9348 mii: duplicate 'const' declaration specifier
[unleashed.git] / usr / src / uts / common / io / lofi.c
blob95f4cd7254acf55be0888c348d0c2dff0d451630
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016 Andrey Sokolov
26 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * lofi (loopback file) driver - allows you to attach a file to a device,
31 * which can then be accessed through that device. The simple model is that
32 * you tell lofi to open a file, and then use the block device you get as
33 * you would any block device. lofi translates access to the block device
34 * into I/O on the underlying file. This is mostly useful for
35 * mounting images of filesystems.
37 * lofi is controlled through /dev/lofictl - this is the only device exported
38 * during attach, and is instance number 0. lofiadm communicates with lofi
39 * through ioctls on this device. When a file is attached to lofi, block and
40 * character devices are exported in /dev/lofi and /dev/rlofi. These devices
41 * are identified by lofi instance number, and the instance number is also used
42 * as the name in /dev/lofi.
44 * Virtual disks, or, labeled lofi, implements virtual disk support to
45 * support partition table and related tools. Such mappings will cause
46 * block and character devices to be exported in /dev/dsk and /dev/rdsk
47 * directories.
49 * To support virtual disks, the instance number space is divided to two
50 * parts, upper part for instance number and lower part for minor number
51 * space to identify partitions and slices. The virtual disk support is
52 * implemented by stacking cmlb module. For virtual disks, the partition
53 * related ioctl calls are routed to cmlb module. Compression and encryption
54 * is not supported for virtual disks.
56 * Mapped devices are tracked with state structures handled with
57 * ddi_soft_state(9F) for simplicity.
59 * A file attached to lofi is opened when attached and not closed until
60 * explicitly detached from lofi. This seems more sensible than deferring
61 * the open until the /dev/lofi device is opened, for a number of reasons.
62 * One is that any failure is likely to be noticed by the person (or script)
63 * running lofiadm. Another is that it would be a security problem if the
64 * file was replaced by another one after being added but before being opened.
66 * The only hard part about lofi is the ioctls. In order to support things
67 * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
68 * So it has to fake disk geometry and partition information. More may need
69 * to be faked if your favorite utility doesn't work and you think it should
70 * (fdformat doesn't work because it really wants to know the type of floppy
71 * controller to talk to, and that didn't seem easy to fake. Or possibly even
72 * necessary, since we have mkfs_pcfs now).
74 * Normally, a lofi device cannot be detached if it is open (i.e. busy). To
75 * support simulation of hotplug events, an optional force flag is provided.
76 * If a lofi device is open when a force detach is requested, then the
77 * underlying file is closed and any subsequent operations return EIO. When the
78 * device is closed for the last time, it will be cleaned up at that time. In
79 * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
80 * detached but not removed.
82 * If detach was requested and lofi device is not open, we will perform
83 * unmap and remove the lofi instance.
85 * If the lofi device is open and the li_cleanup is set on ioctl request,
86 * we set ls_cleanup flag to notify the cleanup is requested, and the
87 * last lofi_close will perform the unmapping and this lofi instance will be
88 * removed.
90 * If the lofi device is open and the li_force is set on ioctl request,
91 * we set ls_cleanup flag to notify the cleanup is requested,
92 * we also set ls_vp_closereq to notify IO tasks to return EIO on new
93 * IO requests and wait in process IO count to become 0, indicating there
94 * are no more IO requests. Since ls_cleanup is set, the last lofi_close
95 * will perform unmap and this lofi instance will be removed.
96 * See also lofi_unmap_file() for details.
98 * Once ls_cleanup is set for the instance, we do not allow lofi_open()
99 * calls to succeed and can have last lofi_close() to remove the instance.
101 * Known problems:
103 * UFS logging. Mounting a UFS filesystem image "logging"
104 * works for basic copy testing but wedges during a build of ON through
105 * that image. Some deadlock in lufs holding the log mutex and then
106 * getting stuck on a buf. So for now, don't do that.
