9112 Improve allocation performance on high-end systems
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
blob163f5e054e3eb29c02b58bdcad9bb0f575d71932
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright 2017 Joyent, Inc.
31 * Copyright (c) 2017 Datto Inc.
32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
36 * SPA: Storage Pool Allocator
38 * This file contains all the routines used when modifying on-disk SPA state.
39 * This includes opening, importing, destroying, exporting a pool, and syncing a
40 * pool.
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/metaslab.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/bpobj.h>
63 #include <sys/dmu_traverse.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/unique.h>
66 #include <sys/dsl_pool.h>
67 #include <sys/dsl_dataset.h>
68 #include <sys/dsl_dir.h>
69 #include <sys/dsl_prop.h>
70 #include <sys/dsl_synctask.h>
71 #include <sys/fs/zfs.h>
72 #include <sys/arc.h>
73 #include <sys/callb.h>
74 #include <sys/systeminfo.h>
75 #include <sys/spa_boot.h>
76 #include <sys/zfs_ioctl.h>
77 #include <sys/dsl_scan.h>
78 #include <sys/zfeature.h>
79 #include <sys/dsl_destroy.h>
80 #include <sys/abd.h>
82 #ifdef _KERNEL
83 #include <sys/bootprops.h>
84 #include <sys/callb.h>
85 #include <sys/cpupart.h>
86 #include <sys/pool.h>
87 #include <sys/sysdc.h>
88 #include <sys/zone.h>
89 #endif /* _KERNEL */
91 #include "zfs_prop.h"
92 #include "zfs_comutil.h"
95 * The interval, in seconds, at which failed configuration cache file writes
96 * should be retried.
98 int zfs_ccw_retry_interval = 300;
100 typedef enum zti_modes {
101 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
102 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
103 ZTI_MODE_NULL, /* don't create a taskq */
104 ZTI_NMODES
105 } zti_modes_t;
107 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
108 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
109 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
111 #define ZTI_N(n) ZTI_P(n, 1)
112 #define ZTI_ONE ZTI_N(1)
114 typedef struct zio_taskq_info {
115 zti_modes_t zti_mode;
116 uint_t zti_value;
117 uint_t zti_count;
118 } zio_taskq_info_t;
120 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
121 "issue", "issue_high", "intr", "intr_high"
125 * This table defines the taskq settings for each ZFS I/O type. When
126 * initializing a pool, we use this table to create an appropriately sized
127 * taskq. Some operations are low volume and therefore have a small, static
128 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
129 * macros. Other operations process a large amount of data; the ZTI_BATCH
130 * macro causes us to create a taskq oriented for throughput. Some operations
131 * are so high frequency and short-lived that the taskq itself can become a a
132 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
133 * additional degree of parallelism specified by the number of threads per-
134 * taskq and the number of taskqs; when dispatching an event in this case, the
135 * particular taskq is chosen at random.
137 * The different taskq priorities are to handle the different contexts (issue
138 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
139 * need to be handled with minimum delay.
141 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
142 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
143 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
144 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
145 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
146 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
147 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
151 static void spa_sync_version(void *arg, dmu_tx_t *tx);
152 static void spa_sync_props(void *arg, dmu_tx_t *tx);
153 static boolean_t spa_has_active_shared_spare(spa_t *spa);
154 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
155 static void spa_vdev_resilver_done(spa_t *spa);
157 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
158 id_t zio_taskq_psrset_bind = PS_NONE;
159 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
160 uint_t zio_taskq_basedc = 80; /* base duty cycle */
162 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
163 extern int zfs_sync_pass_deferred_free;
166 * Report any spa_load_verify errors found, but do not fail spa_load.
167 * This is used by zdb to analyze non-idle pools.
169 boolean_t spa_load_verify_dryrun = B_FALSE;
172 * This (illegal) pool name is used when temporarily importing a spa_t in order
173 * to get the vdev stats associated with the imported devices.
175 #define TRYIMPORT_NAME "$import"
178 * For debugging purposes: print out vdev tree during pool import.
180 boolean_t spa_load_print_vdev_tree = B_FALSE;
183 * A non-zero value for zfs_max_missing_tvds means that we allow importing
184 * pools with missing top-level vdevs. This is strictly intended for advanced
185 * pool recovery cases since missing data is almost inevitable. Pools with
186 * missing devices can only be imported read-only for safety reasons, and their
187 * fail-mode will be automatically set to "continue".
189 * With 1 missing vdev we should be able to import the pool and mount all
190 * datasets. User data that was not modified after the missing device has been
191 * added should be recoverable. This means that snapshots created prior to the
192 * addition of that device should be completely intact.
194 * With 2 missing vdevs, some datasets may fail to mount since there are
195 * dataset statistics that are stored as regular metadata. Some data might be
196 * recoverable if those vdevs were added recently.
198 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
199 * may be missing entirely. Chances of data recovery are very low. Note that
200 * there are also risks of performing an inadvertent rewind as we might be
201 * missing all the vdevs with the latest uberblocks.
203 uint64_t zfs_max_missing_tvds = 0;
206 * The parameters below are similar to zfs_max_missing_tvds but are only
207 * intended for a preliminary open of the pool with an untrusted config which
208 * might be incomplete or out-dated.
210 * We are more tolerant for pools opened from a cachefile since we could have
211 * an out-dated cachefile where a device removal was not registered.
212 * We could have set the limit arbitrarily high but in the case where devices
213 * are really missing we would want to return the proper error codes; we chose
214 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
215 * and we get a chance to retrieve the trusted config.
217 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
220 * In the case where config was assembled by scanning device paths (/dev/dsks
221 * by default) we are less tolerant since all the existing devices should have
222 * been detected and we want spa_load to return the right error codes.
224 uint64_t zfs_max_missing_tvds_scan = 0;
227 * Debugging aid that pauses spa_sync() towards the end.
229 boolean_t zfs_pause_spa_sync = B_FALSE;
232 * ==========================================================================
233 * SPA properties routines
234 * ==========================================================================
238 * Add a (source=src, propname=propval) list to an nvlist.
240 static void
241 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
242 uint64_t intval, zprop_source_t src)
244 const char *propname = zpool_prop_to_name(prop);
245 nvlist_t *propval;
247 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
248 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
250 if (strval != NULL)
251 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
252 else
253 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
255 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
256 nvlist_free(propval);
260 * Get property values from the spa configuration.
262 static void
263 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
265 vdev_t *rvd = spa->spa_root_vdev;
266 dsl_pool_t *pool = spa->spa_dsl_pool;
267 uint64_t size, alloc, cap, version;
268 zprop_source_t src = ZPROP_SRC_NONE;
269 spa_config_dirent_t *dp;
270 metaslab_class_t *mc = spa_normal_class(spa);
272 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
274 if (rvd != NULL) {
275 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
276 size = metaslab_class_get_space(spa_normal_class(spa));
277 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
278 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
279 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
280 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
281 size - alloc, src);
282 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
283 spa->spa_checkpoint_info.sci_dspace, src);
285 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
286 metaslab_class_fragmentation(mc), src);
287 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
288 metaslab_class_expandable_space(mc), src);
289 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
290 (spa_mode(spa) == FREAD), src);
292 cap = (size == 0) ? 0 : (alloc * 100 / size);
293 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
295 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
296 ddt_get_pool_dedup_ratio(spa), src);
298 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
299 rvd->vdev_state, src);
301 version = spa_version(spa);
302 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
303 src = ZPROP_SRC_DEFAULT;
304 else
305 src = ZPROP_SRC_LOCAL;
306 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
309 if (pool != NULL) {
311 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
312 * when opening pools before this version freedir will be NULL.
314 if (pool->dp_free_dir != NULL) {
315 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
316 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
317 src);
318 } else {
319 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
320 NULL, 0, src);
323 if (pool->dp_leak_dir != NULL) {
324 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
325 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
326 src);
327 } else {
328 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
329 NULL, 0, src);
333 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
335 if (spa->spa_comment != NULL) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
337 0, ZPROP_SRC_LOCAL);
340 if (spa->spa_root != NULL)
341 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
342 0, ZPROP_SRC_LOCAL);
344 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
345 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
346 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
347 } else {
348 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
349 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
352 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
353 if (dp->scd_path == NULL) {
354 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
355 "none", 0, ZPROP_SRC_LOCAL);
356 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
357 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
358 dp->scd_path, 0, ZPROP_SRC_LOCAL);
364 * Get zpool property values.
367 spa_prop_get(spa_t *spa, nvlist_t **nvp)
369 objset_t *mos = spa->spa_meta_objset;
370 zap_cursor_t zc;
371 zap_attribute_t za;
372 int err;
374 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
376 mutex_enter(&spa->spa_props_lock);
379 * Get properties from the spa config.
381 spa_prop_get_config(spa, nvp);
383 /* If no pool property object, no more prop to get. */
384 if (mos == NULL || spa->spa_pool_props_object == 0) {
385 mutex_exit(&spa->spa_props_lock);
386 return (0);
390 * Get properties from the MOS pool property object.
392 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
393 (err = zap_cursor_retrieve(&zc, &za)) == 0;
394 zap_cursor_advance(&zc)) {
395 uint64_t intval = 0;
396 char *strval = NULL;
397 zprop_source_t src = ZPROP_SRC_DEFAULT;
398 zpool_prop_t prop;
400 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
401 continue;
403 switch (za.za_integer_length) {
404 case 8:
405 /* integer property */
406 if (za.za_first_integer !=
407 zpool_prop_default_numeric(prop))
408 src = ZPROP_SRC_LOCAL;
410 if (prop == ZPOOL_PROP_BOOTFS) {
411 dsl_pool_t *dp;
412 dsl_dataset_t *ds = NULL;
414 dp = spa_get_dsl(spa);
415 dsl_pool_config_enter(dp, FTAG);
416 if (err = dsl_dataset_hold_obj(dp,
417 za.za_first_integer, FTAG, &ds)) {
418 dsl_pool_config_exit(dp, FTAG);
419 break;
422 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
423 KM_SLEEP);
424 dsl_dataset_name(ds, strval);
425 dsl_dataset_rele(ds, FTAG);
426 dsl_pool_config_exit(dp, FTAG);
427 } else {
428 strval = NULL;
429 intval = za.za_first_integer;
432 spa_prop_add_list(*nvp, prop, strval, intval, src);
434 if (strval != NULL)
435 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
437 break;
439 case 1:
440 /* string property */
441 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
442 err = zap_lookup(mos, spa->spa_pool_props_object,
443 za.za_name, 1, za.za_num_integers, strval);
444 if (err) {
445 kmem_free(strval, za.za_num_integers);
446 break;
448 spa_prop_add_list(*nvp, prop, strval, 0, src);
449 kmem_free(strval, za.za_num_integers);
450 break;
452 default:
453 break;
456 zap_cursor_fini(&zc);
457 mutex_exit(&spa->spa_props_lock);
458 out:
459 if (err && err != ENOENT) {
460 nvlist_free(*nvp);
461 *nvp = NULL;
462 return (err);
465 return (0);
469 * Validate the given pool properties nvlist and modify the list
470 * for the property values to be set.
472 static int
473 spa_prop_validate(spa_t *spa, nvlist_t *props)
475 nvpair_t *elem;
476 int error = 0, reset_bootfs = 0;
477 uint64_t objnum = 0;
478 boolean_t has_feature = B_FALSE;
480 elem = NULL;
481 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
482 uint64_t intval;
483 char *strval, *slash, *check, *fname;
484 const char *propname = nvpair_name(elem);
485 zpool_prop_t prop = zpool_name_to_prop(propname);
487 switch (prop) {
488 case ZPOOL_PROP_INVAL:
489 if (!zpool_prop_feature(propname)) {
490 error = SET_ERROR(EINVAL);
491 break;
495 * Sanitize the input.
497 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
498 error = SET_ERROR(EINVAL);
499 break;
502 if (nvpair_value_uint64(elem, &intval) != 0) {
503 error = SET_ERROR(EINVAL);
504 break;
507 if (intval != 0) {
508 error = SET_ERROR(EINVAL);
509 break;
512 fname = strchr(propname, '@') + 1;
513 if (zfeature_lookup_name(fname, NULL) != 0) {
514 error = SET_ERROR(EINVAL);
515 break;
518 has_feature = B_TRUE;
519 break;
521 case ZPOOL_PROP_VERSION:
522 error = nvpair_value_uint64(elem, &intval);
523 if (!error &&
524 (intval < spa_version(spa) ||
525 intval > SPA_VERSION_BEFORE_FEATURES ||
526 has_feature))
527 error = SET_ERROR(EINVAL);
528 break;
530 case ZPOOL_PROP_DELEGATION:
531 case ZPOOL_PROP_AUTOREPLACE:
532 case ZPOOL_PROP_LISTSNAPS:
533 case ZPOOL_PROP_AUTOEXPAND:
534 error = nvpair_value_uint64(elem, &intval);
535 if (!error && intval > 1)
536 error = SET_ERROR(EINVAL);
537 break;
539 case ZPOOL_PROP_BOOTFS:
541 * If the pool version is less than SPA_VERSION_BOOTFS,
542 * or the pool is still being created (version == 0),
543 * the bootfs property cannot be set.
545 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
546 error = SET_ERROR(ENOTSUP);
547 break;
551 * Make sure the vdev config is bootable
553 if (!vdev_is_bootable(spa->spa_root_vdev)) {
554 error = SET_ERROR(ENOTSUP);
555 break;
558 reset_bootfs = 1;
560 error = nvpair_value_string(elem, &strval);
562 if (!error) {
563 objset_t *os;
564 uint64_t propval;
566 if (strval == NULL || strval[0] == '\0') {
567 objnum = zpool_prop_default_numeric(
568 ZPOOL_PROP_BOOTFS);
569 break;
572 if (error = dmu_objset_hold(strval, FTAG, &os))
573 break;
576 * Must be ZPL, and its property settings
577 * must be supported by GRUB (compression
578 * is not gzip, and large blocks are not used).
581 if (dmu_objset_type(os) != DMU_OST_ZFS) {
582 error = SET_ERROR(ENOTSUP);
583 } else if ((error =
584 dsl_prop_get_int_ds(dmu_objset_ds(os),
585 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
586 &propval)) == 0 &&
587 !BOOTFS_COMPRESS_VALID(propval)) {
588 error = SET_ERROR(ENOTSUP);
589 } else {
590 objnum = dmu_objset_id(os);
592 dmu_objset_rele(os, FTAG);
594 break;
596 case ZPOOL_PROP_FAILUREMODE:
597 error = nvpair_value_uint64(elem, &intval);
598 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
599 intval > ZIO_FAILURE_MODE_PANIC))
600 error = SET_ERROR(EINVAL);
603 * This is a special case which only occurs when
604 * the pool has completely failed. This allows
605 * the user to change the in-core failmode property
606 * without syncing it out to disk (I/Os might
607 * currently be blocked). We do this by returning
608 * EIO to the caller (spa_prop_set) to trick it
609 * into thinking we encountered a property validation
610 * error.
612 if (!error && spa_suspended(spa)) {
613 spa->spa_failmode = intval;
614 error = SET_ERROR(EIO);
616 break;
618 case ZPOOL_PROP_CACHEFILE:
619 if ((error = nvpair_value_string(elem, &strval)) != 0)
620 break;
622 if (strval[0] == '\0')
623 break;
625 if (strcmp(strval, "none") == 0)
626 break;
628 if (strval[0] != '/') {
629 error = SET_ERROR(EINVAL);
630 break;
633 slash = strrchr(strval, '/');
634 ASSERT(slash != NULL);
636 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
637 strcmp(slash, "/..") == 0)
638 error = SET_ERROR(EINVAL);
639 break;
641 case ZPOOL_PROP_COMMENT:
642 if ((error = nvpair_value_string(elem, &strval)) != 0)
643 break;
644 for (check = strval; *check != '\0'; check++) {
646 * The kernel doesn't have an easy isprint()
647 * check. For this kernel check, we merely
648 * check ASCII apart from DEL. Fix this if
649 * there is an easy-to-use kernel isprint().
651 if (*check >= 0x7f) {
652 error = SET_ERROR(EINVAL);
653 break;
656 if (strlen(strval) > ZPROP_MAX_COMMENT)
657 error = E2BIG;
658 break;
660 case ZPOOL_PROP_DEDUPDITTO:
661 if (spa_version(spa) < SPA_VERSION_DEDUP)
662 error = SET_ERROR(ENOTSUP);
663 else
664 error = nvpair_value_uint64(elem, &intval);
665 if (error == 0 &&
666 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
667 error = SET_ERROR(EINVAL);
668 break;
671 if (error)
672 break;
675 if (!error && reset_bootfs) {
676 error = nvlist_remove(props,
677 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
679 if (!error) {
680 error = nvlist_add_uint64(props,
681 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
685 return (error);
688 void
689 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
691 char *cachefile;
692 spa_config_dirent_t *dp;
694 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
695 &cachefile) != 0)
696 return;
698 dp = kmem_alloc(sizeof (spa_config_dirent_t),
699 KM_SLEEP);
701 if (cachefile[0] == '\0')
702 dp->scd_path = spa_strdup(spa_config_path);
703 else if (strcmp(cachefile, "none") == 0)
704 dp->scd_path = NULL;
705 else
706 dp->scd_path = spa_strdup(cachefile);
708 list_insert_head(&spa->spa_config_list, dp);
709 if (need_sync)
710 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
714 spa_prop_set(spa_t *spa, nvlist_t *nvp)
716 int error;
717 nvpair_t *elem = NULL;
718 boolean_t need_sync = B_FALSE;
720 if ((error = spa_prop_validate(spa, nvp)) != 0)
721 return (error);
723 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
724 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
726 if (prop == ZPOOL_PROP_CACHEFILE ||
727 prop == ZPOOL_PROP_ALTROOT ||
728 prop == ZPOOL_PROP_READONLY)
729 continue;
731 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
732 uint64_t ver;
734 if (prop == ZPOOL_PROP_VERSION) {
735 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
736 } else {
737 ASSERT(zpool_prop_feature(nvpair_name(elem)));
738 ver = SPA_VERSION_FEATURES;
739 need_sync = B_TRUE;
742 /* Save time if the version is already set. */
743 if (ver == spa_version(spa))
744 continue;
747 * In addition to the pool directory object, we might
748 * create the pool properties object, the features for
749 * read object, the features for write object, or the
750 * feature descriptions object.
752 error = dsl_sync_task(spa->spa_name, NULL,
753 spa_sync_version, &ver,
754 6, ZFS_SPACE_CHECK_RESERVED);
755 if (error)
756 return (error);
757 continue;
760 need_sync = B_TRUE;
761 break;
764 if (need_sync) {
765 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
766 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
769 return (0);
773 * If the bootfs property value is dsobj, clear it.
775 void
776 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
778 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
779 VERIFY(zap_remove(spa->spa_meta_objset,
780 spa->spa_pool_props_object,
781 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
782 spa->spa_bootfs = 0;
786 /*ARGSUSED*/
787 static int
788 spa_change_guid_check(void *arg, dmu_tx_t *tx)
790 uint64_t *newguid = arg;
791 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
792 vdev_t *rvd = spa->spa_root_vdev;
793 uint64_t vdev_state;
795 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
796 int error = (spa_has_checkpoint(spa)) ?
797 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
798 return (SET_ERROR(error));
801 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
802 vdev_state = rvd->vdev_state;
803 spa_config_exit(spa, SCL_STATE, FTAG);
805 if (vdev_state != VDEV_STATE_HEALTHY)
806 return (SET_ERROR(ENXIO));
808 ASSERT3U(spa_guid(spa), !=, *newguid);
810 return (0);
813 static void
814 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
816 uint64_t *newguid = arg;
817 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
818 uint64_t oldguid;
819 vdev_t *rvd = spa->spa_root_vdev;
821 oldguid = spa_guid(spa);
823 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
824 rvd->vdev_guid = *newguid;
825 rvd->vdev_guid_sum += (*newguid - oldguid);
826 vdev_config_dirty(rvd);
827 spa_config_exit(spa, SCL_STATE, FTAG);
829 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
830 oldguid, *newguid);
834 * Change the GUID for the pool. This is done so that we can later
835 * re-import a pool built from a clone of our own vdevs. We will modify
836 * the root vdev's guid, our own pool guid, and then mark all of our
837 * vdevs dirty. Note that we must make sure that all our vdevs are
838 * online when we do this, or else any vdevs that weren't present
839 * would be orphaned from our pool. We are also going to issue a
840 * sysevent to update any watchers.
843 spa_change_guid(spa_t *spa)
845 int error;
846 uint64_t guid;
848 mutex_enter(&spa->spa_vdev_top_lock);
849 mutex_enter(&spa_namespace_lock);
850 guid = spa_generate_guid(NULL);
852 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
853 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
855 if (error == 0) {
856 spa_write_cachefile(spa, B_FALSE, B_TRUE);
857 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
860 mutex_exit(&spa_namespace_lock);
861 mutex_exit(&spa->spa_vdev_top_lock);
863 return (error);
867 * ==========================================================================
868 * SPA state manipulation (open/create/destroy/import/export)
869 * ==========================================================================
872 static int
873 spa_error_entry_compare(const void *a, const void *b)
875 spa_error_entry_t *sa = (spa_error_entry_t *)a;
876 spa_error_entry_t *sb = (spa_error_entry_t *)b;
877 int ret;
879 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
880 sizeof (zbookmark_phys_t));
882 if (ret < 0)
883 return (-1);
884 else if (ret > 0)
885 return (1);
886 else
887 return (0);
891 * Utility function which retrieves copies of the current logs and
892 * re-initializes them in the process.
894 void
895 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
897 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
899 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
900 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
902 avl_create(&spa->spa_errlist_scrub,
903 spa_error_entry_compare, sizeof (spa_error_entry_t),
904 offsetof(spa_error_entry_t, se_avl));
905 avl_create(&spa->spa_errlist_last,
906 spa_error_entry_compare, sizeof (spa_error_entry_t),
907 offsetof(spa_error_entry_t, se_avl));
910 static void
911 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
913 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
914 enum zti_modes mode = ztip->zti_mode;
915 uint_t value = ztip->zti_value;
916 uint_t count = ztip->zti_count;
917 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
918 char name[32];
919 uint_t flags = 0;
920 boolean_t batch = B_FALSE;
922 if (mode == ZTI_MODE_NULL) {
923 tqs->stqs_count = 0;
924 tqs->stqs_taskq = NULL;
925 return;
928 ASSERT3U(count, >, 0);
930 tqs->stqs_count = count;
931 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
933 switch (mode) {
934 case ZTI_MODE_FIXED:
935 ASSERT3U(value, >=, 1);
936 value = MAX(value, 1);
937 break;
939 case ZTI_MODE_BATCH:
940 batch = B_TRUE;
941 flags |= TASKQ_THREADS_CPU_PCT;
942 value = zio_taskq_batch_pct;
943 break;
945 default:
946 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
947 "spa_activate()",
948 zio_type_name[t], zio_taskq_types[q], mode, value);
949 break;
952 for (uint_t i = 0; i < count; i++) {
953 taskq_t *tq;
955 if (count > 1) {
956 (void) snprintf(name, sizeof (name), "%s_%s_%u",
957 zio_type_name[t], zio_taskq_types[q], i);
958 } else {
959 (void) snprintf(name, sizeof (name), "%s_%s",
960 zio_type_name[t], zio_taskq_types[q]);
963 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
964 if (batch)
965 flags |= TASKQ_DC_BATCH;
967 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
968 spa->spa_proc, zio_taskq_basedc, flags);
969 } else {
970 pri_t pri = maxclsyspri;
972 * The write issue taskq can be extremely CPU
973 * intensive. Run it at slightly lower priority
974 * than the other taskqs.
976 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
977 pri--;
979 tq = taskq_create_proc(name, value, pri, 50,
980 INT_MAX, spa->spa_proc, flags);
983 tqs->stqs_taskq[i] = tq;
987 static void
988 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
990 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
992 if (tqs->stqs_taskq == NULL) {
993 ASSERT0(tqs->stqs_count);
994 return;
997 for (uint_t i = 0; i < tqs->stqs_count; i++) {
998 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
999 taskq_destroy(tqs->stqs_taskq[i]);
1002 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1003 tqs->stqs_taskq = NULL;
1007 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1008 * Note that a type may have multiple discrete taskqs to avoid lock contention
1009 * on the taskq itself. In that case we choose which taskq at random by using
1010 * the low bits of gethrtime().
