786 * If we don't have anything left in the lwb list then
2787 * we've had an allocation failure and we need to zero
2788 * out the zil_header blkptr so that we don't end
2789 * up freeing the same block twice.
2791 if (list_head(&zilog->zl_lwb_list) == NULL)
2792 BP_ZERO(&zh->zh_log);
2794 mutex_exit(&zilog->zl_lock);
2797 /* ARGSUSED */
2798 static int
2799 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2801 lwb_t *lwb = vbuf;
2802 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2803 offsetof(zil_commit_waiter_t, zcw_node));
2804 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2805 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2806 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2807 return (0);
2810 /* ARGSUSED */
2811 static void
2812 zil_lwb_dest(void *vbuf, void *unused)
2814 lwb_t *lwb = vbuf;
2815 mutex_destroy(&lwb->lwb_vdev_lock);
2816 avl_destroy(&lwb->lwb_vdev_tree);
2817 list_destroy(&lwb->lwb_waiters);
2820 void
2821 zil_init(void)
2823 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2824 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2826 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2827 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2830 void
2831 zil_fini(void)
2833 kmem_cache_destroy(zil_zcw_cache);
2834 kmem_cache_destroy(zil_lwb_cache);
2837 void
2838 zil_set_sync(zilog_t *zilog, uint64_t sync)
2840 zilog->zl_sync = sync;
2843 void
2844 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2846 zilog->zl_logbias = logbias;
2849 zilog_t *
2850 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2852 zilog_t *zilog;
2854 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2856 zilog->zl_header = zh_phys;
2857 zilog->zl_os = os;
2858 zilog->zl_spa = dmu_objset_spa(os);
2859 zilog->zl_dmu_pool = dmu_objset_pool(os);
2860 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2861 zilog->zl_logbias = dmu_objset_logbias(os);
2862 zilog->zl_sync = dmu_objset_syncprop(os);
2863 zilog->zl_dirty_max_txg = 0;
2864 zilog->zl_last_lwb_opened = NULL;
2865 zilog->zl_last_lwb_latency = 0;
2867 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2868 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2870 for (int i = 0; i < TXG_SIZE; i++) {
2871 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2872 MUTEX_DEFAULT, NULL);
2875 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2876 offsetof(lwb_t, lwb_node));
2878 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2879 offsetof(itx_t, itx_node));
2881 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2883 return (zilog);
2886 void
2887 zil_free(zilog_t *zilog)
2889 zilog->zl_stop_sync = 1;
2891 ASSERT0(zilog->zl_suspend);
2892 ASSERT0(zilog->zl_suspending);
2894 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2895 list_destroy(&zilog->zl_lwb_list);
2897 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2898 list_destroy(&zilog->zl_itx_commit_list);
2900 for (int i = 0; i < TXG_SIZE; i++) {
2902 * It's possible for an itx to be generated that doesn't dirty
2903 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2904 * callback to remove the entry. We remove those here.
2906 * Also free up the ziltest itxs.
2908 if (zilog->zl_itxg[i].itxg_itxs)
2909 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2910 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2913 mutex_destroy(&zilog->zl_issuer_lock);
2914 mutex_destroy(&zilog->zl_lock);
2916 cv_destroy(&zilog->zl_cv_suspend);
2918 kmem_free(zilog, sizeof (zilog_t));
2922 * Open an intent log.
2924 zilog_t *
2925 zil_open(objset_t *os, zil_get_data_t *get_data)
2927 zilog_t *zilog = dmu_objset_zil(os);
2929 ASSERT3P(zilog->zl_get_data, ==, NULL);
2930 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2931 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2933 zilog->zl_get_data = get_data;
2935 return (zilog);
2939 * Close an intent log.
2941 void
2942 zil_close(zilog_t *zilog)
2944 lwb_t *lwb;
2945 uint64_t txg;
2947 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2948 zil_commit(zilog, 0);
2949 } else {
2950 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2951 ASSERT0(zilog->zl_dirty_max_txg);
2952 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2955 mutex_enter(&zilog->zl_lock);
2956 lwb = list_tail(&zilog->zl_lwb_list);
2957 if (lwb == NULL)
2958 txg = zilog->zl_dirty_max_txg;
2959 else
2960 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2961 mutex_exit(&zilog->zl_lock);
2964 * We need to use txg_wait_synced() to wait long enough for the
2965 * ZIL to be clean, and to wait for all pending lwbs to be
2966 * written out.
2968 if (txg != 0)
2969 txg_wait_synced(zilog->zl_dmu_pool, txg);
2971 if (zilog_is_dirty(zilog))
2972 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2973 VERIFY(!zilog_is_dirty(zilog));
2975 zilog->zl_get_data = NULL;
2978 * We should have only one lwb left on the list; remove it now.