108 * Direct I/O. Since the filesystem data is being cached in the buffer
109 * cache, _and_ again in the underlying filesystem, it's tempting to
110 * enable direct I/O on the underlying file. Don't, because that deadlocks.
111 * I think to fix the cache-twice problem we might need filesystem support.
113 * Interesting things to do:
115 * Allow multiple files for each device. A poor-man's metadisk, basically.
117 * Pass-through ioctls on block devices. You can (though it's not
118 * documented), give lofi a block device as a file name. Then we shouldn't
119 * need to fake a geometry, however, it may be relevant if you're replacing
120 * metadisk, or using lofi to get crypto.
121 * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
122 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
123 * In fact this even makes sense if you have lofi "above" metadisk.
125 * Encryption:
126 * Each lofi device can have its own symmetric key and cipher.
127 * They are passed to us by lofiadm(1m) in the correct format for use
128 * with the misc/kcf crypto_* routines.
130 * Each block has its own IV, that is calculated in lofi_blk_mech(), based
131 * on the "master" key held in the lsp and the block number of the buffer.
134 #include <sys/types.h>
135 #include <netinet/in.h>
136 #include <sys/sysmacros.h>
137 #include <sys/uio.h>
138 #include <sys/kmem.h>
139 #include <sys/cred.h>
140 #include <sys/mman.h>
141 #include <sys/errno.h>
142 #include <sys/aio_req.h>
143 #include <sys/stat.h>
144 #include <sys/file.h>
145 #include <sys/modctl.h>
146 #include <sys/conf.h>
147 #include <sys/debug.h>
148 #include <sys/vnode.h>
149 #include <sys/lofi.h>
150 #include <sys/lofi_impl.h> /* for cache structure */
151 #include <sys/fcntl.h>
152 #include <sys/pathname.h>
153 #include <sys/filio.h>
154 #include <sys/fdio.h>
155 #include <sys/open.h>
156 #include <sys/disp.h>
157 #include <vm/seg_map.h>
158 #include <sys/ddi.h>
159 #include <sys/sunddi.h>
160 #include <sys/zmod.h>
161 #include <sys/id_space.h>
162 #include <sys/mkdev.h>
163 #include <sys/crypto/common.h>
164 #include <sys/crypto/api.h>
165 #include <sys/rctl.h>
166 #include <sys/vtoc.h>
167 #include <sys/scsi/scsi.h> /* for DTYPE_DIRECT */
168 #include <sys/scsi/impl/uscsi.h>
169 #include <sys/sysevent/dev.h>
170 #include <LzmaDec.h>
172 #define NBLOCKS_PROP_NAME "Nblocks"
173 #define SIZE_PROP_NAME "Size"
174 #define ZONE_PROP_NAME "zone"
176 #define SETUP_C_DATA(cd, buf, len) \
177 (cd).cd_format = CRYPTO_DATA_RAW; \
178 (cd).cd_offset = 0; \
179 (cd).cd_miscdata = NULL; \
180 (cd).cd_length = (len); \
181 (cd).cd_raw.iov_base = (buf); \
182 (cd).cd_raw.iov_len = (len);
184 #define UIO_CHECK(uio) \
185 if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
186 ((uio)->uio_resid % DEV_BSIZE) != 0) { \
187 return (EINVAL); \
190 #define LOFI_TIMEOUT 30
192 static void *lofi_statep;
193 static kmutex_t lofi_lock; /* state lock */
194 static id_space_t *lofi_id; /* lofi ID values */
195 static list_t lofi_list;
196 static zone_key_t lofi_zone_key;
199 * Because lofi_taskq_nthreads limits the actual swamping of the device, the
200 * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
201 * high. If we want to be assured that the underlying device is always busy,
202 * we must be sure that the number of bytes enqueued when the number of
203 * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
204 * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should
205 * set maxalloc to be the maximum throughput (in bytes per second) of the
206 * underlying device divided by the minimum I/O size. We assume a realistic
207 * maximum throughput of one hundred megabytes per second; we set maxalloc on
208 * the lofi task queue to be 104857600 divided by DEV_BSIZE.