1012 void
1013 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1014 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1016 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1017 taskq_t *tq;
1019 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1020 ASSERT3U(tqs->stqs_count, !=, 0);
1022 if (tqs->stqs_count == 1) {
1023 tq = tqs->stqs_taskq[0];
1024 } else {
1025 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1028 taskq_dispatch_ent(tq, func, arg, flags, ent);
1031 static void
1032 spa_create_zio_taskqs(spa_t *spa)
1034 for (int t = 0; t < ZIO_TYPES; t++) {
1035 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1036 spa_taskqs_init(spa, t, q);
1041 #ifdef _KERNEL
1042 static void
1043 spa_thread(void *arg)
1045 callb_cpr_t cprinfo;
1047 spa_t *spa = arg;
1048 user_t *pu = PTOU(curproc);
1050 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1051 spa->spa_name);
1053 ASSERT(curproc != &p0);
1054 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1055 "zpool-%s", spa->spa_name);
1056 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1058 /* bind this thread to the requested psrset */
1059 if (zio_taskq_psrset_bind != PS_NONE) {
1060 pool_lock();
1061 mutex_enter(&cpu_lock);
1062 mutex_enter(&pidlock);
1063 mutex_enter(&curproc->p_lock);
1065 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1066 0, NULL, NULL) == 0) {
1067 curthread->t_bind_pset = zio_taskq_psrset_bind;
1068 } else {
1069 cmn_err(CE_WARN,
1070 "Couldn't bind process for zfs pool \"%s\" to "
1071 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1074 mutex_exit(&curproc->p_lock);
1075 mutex_exit(&pidlock);
1076 mutex_exit(&cpu_lock);
1077 pool_unlock();
1080 if (zio_taskq_sysdc) {
1081 sysdc_thread_enter(curthread, 100, 0);
1084 spa->spa_proc = curproc;
1085 spa->spa_did = curthread->t_did;
1087 spa_create_zio_taskqs(spa);
1089 mutex_enter(&spa->spa_proc_lock);
1090 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1092 spa->spa_proc_state = SPA_PROC_ACTIVE;
1093 cv_broadcast(&spa->spa_proc_cv);
1095 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1096 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1097 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1098 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1100 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1101 spa->spa_proc_state = SPA_PROC_GONE;
1102 spa->spa_proc = &p0;
1103 cv_broadcast(&spa->spa_proc_cv);
1104 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1106 mutex_enter(&curproc->p_lock);
1107 lwp_exit();
1109 #endif
1112 * Activate an uninitialized pool.
1114 static void
1115 spa_activate(spa_t *spa, int mode)
1117 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1119 spa->spa_state = POOL_STATE_ACTIVE;
1120 spa->spa_mode = mode;
1122 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1123 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1125 /* Try to create a covering process */
1126 mutex_enter(&spa->spa_proc_lock);
1127 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1128 ASSERT(spa->spa_proc == &p0);
1129 spa->spa_did = 0;
1131 /* Only create a process if we're going to be around a while. */
1132 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1133 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1134 NULL, 0) == 0) {
1135 spa->spa_proc_state = SPA_PROC_CREATED;
1136 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1137 cv_wait(&spa->spa_proc_cv,
1138 &spa->spa_proc_lock);
1140 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1141 ASSERT(spa->spa_proc != &p0);
1142 ASSERT(spa->spa_did != 0);
1143 } else {
1144 #ifdef _KERNEL
1145 cmn_err(CE_WARN,
1146 "Couldn't create process for zfs pool \"%s\"\n",
1147 spa->spa_name);
1148 #endif
1151 mutex_exit(&spa->spa_proc_lock);
1153 /* If we didn't create a process, we need to create our taskqs. */
1154 if (spa->spa_proc == &p0) {
1155 spa_create_zio_taskqs(spa);
1158 for (size_t i = 0; i < TXG_SIZE; i++)
1159 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1161 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1162 offsetof(vdev_t, vdev_config_dirty_node));
1163 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1164 offsetof(objset_t, os_evicting_node));
1165 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1166 offsetof(vdev_t, vdev_state_dirty_node));
1168 txg_list_create(&spa->spa_vdev_txg_list, spa,
1169 offsetof(struct vdev, vdev_txg_node));
1171 avl_create(&spa->spa_errlist_scrub,
1172 spa_error_entry_compare, sizeof (spa_error_entry_t),
1173 offsetof(spa_error_entry_t, se_avl));
1174 avl_create(&spa->spa_errlist_last,
1175 spa_error_entry_compare, sizeof (spa_error_entry_t),
1176 offsetof(spa_error_entry_t, se_avl));
1180 * Opposite of spa_activate().
1182 static void
1183 spa_deactivate(spa_t *spa)
1185 ASSERT(spa->spa_sync_on == B_FALSE);
1186 ASSERT(spa->spa_dsl_pool == NULL);
1187 ASSERT(spa->spa_root_vdev == NULL);
1188 ASSERT(spa->spa_async_zio_root == NULL);
1189 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1191 spa_evicting_os_wait(spa);
1193 txg_list_destroy(&spa->spa_vdev_txg_list);
1195 list_destroy(&spa->spa_config_dirty_list);
1196 list_destroy(&spa->spa_evicting_os_list);
1197 list_destroy(&spa->spa_state_dirty_list);
1199 for (int t = 0; t < ZIO_TYPES; t++) {
1200 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1201 spa_taskqs_fini(spa, t, q);
1205 for (size_t i = 0; i < TXG_SIZE; i++) {
1206 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1207 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1208 spa->spa_txg_zio[i] = NULL;
1211 metaslab_class_destroy(spa->spa_normal_class);
1212 spa->spa_normal_class = NULL;
1214 metaslab_class_destroy(spa->spa_log_class);
1215 spa->spa_log_class = NULL;
1218 * If this was part of an import or the open otherwise failed, we may
1219 * still have errors left in the queues. Empty them just in case.
1221 spa_errlog_drain(spa);
1223 avl_destroy(&spa->spa_errlist_scrub);
1224 avl_destroy(&spa->spa_errlist_last);
1226 spa->spa_state = POOL_STATE_UNINITIALIZED;
1228 mutex_enter(&spa->spa_proc_lock);
1229 if (spa->spa_proc_state != SPA_PROC_NONE) {
1230 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1231 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1232 cv_broadcast(&spa->spa_proc_cv);
1233 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1234 ASSERT(spa->spa_proc != &p0);
1235 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1237 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1238 spa->spa_proc_state = SPA_PROC_NONE;
1240 ASSERT(spa->spa_proc == &p0);
1241 mutex_exit(&spa->spa_proc_lock);
1244 * We want to make sure spa_thread() has actually exited the ZFS
1245 * module, so that the module can't be unloaded out from underneath
1246 * it.
1248 if (spa->spa_did != 0) {
1249 thread_join(spa->spa_did);
1250 spa->spa_did = 0;
1255 * Verify a pool configuration, and construct the vdev tree appropriately. This
1256 * will create all the necessary vdevs in the appropriate layout, with each vdev
1257 * in the CLOSED state. This will prep the pool before open/creation/import.
1258 * All vdev validation is done by the vdev_alloc() routine.
1260 static int
1261 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1262 uint_t id, int atype)
1264 nvlist_t **child;
1265 uint_t children;
1266 int error;
1268 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1269 return (error);
1271 if ((*vdp)->vdev_ops->vdev_op_leaf)
1272 return (0);
1274 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1275 &child, &children);
1277 if (error == ENOENT)
1278 return (0);
1280 if (error) {
1281 vdev_free(*vdp);
1282 *vdp = NULL;
1283 return (SET_ERROR(EINVAL));
1286 for (int c = 0; c < children; c++) {
1287 vdev_t *vd;
1288 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1289 atype)) != 0) {
1290 vdev_free(*vdp);
1291 *vdp = NULL;
1292 return (error);
1296 ASSERT(*vdp != NULL);
1298 return (0);
1302 * Opposite of spa_load().
1304 static void
1305 spa_unload(spa_t *spa)
1307 int i;
1309 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1311 spa_load_note(spa, "UNLOADING");
1314 * Stop async tasks.
1316 spa_async_suspend(spa);
1319 * Stop syncing.
1321 if (spa->spa_sync_on) {
1322 txg_sync_stop(spa->spa_dsl_pool);
1323 spa->spa_sync_on = B_FALSE;
1327 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1328 * to call it earlier, before we wait for async i/o to complete.
1329 * This ensures that there is no async metaslab prefetching, by
1330 * calling taskq_wait(mg_taskq).
1332 if (spa->spa_root_vdev != NULL) {
1333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1334 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1335 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1336 spa_config_exit(spa, SCL_ALL, FTAG);
1340 * Wait for any outstanding async I/O to complete.
1342 if (spa->spa_async_zio_root != NULL) {
1343 for (int i = 0; i < max_ncpus; i++)
1344 (void) zio_wait(spa->spa_async_zio_root[i]);
1345 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1346 spa->spa_async_zio_root = NULL;
1349 if (spa->spa_vdev_removal != NULL) {
1350 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1351 spa->spa_vdev_removal = NULL;
1354 if (spa->spa_condense_zthr != NULL) {
1355 ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1356 zthr_destroy(spa->spa_condense_zthr);
1357 spa->spa_condense_zthr = NULL;
1360 if (spa->spa_checkpoint_discard_zthr != NULL) {
1361 ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1362 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1363 spa->spa_checkpoint_discard_zthr = NULL;
1366 spa_condense_fini(spa);
1368 bpobj_close(&spa->spa_deferred_bpobj);
1370 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1373 * Close all vdevs.
1375 if (spa->spa_root_vdev)
1376 vdev_free(spa->spa_root_vdev);
1377 ASSERT(spa->spa_root_vdev == NULL);
1380 * Close the dsl pool.
1382 if (spa->spa_dsl_pool) {
1383 dsl_pool_close(spa->spa_dsl_pool);
1384 spa->spa_dsl_pool = NULL;
1385 spa->spa_meta_objset = NULL;
1388 ddt_unload(spa);
1391 * Drop and purge level 2 cache
1393 spa_l2cache_drop(spa);
1395 for (i = 0; i < spa->spa_spares.sav_count; i++)
1396 vdev_free(spa->spa_spares.sav_vdevs[i]);
1397 if (spa->spa_spares.sav_vdevs) {
1398 kmem_free(spa->spa_spares.sav_vdevs,
1399 spa->spa_spares.sav_count * sizeof (void *));
1400 spa->spa_spares.sav_vdevs = NULL;
1402 if (spa->spa_spares.sav_config) {
1403 nvlist_free(spa->spa_spares.sav_config);
1404 spa->spa_spares.sav_config = NULL;
1406 spa->spa_spares.sav_count = 0;
1408 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1409 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1410 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1412 if (spa->spa_l2cache.sav_vdevs) {
1413 kmem_free(spa->spa_l2cache.sav_vdevs,
1414 spa->spa_l2cache.sav_count * sizeof (void *));
1415 spa->spa_l2cache.sav_vdevs = NULL;
1417 if (spa->spa_l2cache.sav_config) {
1418 nvlist_free(spa->spa_l2cache.sav_config);
1419 spa->spa_l2cache.sav_config = NULL;
1421 spa->spa_l2cache.sav_count = 0;
1423 spa->spa_async_suspended = 0;
1425 spa->spa_indirect_vdevs_loaded = B_FALSE;
1427 if (spa->spa_comment != NULL) {
1428 spa_strfree(spa->spa_comment);
1429 spa->spa_comment = NULL;
1432 spa_config_exit(spa, SCL_ALL, FTAG);
1436 * Load (or re-load) the current list of vdevs describing the active spares for
1437 * this pool. When this is called, we have some form of basic information in
1438 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1439 * then re-generate a more complete list including status information.
1441 void
1442 spa_load_spares(spa_t *spa)
1444 nvlist_t **spares;
1445 uint_t nspares;
1446 int i;
1447 vdev_t *vd, *tvd;
1449 #ifndef _KERNEL
1451 * zdb opens both the current state of the pool and the
1452 * checkpointed state (if present), with a different spa_t.
1454 * As spare vdevs are shared among open pools, we skip loading
1455 * them when we load the checkpointed state of the pool.
1457 if (!spa_writeable(spa))
1458 return;
1459 #endif
1461 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1464 * First, close and free any existing spare vdevs.
1466 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1467 vd = spa->spa_spares.sav_vdevs[i];
1469 /* Undo the call to spa_activate() below */
1470 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1471 B_FALSE)) != NULL && tvd->vdev_isspare)
1472 spa_spare_remove(tvd);
1473 vdev_close(vd);
1474 vdev_free(vd);
1477 if (spa->spa_spares.sav_vdevs)
1478 kmem_free(spa->spa_spares.sav_vdevs,
1479 spa->spa_spares.sav_count * sizeof (void *));
1481 if (spa->spa_spares.sav_config == NULL)
1482 nspares = 0;
1483 else
1484 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1485 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1487 spa->spa_spares.sav_count = (int)nspares;
1488 spa->spa_spares.sav_vdevs = NULL;
1490 if (nspares == 0)
1491 return;
1494 * Construct the array of vdevs, opening them to get status in the
1495 * process. For each spare, there is potentially two different vdev_t
1496 * structures associated with it: one in the list of spares (used only
1497 * for basic validation purposes) and one in the active vdev
1498 * configuration (if it's spared in). During this phase we open and
1499 * validate each vdev on the spare list. If the vdev also exists in the
1500 * active configuration, then we also mark this vdev as an active spare.
1502 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1503 KM_SLEEP);
1504 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1505 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1506 VDEV_ALLOC_SPARE) == 0);
1507 ASSERT(vd != NULL);
1509 spa->spa_spares.sav_vdevs[i] = vd;
1511 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1512 B_FALSE)) != NULL) {
1513 if (!tvd->vdev_isspare)
1514 spa_spare_add(tvd);
1517 * We only mark the spare active if we were successfully
1518 * able to load the vdev. Otherwise, importing a pool
1519 * with a bad active spare would result in strange
1520 * behavior, because multiple pool would think the spare
1521 * is actively in use.
1523 * There is a vulnerability here to an equally bizarre
1524 * circumstance, where a dead active spare is later
1525 * brought back to life (onlined or otherwise). Given
1526 * the rarity of this scenario, and the extra complexity
1527 * it adds, we ignore the possibility.
1529 if (!vdev_is_dead(tvd))
1530 spa_spare_activate(tvd);
1533 vd->vdev_top = vd;
1534 vd->vdev_aux = &spa->spa_spares;
1536 if (vdev_open(vd) != 0)
1537 continue;
1539 if (vdev_validate_aux(vd) == 0)
1540 spa_spare_add(vd);
1544 * Recompute the stashed list of spares, with status information
1545 * this time.
1547 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1548 DATA_TYPE_NVLIST_ARRAY) == 0);
1550 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1551 KM_SLEEP);
1552 for (i = 0; i < spa->spa_spares.sav_count; i++)
1553 spares[i] = vdev_config_generate(spa,
1554 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1555 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1556 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1557 for (i = 0; i < spa->spa_spares.sav_count; i++)
1558 nvlist_free(spares[i]);
1559 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1563 * Load (or re-load) the current list of vdevs describing the active l2cache for
1564 * this pool. When this is called, we have some form of basic information in
1565 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1566 * then re-generate a more complete list including status information.
1567 * Devices which are already active have their details maintained, and are
1568 * not re-opened.
1570 void
1571 spa_load_l2cache(spa_t *spa)
1573 nvlist_t **l2cache;
1574 uint_t nl2cache;
1575 int i, j, oldnvdevs;
1576 uint64_t guid;
1577 vdev_t *vd, **oldvdevs, **newvdevs;
1578 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1580 #ifndef _KERNEL
1582 * zdb opens both the current state of the pool and the
1583 * checkpointed state (if present), with a different spa_t.
1585 * As L2 caches are part of the ARC which is shared among open
1586 * pools, we skip loading them when we load the checkpointed
1587 * state of the pool.
1589 if (!spa_writeable(spa))
1590 return;
1591 #endif
1593 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1595 if (sav->sav_config != NULL) {
1596 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1597 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1598 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1599 } else {
1600 nl2cache = 0;
1601 newvdevs = NULL;
1604 oldvdevs = sav->sav_vdevs;
1605 oldnvdevs = sav->sav_count;
1606 sav->sav_vdevs = NULL;
1607 sav->sav_count = 0;
1610 * Process new nvlist of vdevs.
1612 for (i = 0; i < nl2cache; i++) {
1613 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1614 &guid) == 0);
1616 newvdevs[i] = NULL;
1617 for (j = 0; j < oldnvdevs; j++) {
1618 vd = oldvdevs[j];
1619 if (vd != NULL && guid == vd->vdev_guid) {
1621 * Retain previous vdev for add/remove ops.
1623 newvdevs[i] = vd;
1624 oldvdevs[j] = NULL;
1625 break;
1629 if (newvdevs[i] == NULL) {
1631 * Create new vdev
1633 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1634 VDEV_ALLOC_L2CACHE) == 0);
1635 ASSERT(vd != NULL);
1636 newvdevs[i] = vd;
1639 * Commit this vdev as an l2cache device,
1640 * even if it fails to open.
1642 spa_l2cache_add(vd);
1644 vd->vdev_top = vd;
1645 vd->vdev_aux = sav;
1647 spa_l2cache_activate(vd);
1649 if (vdev_open(vd) != 0)
1650 continue;
1652 (void) vdev_validate_aux(vd);
1654 if (!vdev_is_dead(vd))
1655 l2arc_add_vdev(spa, vd);
1660 * Purge vdevs that were dropped
1662 for (i = 0; i < oldnvdevs; i++) {
1663 uint64_t pool;
1665 vd = oldvdevs[i];
1666 if (vd != NULL) {
1667 ASSERT(vd->vdev_isl2cache);
1669 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1670 pool != 0ULL && l2arc_vdev_present(vd))
1671 l2arc_remove_vdev(vd);
1672 vdev_clear_stats(vd);
1673 vdev_free(vd);
1677 if (oldvdevs)
1678 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1680 if (sav->sav_config == NULL)
1681 goto out;
1683 sav->sav_vdevs = newvdevs;
1684 sav->sav_count = (int)nl2cache;
1687 * Recompute the stashed list of l2cache devices, with status
1688 * information this time.
1690 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1691 DATA_TYPE_NVLIST_ARRAY) == 0);
1693 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1694 for (i = 0; i < sav->sav_count; i++)
1695 l2cache[i] = vdev_config_generate(spa,
1696 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1697 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1698 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1699 out:
1700 for (i = 0; i < sav->sav_count; i++)
1701 nvlist_free(l2cache[i]);
1702 if (sav->sav_count)
1703 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1706 static int
1707 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1709 dmu_buf_t *db;
1710 char *packed = NULL;
1711 size_t nvsize = 0;
1712 int error;
1713 *value = NULL;
1715 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1716 if (error != 0)
1717 return (error);
1719 nvsize = *(uint64_t *)db->db_data;
1720 dmu_buf_rele(db, FTAG);
1722 packed = kmem_alloc(nvsize, KM_SLEEP);
1723 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1724 DMU_READ_PREFETCH);
1725 if (error == 0)
1726 error = nvlist_unpack(packed, nvsize, value, 0);
1727 kmem_free(packed, nvsize);
1729 return (error);
1733 * Concrete top-level vdevs that are not missing and are not logs. At every
1734 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1736 static uint64_t
1737 spa_healthy_core_tvds(spa_t *spa)
1739 vdev_t *rvd = spa->spa_root_vdev;
1740 uint64_t tvds = 0;
1742 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1743 vdev_t *vd = rvd->vdev_child[i];
1744 if (vd->vdev_islog)
1745 continue;
1746 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1747 tvds++;
1750 return (tvds);
1754 * Checks to see if the given vdev could not be opened, in which case we post a
1755 * sysevent to notify the autoreplace code that the device has been removed.
1757 static void
1758 spa_check_removed(vdev_t *vd)
1760 for (uint64_t c = 0; c < vd->vdev_children; c++)
1761 spa_check_removed(vd->vdev_child[c]);
1763 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1764 vdev_is_concrete(vd)) {
1765 zfs_post_autoreplace(vd->vdev_spa, vd);
1766 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1770 static int
1771 spa_check_for_missing_logs(spa_t *spa)
1773 vdev_t *rvd = spa->spa_root_vdev;
1776 * If we're doing a normal import, then build up any additional
1777 * diagnostic information about missing log devices.
1778 * We'll pass this up to the user for further processing.
1780 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1781 nvlist_t **child, *nv;
1782 uint64_t idx = 0;
1784 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1785 KM_SLEEP);
1786 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1788 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1789 vdev_t *tvd = rvd->vdev_child[c];
1792 * We consider a device as missing only if it failed
1793 * to open (i.e. offline or faulted is not considered
1794 * as missing).
1796 if (tvd->vdev_islog &&
1797 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1798 child[idx++] = vdev_config_generate(spa, tvd,
1799 B_FALSE, VDEV_CONFIG_MISSING);
1803 if (idx > 0) {
1804 fnvlist_add_nvlist_array(nv,
1805 ZPOOL_CONFIG_CHILDREN, child, idx);
1806 fnvlist_add_nvlist(spa->spa_load_info,
1807 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1809 for (uint64_t i = 0; i < idx; i++)
1810 nvlist_free(child[i]);
1812 nvlist_free(nv);
1813 kmem_free(child, rvd->vdev_children * sizeof (char **));
1815 if (idx > 0) {
1816 spa_load_failed(spa, "some log devices are missing");
1817 vdev_dbgmsg_print_tree(rvd, 2);
1818 return (SET_ERROR(ENXIO));
1820 } else {
1821 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1822 vdev_t *tvd = rvd->vdev_child[c];
1824 if (tvd->vdev_islog &&
1825 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1826 spa_set_log_state(spa, SPA_LOG_CLEAR);
1827 spa_load_note(spa, "some log devices are "
1828 "missing, ZIL is dropped.");
1829 vdev_dbgmsg_print_tree(rvd, 2);
1830 break;
1835 return (0);
1839 * Check for missing log devices
1841 static boolean_t
1842 spa_check_logs(spa_t *spa)
1844 boolean_t rv = B_FALSE;
1845 dsl_pool_t *dp = spa_get_dsl(spa);
1847 switch (spa->spa_log_state) {
1848 case SPA_LOG_MISSING:
1849 /* need to recheck in case slog has been restored */
1850 case SPA_LOG_UNKNOWN:
1851 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1852 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1853 if (rv)
1854 spa_set_log_state(spa, SPA_LOG_MISSING);
1855 break;
1857 return (rv);
1860 static boolean_t
1861 spa_passivate_log(spa_t *spa)
1863 vdev_t *rvd = spa->spa_root_vdev;
1864 boolean_t slog_found = B_FALSE;
1866 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1868 if (!spa_has_slogs(spa))
1869 return (B_FALSE);
1871 for (int c = 0; c < rvd->vdev_children; c++) {
1872 vdev_t *tvd = rvd->vdev_child[c];
1873 metaslab_group_t *mg = tvd->vdev_mg;
1875 if (tvd->vdev_islog) {
1876 metaslab_group_passivate(mg);
1877 slog_found = B_TRUE;
1881 return (slog_found);
1884 static void
1885 spa_activate_log(spa_t *spa)
1887 vdev_t *rvd = spa->spa_root_vdev;
1889 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1891 for (int c = 0; c < rvd->vdev_children; c++) {
1892 vdev_t *tvd = rvd->vdev_child[c];
1893 metaslab_group_t *mg = tvd->vdev_mg;
1895 if (tvd->vdev_islog)
1896 metaslab_group_activate(mg);
1901 spa_reset_logs(spa_t *spa)
1903 int error;
1905 error = dmu_objset_find(spa_name(spa), zil_reset,
1906 NULL, DS_FIND_CHILDREN);
1907 if (error == 0) {
1909 * We successfully offlined the log device, sync out the
1910 * current txg so that the "stubby" block can be removed
1911 * by zil_sync().
1913 txg_wait_synced(spa->spa_dsl_pool, 0);
1915 return (error);
1918 static void
1919 spa_aux_check_removed(spa_aux_vdev_t *sav)
1921 for (int i = 0; i < sav->sav_count; i++)
1922 spa_check_removed(sav->sav_vdevs[i]);
1925 void
1926 spa_claim_notify(zio_t *zio)
1928 spa_t *spa = zio->io_spa;
1930 if (zio->io_error)
1931 return;
1933 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1934 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1935 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1936 mutex_exit(&spa->spa_props_lock);
1939 typedef struct spa_load_error {
1940 uint64_t sle_meta_count;
1941 uint64_t sle_data_count;
1942 } spa_load_error_t;
1944 static void
1945 spa_load_verify_done(zio_t *zio)
1947 blkptr_t *bp = zio->io_bp;
1948 spa_load_error_t *sle = zio->io_private;
1949 dmu_object_type_t type = BP_GET_TYPE(bp);
1950 int error = zio->io_error;
1951 spa_t *spa = zio->io_spa;
1953 abd_free(zio->io_abd);
1954 if (error) {
1955 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1956 type != DMU_OT_INTENT_LOG)
1957 atomic_inc_64(&sle->sle_meta_count);
1958 else
1959 atomic_inc_64(&sle->sle_data_count);
1962 mutex_enter(&spa->spa_scrub_lock);
1963 spa->spa_scrub_inflight--;
1964 cv_broadcast(&spa->spa_scrub_io_cv);
1965 mutex_exit(&spa->spa_scrub_lock);
1969 * Maximum number of concurrent scrub i/os to create while verifying
1970 * a pool while importing it.
1972 int spa_load_verify_maxinflight = 10000;
1973 boolean_t spa_load_verify_metadata = B_TRUE;
1974 boolean_t spa_load_verify_data = B_TRUE;
1976 /*ARGSUSED*/
1977 static int
1978 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1979 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1981 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1982 return (0);
1984 * Note: normally this routine will not be called if
1985 * spa_load_verify_metadata is not set. However, it may be useful
1986 * to manually set the flag after the traversal has begun.