2980 mutex_enter(&zilog->zl_lock);
2981 lwb = list_head(&zilog->zl_lwb_list);
2982 if (lwb != NULL) {
2983 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2984 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2985 list_remove(&zilog->zl_lwb_list, lwb);
2986 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2987 zil_free_lwb(zilog, lwb);
2989 mutex_exit(&zilog->zl_lock);
2992 static char *suspend_tag = "zil suspending";
2995 * Suspend an intent log. While in suspended mode, we still honor
2996 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2997 * On old version pools, we suspend the log briefly when taking a
2998 * snapshot so that it will have an empty intent log.
3000 * Long holds are not really intended to be used the way we do here --
3001 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3002 * could fail. Therefore we take pains to only put a long hold if it is
3003 * actually necessary. Fortunately, it will only be necessary if the
3004 * objset is currently mounted (or the ZVOL equivalent). In that case it
3005 * will already have a long hold, so we are not really making things any worse.
3007 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3008 * zvol_state_t), and use their mechanism to prevent their hold from being
3009 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3010 * very little gain.
3012 * if cookiep == NULL, this does both the suspend & resume.
3013 * Otherwise, it returns with the dataset "long held", and the cookie
3014 * should be passed into zil_resume().
3017 zil_suspend(const char *osname, void **cookiep)
3019 objset_t *os;
3020 zilog_t *zilog;
3021 const zil_header_t *zh;
3022 int error;
3024 error = dmu_objset_hold(osname, suspend_tag, &os);
3025 if (error != 0)
3026 return (error);
3027 zilog = dmu_objset_zil(os);
3029 mutex_enter(&zilog->zl_lock);
3030 zh = zilog->zl_header;
3032 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3033 mutex_exit(&zilog->zl_lock);
3034 dmu_objset_rele(os, suspend_tag);
3035 return (SET_ERROR(EBUSY));
3039 * Don't put a long hold in the cases where we can avoid it. This
3040 * is when there is no cookie so we are doing a suspend & resume
3041 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3042 * for the suspend because it's already suspended, or there's no ZIL.
3044 if (cookiep == NULL && !zilog->zl_suspending &&
3045 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3046 mutex_exit(&zilog->zl_lock);
3047 dmu_objset_rele(os, suspend_tag);
3048 return (0);
3051 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3052 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3054 zilog->zl_suspend++;
3056 if (zilog->zl_suspend > 1) {
3058 * Someone else is already suspending it.
3059 * Just wait for them to finish.
3062 while (zilog->zl_suspending)
3063 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3064 mutex_exit(&zilog->zl_lock);
3066 if (cookiep == NULL)
3067 zil_resume(os);
3068 else
3069 *cookiep = os;
3070 return (0);
3074 * If there is no pointer to an on-disk block, this ZIL must not
3075 * be active (e.g. filesystem not mounted), so there's nothing
3076 * to clean up.
3078 if (BP_IS_HOLE(&zh->zh_log)) {
3079 ASSERT(cookiep != NULL); /* fast path already handled */
3081 *cookiep = os;
3082 mutex_exit(&zilog->zl_lock);
3083 return (0);
3086 zilog->zl_suspending = B_TRUE;
3087 mutex_exit(&zilog->zl_lock);
3090 * We need to use zil_commit_impl to ensure we wait for all
3091 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3092 * to disk before proceeding. If we used zil_commit instead, it
3093 * would just call txg_wait_synced(), because zl_suspend is set.
3094 * txg_wait_synced() doesn't wait for these lwb's to be
3095 * LWB_STATE_DONE before returning.
3097 zil_commit_impl(zilog, 0);
3100 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3101 * txg_wait_synced() to ensure the data from the zilog has
3102 * migrated to the main pool before calling zil_destroy().