210 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
211 static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */
213 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
216 * To avoid decompressing data in a compressed segment multiple times
217 * when accessing small parts of a segment's data, we cache and reuse
218 * the uncompressed segment's data.
220 * A single cached segment is sufficient to avoid lots of duplicate
221 * segment decompress operations. A small cache size also reduces the
222 * memory footprint.
224 * lofi_max_comp_cache is the maximum number of decompressed data segments
225 * cached for each compressed lofi image. It can be set to 0 to disable
226 * caching.
229 uint32_t lofi_max_comp_cache = 1;
231 static int gzip_decompress(void *src, size_t srclen, void *dst,
232 size_t *destlen, int level);
234 static int lzma_decompress(void *src, size_t srclen, void *dst,
235 size_t *dstlen, int level);
237 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
238 {gzip_decompress, NULL, 6, "gzip"}, /* default */
239 {gzip_decompress, NULL, 6, "gzip-6"},
240 {gzip_decompress, NULL, 9, "gzip-9"},
241 {lzma_decompress, NULL, 0, "lzma"}
244 static void lofi_strategy_task(void *);
245 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
246 size_t, void *);
247 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
249 struct cmlb_tg_ops lofi_tg_ops = {
250 TG_DK_OPS_VERSION_1,
251 lofi_tg_rdwr,
252 lofi_tg_getinfo
255 /*ARGSUSED*/
256 static void
257 *SzAlloc(void *p, size_t size)
259 return (kmem_alloc(size, KM_SLEEP));
262 /*ARGSUSED*/
263 static void
264 SzFree(void *p, void *address, size_t size)
266 kmem_free(address, size);
269 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
272 * Free data referenced by the linked list of cached uncompressed
273 * segments.
275 static void
276 lofi_free_comp_cache(struct lofi_state *lsp)
278 struct lofi_comp_cache *lc;
280 while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
281 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
282 kmem_free(lc, sizeof (struct lofi_comp_cache));
283 lsp->ls_comp_cache_count--;
285 ASSERT(lsp->ls_comp_cache_count == 0);
288 static int
289 is_opened(struct lofi_state *lsp)
291 int i;
292 boolean_t last = B_TRUE;
294 ASSERT(MUTEX_HELD(&lofi_lock));
295 for (i = 0; i < LOFI_PART_MAX; i++) {
296 if (lsp->ls_open_lyr[i]) {
297 last = B_FALSE;
298 break;
302 for (i = 0; last && (i < OTYP_LYR); i++) {
303 if (lsp->ls_open_reg[i]) {
304 last = B_FALSE;
308 return (!last);
311 static void
312 lofi_set_cleanup(struct lofi_state *lsp)
314 ASSERT(MUTEX_HELD(&lofi_lock));
316 lsp->ls_cleanup = B_TRUE;
318 /* wake up any threads waiting on dkiocstate */
319 cv_broadcast(&lsp->ls_vp_cv);
322 static void
323 lofi_free_crypto(struct lofi_state *lsp)
325 ASSERT(MUTEX_HELD(&lofi_lock));
327 if (lsp->ls_crypto_enabled) {
329 * Clean up the crypto state so that it doesn't hang around
330 * in memory after we are done with it.