1988 if (!spa_load_verify_metadata)
1989 return (0);
1990 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1991 return (0);
1993 zio_t *rio = arg;
1994 size_t size = BP_GET_PSIZE(bp);
1996 mutex_enter(&spa->spa_scrub_lock);
1997 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1998 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1999 spa->spa_scrub_inflight++;
2000 mutex_exit(&spa->spa_scrub_lock);
2002 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2003 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2004 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2005 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2006 return (0);
2009 /* ARGSUSED */
2011 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2013 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2014 return (SET_ERROR(ENAMETOOLONG));
2016 return (0);
2019 static int
2020 spa_load_verify(spa_t *spa)
2022 zio_t *rio;
2023 spa_load_error_t sle = { 0 };
2024 zpool_load_policy_t policy;
2025 boolean_t verify_ok = B_FALSE;
2026 int error = 0;
2028 zpool_get_load_policy(spa->spa_config, &policy);
2030 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2031 return (0);
2033 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2034 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2035 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2036 DS_FIND_CHILDREN);
2037 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2038 if (error != 0)
2039 return (error);
2041 rio = zio_root(spa, NULL, &sle,
2042 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2044 if (spa_load_verify_metadata) {
2045 if (spa->spa_extreme_rewind) {
2046 spa_load_note(spa, "performing a complete scan of the "
2047 "pool since extreme rewind is on. This may take "
2048 "a very long time.\n (spa_load_verify_data=%u, "
2049 "spa_load_verify_metadata=%u)",
2050 spa_load_verify_data, spa_load_verify_metadata);
2052 error = traverse_pool(spa, spa->spa_verify_min_txg,
2053 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2054 spa_load_verify_cb, rio);
2057 (void) zio_wait(rio);
2059 spa->spa_load_meta_errors = sle.sle_meta_count;
2060 spa->spa_load_data_errors = sle.sle_data_count;
2062 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2063 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2064 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2065 (u_longlong_t)sle.sle_data_count);
2068 if (spa_load_verify_dryrun ||
2069 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2070 sle.sle_data_count <= policy.zlp_maxdata)) {
2071 int64_t loss = 0;
2073 verify_ok = B_TRUE;
2074 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2075 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2077 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2078 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2079 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2080 VERIFY(nvlist_add_int64(spa->spa_load_info,
2081 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2082 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2083 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2084 } else {
2085 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2088 if (spa_load_verify_dryrun)
2089 return (0);
2091 if (error) {
2092 if (error != ENXIO && error != EIO)
2093 error = SET_ERROR(EIO);
2094 return (error);
2097 return (verify_ok ? 0 : EIO);
2101 * Find a value in the pool props object.
2103 static void
2104 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2106 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2107 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2111 * Find a value in the pool directory object.
2113 static int
2114 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2116 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2117 name, sizeof (uint64_t), 1, val);
2119 if (error != 0 && (error != ENOENT || log_enoent)) {
2120 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2121 "[error=%d]", name, error);
2124 return (error);
2127 static int
2128 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2130 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2131 return (SET_ERROR(err));
2134 static void
2135 spa_spawn_aux_threads(spa_t *spa)
2137 ASSERT(spa_writeable(spa));
2139 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2141 spa_start_indirect_condensing_thread(spa);
2143 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2144 spa->spa_checkpoint_discard_zthr =
2145 zthr_create(spa_checkpoint_discard_thread_check,
2146 spa_checkpoint_discard_thread, spa);
2150 * Fix up config after a partly-completed split. This is done with the
2151 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2152 * pool have that entry in their config, but only the splitting one contains
2153 * a list of all the guids of the vdevs that are being split off.
2155 * This function determines what to do with that list: either rejoin
2156 * all the disks to the pool, or complete the splitting process. To attempt
2157 * the rejoin, each disk that is offlined is marked online again, and
2158 * we do a reopen() call. If the vdev label for every disk that was
2159 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2160 * then we call vdev_split() on each disk, and complete the split.
2162 * Otherwise we leave the config alone, with all the vdevs in place in
2163 * the original pool.
2165 static void
2166 spa_try_repair(spa_t *spa, nvlist_t *config)
2168 uint_t extracted;
2169 uint64_t *glist;
2170 uint_t i, gcount;
2171 nvlist_t *nvl;
2172 vdev_t **vd;
2173 boolean_t attempt_reopen;
2175 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2176 return;
2178 /* check that the config is complete */
2179 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2180 &glist, &gcount) != 0)
2181 return;
2183 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2185 /* attempt to online all the vdevs & validate */
2186 attempt_reopen = B_TRUE;
2187 for (i = 0; i < gcount; i++) {
2188 if (glist[i] == 0) /* vdev is hole */
2189 continue;
2191 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2192 if (vd[i] == NULL) {
2194 * Don't bother attempting to reopen the disks;
2195 * just do the split.
2197 attempt_reopen = B_FALSE;
2198 } else {
2199 /* attempt to re-online it */
2200 vd[i]->vdev_offline = B_FALSE;
2204 if (attempt_reopen) {
2205 vdev_reopen(spa->spa_root_vdev);
2207 /* check each device to see what state it's in */
2208 for (extracted = 0, i = 0; i < gcount; i++) {
2209 if (vd[i] != NULL &&
2210 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2211 break;
2212 ++extracted;
2217 * If every disk has been moved to the new pool, or if we never
2218 * even attempted to look at them, then we split them off for
2219 * good.
2221 if (!attempt_reopen || gcount == extracted) {
2222 for (i = 0; i < gcount; i++)
2223 if (vd[i] != NULL)
2224 vdev_split(vd[i]);
2225 vdev_reopen(spa->spa_root_vdev);
2228 kmem_free(vd, gcount * sizeof (vdev_t *));
2231 static int
2232 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2234 char *ereport = FM_EREPORT_ZFS_POOL;
2235 int error;
2237 spa->spa_load_state = state;
2239 gethrestime(&spa->spa_loaded_ts);
2240 error = spa_load_impl(spa, type, &ereport);
2243 * Don't count references from objsets that are already closed
2244 * and are making their way through the eviction process.
2246 spa_evicting_os_wait(spa);
2247 spa->spa_minref = refcount_count(&spa->spa_refcount);
2248 if (error) {
2249 if (error != EEXIST) {
2250 spa->spa_loaded_ts.tv_sec = 0;
2251 spa->spa_loaded_ts.tv_nsec = 0;
2253 if (error != EBADF) {
2254 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2257 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2258 spa->spa_ena = 0;
2260 return (error);
2264 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2265 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2266 * spa's per-vdev ZAP list.
2268 static uint64_t
2269 vdev_count_verify_zaps(vdev_t *vd)
2271 spa_t *spa = vd->vdev_spa;
2272 uint64_t total = 0;
2273 if (vd->vdev_top_zap != 0) {
2274 total++;
2275 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2276 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2278 if (vd->vdev_leaf_zap != 0) {
2279 total++;
2280 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2281 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2284 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2285 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2288 return (total);
2291 static int
2292 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2294 uint64_t hostid;
2295 char *hostname;
2296 uint64_t myhostid = 0;
2298 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2299 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2300 hostname = fnvlist_lookup_string(mos_config,
2301 ZPOOL_CONFIG_HOSTNAME);
2303 myhostid = zone_get_hostid(NULL);
2305 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2306 cmn_err(CE_WARN, "pool '%s' could not be "
2307 "loaded as it was last accessed by "
2308 "another system (host: %s hostid: 0x%llx). "
2309 "See: http://illumos.org/msg/ZFS-8000-EY",
2310 spa_name(spa), hostname, (u_longlong_t)hostid);
2311 spa_load_failed(spa, "hostid verification failed: pool "
2312 "last accessed by host: %s (hostid: 0x%llx)",
2313 hostname, (u_longlong_t)hostid);
2314 return (SET_ERROR(EBADF));
2318 return (0);
2321 static int
2322 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2324 int error = 0;
2325 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2326 int parse;
2327 vdev_t *rvd;
2328 uint64_t pool_guid;
2329 char *comment;
2332 * Versioning wasn't explicitly added to the label until later, so if
2333 * it's not present treat it as the initial version.
2335 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2336 &spa->spa_ubsync.ub_version) != 0)
2337 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2339 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2340 spa_load_failed(spa, "invalid config provided: '%s' missing",
2341 ZPOOL_CONFIG_POOL_GUID);
2342 return (SET_ERROR(EINVAL));
2346 * If we are doing an import, ensure that the pool is not already
2347 * imported by checking if its pool guid already exists in the
2348 * spa namespace.
2350 * The only case that we allow an already imported pool to be
2351 * imported again, is when the pool is checkpointed and we want to
2352 * look at its checkpointed state from userland tools like zdb.
2354 #ifdef _KERNEL
2355 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2356 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2357 spa_guid_exists(pool_guid, 0)) {
2358 #else
2359 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2360 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2361 spa_guid_exists(pool_guid, 0) &&
2362 !spa_importing_readonly_checkpoint(spa)) {
2363 #endif
2364 spa_load_failed(spa, "a pool with guid %llu is already open",
2365 (u_longlong_t)pool_guid);
2366 return (SET_ERROR(EEXIST));
2369 spa->spa_config_guid = pool_guid;
2371 nvlist_free(spa->spa_load_info);
2372 spa->spa_load_info = fnvlist_alloc();
2374 ASSERT(spa->spa_comment == NULL);
2375 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2376 spa->spa_comment = spa_strdup(comment);
2378 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2379 &spa->spa_config_txg);
2381 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2382 spa->spa_config_splitting = fnvlist_dup(nvl);
2384 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2385 spa_load_failed(spa, "invalid config provided: '%s' missing",
2386 ZPOOL_CONFIG_VDEV_TREE);
2387 return (SET_ERROR(EINVAL));
2391 * Create "The Godfather" zio to hold all async IOs
2393 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2394 KM_SLEEP);
2395 for (int i = 0; i < max_ncpus; i++) {
2396 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2397 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2398 ZIO_FLAG_GODFATHER);
2402 * Parse the configuration into a vdev tree. We explicitly set the
2403 * value that will be returned by spa_version() since parsing the
2404 * configuration requires knowing the version number.
2406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2407 parse = (type == SPA_IMPORT_EXISTING ?
2408 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2409 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2410 spa_config_exit(spa, SCL_ALL, FTAG);
2412 if (error != 0) {
2413 spa_load_failed(spa, "unable to parse config [error=%d]",
2414 error);
2415 return (error);
2418 ASSERT(spa->spa_root_vdev == rvd);
2419 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2420 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2422 if (type != SPA_IMPORT_ASSEMBLE) {
2423 ASSERT(spa_guid(spa) == pool_guid);
2426 return (0);
2430 * Recursively open all vdevs in the vdev tree. This function is called twice:
2431 * first with the untrusted config, then with the trusted config.
2433 static int
2434 spa_ld_open_vdevs(spa_t *spa)
2436 int error = 0;
2439 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2440 * missing/unopenable for the root vdev to be still considered openable.
2442 if (spa->spa_trust_config) {
2443 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2444 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2445 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2446 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2447 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2448 } else {
2449 spa->spa_missing_tvds_allowed = 0;
2452 spa->spa_missing_tvds_allowed =
2453 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2456 error = vdev_open(spa->spa_root_vdev);
2457 spa_config_exit(spa, SCL_ALL, FTAG);
2459 if (spa->spa_missing_tvds != 0) {
2460 spa_load_note(spa, "vdev tree has %lld missing top-level "
2461 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2462 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2464 * Although theoretically we could allow users to open
2465 * incomplete pools in RW mode, we'd need to add a lot
2466 * of extra logic (e.g. adjust pool space to account
2467 * for missing vdevs).
2468 * This limitation also prevents users from accidentally
2469 * opening the pool in RW mode during data recovery and
2470 * damaging it further.
2472 spa_load_note(spa, "pools with missing top-level "
2473 "vdevs can only be opened in read-only mode.");
2474 error = SET_ERROR(ENXIO);
2475 } else {
2476 spa_load_note(spa, "current settings allow for maximum "
2477 "%lld missing top-level vdevs at this stage.",
2478 (u_longlong_t)spa->spa_missing_tvds_allowed);
2481 if (error != 0) {
2482 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2483 error);
2485 if (spa->spa_missing_tvds != 0 || error != 0)
2486 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2488 return (error);
2492 * We need to validate the vdev labels against the configuration that
2493 * we have in hand. This function is called twice: first with an untrusted
2494 * config, then with a trusted config. The validation is more strict when the
2495 * config is trusted.
2497 static int
2498 spa_ld_validate_vdevs(spa_t *spa)
2500 int error = 0;
2501 vdev_t *rvd = spa->spa_root_vdev;
2503 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2504 error = vdev_validate(rvd);
2505 spa_config_exit(spa, SCL_ALL, FTAG);
2507 if (error != 0) {
2508 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2509 return (error);
2512 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2513 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2514 "some vdevs");
2515 vdev_dbgmsg_print_tree(rvd, 2);
2516 return (SET_ERROR(ENXIO));
2519 return (0);
2522 static void
2523 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2525 spa->spa_state = POOL_STATE_ACTIVE;
2526 spa->spa_ubsync = spa->spa_uberblock;
2527 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2528 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2529 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2530 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2531 spa->spa_claim_max_txg = spa->spa_first_txg;
2532 spa->spa_prev_software_version = ub->ub_software_version;
2535 static int
2536 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2538 vdev_t *rvd = spa->spa_root_vdev;
2539 nvlist_t *label;
2540 uberblock_t *ub = &spa->spa_uberblock;
2543 * If we are opening the checkpointed state of the pool by
2544 * rewinding to it, at this point we will have written the
2545 * checkpointed uberblock to the vdev labels, so searching
2546 * the labels will find the right uberblock. However, if
2547 * we are opening the checkpointed state read-only, we have
2548 * not modified the labels. Therefore, we must ignore the
2549 * labels and continue using the spa_uberblock that was set
2550 * by spa_ld_checkpoint_rewind.
2552 * Note that it would be fine to ignore the labels when
2553 * rewinding (opening writeable) as well. However, if we
2554 * crash just after writing the labels, we will end up
2555 * searching the labels. Doing so in the common case means
2556 * that this code path gets exercised normally, rather than
2557 * just in the edge case.
2559 if (ub->ub_checkpoint_txg != 0 &&
2560 spa_importing_readonly_checkpoint(spa)) {
2561 spa_ld_select_uberblock_done(spa, ub);
2562 return (0);
2566 * Find the best uberblock.
2568 vdev_uberblock_load(rvd, ub, &label);
2571 * If we weren't able to find a single valid uberblock, return failure.
2573 if (ub->ub_txg == 0) {
2574 nvlist_free(label);
2575 spa_load_failed(spa, "no valid uberblock found");
2576 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2579 spa_load_note(spa, "using uberblock with txg=%llu",
2580 (u_longlong_t)ub->ub_txg);
2583 * If the pool has an unsupported version we can't open it.
2585 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2586 nvlist_free(label);
2587 spa_load_failed(spa, "version %llu is not supported",
2588 (u_longlong_t)ub->ub_version);
2589 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2592 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2593 nvlist_t *features;
2596 * If we weren't able to find what's necessary for reading the
2597 * MOS in the label, return failure.
2599 if (label == NULL) {
2600 spa_load_failed(spa, "label config unavailable");
2601 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2602 ENXIO));
2605 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2606 &features) != 0) {
2607 nvlist_free(label);
2608 spa_load_failed(spa, "invalid label: '%s' missing",
2609 ZPOOL_CONFIG_FEATURES_FOR_READ);
2610 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2611 ENXIO));
2615 * Update our in-core representation with the definitive values
2616 * from the label.
2618 nvlist_free(spa->spa_label_features);
2619 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2622 nvlist_free(label);
2625 * Look through entries in the label nvlist's features_for_read. If
2626 * there is a feature listed there which we don't understand then we
2627 * cannot open a pool.
2629 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2630 nvlist_t *unsup_feat;
2632 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2635 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2636 NULL); nvp != NULL;
2637 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2638 if (!zfeature_is_supported(nvpair_name(nvp))) {
2639 VERIFY(nvlist_add_string(unsup_feat,
2640 nvpair_name(nvp), "") == 0);
2644 if (!nvlist_empty(unsup_feat)) {
2645 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2646 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2647 nvlist_free(unsup_feat);
2648 spa_load_failed(spa, "some features are unsupported");
2649 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2650 ENOTSUP));
2653 nvlist_free(unsup_feat);
2656 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2657 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2658 spa_try_repair(spa, spa->spa_config);
2659 spa_config_exit(spa, SCL_ALL, FTAG);
2660 nvlist_free(spa->spa_config_splitting);
2661 spa->spa_config_splitting = NULL;
2665 * Initialize internal SPA structures.
2667 spa_ld_select_uberblock_done(spa, ub);
2669 return (0);
2672 static int
2673 spa_ld_open_rootbp(spa_t *spa)
2675 int error = 0;
2676 vdev_t *rvd = spa->spa_root_vdev;
2678 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2679 if (error != 0) {
2680 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2681 "[error=%d]", error);
2682 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2684 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2686 return (0);
2689 static int
2690 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2691 boolean_t reloading)
2693 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2694 nvlist_t *nv, *mos_config, *policy;
2695 int error = 0, copy_error;
2696 uint64_t healthy_tvds, healthy_tvds_mos;
2697 uint64_t mos_config_txg;
2699 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2700 != 0)
2701 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2704 * If we're assembling a pool from a split, the config provided is
2705 * already trusted so there is nothing to do.
2707 if (type == SPA_IMPORT_ASSEMBLE)
2708 return (0);
2710 healthy_tvds = spa_healthy_core_tvds(spa);
2712 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2713 != 0) {
2714 spa_load_failed(spa, "unable to retrieve MOS config");
2715 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2719 * If we are doing an open, pool owner wasn't verified yet, thus do
2720 * the verification here.
2722 if (spa->spa_load_state == SPA_LOAD_OPEN) {
2723 error = spa_verify_host(spa, mos_config);
2724 if (error != 0) {
2725 nvlist_free(mos_config);
2726 return (error);
2730 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2732 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2735 * Build a new vdev tree from the trusted config
2737 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2740 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2741 * obtained by scanning /dev/dsk, then it will have the right vdev
2742 * paths. We update the trusted MOS config with this information.
2743 * We first try to copy the paths with vdev_copy_path_strict, which
2744 * succeeds only when both configs have exactly the same vdev tree.
2745 * If that fails, we fall back to a more flexible method that has a
2746 * best effort policy.
2748 copy_error = vdev_copy_path_strict(rvd, mrvd);
2749 if (copy_error != 0 || spa_load_print_vdev_tree) {
2750 spa_load_note(spa, "provided vdev tree:");
2751 vdev_dbgmsg_print_tree(rvd, 2);
2752 spa_load_note(spa, "MOS vdev tree:");
2753 vdev_dbgmsg_print_tree(mrvd, 2);
2755 if (copy_error != 0) {
2756 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2757 "back to vdev_copy_path_relaxed");
2758 vdev_copy_path_relaxed(rvd, mrvd);
2761 vdev_close(rvd);
2762 vdev_free(rvd);
2763 spa->spa_root_vdev = mrvd;
2764 rvd = mrvd;
2765 spa_config_exit(spa, SCL_ALL, FTAG);
2768 * We will use spa_config if we decide to reload the spa or if spa_load
2769 * fails and we rewind. We must thus regenerate the config using the
2770 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2771 * pass settings on how to load the pool and is not stored in the MOS.
2772 * We copy it over to our new, trusted config.
2774 mos_config_txg = fnvlist_lookup_uint64(mos_config,
2775 ZPOOL_CONFIG_POOL_TXG);
2776 nvlist_free(mos_config);
2777 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2778 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2779 &policy) == 0)
2780 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2781 spa_config_set(spa, mos_config);
2782 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2785 * Now that we got the config from the MOS, we should be more strict
2786 * in checking blkptrs and can make assumptions about the consistency
2787 * of the vdev tree. spa_trust_config must be set to true before opening
2788 * vdevs in order for them to be writeable.
2790 spa->spa_trust_config = B_TRUE;
2793 * Open and validate the new vdev tree
2795 error = spa_ld_open_vdevs(spa);
2796 if (error != 0)
2797 return (error);
2799 error = spa_ld_validate_vdevs(spa);
2800 if (error != 0)
2801 return (error);
2803 if (copy_error != 0 || spa_load_print_vdev_tree) {
2804 spa_load_note(spa, "final vdev tree:");
2805 vdev_dbgmsg_print_tree(rvd, 2);
2808 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2809 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2811 * Sanity check to make sure that we are indeed loading the
2812 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2813 * in the config provided and they happened to be the only ones
2814 * to have the latest uberblock, we could involuntarily perform
2815 * an extreme rewind.
2817 healthy_tvds_mos = spa_healthy_core_tvds(spa);
2818 if (healthy_tvds_mos - healthy_tvds >=
2819 SPA_SYNC_MIN_VDEVS) {
2820 spa_load_note(spa, "config provided misses too many "
2821 "top-level vdevs compared to MOS (%lld vs %lld). ",
2822 (u_longlong_t)healthy_tvds,
2823 (u_longlong_t)healthy_tvds_mos);
2824 spa_load_note(spa, "vdev tree:");
2825 vdev_dbgmsg_print_tree(rvd, 2);
2826 if (reloading) {
2827 spa_load_failed(spa, "config was already "
2828 "provided from MOS. Aborting.");
2829 return (spa_vdev_err(rvd,
2830 VDEV_AUX_CORRUPT_DATA, EIO));
2832 spa_load_note(spa, "spa must be reloaded using MOS "
2833 "config");
2834 return (SET_ERROR(EAGAIN));
2838 error = spa_check_for_missing_logs(spa);
2839 if (error != 0)
2840 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2842 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2843 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2844 "guid sum (%llu != %llu)",
2845 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2846 (u_longlong_t)rvd->vdev_guid_sum);
2847 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2848 ENXIO));
2851 return (0);
2854 static int
2855 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2857 int error = 0;
2858 vdev_t *rvd = spa->spa_root_vdev;
2861 * Everything that we read before spa_remove_init() must be stored
2862 * on concreted vdevs. Therefore we do this as early as possible.
2864 error = spa_remove_init(spa);
2865 if (error != 0) {
2866 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2867 error);
2868 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2872 * Retrieve information needed to condense indirect vdev mappings.
2874 error = spa_condense_init(spa);
2875 if (error != 0) {
2876 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2877 error);
2878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2881 return (0);
2884 static int
2885 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2887 int error = 0;
2888 vdev_t *rvd = spa->spa_root_vdev;
2890 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2891 boolean_t missing_feat_read = B_FALSE;
2892 nvlist_t *unsup_feat, *enabled_feat;
2894 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2895 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2896 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2899 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2900 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2901 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2904 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2905 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2909 enabled_feat = fnvlist_alloc();
2910 unsup_feat = fnvlist_alloc();
2912 if (!spa_features_check(spa, B_FALSE,
2913 unsup_feat, enabled_feat))
2914 missing_feat_read = B_TRUE;
2916 if (spa_writeable(spa) ||
2917 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2918 if (!spa_features_check(spa, B_TRUE,
2919 unsup_feat, enabled_feat)) {
2920 *missing_feat_writep = B_TRUE;
2924 fnvlist_add_nvlist(spa->spa_load_info,
2925 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2927 if (!nvlist_empty(unsup_feat)) {
2928 fnvlist_add_nvlist(spa->spa_load_info,
2929 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2932 fnvlist_free(enabled_feat);
2933 fnvlist_free(unsup_feat);
2935 if (!missing_feat_read) {
2936 fnvlist_add_boolean(spa->spa_load_info,
2937 ZPOOL_CONFIG_CAN_RDONLY);
2941 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2942 * twofold: to determine whether the pool is available for
2943 * import in read-write mode and (if it is not) whether the
2944 * pool is available for import in read-only mode. If the pool
2945 * is available for import in read-write mode, it is displayed
2946 * as available in userland; if it is not available for import
2947 * in read-only mode, it is displayed as unavailable in
2948 * userland. If the pool is available for import in read-only
2949 * mode but not read-write mode, it is displayed as unavailable
2950 * in userland with a special note that the pool is actually
2951 * available for open in read-only mode.
2953 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2954 * missing a feature for write, we must first determine whether
2955 * the pool can be opened read-only before returning to
2956 * userland in order to know whether to display the
2957 * abovementioned note.
2959 if (missing_feat_read || (*missing_feat_writep &&
2960 spa_writeable(spa))) {
2961 spa_load_failed(spa, "pool uses unsupported features");
2962 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2963 ENOTSUP));
2967 * Load refcounts for ZFS features from disk into an in-memory
2968 * cache during SPA initialization.
2970 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2971 uint64_t refcount;
2973 error = feature_get_refcount_from_disk(spa,
2974 &spa_feature_table[i], &refcount);
2975 if (error == 0) {
2976 spa->spa_feat_refcount_cache[i] = refcount;
2977 } else if (error == ENOTSUP) {
2978 spa->spa_feat_refcount_cache[i] =
2979 SPA_FEATURE_DISABLED;
2980 } else {
2981 spa_load_failed(spa, "error getting refcount "
2982 "for feature %s [error=%d]",
2983 spa_feature_table[i].fi_guid, error);
2984 return (spa_vdev_err(rvd,
2985 VDEV_AUX_CORRUPT_DATA, EIO));
2990 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2991 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2992 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
2993 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2996 return (0);
2999 static int
3000 spa_ld_load_special_directories(spa_t *spa)
3002 int error = 0;
3003 vdev_t *rvd = spa->spa_root_vdev;
3005 spa->spa_is_initializing = B_TRUE;
3006 error = dsl_pool_open(spa->spa_dsl_pool);
3007 spa->spa_is_initializing = B_FALSE;
3008 if (error != 0) {
3009 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3010 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3013 return (0);
3016 static int
3017 spa_ld_get_props(spa_t *spa)
3019 int error = 0;
3020 uint64_t obj;
3021 vdev_t *rvd = spa->spa_root_vdev;
3023 /* Grab the secret checksum salt from the MOS. */
3024 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3025 DMU_POOL_CHECKSUM_SALT, 1,
3026 sizeof (spa->spa_cksum_salt.zcs_bytes),
3027 spa->spa_cksum_salt.zcs_bytes);
3028 if (error == ENOENT) {
3029 /* Generate a new salt for subsequent use */
3030 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3031 sizeof (spa->spa_cksum_salt.zcs_bytes));
3032 } else if (error != 0) {
3033 spa_load_failed(spa, "unable to retrieve checksum salt from "
3034 "MOS [error=%d]", error);
3035 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3038 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3039 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3040 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3041 if (error != 0) {
3042 spa_load_failed(spa, "error opening deferred-frees bpobj "
3043 "[error=%d]", error);
3044 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3048 * Load the bit that tells us to use the new accounting function
3049 * (raid-z deflation). If we have an older pool, this will not
3050 * be present.