3104 txg_wait_synced(zilog->zl_dmu_pool, 0);
3106 zil_destroy(zilog, B_FALSE);
3108 mutex_enter(&zilog->zl_lock);
3109 zilog->zl_suspending = B_FALSE;
3110 cv_broadcast(&zilog->zl_cv_suspend);
3111 mutex_exit(&zilog->zl_lock);
3113 if (cookiep == NULL)
3114 zil_resume(os);
3115 else
3116 *cookiep = os;
3117 return (0);
3120 void
3121 zil_resume(void *cookie)
3123 objset_t *os = cookie;
3124 zilog_t *zilog = dmu_objset_zil(os);
3126 mutex_enter(&zilog->zl_lock);
3127 ASSERT(zilog->zl_suspend != 0);
3128 zilog->zl_suspend--;
3129 mutex_exit(&zilog->zl_lock);
3130 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3131 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3134 typedef struct zil_replay_arg {
3135 zil_replay_func_t **zr_replay;
3136 void *zr_arg;
3137 boolean_t zr_byteswap;
3138 char *zr_lr;
3139 } zil_replay_arg_t;
3141 static int
3142 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3144 char name[ZFS_MAX_DATASET_NAME_LEN];
3146 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3148 dmu_objset_name(zilog->zl_os, name);
3150 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3151 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3152 (u_longlong_t)lr->lrc_seq,
3153 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3154 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3156 return (error);
3159 static int
3160 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3162 zil_replay_arg_t *zr = zra;
3163 const zil_header_t *zh = zilog->zl_header;
3164 uint64_t reclen = lr->lrc_reclen;
3165 uint64_t txtype = lr->lrc_txtype;
3166 int error = 0;
3168 zilog->zl_replaying_seq = lr->lrc_seq;
3170 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3171 return (0);
3173 if (lr->lrc_txg < claim_txg) /* already committed */
3174 return (0);
3176 /* Strip case-insensitive bit, still present in log record */
3177 txtype &= ~TX_CI;
3179 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3180 return (zil_replay_error(zilog, lr, EINVAL));
3183 * If this record type can be logged out of order, the object
3184 * (lr_foid) may no longer exist. That's legitimate, not an error.
3186 if (TX_OOO(txtype)) {
3187 error = dmu_object_info(zilog->zl_os,
3188 ((lr_ooo_t *)lr)->lr_foid, NULL);
3189 if (error == ENOENT || error == EEXIST)
3190 return (0);
3194 * Make a copy of the data so we can revise and extend it.
3196 bcopy(lr, zr->zr_lr, reclen);
3199 * If this is a TX_WRITE with a blkptr, suck in the data.
3201 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3202 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3203 zr->zr_lr + reclen);
3204 if (error != 0)
3205 return (zil_replay_error(zilog, lr, error));
3209 * The log block containing this lr may have been byteswapped
3210 * so that we can easily examine common fields like lrc_txtype.
3211 * However, the log is a mix of different record types, and only the
3212 * replay vectors know how to byteswap their records. Therefore, if
3213 * the lr was byteswapped, undo it before invoking the replay vector.
3215 if (zr->zr_byteswap)
3216 byteswap_uint64_array(zr->zr_lr, reclen);
3219 * We must now do two things atomically: replay this log record,
3220 * and update the log header sequence number to reflect the fact that
3221 * we did so. At the end of each replay function the sequence number
3222 * is updated if we are in replay mode.
3224 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3225 if (error != 0) {
3227 * The DMU's dnode layer doesn't see removes until the txg
3228 * commits, so a subsequent claim can spuriously fail with
3229 * EEXIST. So if we receive any error we try syncing out
3230 * any removes then retry the transaction. Note that we
3231 * specify B_FALSE for byteswap now, so we don't do it twice.
3233 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3234 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3235 if (error != 0)
3236 return (zil_replay_error(zilog, lr, error));
3238 return (0);
3241 /* ARGSUSED */
3242 static int
3243 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3245 zilog->zl_replay_blks++;
3247 return (0);
3251 * If this dataset has a non-empty intent log, replay it and destroy it.
3253 void
3254 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3256 zilog_t *zilog = dmu_objset_zil(os);
3257 const zil_header_t *zh = zilog->zl_header;
3258 zil_replay_arg_t zr;
3260 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3261 zil_destroy(zilog, B_TRUE);
3262 return;
3265 zr.zr_replay = replay_func;
3266 zr.zr_arg = arg;
3267 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3268 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3271 * Wait for in-progress removes to sync before starting replay.
3273 txg_wait_synced(zilog->zl_dmu_pool, 0);
3275 zilog->zl_replay = B_TRUE;
3276 zilog->zl_replay_time = ddi_get_lbolt();
3277 ASSERT(zilog->zl_replay_blks == 0);
3278 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3279 zh->zh_claim_txg);
3280 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3282 zil_destroy(zilog, B_FALSE);
3283 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3284 zilog->zl_replay = B_FALSE;
3287 boolean_t
3288 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3290 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3291 return (B_TRUE);
3293 if (zilog->zl_replay) {
3294 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3295 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3296 zilog->zl_replaying_seq;
3297 return (B_TRUE);
3300 return (B_FALSE);
3303 /* ARGSUSED */
3305 zil_reset(const char *osname, void *arg)
3307 int error;
3309 error = zil_suspend(osname, NULL);
3310 if (error != 0)
3311 return (SET_ERROR(EEXIST));
3312 return (0);