332 if (lsp->ls_key.ck_data != NULL) {
333 bzero(lsp->ls_key.ck_data,
334 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
335 kmem_free(lsp->ls_key.ck_data,
336 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
337 lsp->ls_key.ck_data = NULL;
338 lsp->ls_key.ck_length = 0;
341 if (lsp->ls_mech.cm_param != NULL) {
342 kmem_free(lsp->ls_mech.cm_param,
343 lsp->ls_mech.cm_param_len);
344 lsp->ls_mech.cm_param = NULL;
345 lsp->ls_mech.cm_param_len = 0;
348 if (lsp->ls_iv_mech.cm_param != NULL) {
349 kmem_free(lsp->ls_iv_mech.cm_param,
350 lsp->ls_iv_mech.cm_param_len);
351 lsp->ls_iv_mech.cm_param = NULL;
352 lsp->ls_iv_mech.cm_param_len = 0;
355 mutex_destroy(&lsp->ls_crypto_lock);
359 /* ARGSUSED */
360 static int
361 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
362 size_t length, void *tg_cookie)
364 struct lofi_state *lsp;
365 buf_t *bp;
366 int instance;
367 int rv = 0;
369 instance = ddi_get_instance(dip);
370 if (instance == 0) /* control node does not have disk */
371 return (ENXIO);
373 lsp = ddi_get_soft_state(lofi_statep, instance);
375 if (lsp == NULL)
376 return (ENXIO);
378 if (cmd != TG_READ && cmd != TG_WRITE)
379 return (EINVAL);
382 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
384 mutex_enter(&lsp->ls_vp_lock);
385 while (lsp->ls_vp_ready == B_FALSE)
386 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
387 mutex_exit(&lsp->ls_vp_lock);
389 if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
390 /* We can only transfer whole blocks at a time! */
391 return (EINVAL);
394 bp = getrbuf(KM_SLEEP);
396 if (cmd == TG_READ) {
397 bp->b_flags = B_READ;
398 } else {
399 if (lsp->ls_readonly == B_TRUE) {
400 freerbuf(bp);
401 return (EROFS);
403 bp->b_flags = B_WRITE;
406 bp->b_un.b_addr = bufaddr;
407 bp->b_bcount = length;
408 bp->b_lblkno = start;
409 bp->b_private = NULL;
410 bp->b_edev = lsp->ls_dev;
412 if (lsp->ls_kstat) {
413 mutex_enter(lsp->ls_kstat->ks_lock);
414 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
415 mutex_exit(lsp->ls_kstat->ks_lock);
417 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
418 (void) biowait(bp);
420 rv = geterror(bp);
421 freerbuf(bp);
422 return (rv);
426 * Get device geometry info for cmlb.
428 * We have mapped disk image as virtual block device and have to report
429 * physical/virtual geometry to cmlb.
431 * So we have two principal cases:
432 * 1. Uninitialised image without any existing labels,
433 * for this case we fabricate the data based on mapped image.
434 * 2. Image with existing label information.
435 * Since we have no information how the image was created (it may be
436 * dump from some physical device), we need to rely on label information
437 * from image, or we get "corrupted label" errors.
438 * NOTE: label can be MBR, MBR+SMI, GPT
440 static int
441 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
443 struct lofi_state *lsp;
444 int instance;
445 int ashift;
447 _NOTE(ARGUNUSED(tg_cookie));
448 instance = ddi_get_instance(dip);
449 if (instance == 0) /* control device has no storage */
450 return (ENXIO);
452 lsp = ddi_get_soft_state(lofi_statep, instance);
454 if (lsp == NULL)
455 return (ENXIO);
458 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
460 * When mapping is created, new lofi instance is created and
461 * lofi_attach() will call cmlb_attach() as part of the procedure
462 * to set the mapping up. This chain of events will happen in
463 * the same thread.
464 * Since cmlb_attach() will call lofi_tg_getinfo to get
465 * capacity, we return error on that call if cookie is set,
466 * otherwise lofi_attach will be stuck as the mapping is not yet
467 * finalized and lofi is not yet ready.
468 * Note, such error is not fatal for cmlb, as the label setup
469 * will be finalized when cmlb_validate() is called.