3052 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3053 if (error != 0 && error != ENOENT)
3054 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3056 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3057 &spa->spa_creation_version, B_FALSE);
3058 if (error != 0 && error != ENOENT)
3059 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3062 * Load the persistent error log. If we have an older pool, this will
3063 * not be present.
3065 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3066 B_FALSE);
3067 if (error != 0 && error != ENOENT)
3068 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3070 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3071 &spa->spa_errlog_scrub, B_FALSE);
3072 if (error != 0 && error != ENOENT)
3073 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3076 * Load the history object. If we have an older pool, this
3077 * will not be present.
3079 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3080 if (error != 0 && error != ENOENT)
3081 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3084 * Load the per-vdev ZAP map. If we have an older pool, this will not
3085 * be present; in this case, defer its creation to a later time to
3086 * avoid dirtying the MOS this early / out of sync context. See
3087 * spa_sync_config_object.
3090 /* The sentinel is only available in the MOS config. */
3091 nvlist_t *mos_config;
3092 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3093 spa_load_failed(spa, "unable to retrieve MOS config");
3094 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3097 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3098 &spa->spa_all_vdev_zaps, B_FALSE);
3100 if (error == ENOENT) {
3101 VERIFY(!nvlist_exists(mos_config,
3102 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3103 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3104 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3105 } else if (error != 0) {
3106 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3107 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3109 * An older version of ZFS overwrote the sentinel value, so
3110 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3111 * destruction to later; see spa_sync_config_object.
3113 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3115 * We're assuming that no vdevs have had their ZAPs created
3116 * before this. Better be sure of it.
3118 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3120 nvlist_free(mos_config);
3122 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3124 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3125 B_FALSE);
3126 if (error && error != ENOENT)
3127 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3129 if (error == 0) {
3130 uint64_t autoreplace;
3132 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3133 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3134 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3135 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3136 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3137 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3138 &spa->spa_dedup_ditto);
3140 spa->spa_autoreplace = (autoreplace != 0);
3144 * If we are importing a pool with missing top-level vdevs,
3145 * we enforce that the pool doesn't panic or get suspended on
3146 * error since the likelihood of missing data is extremely high.
3148 if (spa->spa_missing_tvds > 0 &&
3149 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3150 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3151 spa_load_note(spa, "forcing failmode to 'continue' "
3152 "as some top level vdevs are missing");
3153 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3156 return (0);
3159 static int
3160 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3162 int error = 0;
3163 vdev_t *rvd = spa->spa_root_vdev;
3166 * If we're assembling the pool from the split-off vdevs of
3167 * an existing pool, we don't want to attach the spares & cache
3168 * devices.
3172 * Load any hot spares for this pool.
3174 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3175 B_FALSE);
3176 if (error != 0 && error != ENOENT)
3177 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3178 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3179 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3180 if (load_nvlist(spa, spa->spa_spares.sav_object,
3181 &spa->spa_spares.sav_config) != 0) {
3182 spa_load_failed(spa, "error loading spares nvlist");
3183 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3186 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3187 spa_load_spares(spa);
3188 spa_config_exit(spa, SCL_ALL, FTAG);
3189 } else if (error == 0) {
3190 spa->spa_spares.sav_sync = B_TRUE;
3194 * Load any level 2 ARC devices for this pool.
3196 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3197 &spa->spa_l2cache.sav_object, B_FALSE);
3198 if (error != 0 && error != ENOENT)
3199 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3200 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3201 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3202 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3203 &spa->spa_l2cache.sav_config) != 0) {
3204 spa_load_failed(spa, "error loading l2cache nvlist");
3205 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3208 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3209 spa_load_l2cache(spa);
3210 spa_config_exit(spa, SCL_ALL, FTAG);
3211 } else if (error == 0) {
3212 spa->spa_l2cache.sav_sync = B_TRUE;
3215 return (0);
3218 static int
3219 spa_ld_load_vdev_metadata(spa_t *spa)
3221 int error = 0;
3222 vdev_t *rvd = spa->spa_root_vdev;
3225 * If the 'autoreplace' property is set, then post a resource notifying
3226 * the ZFS DE that it should not issue any faults for unopenable
3227 * devices. We also iterate over the vdevs, and post a sysevent for any
3228 * unopenable vdevs so that the normal autoreplace handler can take
3229 * over.
3231 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3232 spa_check_removed(spa->spa_root_vdev);
3234 * For the import case, this is done in spa_import(), because
3235 * at this point we're using the spare definitions from
3236 * the MOS config, not necessarily from the userland config.
3238 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3239 spa_aux_check_removed(&spa->spa_spares);
3240 spa_aux_check_removed(&spa->spa_l2cache);
3245 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3247 error = vdev_load(rvd);
3248 if (error != 0) {
3249 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3250 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3254 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3256 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3257 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3258 spa_config_exit(spa, SCL_ALL, FTAG);
3260 return (0);
3263 static int
3264 spa_ld_load_dedup_tables(spa_t *spa)
3266 int error = 0;
3267 vdev_t *rvd = spa->spa_root_vdev;
3269 error = ddt_load(spa);
3270 if (error != 0) {
3271 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3272 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3275 return (0);
3278 static int
3279 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3281 vdev_t *rvd = spa->spa_root_vdev;
3283 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3284 boolean_t missing = spa_check_logs(spa);
3285 if (missing) {
3286 if (spa->spa_missing_tvds != 0) {
3287 spa_load_note(spa, "spa_check_logs failed "
3288 "so dropping the logs");
3289 } else {
3290 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3291 spa_load_failed(spa, "spa_check_logs failed");
3292 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3293 ENXIO));
3298 return (0);
3301 static int
3302 spa_ld_verify_pool_data(spa_t *spa)
3304 int error = 0;
3305 vdev_t *rvd = spa->spa_root_vdev;
3308 * We've successfully opened the pool, verify that we're ready
3309 * to start pushing transactions.
3311 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3312 error = spa_load_verify(spa);
3313 if (error != 0) {
3314 spa_load_failed(spa, "spa_load_verify failed "
3315 "[error=%d]", error);
3316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3317 error));
3321 return (0);
3324 static void
3325 spa_ld_claim_log_blocks(spa_t *spa)
3327 dmu_tx_t *tx;
3328 dsl_pool_t *dp = spa_get_dsl(spa);
3331 * Claim log blocks that haven't been committed yet.
3332 * This must all happen in a single txg.
3333 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3334 * invoked from zil_claim_log_block()'s i/o done callback.
3335 * Price of rollback is that we abandon the log.
3337 spa->spa_claiming = B_TRUE;
3339 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3340 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3341 zil_claim, tx, DS_FIND_CHILDREN);
3342 dmu_tx_commit(tx);
3344 spa->spa_claiming = B_FALSE;
3346 spa_set_log_state(spa, SPA_LOG_GOOD);
3349 static void
3350 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3351 boolean_t update_config_cache)
3353 vdev_t *rvd = spa->spa_root_vdev;
3354 int need_update = B_FALSE;
3357 * If the config cache is stale, or we have uninitialized
3358 * metaslabs (see spa_vdev_add()), then update the config.
3360 * If this is a verbatim import, trust the current
3361 * in-core spa_config and update the disk labels.
3363 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3364 spa->spa_load_state == SPA_LOAD_IMPORT ||
3365 spa->spa_load_state == SPA_LOAD_RECOVER ||
3366 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3367 need_update = B_TRUE;
3369 for (int c = 0; c < rvd->vdev_children; c++)
3370 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3371 need_update = B_TRUE;
3374 * Update the config cache asychronously in case we're the
3375 * root pool, in which case the config cache isn't writable yet.
3377 if (need_update)
3378 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3381 static void
3382 spa_ld_prepare_for_reload(spa_t *spa)
3384 int mode = spa->spa_mode;
3385 int async_suspended = spa->spa_async_suspended;
3387 spa_unload(spa);
3388 spa_deactivate(spa);
3389 spa_activate(spa, mode);
3392 * We save the value of spa_async_suspended as it gets reset to 0 by
3393 * spa_unload(). We want to restore it back to the original value before
3394 * returning as we might be calling spa_async_resume() later.
3396 spa->spa_async_suspended = async_suspended;
3399 static int
3400 spa_ld_read_checkpoint_txg(spa_t *spa)
3402 uberblock_t checkpoint;
3403 int error = 0;
3405 ASSERT0(spa->spa_checkpoint_txg);
3406 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3408 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3409 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3410 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3412 if (error == ENOENT)
3413 return (0);
3415 if (error != 0)
3416 return (error);
3418 ASSERT3U(checkpoint.ub_txg, !=, 0);
3419 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3420 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3421 spa->spa_checkpoint_txg = checkpoint.ub_txg;
3422 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3424 return (0);
3427 static int
3428 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3430 int error = 0;
3432 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3433 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3436 * Never trust the config that is provided unless we are assembling
3437 * a pool following a split.
3438 * This means don't trust blkptrs and the vdev tree in general. This
3439 * also effectively puts the spa in read-only mode since
3440 * spa_writeable() checks for spa_trust_config to be true.
3441 * We will later load a trusted config from the MOS.
3443 if (type != SPA_IMPORT_ASSEMBLE)
3444 spa->spa_trust_config = B_FALSE;
3447 * Parse the config provided to create a vdev tree.
3449 error = spa_ld_parse_config(spa, type);
3450 if (error != 0)
3451 return (error);
3454 * Now that we have the vdev tree, try to open each vdev. This involves
3455 * opening the underlying physical device, retrieving its geometry and
3456 * probing the vdev with a dummy I/O. The state of each vdev will be set
3457 * based on the success of those operations. After this we'll be ready
3458 * to read from the vdevs.
3460 error = spa_ld_open_vdevs(spa);
3461 if (error != 0)
3462 return (error);
3465 * Read the label of each vdev and make sure that the GUIDs stored
3466 * there match the GUIDs in the config provided.
3467 * If we're assembling a new pool that's been split off from an
3468 * existing pool, the labels haven't yet been updated so we skip
3469 * validation for now.
3471 if (type != SPA_IMPORT_ASSEMBLE) {
3472 error = spa_ld_validate_vdevs(spa);
3473 if (error != 0)
3474 return (error);
3478 * Read all vdev labels to find the best uberblock (i.e. latest,
3479 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3480 * get the list of features required to read blkptrs in the MOS from
3481 * the vdev label with the best uberblock and verify that our version
3482 * of zfs supports them all.
3484 error = spa_ld_select_uberblock(spa, type);
3485 if (error != 0)
3486 return (error);
3489 * Pass that uberblock to the dsl_pool layer which will open the root
3490 * blkptr. This blkptr points to the latest version of the MOS and will
3491 * allow us to read its contents.
3493 error = spa_ld_open_rootbp(spa);
3494 if (error != 0)
3495 return (error);
3497 return (0);
3500 static int
3501 spa_ld_checkpoint_rewind(spa_t *spa)
3503 uberblock_t checkpoint;
3504 int error = 0;
3506 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3507 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3509 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3510 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3511 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3513 if (error != 0) {
3514 spa_load_failed(spa, "unable to retrieve checkpointed "
3515 "uberblock from the MOS config [error=%d]", error);
3517 if (error == ENOENT)
3518 error = ZFS_ERR_NO_CHECKPOINT;
3520 return (error);
3523 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3524 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3527 * We need to update the txg and timestamp of the checkpointed
3528 * uberblock to be higher than the latest one. This ensures that
3529 * the checkpointed uberblock is selected if we were to close and
3530 * reopen the pool right after we've written it in the vdev labels.
3531 * (also see block comment in vdev_uberblock_compare)
3533 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3534 checkpoint.ub_timestamp = gethrestime_sec();
3537 * Set current uberblock to be the checkpointed uberblock.
3539 spa->spa_uberblock = checkpoint;
3542 * If we are doing a normal rewind, then the pool is open for
3543 * writing and we sync the "updated" checkpointed uberblock to
3544 * disk. Once this is done, we've basically rewound the whole
3545 * pool and there is no way back.
3547 * There are cases when we don't want to attempt and sync the
3548 * checkpointed uberblock to disk because we are opening a
3549 * pool as read-only. Specifically, verifying the checkpointed
3550 * state with zdb, and importing the checkpointed state to get
3551 * a "preview" of its content.
3553 if (spa_writeable(spa)) {
3554 vdev_t *rvd = spa->spa_root_vdev;
3556 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3557 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3558 int svdcount = 0;
3559 int children = rvd->vdev_children;
3560 int c0 = spa_get_random(children);
3562 for (int c = 0; c < children; c++) {
3563 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3565 /* Stop when revisiting the first vdev */
3566 if (c > 0 && svd[0] == vd)
3567 break;
3569 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3570 !vdev_is_concrete(vd))
3571 continue;
3573 svd[svdcount++] = vd;
3574 if (svdcount == SPA_SYNC_MIN_VDEVS)
3575 break;
3577 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3578 if (error == 0)
3579 spa->spa_last_synced_guid = rvd->vdev_guid;
3580 spa_config_exit(spa, SCL_ALL, FTAG);
3582 if (error != 0) {
3583 spa_load_failed(spa, "failed to write checkpointed "
3584 "uberblock to the vdev labels [error=%d]", error);
3585 return (error);
3589 return (0);
3592 static int
3593 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3594 boolean_t *update_config_cache)
3596 int error;
3599 * Parse the config for pool, open and validate vdevs,
3600 * select an uberblock, and use that uberblock to open
3601 * the MOS.
3603 error = spa_ld_mos_init(spa, type);
3604 if (error != 0)
3605 return (error);
3608 * Retrieve the trusted config stored in the MOS and use it to create
3609 * a new, exact version of the vdev tree, then reopen all vdevs.
3611 error = spa_ld_trusted_config(spa, type, B_FALSE);
3612 if (error == EAGAIN) {
3613 if (update_config_cache != NULL)
3614 *update_config_cache = B_TRUE;
3617 * Redo the loading process with the trusted config if it is
3618 * too different from the untrusted config.
3620 spa_ld_prepare_for_reload(spa);
3621 spa_load_note(spa, "RELOADING");
3622 error = spa_ld_mos_init(spa, type);
3623 if (error != 0)
3624 return (error);
3626 error = spa_ld_trusted_config(spa, type, B_TRUE);
3627 if (error != 0)
3628 return (error);
3630 } else if (error != 0) {
3631 return (error);
3634 return (0);
3638 * Load an existing storage pool, using the config provided. This config
3639 * describes which vdevs are part of the pool and is later validated against
3640 * partial configs present in each vdev's label and an entire copy of the
3641 * config stored in the MOS.
3643 static int
3644 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3646 int error = 0;
3647 boolean_t missing_feat_write = B_FALSE;
3648 boolean_t checkpoint_rewind =
3649 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3650 boolean_t update_config_cache = B_FALSE;
3652 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3653 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3655 spa_load_note(spa, "LOADING");
3657 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3658 if (error != 0)
3659 return (error);
3662 * If we are rewinding to the checkpoint then we need to repeat
3663 * everything we've done so far in this function but this time
3664 * selecting the checkpointed uberblock and using that to open
3665 * the MOS.
3667 if (checkpoint_rewind) {
3669 * If we are rewinding to the checkpoint update config cache
3670 * anyway.
3672 update_config_cache = B_TRUE;
3675 * Extract the checkpointed uberblock from the current MOS
3676 * and use this as the pool's uberblock from now on. If the
3677 * pool is imported as writeable we also write the checkpoint
3678 * uberblock to the labels, making the rewind permanent.
3680 error = spa_ld_checkpoint_rewind(spa);
3681 if (error != 0)
3682 return (error);
3685 * Redo the loading process process again with the
3686 * checkpointed uberblock.
3688 spa_ld_prepare_for_reload(spa);
3689 spa_load_note(spa, "LOADING checkpointed uberblock");
3690 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3691 if (error != 0)
3692 return (error);
3696 * Retrieve the checkpoint txg if the pool has a checkpoint.
3698 error = spa_ld_read_checkpoint_txg(spa);
3699 if (error != 0)
3700 return (error);
3703 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3704 * from the pool and their contents were re-mapped to other vdevs. Note
3705 * that everything that we read before this step must have been
3706 * rewritten on concrete vdevs after the last device removal was
3707 * initiated. Otherwise we could be reading from indirect vdevs before
3708 * we have loaded their mappings.
3710 error = spa_ld_open_indirect_vdev_metadata(spa);
3711 if (error != 0)
3712 return (error);
3715 * Retrieve the full list of active features from the MOS and check if
3716 * they are all supported.
3718 error = spa_ld_check_features(spa, &missing_feat_write);
3719 if (error != 0)
3720 return (error);
3723 * Load several special directories from the MOS needed by the dsl_pool
3724 * layer.
3726 error = spa_ld_load_special_directories(spa);
3727 if (error != 0)
3728 return (error);
3731 * Retrieve pool properties from the MOS.
3733 error = spa_ld_get_props(spa);
3734 if (error != 0)
3735 return (error);
3738 * Retrieve the list of auxiliary devices - cache devices and spares -
3739 * and open them.
3741 error = spa_ld_open_aux_vdevs(spa, type);
3742 if (error != 0)
3743 return (error);
3746 * Load the metadata for all vdevs. Also check if unopenable devices
3747 * should be autoreplaced.
3749 error = spa_ld_load_vdev_metadata(spa);
3750 if (error != 0)
3751 return (error);
3753 error = spa_ld_load_dedup_tables(spa);
3754 if (error != 0)
3755 return (error);
3758 * Verify the logs now to make sure we don't have any unexpected errors
3759 * when we claim log blocks later.
3761 error = spa_ld_verify_logs(spa, type, ereport);
3762 if (error != 0)
3763 return (error);
3765 if (missing_feat_write) {
3766 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3769 * At this point, we know that we can open the pool in
3770 * read-only mode but not read-write mode. We now have enough
3771 * information and can return to userland.
3773 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3774 ENOTSUP));
3778 * Traverse the last txgs to make sure the pool was left off in a safe
3779 * state. When performing an extreme rewind, we verify the whole pool,
3780 * which can take a very long time.
3782 error = spa_ld_verify_pool_data(spa);
3783 if (error != 0)
3784 return (error);
3787 * Calculate the deflated space for the pool. This must be done before
3788 * we write anything to the pool because we'd need to update the space
3789 * accounting using the deflated sizes.
3791 spa_update_dspace(spa);
3794 * We have now retrieved all the information we needed to open the
3795 * pool. If we are importing the pool in read-write mode, a few
3796 * additional steps must be performed to finish the import.
3798 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3799 spa->spa_load_max_txg == UINT64_MAX)) {
3800 uint64_t config_cache_txg = spa->spa_config_txg;
3802 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3805 * In case of a checkpoint rewind, log the original txg
3806 * of the checkpointed uberblock.
3808 if (checkpoint_rewind) {
3809 spa_history_log_internal(spa, "checkpoint rewind",
3810 NULL, "rewound state to txg=%llu",
3811 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3815 * Traverse the ZIL and claim all blocks.
3817 spa_ld_claim_log_blocks(spa);
3820 * Kick-off the syncing thread.
3822 spa->spa_sync_on = B_TRUE;
3823 txg_sync_start(spa->spa_dsl_pool);
3826 * Wait for all claims to sync. We sync up to the highest
3827 * claimed log block birth time so that claimed log blocks
3828 * don't appear to be from the future. spa_claim_max_txg
3829 * will have been set for us by ZIL traversal operations
3830 * performed above.
3832 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3835 * Check if we need to request an update of the config. On the
3836 * next sync, we would update the config stored in vdev labels
3837 * and the cachefile (by default /etc/zfs/zpool.cache).
3839 spa_ld_check_for_config_update(spa, config_cache_txg,
3840 update_config_cache);
3843 * Check all DTLs to see if anything needs resilvering.
3845 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3846 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3847 spa_async_request(spa, SPA_ASYNC_RESILVER);
3850 * Log the fact that we booted up (so that we can detect if
3851 * we rebooted in the middle of an operation).
3853 spa_history_log_version(spa, "open");
3856 * Delete any inconsistent datasets.
3858 (void) dmu_objset_find(spa_name(spa),
3859 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3862 * Clean up any stale temporary dataset userrefs.
3864 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3866 spa_restart_removal(spa);
3868 spa_spawn_aux_threads(spa);
3871 spa_load_note(spa, "LOADED");
3873 return (0);
3876 static int
3877 spa_load_retry(spa_t *spa, spa_load_state_t state)
3879 int mode = spa->spa_mode;
3881 spa_unload(spa);
3882 spa_deactivate(spa);
3884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3886 spa_activate(spa, mode);
3887 spa_async_suspend(spa);
3889 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3890 (u_longlong_t)spa->spa_load_max_txg);
3892 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3896 * If spa_load() fails this function will try loading prior txg's. If
3897 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3898 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3899 * function will not rewind the pool and will return the same error as
3900 * spa_load().
3902 static int
3903 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3904 int rewind_flags)
3906 nvlist_t *loadinfo = NULL;
3907 nvlist_t *config = NULL;
3908 int load_error, rewind_error;
3909 uint64_t safe_rewind_txg;
3910 uint64_t min_txg;
3912 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3913 spa->spa_load_max_txg = spa->spa_load_txg;
3914 spa_set_log_state(spa, SPA_LOG_CLEAR);
3915 } else {
3916 spa->spa_load_max_txg = max_request;
3917 if (max_request != UINT64_MAX)
3918 spa->spa_extreme_rewind = B_TRUE;
3921 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3922 if (load_error == 0)
3923 return (0);
3924 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
3926 * When attempting checkpoint-rewind on a pool with no
3927 * checkpoint, we should not attempt to load uberblocks
3928 * from previous txgs when spa_load fails.
3930 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3931 return (load_error);
3934 if (spa->spa_root_vdev != NULL)
3935 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3937 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3938 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3940 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3941 nvlist_free(config);
3942 return (load_error);
3945 if (state == SPA_LOAD_RECOVER) {
3946 /* Price of rolling back is discarding txgs, including log */
3947 spa_set_log_state(spa, SPA_LOG_CLEAR);
3948 } else {
3950 * If we aren't rolling back save the load info from our first
3951 * import attempt so that we can restore it after attempting
3952 * to rewind.
3954 loadinfo = spa->spa_load_info;
3955 spa->spa_load_info = fnvlist_alloc();
3958 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3959 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3960 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3961 TXG_INITIAL : safe_rewind_txg;
3964 * Continue as long as we're finding errors, we're still within
3965 * the acceptable rewind range, and we're still finding uberblocks
3967 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3968 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3969 if (spa->spa_load_max_txg < safe_rewind_txg)
3970 spa->spa_extreme_rewind = B_TRUE;
3971 rewind_error = spa_load_retry(spa, state);
3974 spa->spa_extreme_rewind = B_FALSE;
3975 spa->spa_load_max_txg = UINT64_MAX;
3977 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3978 spa_config_set(spa, config);
3979 else
3980 nvlist_free(config);
3982 if (state == SPA_LOAD_RECOVER) {
3983 ASSERT3P(loadinfo, ==, NULL);
3984 return (rewind_error);
3985 } else {
3986 /* Store the rewind info as part of the initial load info */
3987 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3988 spa->spa_load_info);
3990 /* Restore the initial load info */
3991 fnvlist_free(spa->spa_load_info);
3992 spa->spa_load_info = loadinfo;
3994 return (load_error);
3999 * Pool Open/Import
4001 * The import case is identical to an open except that the configuration is sent
4002 * down from userland, instead of grabbed from the configuration cache. For the
4003 * case of an open, the pool configuration will exist in the
4004 * POOL_STATE_UNINITIALIZED state.
4006 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4007 * the same time open the pool, without having to keep around the spa_t in some
4008 * ambiguous state.
4010 static int
4011 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4012 nvlist_t **config)
4014 spa_t *spa;
4015 spa_load_state_t state = SPA_LOAD_OPEN;
4016 int error;
4017 int locked = B_FALSE;
4019 *spapp = NULL;
4022 * As disgusting as this is, we need to support recursive calls to this
4023 * function because dsl_dir_open() is called during spa_load(), and ends
4024 * up calling spa_open() again. The real fix is to figure out how to
4025 * avoid dsl_dir_open() calling this in the first place.
4027 if (mutex_owner(&spa_namespace_lock) != curthread) {
4028 mutex_enter(&spa_namespace_lock);
4029 locked = B_TRUE;
4032 if ((spa = spa_lookup(pool)) == NULL) {
4033 if (locked)
4034 mutex_exit(&spa_namespace_lock);
4035 return (SET_ERROR(ENOENT));
4038 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4039 zpool_load_policy_t policy;
4041 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4042 &policy);
4043 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4044 state = SPA_LOAD_RECOVER;
4046 spa_activate(spa, spa_mode_global);
4048 if (state != SPA_LOAD_RECOVER)
4049 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4050 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4052 zfs_dbgmsg("spa_open_common: opening %s", pool);
4053 error = spa_load_best(spa, state, policy.zlp_txg,
4054 policy.zlp_rewind);
4056 if (error == EBADF) {
4058 * If vdev_validate() returns failure (indicated by
4059 * EBADF), it indicates that one of the vdevs indicates
4060 * that the pool has been exported or destroyed. If
4061 * this is the case, the config cache is out of sync and
4062 * we should remove the pool from the namespace.
4064 spa_unload(spa);
4065 spa_deactivate(spa);
4066 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4067 spa_remove(spa);
4068 if (locked)
4069 mutex_exit(&spa_namespace_lock);
4070 return (SET_ERROR(ENOENT));
4073 if (error) {
4075 * We can't open the pool, but we still have useful
4076 * information: the state of each vdev after the
4077 * attempted vdev_open(). Return this to the user.
4079 if (config != NULL && spa->spa_config) {
4080 VERIFY(nvlist_dup(spa->spa_config, config,
4081 KM_SLEEP) == 0);
4082 VERIFY(nvlist_add_nvlist(*config,
4083 ZPOOL_CONFIG_LOAD_INFO,
4084 spa->spa_load_info) == 0);
4086 spa_unload(spa);
4087 spa_deactivate(spa);
4088 spa->spa_last_open_failed = error;
4089 if (locked)
4090 mutex_exit(&spa_namespace_lock);
4091 *spapp = NULL;
4092 return (error);
4096 spa_open_ref(spa, tag);
4098 if (config != NULL)
4099 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4102 * If we've recovered the pool, pass back any information we
4103 * gathered while doing the load.
4105 if (state == SPA_LOAD_RECOVER) {
4106 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4107 spa->spa_load_info) == 0);
4110 if (locked) {
4111 spa->spa_last_open_failed = 0;
4112 spa->spa_last_ubsync_txg = 0;
4113 spa->spa_load_txg = 0;
4114 mutex_exit(&spa_namespace_lock);
4117 *spapp = spa;
4119 return (0);
4123 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4124 nvlist_t **config)
4126 return (spa_open_common(name, spapp, tag, policy, config));
4130 spa_open(const char *name, spa_t **spapp, void *tag)
4132 return (spa_open_common(name, spapp, tag, NULL, NULL));
4136 * Lookup the given spa_t, incrementing the inject count in the process,
4137 * preventing it from being exported or destroyed.
4139 spa_t *
4140 spa_inject_addref(char *name)
4142 spa_t *spa;
4144 mutex_enter(&spa_namespace_lock);
4145 if ((spa = spa_lookup(name)) == NULL) {
4146 mutex_exit(&spa_namespace_lock);
4147 return (NULL);
4149 spa->spa_inject_ref++;
4150 mutex_exit(&spa_namespace_lock);
4152 return (spa);
4155 void
4156 spa_inject_delref(spa_t *spa)
4158 mutex_enter(&spa_namespace_lock);
4159 spa->spa_inject_ref--;
4160 mutex_exit(&spa_namespace_lock);
4164 * Add spares device information to the nvlist.
4166 static void
4167 spa_add_spares(spa_t *spa, nvlist_t *config)
4169 nvlist_t **spares;
4170 uint_t i, nspares;
4171 nvlist_t *nvroot;
4172 uint64_t guid;
4173 vdev_stat_t *vs;
4174 uint_t vsc;
4175 uint64_t pool;
4177 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4179 if (spa->spa_spares.sav_count == 0)
4180 return;
4182 VERIFY(nvlist_lookup_nvlist(config,
4183 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4184 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4185 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4186 if (nspares != 0) {
4187 VERIFY(nvlist_add_nvlist_array(nvroot,
4188 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4189 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4190 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4193 * Go through and find any spares which have since been
4194 * repurposed as an active spare. If this is the case, update
4195 * their status appropriately.
4197 for (i = 0; i < nspares; i++) {
4198 VERIFY(nvlist_lookup_uint64(spares[i],
4199 ZPOOL_CONFIG_GUID, &guid) == 0);
4200 if (spa_spare_exists(guid, &pool, NULL) &&
4201 pool != 0ULL) {
4202 VERIFY(nvlist_lookup_uint64_array(
4203 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4204 (uint64_t **)&vs, &vsc) == 0);
4205 vs->vs_state = VDEV_STATE_CANT_OPEN;
4206 vs->vs_aux = VDEV_AUX_SPARED;
4213 * Add l2cache device information to the nvlist, including vdev stats.
4215 static void
4216 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4218 nvlist_t **l2cache;
4219 uint_t i, j, nl2cache;
4220 nvlist_t *nvroot;
4221 uint64_t guid;
4222 vdev_t *vd;
4223 vdev_stat_t *vs;
4224 uint_t vsc;
4226 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4228 if (spa->spa_l2cache.sav_count == 0)
4229 return;
4231 VERIFY(nvlist_lookup_nvlist(config,
4232 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4233 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4234 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4235 if (nl2cache != 0) {
4236 VERIFY(nvlist_add_nvlist_array(nvroot,
4237 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4238 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4239 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4242 * Update level 2 cache device stats.
4245 for (i = 0; i < nl2cache; i++) {
4246 VERIFY(nvlist_lookup_uint64(l2cache[i],
4247 ZPOOL_CONFIG_GUID, &guid) == 0);
4249 vd = NULL;
4250 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4251 if (guid ==
4252 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4253 vd = spa->spa_l2cache.sav_vdevs[j];
4254 break;
4257 ASSERT(vd != NULL);
4259 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4260 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4261 == 0);
4262 vdev_get_stats(vd, vs);
4267 static void
4268 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4270 nvlist_t *features;
4271 zap_cursor_t zc;
4272 zap_attribute_t za;
4274 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4275 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4277 if (spa->spa_feat_for_read_obj != 0) {
4278 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4279 spa->spa_feat_for_read_obj);
4280 zap_cursor_retrieve(&zc, &za) == 0;
4281 zap_cursor_advance(&zc)) {
4282 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4283 za.za_num_integers == 1);
4284 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4285 za.za_first_integer));
4287 zap_cursor_fini(&zc);
4290 if (spa->spa_feat_for_write_obj != 0) {
4291 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4292 spa->spa_feat_for_write_obj);
4293 zap_cursor_retrieve(&zc, &za) == 0;
4294 zap_cursor_advance(&zc)) {
4295 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4296 za.za_num_integers == 1);
4297 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4298 za.za_first_integer));
4300 zap_cursor_fini(&zc);
4303 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4304 features) == 0);
4305 nvlist_free(features);
4309 spa_get_stats(const char *name, nvlist_t **config,
4310 char *altroot, size_t buflen)
4312 int error;
4313 spa_t *spa;
4315 *config = NULL;
4316 error = spa_open_common(name, &spa, FTAG, NULL, config);
4318 if (spa != NULL) {
4320 * This still leaves a window of inconsistency where the spares
4321 * or l2cache devices could change and the config would be
4322 * self-inconsistent.
4324 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4326 if (*config != NULL) {
4327 uint64_t loadtimes[2];
4329 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4330 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4331 VERIFY(nvlist_add_uint64_array(*config,
4332 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4334 VERIFY(nvlist_add_uint64(*config,
4335 ZPOOL_CONFIG_ERRCOUNT,
4336 spa_get_errlog_size(spa)) == 0);
4338 if (spa_suspended(spa))
4339 VERIFY(nvlist_add_uint64(*config,
4340 ZPOOL_CONFIG_SUSPENDED,
4341 spa->spa_failmode) == 0);
4343 spa_add_spares(spa, *config);
4344 spa_add_l2cache(spa, *config);
4345 spa_add_feature_stats(spa, *config);
4350 * We want to get the alternate root even for faulted pools, so we cheat
4351 * and call spa_lookup() directly.
4353 if (altroot) {
4354 if (spa == NULL) {
4355 mutex_enter(&spa_namespace_lock);
4356 spa = spa_lookup(name);
4357 if (spa)
4358 spa_altroot(spa, altroot, buflen);
4359 else
4360 altroot[0] = '\0';
4361 spa = NULL;
4362 mutex_exit(&spa_namespace_lock);
4363 } else {
4364 spa_altroot(spa, altroot, buflen);
4368 if (spa != NULL) {
4369 spa_config_exit(spa, SCL_CONFIG, FTAG);
4370 spa_close(spa, FTAG);
4373 return (error);
4377 * Validate that the auxiliary device array is well formed. We must have an
4378 * array of nvlists, each which describes a valid leaf vdev. If this is an
4379 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4380 * specified, as long as they are well-formed.
4382 static int
4383 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4384 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4385 vdev_labeltype_t label)
4387 nvlist_t **dev;
4388 uint_t i, ndev;
4389 vdev_t *vd;
4390 int error;
4392 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4395 * It's acceptable to have no devs specified.
4397 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4398 return (0);
4400 if (ndev == 0)
4401 return (SET_ERROR(EINVAL));
4404 * Make sure the pool is formatted with a version that supports this
4405 * device type.
4407 if (spa_version(spa) < version)
4408 return (SET_ERROR(ENOTSUP));
4411 * Set the pending device list so we correctly handle device in-use
4412 * checking.
4414 sav->sav_pending = dev;
4415 sav->sav_npending = ndev;
4417 for (i = 0; i < ndev; i++) {
4418 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4419 mode)) != 0)
4420 goto out;
4422 if (!vd->vdev_ops->vdev_op_leaf) {
4423 vdev_free(vd);
4424 error = SET_ERROR(EINVAL);
4425 goto out;
4429 * The L2ARC currently only supports disk devices in
4430 * kernel context. For user-level testing, we allow it.
4432 #ifdef _KERNEL
4433 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4434 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4435 error = SET_ERROR(ENOTBLK);
4436 vdev_free(vd);
4437 goto out;
4439 #endif
4440 vd->vdev_top = vd;
4442 if ((error = vdev_open(vd)) == 0 &&
4443 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4444 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4445 vd->vdev_guid) == 0);
4448 vdev_free(vd);
4450 if (error &&
4451 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4452 goto out;
4453 else
4454 error = 0;
4457 out:
4458 sav->sav_pending = NULL;
4459 sav->sav_npending = 0;
4460 return (error);
4463 static int
4464 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4466 int error;
4468 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4470 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4471 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4472 VDEV_LABEL_SPARE)) != 0) {
4473 return (error);
4476 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4477 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4478 VDEV_LABEL_L2CACHE));
4481 static void
4482 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4483 const char *config)
4485 int i;
4487 if (sav->sav_config != NULL) {
4488 nvlist_t **olddevs;
4489 uint_t oldndevs;
4490 nvlist_t **newdevs;
4493 * Generate new dev list by concatentating with the
4494 * current dev list.
4496 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4497 &olddevs, &oldndevs) == 0);
4499 newdevs = kmem_alloc(sizeof (void *) *
4500 (ndevs + oldndevs), KM_SLEEP);
4501 for (i = 0; i < oldndevs; i++)
4502 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4503 KM_SLEEP) == 0);
4504 for (i = 0; i < ndevs; i++)
4505 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4506 KM_SLEEP) == 0);
4508 VERIFY(nvlist_remove(sav->sav_config, config,
4509 DATA_TYPE_NVLIST_ARRAY) == 0);
4511 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4512 config, newdevs, ndevs + oldndevs) == 0);
4513 for (i = 0; i < oldndevs + ndevs; i++)
4514 nvlist_free(newdevs[i]);
4515 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4516 } else {
4518 * Generate a new dev list.
4520 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4521 KM_SLEEP) == 0);
4522 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4523 devs, ndevs) == 0);
4528 * Stop and drop level 2 ARC devices
4530 void
4531 spa_l2cache_drop(spa_t *spa)
4533 vdev_t *vd;
4534 int i;
4535 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4537 for (i = 0; i < sav->sav_count; i++) {
4538 uint64_t pool;
4540 vd = sav->sav_vdevs[i];
4541 ASSERT(vd != NULL);
4543 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4544 pool != 0ULL && l2arc_vdev_present(vd))
4545 l2arc_remove_vdev(vd);
4550 * Pool Creation
4553 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4554 nvlist_t *zplprops)
4556 spa_t *spa;
4557 char *altroot = NULL;
4558 vdev_t *rvd;
4559 dsl_pool_t *dp;
4560 dmu_tx_t *tx;
4561 int error = 0;
4562 uint64_t txg = TXG_INITIAL;
4563 nvlist_t **spares, **l2cache;
4564 uint_t nspares, nl2cache;
4565 uint64_t version, obj;
4566 boolean_t has_features;
4569 * If this pool already exists, return failure.
4571 mutex_enter(&spa_namespace_lock);
4572 if (spa_lookup(pool) != NULL) {
4573 mutex_exit(&spa_namespace_lock);
4574 return (SET_ERROR(EEXIST));
4578 * Allocate a new spa_t structure.
4580 (void) nvlist_lookup_string(props,
4581 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4582 spa = spa_add(pool, NULL, altroot);
4583 spa_activate(spa, spa_mode_global);
4585 if (props && (error = spa_prop_validate(spa, props))) {
4586 spa_deactivate(spa);
4587 spa_remove(spa);
4588 mutex_exit(&spa_namespace_lock);
4589 return (error);
4592 has_features = B_FALSE;
4593 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4594 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4595 if (zpool_prop_feature(nvpair_name(elem)))
4596 has_features = B_TRUE;
4599 if (has_features || nvlist_lookup_uint64(props,
4600 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4601 version = SPA_VERSION;
4603 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4605 spa->spa_first_txg = txg;
4606 spa->spa_uberblock.ub_txg = txg - 1;
4607 spa->spa_uberblock.ub_version = version;
4608 spa->spa_ubsync = spa->spa_uberblock;
4609 spa->spa_load_state = SPA_LOAD_CREATE;
4610 spa->spa_removing_phys.sr_state = DSS_NONE;
4611 spa->spa_removing_phys.sr_removing_vdev = -1;
4612 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4615 * Create "The Godfather" zio to hold all async IOs
4617 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4618 KM_SLEEP);
4619 for (int i = 0; i < max_ncpus; i++) {
4620 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4621 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4622 ZIO_FLAG_GODFATHER);
4626 * Create the root vdev.
4628 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4630 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4632 ASSERT(error != 0 || rvd != NULL);
4633 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4635 if (error == 0 && !zfs_allocatable_devs(nvroot))
4636 error = SET_ERROR(EINVAL);
4638 if (error == 0 &&
4639 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4640 (error = spa_validate_aux(spa, nvroot, txg,
4641 VDEV_ALLOC_ADD)) == 0) {
4642 for (int c = 0; c < rvd->vdev_children; c++) {
4643 vdev_metaslab_set_size(rvd->vdev_child[c]);
4644 vdev_expand(rvd->vdev_child[c], txg);
4648 spa_config_exit(spa, SCL_ALL, FTAG);
4650 if (error != 0) {
4651 spa_unload(spa);
4652 spa_deactivate(spa);
4653 spa_remove(spa);
4654 mutex_exit(&spa_namespace_lock);
4655 return (error);
4659 * Get the list of spares, if specified.
4661 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4662 &spares, &nspares) == 0) {
4663 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4664 KM_SLEEP) == 0);
4665 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4666 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4668 spa_load_spares(spa);
4669 spa_config_exit(spa, SCL_ALL, FTAG);
4670 spa->spa_spares.sav_sync = B_TRUE;
4674 * Get the list of level 2 cache devices, if specified.
4676 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4677 &l2cache, &nl2cache) == 0) {
4678 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4679 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4680 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4681 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4682 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4683 spa_load_l2cache(spa);
4684 spa_config_exit(spa, SCL_ALL, FTAG);
4685 spa->spa_l2cache.sav_sync = B_TRUE;
4688 spa->spa_is_initializing = B_TRUE;
4689 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4690 spa->spa_meta_objset = dp->dp_meta_objset;
4691 spa->spa_is_initializing = B_FALSE;
4694 * Create DDTs (dedup tables).
4696 ddt_create(spa);
4698 spa_update_dspace(spa);
4700 tx = dmu_tx_create_assigned(dp, txg);
4703 * Create the pool config object.
4705 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4706 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4707 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4709 if (zap_add(spa->spa_meta_objset,
4710 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4711 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4712 cmn_err(CE_PANIC, "failed to add pool config");
4715 if (spa_version(spa) >= SPA_VERSION_FEATURES)
4716 spa_feature_create_zap_objects(spa, tx);
4718 if (zap_add(spa->spa_meta_objset,
4719 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4720 sizeof (uint64_t), 1, &version, tx) != 0) {
4721 cmn_err(CE_PANIC, "failed to add pool version");
4724 /* Newly created pools with the right version are always deflated. */
4725 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4726 spa->spa_deflate = TRUE;
4727 if (zap_add(spa->spa_meta_objset,
4728 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4729 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4730 cmn_err(CE_PANIC, "failed to add deflate");
4735 * Create the deferred-free bpobj. Turn off compression
4736 * because sync-to-convergence takes longer if the blocksize
4737 * keeps changing.
4739 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4740 dmu_object_set_compress(spa->spa_meta_objset, obj,
4741 ZIO_COMPRESS_OFF, tx);
4742 if (zap_add(spa->spa_meta_objset,
4743 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4744 sizeof (uint64_t), 1, &obj, tx) != 0) {
4745 cmn_err(CE_PANIC, "failed to add bpobj");
4747 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4748 spa->spa_meta_objset, obj));
4751 * Create the pool's history object.
4753 if (version >= SPA_VERSION_ZPOOL_HISTORY)
4754 spa_history_create_obj(spa, tx);
4757 * Generate some random noise for salted checksums to operate on.
4759 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4760 sizeof (spa->spa_cksum_salt.zcs_bytes));
4763 * Set pool properties.
4765 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4766 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4767 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4768 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4770 if (props != NULL) {
4771 spa_configfile_set(spa, props, B_FALSE);
4772 spa_sync_props(props, tx);
4775 dmu_tx_commit(tx);
4777 spa->spa_sync_on = B_TRUE;
4778 txg_sync_start(spa->spa_dsl_pool);
4781 * We explicitly wait for the first transaction to complete so that our
4782 * bean counters are appropriately updated.
4784 txg_wait_synced(spa->spa_dsl_pool, txg);
4786 spa_spawn_aux_threads(spa);
4788 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4789 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4791 spa_history_log_version(spa, "create");
4794 * Don't count references from objsets that are already closed
4795 * and are making their way through the eviction process.
4797 spa_evicting_os_wait(spa);
4798 spa->spa_minref = refcount_count(&spa->spa_refcount);
4799 spa->spa_load_state = SPA_LOAD_NONE;
4801 mutex_exit(&spa_namespace_lock);
4803 return (0);
4806 #ifdef _KERNEL
4808 * Get the root pool information from the root disk, then import the root pool
4809 * during the system boot up time.
4811 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4813 static nvlist_t *
4814 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4816 nvlist_t *config;
4817 nvlist_t *nvtop, *nvroot;
4818 uint64_t pgid;
4820 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4821 return (NULL);
4824 * Add this top-level vdev to the child array.
4826 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4827 &nvtop) == 0);
4828 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4829 &pgid) == 0);
4830 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4833 * Put this pool's top-level vdevs into a root vdev.
4835 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4836 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4837 VDEV_TYPE_ROOT) == 0);
4838 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4839 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4840 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4841 &nvtop, 1) == 0);
4844 * Replace the existing vdev_tree with the new root vdev in
4845 * this pool's configuration (remove the old, add the new).
4847 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4848 nvlist_free(nvroot);
4849 return (config);
4853 * Walk the vdev tree and see if we can find a device with "better"
4854 * configuration. A configuration is "better" if the label on that
4855 * device has a more recent txg.
4857 static void
4858 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4860 for (int c = 0; c < vd->vdev_children; c++)
4861 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4863 if (vd->vdev_ops->vdev_op_leaf) {
4864 nvlist_t *label;
4865 uint64_t label_txg;
4867 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4868 &label) != 0)
4869 return;
4871 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4872 &label_txg) == 0);
4875 * Do we have a better boot device?
4877 if (label_txg > *txg) {
4878 *txg = label_txg;
4879 *avd = vd;
4881 nvlist_free(label);
4886 * Import a root pool.
4888 * For x86. devpath_list will consist of devid and/or physpath name of
4889 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4890 * The GRUB "findroot" command will return the vdev we should boot.
4892 * For Sparc, devpath_list consists the physpath name of the booting device
4893 * no matter the rootpool is a single device pool or a mirrored pool.
4894 * e.g.
4895 * "/pci@1f,0/ide@d/disk@0,0:a"
4898 spa_import_rootpool(char *devpath, char *devid)
4900 spa_t *spa;
4901 vdev_t *rvd, *bvd, *avd = NULL;
4902 nvlist_t *config, *nvtop;
4903 uint64_t guid, txg;
4904 char *pname;
4905 int error;
4908 * Read the label from the boot device and generate a configuration.
4910 config = spa_generate_rootconf(devpath, devid, &guid);
4911 #if defined(_OBP) && defined(_KERNEL)
4912 if (config == NULL) {
4913 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4914 /* iscsi boot */
4915 get_iscsi_bootpath_phy(devpath);
4916 config = spa_generate_rootconf(devpath, devid, &guid);
4919 #endif
4920 if (config == NULL) {
4921 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4922 devpath);
4923 return (SET_ERROR(EIO));
4926 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4927 &pname) == 0);
4928 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4930 mutex_enter(&spa_namespace_lock);
4931 if ((spa = spa_lookup(pname)) != NULL) {
4933 * Remove the existing root pool from the namespace so that we
4934 * can replace it with the correct config we just read in.
4936 spa_remove(spa);
4939 spa = spa_add(pname, config, NULL);
4940 spa->spa_is_root = B_TRUE;
4941 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4942 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4943 &spa->spa_ubsync.ub_version) != 0)
4944 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4947 * Build up a vdev tree based on the boot device's label config.
4949 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4950 &nvtop) == 0);
4951 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4952 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4953 VDEV_ALLOC_ROOTPOOL);
4954 spa_config_exit(spa, SCL_ALL, FTAG);
4955 if (error) {
4956 mutex_exit(&spa_namespace_lock);
4957 nvlist_free(config);
4958 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4959 pname);
4960 return (error);
4964 * Get the boot vdev.
4966 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4967 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4968 (u_longlong_t)guid);
4969 error = SET_ERROR(ENOENT);
4970 goto out;
4974 * Determine if there is a better boot device.
4976 avd = bvd;
4977 spa_alt_rootvdev(rvd, &avd, &txg);
4978 if (avd != bvd) {
4979 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4980 "try booting from '%s'", avd->vdev_path);
4981 error = SET_ERROR(EINVAL);
4982 goto out;
4986 * If the boot device is part of a spare vdev then ensure that
4987 * we're booting off the active spare.
4989 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4990 !bvd->vdev_isspare) {
4991 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4992 "try booting from '%s'",
4993 bvd->vdev_parent->
4994 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4995 error = SET_ERROR(EINVAL);
4996 goto out;
4999 error = 0;
5000 out:
5001 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5002 vdev_free(rvd);
5003 spa_config_exit(spa, SCL_ALL, FTAG);
5004 mutex_exit(&spa_namespace_lock);
5006 nvlist_free(config);
5007 return (error);
5010 #endif
5013 * Import a non-root pool into the system.
5016 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5018 spa_t *spa;
5019 char *altroot = NULL;
5020 spa_load_state_t state = SPA_LOAD_IMPORT;
5021 zpool_load_policy_t policy;
5022 uint64_t mode = spa_mode_global;
5023 uint64_t readonly = B_FALSE;
5024 int error;
5025 nvlist_t *nvroot;
5026 nvlist_t **spares, **l2cache;
5027 uint_t nspares, nl2cache;
5030 * If a pool with this name exists, return failure.
5032 mutex_enter(&spa_namespace_lock);
5033 if (spa_lookup(pool) != NULL) {
5034 mutex_exit(&spa_namespace_lock);
5035 return (SET_ERROR(EEXIST));
5039 * Create and initialize the spa structure.
5041 (void) nvlist_lookup_string(props,
5042 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5043 (void) nvlist_lookup_uint64(props,
5044 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5045 if (readonly)
5046 mode = FREAD;
5047 spa = spa_add(pool, config, altroot);
5048 spa->spa_import_flags = flags;
5051 * Verbatim import - Take a pool and insert it into the namespace
5052 * as if it had been loaded at boot.
5054 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5055 if (props != NULL)
5056 spa_configfile_set(spa, props, B_FALSE);
5058 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5059 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5060 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5061 mutex_exit(&spa_namespace_lock);
5062 return (0);
5065 spa_activate(spa, mode);
5068 * Don't start async tasks until we know everything is healthy.
5070 spa_async_suspend(spa);
5072 zpool_get_load_policy(config, &policy);
5073 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5074 state = SPA_LOAD_RECOVER;
5076 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5078 if (state != SPA_LOAD_RECOVER) {
5079 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5080 zfs_dbgmsg("spa_import: importing %s", pool);
5081 } else {
5082 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5083 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5085 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5088 * Propagate anything learned while loading the pool and pass it
5089 * back to caller (i.e. rewind info, missing devices, etc).
5091 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5092 spa->spa_load_info) == 0);
5094 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5096 * Toss any existing sparelist, as it doesn't have any validity
5097 * anymore, and conflicts with spa_has_spare().