471 mutex_enter(&lsp->ls_vp_lock);
472 if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
473 mutex_exit(&lsp->ls_vp_lock);
474 return (ENXIO);
476 while (lsp->ls_vp_ready == B_FALSE)
477 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
478 mutex_exit(&lsp->ls_vp_lock);
480 ashift = lsp->ls_lbshift;
482 switch (cmd) {
483 case TG_GETPHYGEOM: {
484 cmlb_geom_t *geomp = arg;
486 geomp->g_capacity =
487 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
488 geomp->g_nsect = lsp->ls_dkg.dkg_nsect;
489 geomp->g_nhead = lsp->ls_dkg.dkg_nhead;
490 geomp->g_acyl = lsp->ls_dkg.dkg_acyl;
491 geomp->g_ncyl = lsp->ls_dkg.dkg_ncyl;
492 geomp->g_secsize = (1U << ashift);
493 geomp->g_intrlv = lsp->ls_dkg.dkg_intrlv;
494 geomp->g_rpm = lsp->ls_dkg.dkg_rpm;
495 return (0);
498 case TG_GETCAPACITY:
499 *(diskaddr_t *)arg =
500 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
501 return (0);
503 case TG_GETBLOCKSIZE:
504 *(uint32_t *)arg = (1U << ashift);
505 return (0);
507 case TG_GETATTR: {
508 tg_attribute_t *tgattr = arg;
510 tgattr->media_is_writable = !lsp->ls_readonly;
511 tgattr->media_is_solid_state = B_FALSE;
512 tgattr->media_is_rotational = B_FALSE;
513 return (0);
516 default:
517 return (EINVAL);
521 static void
522 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
524 int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
525 int i;
527 ASSERT(MUTEX_HELD(&lofi_lock));
530 * Before we can start to release the other resources,
531 * make sure we have all tasks completed and taskq removed.
533 if (lsp->ls_taskq != NULL) {
534 taskq_destroy(lsp->ls_taskq);
535 lsp->ls_taskq = NULL;
538 list_remove(&lofi_list, lsp);
540 lofi_free_crypto(lsp);
543 * Free pre-allocated compressed buffers
545 if (lsp->ls_comp_bufs != NULL) {
546 for (i = 0; i < lofi_taskq_nthreads; i++) {
547 if (lsp->ls_comp_bufs[i].bufsize > 0)
548 kmem_free(lsp->ls_comp_bufs[i].buf,
549 lsp->ls_comp_bufs[i].bufsize);
551 kmem_free(lsp->ls_comp_bufs,
552 sizeof (struct compbuf) * lofi_taskq_nthreads);
555 if (lsp->ls_vp != NULL) {
556 (void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_INVAL, credp, NULL);
557 (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
558 1, 0, credp, NULL);
559 VN_RELE(lsp->ls_vp);
561 if (lsp->ls_stacked_vp != lsp->ls_vp)
562 VN_RELE(lsp->ls_stacked_vp);
563 lsp->ls_vp = lsp->ls_stacked_vp = NULL;
565 if (lsp->ls_kstat != NULL) {
566 kstat_delete(lsp->ls_kstat);
567 lsp->ls_kstat = NULL;
571 * Free cached decompressed segment data
573 lofi_free_comp_cache(lsp);
574 list_destroy(&lsp->ls_comp_cache);
576 if (lsp->ls_uncomp_seg_sz > 0) {
577 kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
578 lsp->ls_uncomp_seg_sz = 0;
581 rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
582 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
584 mutex_destroy(&lsp->ls_comp_cache_lock);
585 mutex_destroy(&lsp->ls_comp_bufs_lock);
586 mutex_destroy(&lsp->ls_kstat_lock);
587 mutex_destroy(&lsp->ls_vp_lock);
588 cv_destroy(&lsp->ls_vp_cv);
589 lsp->ls_vp_ready = B_FALSE;
590 lsp->ls_vp_closereq = B_FALSE;
592 ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
593 (void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE);
594 id_free(lofi_id, id);
597 static void
598 lofi_free_dev(struct lofi_state *lsp)
600 ASSERT(MUTEX_HELD(&lofi_lock));
602 if (lsp->ls_cmlbhandle != NULL) {
603 cmlb_invalidate(lsp->ls_cmlbhandle, 0);
604 cmlb_detach(lsp->ls_cmlbhandle, 0);
605 cmlb_free_handle(&lsp->ls_cmlbhandle);
606 lsp->ls_cmlbhandle = NULL;
608 (void) ddi_prop_remove_all(lsp->ls_dip);
609 ddi_remove_minor_node(lsp->ls_dip, NULL);
612 /*ARGSUSED*/
613 static void
614 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
616 struct lofi_state *lsp;
617 struct lofi_state *next;
619 mutex_enter(&lofi_lock);
621 for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
623 /* lofi_destroy() frees lsp */
624 next = list_next(&lofi_list, lsp);
626 if (lsp->ls_zone.zref_zone->zone_id != zoneid)
627 continue;
630 * No in-zone processes are running, but something has this
631 * open. It's either a global zone process, or a lofi
632 * mount. In either case we set ls_cleanup so the last
633 * user destroys the device.