5099 if (spa->spa_spares.sav_config) {
5100 nvlist_free(spa->spa_spares.sav_config);
5101 spa->spa_spares.sav_config = NULL;
5102 spa_load_spares(spa);
5104 if (spa->spa_l2cache.sav_config) {
5105 nvlist_free(spa->spa_l2cache.sav_config);
5106 spa->spa_l2cache.sav_config = NULL;
5107 spa_load_l2cache(spa);
5110 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5111 &nvroot) == 0);
5112 if (error == 0)
5113 error = spa_validate_aux(spa, nvroot, -1ULL,
5114 VDEV_ALLOC_SPARE);
5115 if (error == 0)
5116 error = spa_validate_aux(spa, nvroot, -1ULL,
5117 VDEV_ALLOC_L2CACHE);
5118 spa_config_exit(spa, SCL_ALL, FTAG);
5120 if (props != NULL)
5121 spa_configfile_set(spa, props, B_FALSE);
5123 if (error != 0 || (props && spa_writeable(spa) &&
5124 (error = spa_prop_set(spa, props)))) {
5125 spa_unload(spa);
5126 spa_deactivate(spa);
5127 spa_remove(spa);
5128 mutex_exit(&spa_namespace_lock);
5129 return (error);
5132 spa_async_resume(spa);
5135 * Override any spares and level 2 cache devices as specified by
5136 * the user, as these may have correct device names/devids, etc.
5138 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5139 &spares, &nspares) == 0) {
5140 if (spa->spa_spares.sav_config)
5141 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5142 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5143 else
5144 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5145 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5146 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5147 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5148 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5149 spa_load_spares(spa);
5150 spa_config_exit(spa, SCL_ALL, FTAG);
5151 spa->spa_spares.sav_sync = B_TRUE;
5153 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5154 &l2cache, &nl2cache) == 0) {
5155 if (spa->spa_l2cache.sav_config)
5156 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5157 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5158 else
5159 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5160 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5161 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5162 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5163 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5164 spa_load_l2cache(spa);
5165 spa_config_exit(spa, SCL_ALL, FTAG);
5166 spa->spa_l2cache.sav_sync = B_TRUE;
5170 * Check for any removed devices.
5172 if (spa->spa_autoreplace) {
5173 spa_aux_check_removed(&spa->spa_spares);
5174 spa_aux_check_removed(&spa->spa_l2cache);
5177 if (spa_writeable(spa)) {
5179 * Update the config cache to include the newly-imported pool.
5181 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5185 * It's possible that the pool was expanded while it was exported.
5186 * We kick off an async task to handle this for us.
5188 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5190 spa_history_log_version(spa, "import");
5192 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5194 mutex_exit(&spa_namespace_lock);
5196 return (0);
5199 nvlist_t *
5200 spa_tryimport(nvlist_t *tryconfig)
5202 nvlist_t *config = NULL;
5203 char *poolname, *cachefile;
5204 spa_t *spa;
5205 uint64_t state;
5206 int error;
5207 zpool_load_policy_t policy;
5209 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5210 return (NULL);
5212 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5213 return (NULL);
5216 * Create and initialize the spa structure.
5218 mutex_enter(&spa_namespace_lock);
5219 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5220 spa_activate(spa, FREAD);
5223 * Rewind pool if a max txg was provided.
5225 zpool_get_load_policy(spa->spa_config, &policy);
5226 if (policy.zlp_txg != UINT64_MAX) {
5227 spa->spa_load_max_txg = policy.zlp_txg;
5228 spa->spa_extreme_rewind = B_TRUE;
5229 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5230 poolname, (longlong_t)policy.zlp_txg);
5231 } else {
5232 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5235 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5236 == 0) {
5237 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5238 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5239 } else {
5240 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5243 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5246 * If 'tryconfig' was at least parsable, return the current config.
5248 if (spa->spa_root_vdev != NULL) {
5249 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5250 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5251 poolname) == 0);
5252 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5253 state) == 0);
5254 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5255 spa->spa_uberblock.ub_timestamp) == 0);
5256 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5257 spa->spa_load_info) == 0);
5260 * If the bootfs property exists on this pool then we
5261 * copy it out so that external consumers can tell which
5262 * pools are bootable.
5264 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5265 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5268 * We have to play games with the name since the
5269 * pool was opened as TRYIMPORT_NAME.
5271 if (dsl_dsobj_to_dsname(spa_name(spa),
5272 spa->spa_bootfs, tmpname) == 0) {
5273 char *cp;
5274 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5276 cp = strchr(tmpname, '/');
5277 if (cp == NULL) {
5278 (void) strlcpy(dsname, tmpname,
5279 MAXPATHLEN);
5280 } else {
5281 (void) snprintf(dsname, MAXPATHLEN,
5282 "%s/%s", poolname, ++cp);
5284 VERIFY(nvlist_add_string(config,
5285 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5286 kmem_free(dsname, MAXPATHLEN);
5288 kmem_free(tmpname, MAXPATHLEN);
5292 * Add the list of hot spares and level 2 cache devices.
5294 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5295 spa_add_spares(spa, config);
5296 spa_add_l2cache(spa, config);
5297 spa_config_exit(spa, SCL_CONFIG, FTAG);
5300 spa_unload(spa);
5301 spa_deactivate(spa);
5302 spa_remove(spa);
5303 mutex_exit(&spa_namespace_lock);
5305 return (config);
5309 * Pool export/destroy
5311 * The act of destroying or exporting a pool is very simple. We make sure there
5312 * is no more pending I/O and any references to the pool are gone. Then, we
5313 * update the pool state and sync all the labels to disk, removing the
5314 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5315 * we don't sync the labels or remove the configuration cache.
5317 static int
5318 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5319 boolean_t force, boolean_t hardforce)
5321 spa_t *spa;
5323 if (oldconfig)
5324 *oldconfig = NULL;
5326 if (!(spa_mode_global & FWRITE))
5327 return (SET_ERROR(EROFS));
5329 mutex_enter(&spa_namespace_lock);
5330 if ((spa = spa_lookup(pool)) == NULL) {
5331 mutex_exit(&spa_namespace_lock);
5332 return (SET_ERROR(ENOENT));
5336 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5337 * reacquire the namespace lock, and see if we can export.
5339 spa_open_ref(spa, FTAG);
5340 mutex_exit(&spa_namespace_lock);
5341 spa_async_suspend(spa);
5342 mutex_enter(&spa_namespace_lock);
5343 spa_close(spa, FTAG);
5346 * The pool will be in core if it's openable,
5347 * in which case we can modify its state.
5349 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5351 * Objsets may be open only because they're dirty, so we
5352 * have to force it to sync before checking spa_refcnt.
5354 txg_wait_synced(spa->spa_dsl_pool, 0);
5355 spa_evicting_os_wait(spa);
5358 * A pool cannot be exported or destroyed if there are active
5359 * references. If we are resetting a pool, allow references by
5360 * fault injection handlers.
5362 if (!spa_refcount_zero(spa) ||
5363 (spa->spa_inject_ref != 0 &&
5364 new_state != POOL_STATE_UNINITIALIZED)) {
5365 spa_async_resume(spa);
5366 mutex_exit(&spa_namespace_lock);
5367 return (SET_ERROR(EBUSY));
5371 * A pool cannot be exported if it has an active shared spare.
5372 * This is to prevent other pools stealing the active spare
5373 * from an exported pool. At user's own will, such pool can
5374 * be forcedly exported.
5376 if (!force && new_state == POOL_STATE_EXPORTED &&
5377 spa_has_active_shared_spare(spa)) {
5378 spa_async_resume(spa);
5379 mutex_exit(&spa_namespace_lock);
5380 return (SET_ERROR(EXDEV));
5384 * We want this to be reflected on every label,
5385 * so mark them all dirty. spa_unload() will do the
5386 * final sync that pushes these changes out.
5388 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5389 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5390 spa->spa_state = new_state;
5391 spa->spa_final_txg = spa_last_synced_txg(spa) +
5392 TXG_DEFER_SIZE + 1;
5393 vdev_config_dirty(spa->spa_root_vdev);
5394 spa_config_exit(spa, SCL_ALL, FTAG);
5398 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5400 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5401 spa_unload(spa);
5402 spa_deactivate(spa);
5405 if (oldconfig && spa->spa_config)
5406 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5408 if (new_state != POOL_STATE_UNINITIALIZED) {
5409 if (!hardforce)
5410 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5411 spa_remove(spa);
5413 mutex_exit(&spa_namespace_lock);
5415 return (0);
5419 * Destroy a storage pool.
5422 spa_destroy(char *pool)
5424 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5425 B_FALSE, B_FALSE));
5429 * Export a storage pool.
5432 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5433 boolean_t hardforce)
5435 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5436 force, hardforce));
5440 * Similar to spa_export(), this unloads the spa_t without actually removing it
5441 * from the namespace in any way.
5444 spa_reset(char *pool)
5446 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5447 B_FALSE, B_FALSE));
5451 * ==========================================================================
5452 * Device manipulation
5453 * ==========================================================================
5457 * Add a device to a storage pool.
5460 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5462 uint64_t txg, id;
5463 int error;
5464 vdev_t *rvd = spa->spa_root_vdev;
5465 vdev_t *vd, *tvd;
5466 nvlist_t **spares, **l2cache;
5467 uint_t nspares, nl2cache;
5469 ASSERT(spa_writeable(spa));
5471 txg = spa_vdev_enter(spa);
5473 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5474 VDEV_ALLOC_ADD)) != 0)
5475 return (spa_vdev_exit(spa, NULL, txg, error));
5477 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
5479 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5480 &nspares) != 0)
5481 nspares = 0;
5483 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5484 &nl2cache) != 0)
5485 nl2cache = 0;
5487 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5488 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5490 if (vd->vdev_children != 0 &&
5491 (error = vdev_create(vd, txg, B_FALSE)) != 0)
5492 return (spa_vdev_exit(spa, vd, txg, error));
5495 * We must validate the spares and l2cache devices after checking the
5496 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
5498 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5499 return (spa_vdev_exit(spa, vd, txg, error));
5502 * If we are in the middle of a device removal, we can only add
5503 * devices which match the existing devices in the pool.
5504 * If we are in the middle of a removal, or have some indirect
5505 * vdevs, we can not add raidz toplevels.
5507 if (spa->spa_vdev_removal != NULL ||
5508 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5509 for (int c = 0; c < vd->vdev_children; c++) {
5510 tvd = vd->vdev_child[c];
5511 if (spa->spa_vdev_removal != NULL &&
5512 tvd->vdev_ashift !=
5513 spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5514 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5516 /* Fail if top level vdev is raidz */
5517 if (tvd->vdev_ops == &vdev_raidz_ops) {
5518 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5521 * Need the top level mirror to be
5522 * a mirror of leaf vdevs only
5524 if (tvd->vdev_ops == &vdev_mirror_ops) {
5525 for (uint64_t cid = 0;
5526 cid < tvd->vdev_children; cid++) {
5527 vdev_t *cvd = tvd->vdev_child[cid];
5528 if (!cvd->vdev_ops->vdev_op_leaf) {
5529 return (spa_vdev_exit(spa, vd,
5530 txg, EINVAL));
5537 for (int c = 0; c < vd->vdev_children; c++) {
5540 * Set the vdev id to the first hole, if one exists.
5542 for (id = 0; id < rvd->vdev_children; id++) {
5543 if (rvd->vdev_child[id]->vdev_ishole) {
5544 vdev_free(rvd->vdev_child[id]);
5545 break;
5548 tvd = vd->vdev_child[c];
5549 vdev_remove_child(vd, tvd);
5550 tvd->vdev_id = id;
5551 vdev_add_child(rvd, tvd);
5552 vdev_config_dirty(tvd);
5555 if (nspares != 0) {
5556 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5557 ZPOOL_CONFIG_SPARES);
5558 spa_load_spares(spa);
5559 spa->spa_spares.sav_sync = B_TRUE;
5562 if (nl2cache != 0) {
5563 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5564 ZPOOL_CONFIG_L2CACHE);
5565 spa_load_l2cache(spa);
5566 spa->spa_l2cache.sav_sync = B_TRUE;
5570 * We have to be careful when adding new vdevs to an existing pool.
5571 * If other threads start allocating from these vdevs before we
5572 * sync the config cache, and we lose power, then upon reboot we may
5573 * fail to open the pool because there are DVAs that the config cache
5574 * can't translate. Therefore, we first add the vdevs without
5575 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5576 * and then let spa_config_update() initialize the new metaslabs.
5578 * spa_load() checks for added-but-not-initialized vdevs, so that
5579 * if we lose power at any point in this sequence, the remaining
5580 * steps will be completed the next time we load the pool.
5582 (void) spa_vdev_exit(spa, vd, txg, 0);
5584 mutex_enter(&spa_namespace_lock);
5585 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5586 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5587 mutex_exit(&spa_namespace_lock);
5589 return (0);
5593 * Attach a device to a mirror. The arguments are the path to any device
5594 * in the mirror, and the nvroot for the new device. If the path specifies
5595 * a device that is not mirrored, we automatically insert the mirror vdev.
5597 * If 'replacing' is specified, the new device is intended to replace the
5598 * existing device; in this case the two devices are made into their own
5599 * mirror using the 'replacing' vdev, which is functionally identical to
5600 * the mirror vdev (it actually reuses all the same ops) but has a few
5601 * extra rules: you can't attach to it after it's been created, and upon
5602 * completion of resilvering, the first disk (the one being replaced)
5603 * is automatically detached.
5606 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5608 uint64_t txg, dtl_max_txg;
5609 vdev_t *rvd = spa->spa_root_vdev;
5610 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5611 vdev_ops_t *pvops;
5612 char *oldvdpath, *newvdpath;
5613 int newvd_isspare;
5614 int error;
5616 ASSERT(spa_writeable(spa));
5618 txg = spa_vdev_enter(spa);
5620 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5622 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5623 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5624 error = (spa_has_checkpoint(spa)) ?
5625 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5626 return (spa_vdev_exit(spa, NULL, txg, error));
5629 if (spa->spa_vdev_removal != NULL ||
5630 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5631 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5634 if (oldvd == NULL)
5635 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5637 if (!oldvd->vdev_ops->vdev_op_leaf)
5638 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5640 pvd = oldvd->vdev_parent;
5642 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5643 VDEV_ALLOC_ATTACH)) != 0)
5644 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5646 if (newrootvd->vdev_children != 1)
5647 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5649 newvd = newrootvd->vdev_child[0];
5651 if (!newvd->vdev_ops->vdev_op_leaf)
5652 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5654 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5655 return (spa_vdev_exit(spa, newrootvd, txg, error));
5658 * Spares can't replace logs
5660 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5661 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5663 if (!replacing) {
5665 * For attach, the only allowable parent is a mirror or the root
5666 * vdev.
5668 if (pvd->vdev_ops != &vdev_mirror_ops &&
5669 pvd->vdev_ops != &vdev_root_ops)
5670 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5672 pvops = &vdev_mirror_ops;
5673 } else {
5675 * Active hot spares can only be replaced by inactive hot
5676 * spares.
5678 if (pvd->vdev_ops == &vdev_spare_ops &&
5679 oldvd->vdev_isspare &&
5680 !spa_has_spare(spa, newvd->vdev_guid))
5681 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5684 * If the source is a hot spare, and the parent isn't already a
5685 * spare, then we want to create a new hot spare. Otherwise, we
5686 * want to create a replacing vdev. The user is not allowed to
5687 * attach to a spared vdev child unless the 'isspare' state is
5688 * the same (spare replaces spare, non-spare replaces
5689 * non-spare).
5691 if (pvd->vdev_ops == &vdev_replacing_ops &&
5692 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5693 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5694 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5695 newvd->vdev_isspare != oldvd->vdev_isspare) {
5696 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5699 if (newvd->vdev_isspare)
5700 pvops = &vdev_spare_ops;
5701 else
5702 pvops = &vdev_replacing_ops;
5706 * Make sure the new device is big enough.
5708 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5709 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5712 * The new device cannot have a higher alignment requirement
5713 * than the top-level vdev.
5715 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5716 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5719 * If this is an in-place replacement, update oldvd's path and devid
5720 * to make it distinguishable from newvd, and unopenable from now on.
5722 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5723 spa_strfree(oldvd->vdev_path);
5724 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5725 KM_SLEEP);
5726 (void) sprintf(oldvd->vdev_path, "%s/%s",
5727 newvd->vdev_path, "old");
5728 if (oldvd->vdev_devid != NULL) {
5729 spa_strfree(oldvd->vdev_devid);
5730 oldvd->vdev_devid = NULL;
5734 /* mark the device being resilvered */
5735 newvd->vdev_resilver_txg = txg;
5738 * If the parent is not a mirror, or if we're replacing, insert the new
5739 * mirror/replacing/spare vdev above oldvd.
5741 if (pvd->vdev_ops != pvops)
5742 pvd = vdev_add_parent(oldvd, pvops);
5744 ASSERT(pvd->vdev_top->vdev_parent == rvd);
5745 ASSERT(pvd->vdev_ops == pvops);
5746 ASSERT(oldvd->vdev_parent == pvd);
5749 * Extract the new device from its root and add it to pvd.
5751 vdev_remove_child(newrootvd, newvd);
5752 newvd->vdev_id = pvd->vdev_children;
5753 newvd->vdev_crtxg = oldvd->vdev_crtxg;
5754 vdev_add_child(pvd, newvd);
5756 tvd = newvd->vdev_top;
5757 ASSERT(pvd->vdev_top == tvd);
5758 ASSERT(tvd->vdev_parent == rvd);
5760 vdev_config_dirty(tvd);
5763 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5764 * for any dmu_sync-ed blocks. It will propagate upward when
5765 * spa_vdev_exit() calls vdev_dtl_reassess().
5767 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5769 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5770 dtl_max_txg - TXG_INITIAL);
5772 if (newvd->vdev_isspare) {
5773 spa_spare_activate(newvd);
5774 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5777 oldvdpath = spa_strdup(oldvd->vdev_path);
5778 newvdpath = spa_strdup(newvd->vdev_path);
5779 newvd_isspare = newvd->vdev_isspare;
5782 * Mark newvd's DTL dirty in this txg.
5784 vdev_dirty(tvd, VDD_DTL, newvd, txg);
5787 * Schedule the resilver to restart in the future. We do this to
5788 * ensure that dmu_sync-ed blocks have been stitched into the
5789 * respective datasets.
5791 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5793 if (spa->spa_bootfs)
5794 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5796 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5799 * Commit the config
5801 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5803 spa_history_log_internal(spa, "vdev attach", NULL,
5804 "%s vdev=%s %s vdev=%s",
5805 replacing && newvd_isspare ? "spare in" :
5806 replacing ? "replace" : "attach", newvdpath,
5807 replacing ? "for" : "to", oldvdpath);
5809 spa_strfree(oldvdpath);
5810 spa_strfree(newvdpath);
5812 return (0);
5816 * Detach a device from a mirror or replacing vdev.
5818 * If 'replace_done' is specified, only detach if the parent
5819 * is a replacing vdev.
5822 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5824 uint64_t txg;
5825 int error;
5826 vdev_t *rvd = spa->spa_root_vdev;
5827 vdev_t *vd, *pvd, *cvd, *tvd;
5828 boolean_t unspare = B_FALSE;
5829 uint64_t unspare_guid = 0;
5830 char *vdpath;
5832 ASSERT(spa_writeable(spa));
5834 txg = spa_vdev_enter(spa);
5836 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5839 * Besides being called directly from the userland through the
5840 * ioctl interface, spa_vdev_detach() can be potentially called
5841 * at the end of spa_vdev_resilver_done().
5843 * In the regular case, when we have a checkpoint this shouldn't
5844 * happen as we never empty the DTLs of a vdev during the scrub
5845 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
5846 * should never get here when we have a checkpoint.
5848 * That said, even in a case when we checkpoint the pool exactly
5849 * as spa_vdev_resilver_done() calls this function everything
5850 * should be fine as the resilver will return right away.
5852 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5853 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5854 error = (spa_has_checkpoint(spa)) ?
5855 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5856 return (spa_vdev_exit(spa, NULL, txg, error));
5859 if (vd == NULL)
5860 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5862 if (!vd->vdev_ops->vdev_op_leaf)
5863 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5865 pvd = vd->vdev_parent;
5868 * If the parent/child relationship is not as expected, don't do it.
5869 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5870 * vdev that's replacing B with C. The user's intent in replacing
5871 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5872 * the replace by detaching C, the expected behavior is to end up
5873 * M(A,B). But suppose that right after deciding to detach C,
5874 * the replacement of B completes. We would have M(A,C), and then
5875 * ask to detach C, which would leave us with just A -- not what
5876 * the user wanted. To prevent this, we make sure that the
5877 * parent/child relationship hasn't changed -- in this example,
5878 * that C's parent is still the replacing vdev R.
5880 if (pvd->vdev_guid != pguid && pguid != 0)
5881 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5884 * Only 'replacing' or 'spare' vdevs can be replaced.
5886 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5887 pvd->vdev_ops != &vdev_spare_ops)
5888 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5890 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5891 spa_version(spa) >= SPA_VERSION_SPARES);
5894 * Only mirror, replacing, and spare vdevs support detach.
5896 if (pvd->vdev_ops != &vdev_replacing_ops &&
5897 pvd->vdev_ops != &vdev_mirror_ops &&
5898 pvd->vdev_ops != &vdev_spare_ops)
5899 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5902 * If this device has the only valid copy of some data,
5903 * we cannot safely detach it.
5905 if (vdev_dtl_required(vd))
5906 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5908 ASSERT(pvd->vdev_children >= 2);
5911 * If we are detaching the second disk from a replacing vdev, then
5912 * check to see if we changed the original vdev's path to have "/old"
5913 * at the end in spa_vdev_attach(). If so, undo that change now.
5915 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5916 vd->vdev_path != NULL) {
5917 size_t len = strlen(vd->vdev_path);
5919 for (int c = 0; c < pvd->vdev_children; c++) {
5920 cvd = pvd->vdev_child[c];
5922 if (cvd == vd || cvd->vdev_path == NULL)
5923 continue;
5925 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5926 strcmp(cvd->vdev_path + len, "/old") == 0) {
5927 spa_strfree(cvd->vdev_path);
5928 cvd->vdev_path = spa_strdup(vd->vdev_path);
5929 break;
5935 * If we are detaching the original disk from a spare, then it implies
5936 * that the spare should become a real disk, and be removed from the
5937 * active spare list for the pool.
5939 if (pvd->vdev_ops == &vdev_spare_ops &&
5940 vd->vdev_id == 0 &&
5941 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5942 unspare = B_TRUE;
5945 * Erase the disk labels so the disk can be used for other things.
5946 * This must be done after all other error cases are handled,
5947 * but before we disembowel vd (so we can still do I/O to it).
5948 * But if we can't do it, don't treat the error as fatal --
5949 * it may be that the unwritability of the disk is the reason
5950 * it's being detached!
5952 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5955 * Remove vd from its parent and compact the parent's children.
5957 vdev_remove_child(pvd, vd);
5958 vdev_compact_children(pvd);
5961 * Remember one of the remaining children so we can get tvd below.
5963 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5966 * If we need to remove the remaining child from the list of hot spares,
5967 * do it now, marking the vdev as no longer a spare in the process.
5968 * We must do this before vdev_remove_parent(), because that can
5969 * change the GUID if it creates a new toplevel GUID. For a similar
5970 * reason, we must remove the spare now, in the same txg as the detach;
5971 * otherwise someone could attach a new sibling, change the GUID, and
5972 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5974 if (unspare) {
5975 ASSERT(cvd->vdev_isspare);
5976 spa_spare_remove(cvd);
5977 unspare_guid = cvd->vdev_guid;
5978 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5979 cvd->vdev_unspare = B_TRUE;
5983 * If the parent mirror/replacing vdev only has one child,
5984 * the parent is no longer needed. Remove it from the tree.
5986 if (pvd->vdev_children == 1) {
5987 if (pvd->vdev_ops == &vdev_spare_ops)
5988 cvd->vdev_unspare = B_FALSE;
5989 vdev_remove_parent(cvd);
5994 * We don't set tvd until now because the parent we just removed
5995 * may have been the previous top-level vdev.
5997 tvd = cvd->vdev_top;
5998 ASSERT(tvd->vdev_parent == rvd);
6001 * Reevaluate the parent vdev state.
6003 vdev_propagate_state(cvd);
6006 * If the 'autoexpand' property is set on the pool then automatically
6007 * try to expand the size of the pool. For example if the device we
6008 * just detached was smaller than the others, it may be possible to
6009 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6010 * first so that we can obtain the updated sizes of the leaf vdevs.
6012 if (spa->spa_autoexpand) {
6013 vdev_reopen(tvd);
6014 vdev_expand(tvd, txg);
6017 vdev_config_dirty(tvd);
6020 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6021 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6022 * But first make sure we're not on any *other* txg's DTL list, to
6023 * prevent vd from being accessed after it's freed.
6025 vdpath = spa_strdup(vd->vdev_path);
6026 for (int t = 0; t < TXG_SIZE; t++)
6027 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6028 vd->vdev_detached = B_TRUE;
6029 vdev_dirty(tvd, VDD_DTL, vd, txg);
6031 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6033 /* hang on to the spa before we release the lock */
6034 spa_open_ref(spa, FTAG);
6036 error = spa_vdev_exit(spa, vd, txg, 0);
6038 spa_history_log_internal(spa, "detach", NULL,
6039 "vdev=%s", vdpath);
6040 spa_strfree(vdpath);
6043 * If this was the removal of the original device in a hot spare vdev,
6044 * then we want to go through and remove the device from the hot spare
6045 * list of every other pool.
6047 if (unspare) {
6048 spa_t *altspa = NULL;
6050 mutex_enter(&spa_namespace_lock);
6051 while ((altspa = spa_next(altspa)) != NULL) {
6052 if (altspa->spa_state != POOL_STATE_ACTIVE ||
6053 altspa == spa)
6054 continue;
6056 spa_open_ref(altspa, FTAG);
6057 mutex_exit(&spa_namespace_lock);
6058 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6059 mutex_enter(&spa_namespace_lock);
6060 spa_close(altspa, FTAG);
6062 mutex_exit(&spa_namespace_lock);
6064 /* search the rest of the vdevs for spares to remove */
6065 spa_vdev_resilver_done(spa);
6068 /* all done with the spa; OK to release */
6069 mutex_enter(&spa_namespace_lock);
6070 spa_close(spa, FTAG);
6071 mutex_exit(&spa_namespace_lock);
6073 return (error);
6077 * Split a set of devices from their mirrors, and create a new pool from them.
6080 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6081 nvlist_t *props, boolean_t exp)
6083 int error = 0;
6084 uint64_t txg, *glist;
6085 spa_t *newspa;
6086 uint_t c, children, lastlog;
6087 nvlist_t **child, *nvl, *tmp;
6088 dmu_tx_t *tx;
6089 char *altroot = NULL;
6090 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6091 boolean_t activate_slog;
6093 ASSERT(spa_writeable(spa));
6095 txg = spa_vdev_enter(spa);
6097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6098 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6099 error = (spa_has_checkpoint(spa)) ?
6100 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6101 return (spa_vdev_exit(spa, NULL, txg, error));
6104 /* clear the log and flush everything up to now */
6105 activate_slog = spa_passivate_log(spa);
6106 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6107 error = spa_reset_logs(spa);
6108 txg = spa_vdev_config_enter(spa);
6110 if (activate_slog)
6111 spa_activate_log(spa);
6113 if (error != 0)
6114 return (spa_vdev_exit(spa, NULL, txg, error));
6116 /* check new spa name before going any further */
6117 if (spa_lookup(newname) != NULL)
6118 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6121 * scan through all the children to ensure they're all mirrors
6123 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6124 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6125 &children) != 0)
6126 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6128 /* first, check to ensure we've got the right child count */
6129 rvd = spa->spa_root_vdev;
6130 lastlog = 0;
6131 for (c = 0; c < rvd->vdev_children; c++) {
6132 vdev_t *vd = rvd->vdev_child[c];
6134 /* don't count the holes & logs as children */
6135 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6136 if (lastlog == 0)
6137 lastlog = c;
6138 continue;
6141 lastlog = 0;
6143 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6144 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6146 /* next, ensure no spare or cache devices are part of the split */
6147 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6148 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6149 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6151 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6152 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6154 /* then, loop over each vdev and validate it */
6155 for (c = 0; c < children; c++) {
6156 uint64_t is_hole = 0;
6158 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6159 &is_hole);
6161 if (is_hole != 0) {
6162 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6163 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6164 continue;
6165 } else {
6166 error = SET_ERROR(EINVAL);
6167 break;
6171 /* which disk is going to be split? */
6172 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6173 &glist[c]) != 0) {
6174 error = SET_ERROR(EINVAL);
6175 break;
6178 /* look it up in the spa */
6179 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6180 if (vml[c] == NULL) {
6181 error = SET_ERROR(ENODEV);
6182 break;
6185 /* make sure there's nothing stopping the split */
6186 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6187 vml[c]->vdev_islog ||
6188 !vdev_is_concrete(vml[c]) ||
6189 vml[c]->vdev_isspare ||
6190 vml[c]->vdev_isl2cache ||
6191 !vdev_writeable(vml[c]) ||
6192 vml[c]->vdev_children != 0 ||
6193 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6194 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6195 error = SET_ERROR(EINVAL);
6196 break;
6199 if (vdev_dtl_required(vml[c])) {
6200 error = SET_ERROR(EBUSY);
6201 break;
6204 /* we need certain info from the top level */
6205 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6206 vml[c]->vdev_top->vdev_ms_array) == 0);
6207 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6208 vml[c]->vdev_top->vdev_ms_shift) == 0);
6209 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6210 vml[c]->vdev_top->vdev_asize) == 0);
6211 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6212 vml[c]->vdev_top->vdev_ashift) == 0);
6214 /* transfer per-vdev ZAPs */
6215 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6216 VERIFY0(nvlist_add_uint64(child[c],
6217 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6219 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6220 VERIFY0(nvlist_add_uint64(child[c],
6221 ZPOOL_CONFIG_VDEV_TOP_ZAP,
6222 vml[c]->vdev_parent->vdev_top_zap));
6225 if (error != 0) {
6226 kmem_free(vml, children * sizeof (vdev_t *));
6227 kmem_free(glist, children * sizeof (uint64_t));
6228 return (spa_vdev_exit(spa, NULL, txg, error));
6231 /* stop writers from using the disks */
6232 for (c = 0; c < children; c++) {
6233 if (vml[c] != NULL)
6234 vml[c]->vdev_offline = B_TRUE;
6236 vdev_reopen(spa->spa_root_vdev);
6239 * Temporarily record the splitting vdevs in the spa config. This
6240 * will disappear once the config is regenerated.
6242 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6243 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6244 glist, children) == 0);
6245 kmem_free(glist, children * sizeof (uint64_t));
6247 mutex_enter(&spa->spa_props_lock);
6248 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6249 nvl) == 0);
6250 mutex_exit(&spa->spa_props_lock);
6251 spa->spa_config_splitting = nvl;
6252 vdev_config_dirty(spa->spa_root_vdev);
6254 /* configure and create the new pool */
6255 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6256 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6257 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6258 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6259 spa_version(spa)) == 0);
6260 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6261 spa->spa_config_txg) == 0);
6262 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6263 spa_generate_guid(NULL)) == 0);
6264 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6265 (void) nvlist_lookup_string(props,
6266 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6268 /* add the new pool to the namespace */
6269 newspa = spa_add(newname, config, altroot);
6270 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6271 newspa->spa_config_txg = spa->spa_config_txg;
6272 spa_set_log_state(newspa, SPA_LOG_CLEAR);
6274 /* release the spa config lock, retaining the namespace lock */
6275 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6277 if (zio_injection_enabled)
6278 zio_handle_panic_injection(spa, FTAG, 1);
6280 spa_activate(newspa, spa_mode_global);
6281 spa_async_suspend(newspa);
6283 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6285 /* create the new pool from the disks of the original pool */
6286 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6287 if (error)
6288 goto out;
6290 /* if that worked, generate a real config for the new pool */
6291 if (newspa->spa_root_vdev != NULL) {
6292 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6293 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6294 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6295 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6296 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6297 B_TRUE));
6300 /* set the props */
6301 if (props != NULL) {
6302 spa_configfile_set(newspa, props, B_FALSE);
6303 error = spa_prop_set(newspa, props);
6304 if (error)
6305 goto out;
6308 /* flush everything */
6309 txg = spa_vdev_config_enter(newspa);
6310 vdev_config_dirty(newspa->spa_root_vdev);
6311 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6313 if (zio_injection_enabled)
6314 zio_handle_panic_injection(spa, FTAG, 2);
6316 spa_async_resume(newspa);
6318 /* finally, update the original pool's config */
6319 txg = spa_vdev_config_enter(spa);
6320 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6321 error = dmu_tx_assign(tx, TXG_WAIT);
6322 if (error != 0)
6323 dmu_tx_abort(tx);
6324 for (c = 0; c < children; c++) {
6325 if (vml[c] != NULL) {
6326 vdev_split(vml[c]);
6327 if (error == 0)
6328 spa_history_log_internal(spa, "detach", tx,
6329 "vdev=%s", vml[c]->vdev_path);
6331 vdev_free(vml[c]);
6334 spa->spa_avz_action = AVZ_ACTION_REBUILD;
6335 vdev_config_dirty(spa->spa_root_vdev);
6336 spa->spa_config_splitting = NULL;
6337 nvlist_free(nvl);
6338 if (error == 0)
6339 dmu_tx_commit(tx);
6340 (void) spa_vdev_exit(spa, NULL, txg, 0);
6342 if (zio_injection_enabled)
6343 zio_handle_panic_injection(spa, FTAG, 3);
6345 /* split is complete; log a history record */
6346 spa_history_log_internal(newspa, "split", NULL,
6347 "from pool %s", spa_name(spa));
6349 kmem_free(vml, children * sizeof (vdev_t *));
6351 /* if we're not going to mount the filesystems in userland, export */
6352 if (exp)
6353 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6354 B_FALSE, B_FALSE);
6356 return (error);
6358 out:
6359 spa_unload(newspa);
6360 spa_deactivate(newspa);
6361 spa_remove(newspa);
6363 txg = spa_vdev_config_enter(spa);
6365 /* re-online all offlined disks */
6366 for (c = 0; c < children; c++) {
6367 if (vml[c] != NULL)
6368 vml[c]->vdev_offline = B_FALSE;
6370 vdev_reopen(spa->spa_root_vdev);
6372 nvlist_free(spa->spa_config_splitting);
6373 spa->spa_config_splitting = NULL;
6374 (void) spa_vdev_exit(spa, NULL, txg, error);
6376 kmem_free(vml, children * sizeof (vdev_t *));
6377 return (error);
6381 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6382 * currently spared, so we can detach it.
6384 static vdev_t *
6385 spa_vdev_resilver_done_hunt(vdev_t *vd)
6387 vdev_t *newvd, *oldvd;
6389 for (int c = 0; c < vd->vdev_children; c++) {
6390 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6391 if (oldvd != NULL)
6392 return (oldvd);
6396 * Check for a completed replacement. We always consider the first
6397 * vdev in the list to be the oldest vdev, and the last one to be
6398 * the newest (see spa_vdev_attach() for how that works). In
6399 * the case where the newest vdev is faulted, we will not automatically
6400 * remove it after a resilver completes. This is OK as it will require
6401 * user intervention to determine which disk the admin wishes to keep.
6403 if (vd->vdev_ops == &vdev_replacing_ops) {
6404 ASSERT(vd->vdev_children > 1);
6406 newvd = vd->vdev_child[vd->vdev_children - 1];
6407 oldvd = vd->vdev_child[0];
6409 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6410 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6411 !vdev_dtl_required(oldvd))
6412 return (oldvd);
6416 * Check for a completed resilver with the 'unspare' flag set.
6418 if (vd->vdev_ops == &vdev_spare_ops) {
6419 vdev_t *first = vd->vdev_child[0];
6420 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6422 if (last->vdev_unspare) {
6423 oldvd = first;
6424 newvd = last;
6425 } else if (first->vdev_unspare) {
6426 oldvd = last;
6427 newvd = first;
6428 } else {
6429 oldvd = NULL;
6432 if (oldvd != NULL &&
6433 vdev_dtl_empty(newvd, DTL_MISSING) &&
6434 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6435 !vdev_dtl_required(oldvd))
6436 return (oldvd);
6439 * If there are more than two spares attached to a disk,
6440 * and those spares are not required, then we want to
6441 * attempt to free them up now so that they can be used
6442 * by other pools. Once we're back down to a single
6443 * disk+spare, we stop removing them.
6445 if (vd->vdev_children > 2) {
6446 newvd = vd->vdev_child[1];
6448 if (newvd->vdev_isspare && last->vdev_isspare &&
6449 vdev_dtl_empty(last, DTL_MISSING) &&
6450 vdev_dtl_empty(last, DTL_OUTAGE) &&
6451 !vdev_dtl_required(newvd))
6452 return (newvd);
6456 return (NULL);
6459 static void
6460 spa_vdev_resilver_done(spa_t *spa)
6462 vdev_t *vd, *pvd, *ppvd;
6463 uint64_t guid, sguid, pguid, ppguid;
6465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6467 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6468 pvd = vd->vdev_parent;
6469 ppvd = pvd->vdev_parent;
6470 guid = vd->vdev_guid;
6471 pguid = pvd->vdev_guid;
6472 ppguid = ppvd->vdev_guid;
6473 sguid = 0;
6475 * If we have just finished replacing a hot spared device, then
6476 * we need to detach the parent's first child (the original hot
6477 * spare) as well.
6479 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6480 ppvd->vdev_children == 2) {
6481 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6482 sguid = ppvd->vdev_child[1]->vdev_guid;
6484 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6486 spa_config_exit(spa, SCL_ALL, FTAG);
6487 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6488 return;
6489 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6490 return;
6491 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6494 spa_config_exit(spa, SCL_ALL, FTAG);
6498 * Update the stored path or FRU for this vdev.
6501 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6502 boolean_t ispath)
6504 vdev_t *vd;
6505 boolean_t sync = B_FALSE;
6507 ASSERT(spa_writeable(spa));
6509 spa_vdev_state_enter(spa, SCL_ALL);
6511 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6512 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6514 if (!vd->vdev_ops->vdev_op_leaf)
6515 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6517 if (ispath) {
6518 if (strcmp(value, vd->vdev_path) != 0) {
6519 spa_strfree(vd->vdev_path);
6520 vd->vdev_path = spa_strdup(value);
6521 sync = B_TRUE;
6523 } else {
6524 if (vd->vdev_fru == NULL) {
6525 vd->vdev_fru = spa_strdup(value);
6526 sync = B_TRUE;
6527 } else if (strcmp(value, vd->vdev_fru) != 0) {
6528 spa_strfree(vd->vdev_fru);
6529 vd->vdev_fru = spa_strdup(value);
6530 sync = B_TRUE;
6534 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6538 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6540 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6544 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6546 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6550 * ==========================================================================
6551 * SPA Scanning
6552 * ==========================================================================
6555 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6557 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6559 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6560 return (SET_ERROR(EBUSY));
6562 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6566 spa_scan_stop(spa_t *spa)
6568 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6569 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6570 return (SET_ERROR(EBUSY));
6571 return (dsl_scan_cancel(spa->spa_dsl_pool));
6575 spa_scan(spa_t *spa, pool_scan_func_t func)
6577 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6579 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6580 return (SET_ERROR(ENOTSUP));
6583 * If a resilver was requested, but there is no DTL on a
6584 * writeable leaf device, we have nothing to do.
6586 if (func == POOL_SCAN_RESILVER &&
6587 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6588 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6589 return (0);
6592 return (dsl_scan(spa->spa_dsl_pool, func));
6596 * ==========================================================================
6597 * SPA async task processing
6598 * ==========================================================================
6601 static void
6602 spa_async_remove(spa_t *spa, vdev_t *vd)
6604 if (vd->vdev_remove_wanted) {
6605 vd->vdev_remove_wanted = B_FALSE;
6606 vd->vdev_delayed_close = B_FALSE;
6607 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6610 * We want to clear the stats, but we don't want to do a full
6611 * vdev_clear() as that will cause us to throw away
6612 * degraded/faulted state as well as attempt to reopen the
6613 * device, all of which is a waste.
6615 vd->vdev_stat.vs_read_errors = 0;
6616 vd->vdev_stat.vs_write_errors = 0;
6617 vd->vdev_stat.vs_checksum_errors = 0;
6619 vdev_state_dirty(vd->vdev_top);
6622 for (int c = 0; c < vd->vdev_children; c++)
6623 spa_async_remove(spa, vd->vdev_child[c]);
6626 static void
6627 spa_async_probe(spa_t *spa, vdev_t *vd)
6629 if (vd->vdev_probe_wanted) {
6630 vd->vdev_probe_wanted = B_FALSE;
6631 vdev_reopen(vd); /* vdev_open() does the actual probe */
6634 for (int c = 0; c < vd->vdev_children; c++)
6635 spa_async_probe(spa, vd->vdev_child[c]);
6638 static void
6639 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6641 sysevent_id_t eid;
6642 nvlist_t *attr;
6643 char *physpath;
6645 if (!spa->spa_autoexpand)
6646 return;
6648 for (int c = 0; c < vd->vdev_children; c++) {
6649 vdev_t *cvd = vd->vdev_child[c];
6650 spa_async_autoexpand(spa, cvd);
6653 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6654 return;
6656 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6657 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6659 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6660 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6662 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6663 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6665 nvlist_free(attr);
6666 kmem_free(physpath, MAXPATHLEN);
6669 static void
6670 spa_async_thread(void *arg)
6672 spa_t *spa = (spa_t *)arg;
6673 int tasks;
6675 ASSERT(spa->spa_sync_on);
6677 mutex_enter(&spa->spa_async_lock);
6678 tasks = spa->spa_async_tasks;
6679 spa->spa_async_tasks = 0;
6680 mutex_exit(&spa->spa_async_lock);
6683 * See if the config needs to be updated.
6685 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6686 uint64_t old_space, new_space;
6688 mutex_enter(&spa_namespace_lock);
6689 old_space = metaslab_class_get_space(spa_normal_class(spa));
6690 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6691 new_space = metaslab_class_get_space(spa_normal_class(spa));
6692 mutex_exit(&spa_namespace_lock);
6695 * If the pool grew as a result of the config update,
6696 * then log an internal history event.
6698 if (new_space != old_space) {
6699 spa_history_log_internal(spa, "vdev online", NULL,
6700 "pool '%s' size: %llu(+%llu)",
6701 spa_name(spa), new_space, new_space - old_space);
6706 * See if any devices need to be marked REMOVED.
6708 if (tasks & SPA_ASYNC_REMOVE) {
6709 spa_vdev_state_enter(spa, SCL_NONE);
6710 spa_async_remove(spa, spa->spa_root_vdev);
6711 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6712 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6713 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6714 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6715 (void) spa_vdev_state_exit(spa, NULL, 0);
6718 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6719 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6720 spa_async_autoexpand(spa, spa->spa_root_vdev);
6721 spa_config_exit(spa, SCL_CONFIG, FTAG);
6725 * See if any devices need to be probed.
6727 if (tasks & SPA_ASYNC_PROBE) {
6728 spa_vdev_state_enter(spa, SCL_NONE);
6729 spa_async_probe(spa, spa->spa_root_vdev);
6730 (void) spa_vdev_state_exit(spa, NULL, 0);
6734 * If any devices are done replacing, detach them.
6736 if (tasks & SPA_ASYNC_RESILVER_DONE)
6737 spa_vdev_resilver_done(spa);
6740 * Kick off a resilver.
6742 if (tasks & SPA_ASYNC_RESILVER)
6743 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6746 * Let the world know that we're done.
6748 mutex_enter(&spa->spa_async_lock);
6749 spa->spa_async_thread = NULL;
6750 cv_broadcast(&spa->spa_async_cv);
6751 mutex_exit(&spa->spa_async_lock);
6752 thread_exit();
6755 void
6756 spa_async_suspend(spa_t *spa)
6758 mutex_enter(&spa->spa_async_lock);
6759 spa->spa_async_suspended++;
6760 while (spa->spa_async_thread != NULL)
6761 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6762 mutex_exit(&spa->spa_async_lock);
6764 spa_vdev_remove_suspend(spa);
6766 zthr_t *condense_thread = spa->spa_condense_zthr;
6767 if (condense_thread != NULL && zthr_isrunning(condense_thread))
6768 VERIFY0(zthr_cancel(condense_thread));
6770 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6771 if (discard_thread != NULL && zthr_isrunning(discard_thread))
6772 VERIFY0(zthr_cancel(discard_thread));
6775 void
6776 spa_async_resume(spa_t *spa)
6778 mutex_enter(&spa->spa_async_lock);
6779 ASSERT(spa->spa_async_suspended != 0);
6780 spa->spa_async_suspended--;
6781 mutex_exit(&spa->spa_async_lock);
6782 spa_restart_removal(spa);
6784 zthr_t *condense_thread = spa->spa_condense_zthr;
6785 if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6786 zthr_resume(condense_thread);
6788 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6789 if (discard_thread != NULL && !zthr_isrunning(discard_thread))
6790 zthr_resume(discard_thread);
6793 static boolean_t
6794 spa_async_tasks_pending(spa_t *spa)
6796 uint_t non_config_tasks;
6797 uint_t config_task;
6798 boolean_t config_task_suspended;
6800 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6801 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6802 if (spa->spa_ccw_fail_time == 0) {
6803 config_task_suspended = B_FALSE;
6804 } else {
6805 config_task_suspended =
6806 (gethrtime() - spa->spa_ccw_fail_time) <
6807 (zfs_ccw_retry_interval * NANOSEC);
6810 return (non_config_tasks || (config_task && !config_task_suspended));
6813 static void
6814 spa_async_dispatch(spa_t *spa)
6816 mutex_enter(&spa->spa_async_lock);
6817 if (spa_async_tasks_pending(spa) &&
6818 !spa->spa_async_suspended &&
6819 spa->spa_async_thread == NULL &&
6820 rootdir != NULL)
6821 spa->spa_async_thread = thread_create(NULL, 0,
6822 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6823 mutex_exit(&spa->spa_async_lock);
6826 void
6827 spa_async_request(spa_t *spa, int task)
6829 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6830 mutex_enter(&spa->spa_async_lock);
6831 spa->spa_async_tasks |= task;
6832 mutex_exit(&spa->spa_async_lock);
6836 * ==========================================================================
6837 * SPA syncing routines
6838 * ==========================================================================
6841 static int
6842 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6844 bpobj_t *bpo = arg;
6845 bpobj_enqueue(bpo, bp, tx);
6846 return (0);
6849 static int
6850 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6852 zio_t *zio = arg;
6854 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6855 zio->io_flags));
6856 return (0);
6860 * Note: this simple function is not inlined to make it easier to dtrace the
6861 * amount of time spent syncing frees.
6863 static void
6864 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6866 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6867 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6868 VERIFY(zio_wait(zio) == 0);
6872 * Note: this simple function is not inlined to make it easier to dtrace the
6873 * amount of time spent syncing deferred frees.
6875 static void
6876 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6878 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6879 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6880 spa_free_sync_cb, zio, tx), ==, 0);
6881 VERIFY0(zio_wait(zio));
6885 static void
6886 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6888 char *packed = NULL;
6889 size_t bufsize;
6890 size_t nvsize = 0;
6891 dmu_buf_t *db;
6893 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6896 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6897 * information. This avoids the dmu_buf_will_dirty() path and
6898 * saves us a pre-read to get data we don't actually care about.
6900 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6901 packed = kmem_alloc(bufsize, KM_SLEEP);
6903 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6904 KM_SLEEP) == 0);
6905 bzero(packed + nvsize, bufsize - nvsize);
6907 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6909 kmem_free(packed, bufsize);
6911 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6912 dmu_buf_will_dirty(db, tx);
6913 *(uint64_t *)db->db_data = nvsize;
6914 dmu_buf_rele(db, FTAG);
6917 static void
6918 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6919 const char *config, const char *entry)
6921 nvlist_t *nvroot;
6922 nvlist_t **list;
6923 int i;
6925 if (!sav->sav_sync)
6926 return;
6929 * Update the MOS nvlist describing the list of available devices.
6930 * spa_validate_aux() will have already made sure this nvlist is
6931 * valid and the vdevs are labeled appropriately.
6933 if (sav->sav_object == 0) {
6934 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6935 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6936 sizeof (uint64_t), tx);
6937 VERIFY(zap_update(spa->spa_meta_objset,
6938 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6939 &sav->sav_object, tx) == 0);
6942 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6943 if (sav->sav_count == 0) {
6944 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6945 } else {
6946 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6947 for (i = 0; i < sav->sav_count; i++)
6948 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6949 B_FALSE, VDEV_CONFIG_L2CACHE);
6950 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6951 sav->sav_count) == 0);
6952 for (i = 0; i < sav->sav_count; i++)
6953 nvlist_free(list[i]);
6954 kmem_free(list, sav->sav_count * sizeof (void *));
6957 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6958 nvlist_free(nvroot);
6960 sav->sav_sync = B_FALSE;
6964 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6965 * The all-vdev ZAP must be empty.
6967 static void
6968 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6970 spa_t *spa = vd->vdev_spa;
6971 if (vd->vdev_top_zap != 0) {
6972 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6973 vd->vdev_top_zap, tx));
6975 if (vd->vdev_leaf_zap != 0) {
6976 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6977 vd->vdev_leaf_zap, tx));
6979 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6980 spa_avz_build(vd->vdev_child[i], avz, tx);
6984 static void
6985 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6987 nvlist_t *config;
6990 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6991 * its config may not be dirty but we still need to build per-vdev ZAPs.
6992 * Similarly, if the pool is being assembled (e.g. after a split), we
6993 * need to rebuild the AVZ although the config may not be dirty.
6995 if (list_is_empty(&spa->spa_config_dirty_list) &&
6996 spa->spa_avz_action == AVZ_ACTION_NONE)
6997 return;
6999 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7001 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7002 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7003 spa->spa_all_vdev_zaps != 0);
7005 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7006 /* Make and build the new AVZ */
7007 uint64_t new_avz = zap_create(spa->spa_meta_objset,
7008 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7009 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7011 /* Diff old AVZ with new one */
7012 zap_cursor_t zc;
7013 zap_attribute_t za;
7015 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7016 spa->spa_all_vdev_zaps);
7017 zap_cursor_retrieve(&zc, &za) == 0;
7018 zap_cursor_advance(&zc)) {
7019 uint64_t vdzap = za.za_first_integer;
7020 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7021 vdzap) == ENOENT) {
7023 * ZAP is listed in old AVZ but not in new one;
7024 * destroy it
7026 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7027 tx));
7031 zap_cursor_fini(&zc);
7033 /* Destroy the old AVZ */
7034 VERIFY0(zap_destroy(spa->spa_meta_objset,
7035 spa->spa_all_vdev_zaps, tx));
7037 /* Replace the old AVZ in the dir obj with the new one */
7038 VERIFY0(zap_update(spa->spa_meta_objset,
7039 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7040 sizeof (new_avz), 1, &new_avz, tx));
7042 spa->spa_all_vdev_zaps = new_avz;
7043 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7044 zap_cursor_t zc;
7045 zap_attribute_t za;
7047 /* Walk through the AVZ and destroy all listed ZAPs */
7048 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7049 spa->spa_all_vdev_zaps);
7050 zap_cursor_retrieve(&zc, &za) == 0;
7051 zap_cursor_advance(&zc)) {
7052 uint64_t zap = za.za_first_integer;
7053 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7056 zap_cursor_fini(&zc);
7058 /* Destroy and unlink the AVZ itself */
7059 VERIFY0(zap_destroy(spa->spa_meta_objset,
7060 spa->spa_all_vdev_zaps, tx));
7061 VERIFY0(zap_remove(spa->spa_meta_objset,
7062 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7063 spa->spa_all_vdev_zaps = 0;
7066 if (spa->spa_all_vdev_zaps == 0) {
7067 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7068 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7069 DMU_POOL_VDEV_ZAP_MAP, tx);
7071 spa->spa_avz_action = AVZ_ACTION_NONE;
7073 /* Create ZAPs for vdevs that don't have them. */
7074 vdev_construct_zaps(spa->spa_root_vdev, tx);
7076 config = spa_config_generate(spa, spa->spa_root_vdev,
7077 dmu_tx_get_txg(tx), B_FALSE);
7080 * If we're upgrading the spa version then make sure that
7081 * the config object gets updated with the correct version.
7083 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7084 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7085 spa->spa_uberblock.ub_version);
7087 spa_config_exit(spa, SCL_STATE, FTAG);
7089 nvlist_free(spa->spa_config_syncing);
7090 spa->spa_config_syncing = config;
7092 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7095 static void
7096 spa_sync_version(void *arg, dmu_tx_t *tx)
7098 uint64_t *versionp = arg;
7099 uint64_t version = *versionp;
7100 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7103 * Setting the version is special cased when first creating the pool.
7105 ASSERT(tx->tx_txg != TXG_INITIAL);
7107 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7108 ASSERT(version >= spa_version(spa));
7110 spa->spa_uberblock.ub_version = version;
7111 vdev_config_dirty(spa->spa_root_vdev);
7112 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7116 * Set zpool properties.
7118 static void
7119 spa_sync_props(void *arg, dmu_tx_t *tx)
7121 nvlist_t *nvp = arg;
7122 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7123 objset_t *mos = spa->spa_meta_objset;
7124 nvpair_t *elem = NULL;
7126 mutex_enter(&spa->spa_props_lock);
7128 while ((elem = nvlist_next_nvpair(nvp, elem))) {
7129 uint64_t intval;
7130 char *strval, *fname;
7131 zpool_prop_t prop;
7132 const char *propname;
7133 zprop_type_t proptype;
7134 spa_feature_t fid;
7136 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7137 case ZPOOL_PROP_INVAL:
7139 * We checked this earlier in spa_prop_validate().
7141 ASSERT(zpool_prop_feature(nvpair_name(elem)));
7143 fname = strchr(nvpair_name(elem), '@') + 1;
7144 VERIFY0(zfeature_lookup_name(fname, &fid));
7146 spa_feature_enable(spa, fid, tx);
7147 spa_history_log_internal(spa, "set", tx,
7148 "%s=enabled", nvpair_name(elem));
7149 break;
7151 case ZPOOL_PROP_VERSION:
7152 intval = fnvpair_value_uint64(elem);
7154 * The version is synced seperatly before other
7155 * properties and should be correct by now.
7157 ASSERT3U(spa_version(spa), >=, intval);
7158 break;
7160 case ZPOOL_PROP_ALTROOT:
7162 * 'altroot' is a non-persistent property. It should
7163 * have been set temporarily at creation or import time.
7165 ASSERT(spa->spa_root != NULL);
7166 break;
7168 case ZPOOL_PROP_READONLY:
7169 case ZPOOL_PROP_CACHEFILE:
7171 * 'readonly' and 'cachefile' are also non-persisitent
7172 * properties.
7174 break;
7175 case ZPOOL_PROP_COMMENT:
7176 strval = fnvpair_value_string(elem);
7177 if (spa->spa_comment != NULL)
7178 spa_strfree(spa->spa_comment);
7179 spa->spa_comment = spa_strdup(strval);
7181 * We need to dirty the configuration on all the vdevs
7182 * so that their labels get updated. It's unnecessary
7183 * to do this for pool creation since the vdev's
7184 * configuratoin has already been dirtied.
7186 if (tx->tx_txg != TXG_INITIAL)
7187 vdev_config_dirty(spa->spa_root_vdev);
7188 spa_history_log_internal(spa, "set", tx,
7189 "%s=%s", nvpair_name(elem), strval);
7190 break;
7191 default:
7193 * Set pool property values in the poolprops mos object.
7195 if (spa->spa_pool_props_object == 0) {
7196 spa->spa_pool_props_object =
7197 zap_create_link(mos, DMU_OT_POOL_PROPS,
7198 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7199 tx);
7202 /* normalize the property name */
7203 propname = zpool_prop_to_name(prop);
7204 proptype = zpool_prop_get_type(prop);
7206 if (nvpair_type(elem) == DATA_TYPE_STRING) {
7207 ASSERT(proptype == PROP_TYPE_STRING);
7208 strval = fnvpair_value_string(elem);
7209 VERIFY0(zap_update(mos,
7210 spa->spa_pool_props_object, propname,
7211 1, strlen(strval) + 1, strval, tx));
7212 spa_history_log_internal(spa, "set", tx,
7213 "%s=%s", nvpair_name(elem), strval);
7214 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7215 intval = fnvpair_value_uint64(elem);
7217 if (proptype == PROP_TYPE_INDEX) {
7218 const char *unused;
7219 VERIFY0(zpool_prop_index_to_string(
7220 prop, intval, &unused));
7222 VERIFY0(zap_update(mos,
7223 spa->spa_pool_props_object, propname,
7224 8, 1, &intval, tx));
7225 spa_history_log_internal(spa, "set", tx,
7226 "%s=%lld", nvpair_name(elem), intval);
7227 } else {
7228 ASSERT(0); /* not allowed */
7231 switch (prop) {
7232 case ZPOOL_PROP_DELEGATION:
7233 spa->spa_delegation = intval;
7234 break;
7235 case ZPOOL_PROP_BOOTFS:
7236 spa->spa_bootfs = intval;
7237 break;
7238 case ZPOOL_PROP_FAILUREMODE:
7239 spa->spa_failmode = intval;
7240 break;
7241 case ZPOOL_PROP_AUTOEXPAND:
7242 spa->spa_autoexpand = intval;
7243 if (tx->tx_txg != TXG_INITIAL)
7244 spa_async_request(spa,
7245 SPA_ASYNC_AUTOEXPAND);
7246 break;
7247 case ZPOOL_PROP_DEDUPDITTO:
7248 spa->spa_dedup_ditto = intval;
7249 break;
7250 default:
7251 break;
7257 mutex_exit(&spa->spa_props_lock);
7261 * Perform one-time upgrade on-disk changes. spa_version() does not
7262 * reflect the new version this txg, so there must be no changes this
7263 * txg to anything that the upgrade code depends on after it executes.
7264 * Therefore this must be called after dsl_pool_sync() does the sync
7265 * tasks.
7267 static void
7268 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7270 dsl_pool_t *dp = spa->spa_dsl_pool;
7272 ASSERT(spa->spa_sync_pass == 1);
7274 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7276 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7277 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7278 dsl_pool_create_origin(dp, tx);
7280 /* Keeping the origin open increases spa_minref */
7281 spa->spa_minref += 3;
7284 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7285 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7286 dsl_pool_upgrade_clones(dp, tx);
7289 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7290 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7291 dsl_pool_upgrade_dir_clones(dp, tx);
7293 /* Keeping the freedir open increases spa_minref */
7294 spa->spa_minref += 3;
7297 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7298 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7299 spa_feature_create_zap_objects(spa, tx);
7303 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7304 * when possibility to use lz4 compression for metadata was added
7305 * Old pools that have this feature enabled must be upgraded to have
7306 * this feature active
7308 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7309 boolean_t lz4_en = spa_feature_is_enabled(spa,
7310 SPA_FEATURE_LZ4_COMPRESS);
7311 boolean_t lz4_ac = spa_feature_is_active(spa,
7312 SPA_FEATURE_LZ4_COMPRESS);
7314 if (lz4_en && !lz4_ac)
7315 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7319 * If we haven't written the salt, do so now. Note that the
7320 * feature may not be activated yet, but that's fine since
7321 * the presence of this ZAP entry is backwards compatible.
7323 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7324 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7325 VERIFY0(zap_add(spa->spa_meta_objset,
7326 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7327 sizeof (spa->spa_cksum_salt.zcs_bytes),
7328 spa->spa_cksum_salt.zcs_bytes, tx));
7331 rrw_exit(&dp->dp_config_rwlock, FTAG);
7334 static void
7335 vdev_indirect_state_sync_verify(vdev_t *vd)
7337 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7338 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7340 if (vd->vdev_ops == &vdev_indirect_ops) {
7341 ASSERT(vim != NULL);
7342 ASSERT(vib != NULL);
7345 if (vdev_obsolete_sm_object(vd) != 0) {
7346 ASSERT(vd->vdev_obsolete_sm != NULL);
7347 ASSERT(vd->vdev_removing ||
7348 vd->vdev_ops == &vdev_indirect_ops);
7349 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7350 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7352 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7353 space_map_object(vd->vdev_obsolete_sm));
7354 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7355 space_map_allocated(vd->vdev_obsolete_sm));
7357 ASSERT(vd->vdev_obsolete_segments != NULL);
7360 * Since frees / remaps to an indirect vdev can only
7361 * happen in syncing context, the obsolete segments
7362 * tree must be empty when we start syncing.
7364 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7368 * Sync the specified transaction group. New blocks may be dirtied as
7369 * part of the process, so we iterate until it converges.
7371 void
7372 spa_sync(spa_t *spa, uint64_t txg)
7374 dsl_pool_t *dp = spa->spa_dsl_pool;
7375 objset_t *mos = spa->spa_meta_objset;
7376 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7377 vdev_t *rvd = spa->spa_root_vdev;
7378 vdev_t *vd;
7379 dmu_tx_t *tx;
7380 int error;
7381 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7382 zfs_vdev_queue_depth_pct / 100;
7384 VERIFY(spa_writeable(spa));
7387 * Wait for i/os issued in open context that need to complete
7388 * before this txg syncs.
7390 VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
7391 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
7394 * Lock out configuration changes.
7396 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7398 spa->spa_syncing_txg = txg;
7399 spa->spa_sync_pass = 0;
7401 for (int i = 0; i < spa->spa_alloc_count; i++) {
7402 mutex_enter(&spa->spa_alloc_locks[i]);
7403 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7404 mutex_exit(&spa->spa_alloc_locks[i]);
7408 * If there are any pending vdev state changes, convert them
7409 * into config changes that go out with this transaction group.
7411 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7412 while (list_head(&spa->spa_state_dirty_list) != NULL) {
7414 * We need the write lock here because, for aux vdevs,
7415 * calling vdev_config_dirty() modifies sav_config.
7416 * This is ugly and will become unnecessary when we
7417 * eliminate the aux vdev wart by integrating all vdevs
7418 * into the root vdev tree.
7420 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7421 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7422 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7423 vdev_state_clean(vd);
7424 vdev_config_dirty(vd);
7426 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7427 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7429 spa_config_exit(spa, SCL_STATE, FTAG);
7431 tx = dmu_tx_create_assigned(dp, txg);
7433 spa->spa_sync_starttime = gethrtime();
7434 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7435 spa->spa_sync_starttime + spa->spa_deadman_synctime));
7438 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7439 * set spa_deflate if we have no raid-z vdevs.
7441 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7442 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7443 int i;
7445 for (i = 0; i < rvd->vdev_children; i++) {
7446 vd = rvd->vdev_child[i];
7447 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7448 break;
7450 if (i == rvd->vdev_children) {
7451 spa->spa_deflate = TRUE;
7452 VERIFY(0 == zap_add(spa->spa_meta_objset,
7453 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7454 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7459 * Set the top-level vdev's max queue depth. Evaluate each
7460 * top-level's async write queue depth in case it changed.
7461 * The max queue depth will not change in the middle of syncing
7462 * out this txg.
7464 uint64_t slots_per_allocator = 0;
7465 for (int c = 0; c < rvd->vdev_children; c++) {
7466 vdev_t *tvd = rvd->vdev_child[c];
7467 metaslab_group_t *mg = tvd->vdev_mg;
7469 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7470 !metaslab_group_initialized(mg))
7471 continue;
7474 * It is safe to do a lock-free check here because only async
7475 * allocations look at mg_max_alloc_queue_depth, and async
7476 * allocations all happen from spa_sync().
7478 for (int i = 0; i < spa->spa_alloc_count; i++)
7479 ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i])));
7480 mg->mg_max_alloc_queue_depth = max_queue_depth;
7482 for (int i = 0; i < spa->spa_alloc_count; i++) {
7483 mg->mg_cur_max_alloc_queue_depth[i] =
7484 zfs_vdev_def_queue_depth;
7486 slots_per_allocator += zfs_vdev_def_queue_depth;
7488 metaslab_class_t *mc = spa_normal_class(spa);
7489 for (int i = 0; i < spa->spa_alloc_count; i++) {
7490 ASSERT0(refcount_count(&mc->mc_alloc_slots[i]));
7491 mc->mc_alloc_max_slots[i] = slots_per_allocator;
7493 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7495 for (int c = 0; c < rvd->vdev_children; c++) {
7496 vdev_t *vd = rvd->vdev_child[c];
7497 vdev_indirect_state_sync_verify(vd);
7499 if (vdev_indirect_should_condense(vd)) {
7500 spa_condense_indirect_start_sync(vd, tx);
7501 break;
7506 * Iterate to convergence.
7508 do {
7509 int pass = ++spa->spa_sync_pass;
7511 spa_sync_config_object(spa, tx);
7512 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7513 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7514 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7515 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7516 spa_errlog_sync(spa, txg);
7517 dsl_pool_sync(dp, txg);
7519 if (pass < zfs_sync_pass_deferred_free) {
7520 spa_sync_frees(spa, free_bpl, tx);
7521 } else {
7523 * We can not defer frees in pass 1, because
7524 * we sync the deferred frees later in pass 1.
7526 ASSERT3U(pass, >, 1);
7527 bplist_iterate(free_bpl, bpobj_enqueue_cb,
7528 &spa->spa_deferred_bpobj, tx);
7531 ddt_sync(spa, txg);
7532 dsl_scan_sync(dp, tx);
7534 if (spa->spa_vdev_removal != NULL)
7535 svr_sync(spa, tx);
7537 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7538 != NULL)
7539 vdev_sync(vd, txg);
7541 if (pass == 1) {
7542 spa_sync_upgrades(spa, tx);
7543 ASSERT3U(txg, >=,
7544 spa->spa_uberblock.ub_rootbp.blk_birth);
7546 * Note: We need to check if the MOS is dirty
7547 * because we could have marked the MOS dirty
7548 * without updating the uberblock (e.g. if we
7549 * have sync tasks but no dirty user data). We
7550 * need to check the uberblock's rootbp because
7551 * it is updated if we have synced out dirty
7552 * data (though in this case the MOS will most
7553 * likely also be dirty due to second order
7554 * effects, we don't want to rely on that here).
7556 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7557 !dmu_objset_is_dirty(mos, txg)) {
7559 * Nothing changed on the first pass,
7560 * therefore this TXG is a no-op. Avoid
7561 * syncing deferred frees, so that we
7562 * can keep this TXG as a no-op.
7564 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7565 txg));
7566 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7567 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7568 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7569 txg));
7570 break;
7572 spa_sync_deferred_frees(spa, tx);
7575 } while (dmu_objset_is_dirty(mos, txg));
7577 if (!list_is_empty(&spa->spa_config_dirty_list)) {
7579 * Make sure that the number of ZAPs for all the vdevs matches
7580 * the number of ZAPs in the per-vdev ZAP list. This only gets
7581 * called if the config is dirty; otherwise there may be
7582 * outstanding AVZ operations that weren't completed in
7583 * spa_sync_config_object.
7585 uint64_t all_vdev_zap_entry_count;
7586 ASSERT0(zap_count(spa->spa_meta_objset,
7587 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7588 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7589 all_vdev_zap_entry_count);
7592 if (spa->spa_vdev_removal != NULL) {
7593 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7597 * Rewrite the vdev configuration (which includes the uberblock)
7598 * to commit the transaction group.
7600 * If there are no dirty vdevs, we sync the uberblock to a few
7601 * random top-level vdevs that are known to be visible in the
7602 * config cache (see spa_vdev_add() for a complete description).
7603 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7605 for (;;) {
7607 * We hold SCL_STATE to prevent vdev open/close/etc.
7608 * while we're attempting to write the vdev labels.
7610 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7612 if (list_is_empty(&spa->spa_config_dirty_list)) {
7613 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7614 int svdcount = 0;
7615 int children = rvd->vdev_children;
7616 int c0 = spa_get_random(children);
7618 for (int c = 0; c < children; c++) {
7619 vd = rvd->vdev_child[(c0 + c) % children];
7621 /* Stop when revisiting the first vdev */
7622 if (c > 0 && svd[0] == vd)
7623 break;
7625 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7626 !vdev_is_concrete(vd))
7627 continue;
7629 svd[svdcount++] = vd;
7630 if (svdcount == SPA_SYNC_MIN_VDEVS)
7631 break;
7633 error = vdev_config_sync(svd, svdcount, txg);
7634 } else {
7635 error = vdev_config_sync(rvd->vdev_child,
7636 rvd->vdev_children, txg);
7639 if (error == 0)
7640 spa->spa_last_synced_guid = rvd->vdev_guid;
7642 spa_config_exit(spa, SCL_STATE, FTAG);
7644 if (error == 0)
7645 break;
7646 zio_suspend(spa, NULL);
7647 zio_resume_wait(spa);
7649 dmu_tx_commit(tx);
7651 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7654 * Clear the dirty config list.
7656 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7657 vdev_config_clean(vd);
7660 * Now that the new config has synced transactionally,
7661 * let it become visible to the config cache.
7663 if (spa->spa_config_syncing != NULL) {
7664 spa_config_set(spa, spa->spa_config_syncing);
7665 spa->spa_config_txg = txg;
7666 spa->spa_config_syncing = NULL;
7669 dsl_pool_sync_done(dp, txg);
7671 for (int i = 0; i < spa->spa_alloc_count; i++) {
7672 mutex_enter(&spa->spa_alloc_locks[i]);
7673 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7674 mutex_exit(&spa->spa_alloc_locks[i]);
7678 * Update usable space statistics.
7680 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7681 vdev_sync_done(vd, txg);
7683 spa_update_dspace(spa);
7686 * It had better be the case that we didn't dirty anything
7687 * since vdev_config_sync().
7689 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7690 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7691 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7693 while (zfs_pause_spa_sync)
7694 delay(1);
7696 spa->spa_sync_pass = 0;
7699 * Update the last synced uberblock here. We want to do this at
7700 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7701 * will be guaranteed that all the processing associated with
7702 * that txg has been completed.
7704 spa->spa_ubsync = spa->spa_uberblock;
7705 spa_config_exit(spa, SCL_CONFIG, FTAG);
7707 spa_handle_ignored_writes(spa);
7710 * If any async tasks have been requested, kick them off.
7712 spa_async_dispatch(spa);
7716 * Sync all pools. We don't want to hold the namespace lock across these
7717 * operations, so we take a reference on the spa_t and drop the lock during the
7718 * sync.
7720 void
7721 spa_sync_allpools(void)
7723 spa_t *spa = NULL;
7724 mutex_enter(&spa_namespace_lock);
7725 while ((spa = spa_next(spa)) != NULL) {
7726 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7727 !spa_writeable(spa) || spa_suspended(spa))
7728 continue;
7729 spa_open_ref(spa, FTAG);
7730 mutex_exit(&spa_namespace_lock);
7731 txg_wait_synced(spa_get_dsl(spa), 0);
7732 mutex_enter(&spa_namespace_lock);
7733 spa_close(spa, FTAG);
7735 mutex_exit(&spa_namespace_lock);
7739 * ==========================================================================
7740 * Miscellaneous routines
7741 * ==========================================================================
7745 * Remove all pools in the system.
7747 void
7748 spa_evict_all(void)
7750 spa_t *spa;
7753 * Remove all cached state. All pools should be closed now,
7754 * so every spa in the AVL tree should be unreferenced.
7756 mutex_enter(&spa_namespace_lock);
7757 while ((spa = spa_next(NULL)) != NULL) {
7759 * Stop async tasks. The async thread may need to detach
7760 * a device that's been replaced, which requires grabbing
7761 * spa_namespace_lock, so we must drop it here.
7763 spa_open_ref(spa, FTAG);
7764 mutex_exit(&spa_namespace_lock);
7765 spa_async_suspend(spa);
7766 mutex_enter(&spa_namespace_lock);
7767 spa_close(spa, FTAG);
7769 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7770 spa_unload(spa);
7771 spa_deactivate(spa);
7773 spa_remove(spa);
7775 mutex_exit(&spa_namespace_lock);
7778 vdev_t *
7779 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7781 vdev_t *vd;
7782 int i;
7784 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7785 return (vd);
7787 if (aux) {
7788 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7789 vd = spa->spa_l2cache.sav_vdevs[i];
7790 if (vd->vdev_guid == guid)
7791 return (vd);
7794 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7795 vd = spa->spa_spares.sav_vdevs[i];
7796 if (vd->vdev_guid == guid)
7797 return (vd);
7801 return (NULL);
7804 void
7805 spa_upgrade(spa_t *spa, uint64_t version)
7807 ASSERT(spa_writeable(spa));
7809 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7812 * This should only be called for a non-faulted pool, and since a
7813 * future version would result in an unopenable pool, this shouldn't be
7814 * possible.
7816 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7817 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7819 spa->spa_uberblock.ub_version = version;
7820 vdev_config_dirty(spa->spa_root_vdev);
7822 spa_config_exit(spa, SCL_ALL, FTAG);
7824 txg_wait_synced(spa_get_dsl(spa), 0);
7827 boolean_t
7828 spa_has_spare(spa_t *spa, uint64_t guid)
7830 int i;
7831 uint64_t spareguid;
7832 spa_aux_vdev_t *sav = &spa->spa_spares;
7834 for (i = 0; i < sav->sav_count; i++)
7835 if (sav->sav_vdevs[i]->vdev_guid == guid)
7836 return (B_TRUE);
7838 for (i = 0; i < sav->sav_npending; i++) {
7839 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7840 &spareguid) == 0 && spareguid == guid)
7841 return (B_TRUE);
7844 return (B_FALSE);
7848 * Check if a pool has an active shared spare device.
7849 * Note: reference count of an active spare is 2, as a spare and as a replace
7851 static boolean_t
7852 spa_has_active_shared_spare(spa_t *spa)
7854 int i, refcnt;
7855 uint64_t pool;
7856 spa_aux_vdev_t *sav = &spa->spa_spares;
7858 for (i = 0; i < sav->sav_count; i++) {
7859 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7860 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7861 refcnt > 2)
7862 return (B_TRUE);
7865 return (B_FALSE);
7868 sysevent_t *
7869 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7871 sysevent_t *ev = NULL;
7872 #ifdef _KERNEL
7873 sysevent_attr_list_t *attr = NULL;
7874 sysevent_value_t value;
7876 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7877 SE_SLEEP);
7878 ASSERT(ev != NULL);
7880 value.value_type = SE_DATA_TYPE_STRING;
7881 value.value.sv_string = spa_name(spa);
7882 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7883 goto done;
7885 value.value_type = SE_DATA_TYPE_UINT64;
7886 value.value.sv_uint64 = spa_guid(spa);
7887 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7888 goto done;
7890 if (vd) {
7891 value.value_type = SE_DATA_TYPE_UINT64;
7892 value.value.sv_uint64 = vd->vdev_guid;
7893 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7894 SE_SLEEP) != 0)
7895 goto done;
7897 if (vd->vdev_path) {
7898 value.value_type = SE_DATA_TYPE_STRING;
7899 value.value.sv_string = vd->vdev_path;
7900 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7901 &value, SE_SLEEP) != 0)
7902 goto done;
7906 if (hist_nvl != NULL) {
7907 fnvlist_merge((nvlist_t *)attr, hist_nvl);
7910 if (sysevent_attach_attributes(ev, attr) != 0)
7911 goto done;
7912 attr = NULL;
7914 done:
7915 if (attr)
7916 sysevent_free_attr(attr);
7918 #endif
7919 return (ev);
7922 void
7923 spa_event_post(sysevent_t *ev)
7925 #ifdef _KERNEL
7926 sysevent_id_t eid;
7928 (void) log_sysevent(ev, SE_SLEEP, &eid);
7929 sysevent_free(ev);
7930 #endif
7933 void
7934 spa_event_discard(sysevent_t *ev)
7936 #ifdef _KERNEL
7937 sysevent_free(ev);
7938 #endif
7942 * Post a sysevent corresponding to the given event. The 'name' must be one of
7943 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
7944 * filled in from the spa and (optionally) the vdev and history nvl. This
7945 * doesn't do anything in the userland libzpool, as we don't want consumers to
7946 * misinterpret ztest or zdb as real changes.
7948 void
7949 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7951 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));