635 if (is_opened(lsp)) {
636 lofi_set_cleanup(lsp);
637 } else {
638 lofi_free_dev(lsp);
639 lofi_destroy(lsp, kcred);
643 mutex_exit(&lofi_lock);
646 /*ARGSUSED*/
647 static int
648 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
650 int id;
651 minor_t part;
652 uint64_t mask;
653 diskaddr_t nblks;
654 diskaddr_t lba;
655 boolean_t ndelay;
657 struct lofi_state *lsp;
659 if (otyp >= OTYPCNT)
660 return (EINVAL);
662 ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
665 * lofiadm -a /dev/lofi/1 gets us here.
667 if (mutex_owner(&lofi_lock) == curthread)
668 return (EINVAL);
670 mutex_enter(&lofi_lock);
672 id = LOFI_MINOR2ID(getminor(*devp));
673 part = LOFI_PART(getminor(*devp));
674 mask = (1U << part);
676 /* master control device */
677 if (id == 0) {
678 mutex_exit(&lofi_lock);
679 return (0);
682 /* otherwise, the mapping should already exist */
683 lsp = ddi_get_soft_state(lofi_statep, id);
684 if (lsp == NULL) {
685 mutex_exit(&lofi_lock);
686 return (EINVAL);
689 if (lsp->ls_cleanup == B_TRUE) {
690 mutex_exit(&lofi_lock);
691 return (ENXIO);
694 if (lsp->ls_vp == NULL) {
695 mutex_exit(&lofi_lock);
696 return (ENXIO);
699 if (lsp->ls_readonly && (flag & FWRITE)) {
700 mutex_exit(&lofi_lock);
701 return (EROFS);
704 if ((lsp->ls_open_excl) & (mask)) {
705 mutex_exit(&lofi_lock);
706 return (EBUSY);
709 if (flag & FEXCL) {
710 if (lsp->ls_open_lyr[part]) {
711 mutex_exit(&lofi_lock);
712 return (EBUSY);
714 for (int i = 0; i < OTYP_LYR; i++) {
715 if (lsp->ls_open_reg[i] & mask) {
716 mutex_exit(&lofi_lock);
717 return (EBUSY);
722 if (lsp->ls_cmlbhandle != NULL) {
723 if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
725 * non-blocking opens are allowed to succeed to
726 * support format and fdisk to create partitioning.
728 if (!ndelay) {
729 mutex_exit(&lofi_lock);
730 return (ENXIO);
732 } else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
733 NULL, NULL, 0) == 0) {
734 if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
735 mutex_exit(&lofi_lock);
736 return (ENXIO);
738 } else if (!ndelay) {
739 mutex_exit(&lofi_lock);
740 return (ENXIO);
744 if (otyp == OTYP_LYR) {
745 lsp->ls_open_lyr[part]++;
746 } else {
747 lsp->ls_open_reg[otyp] |= mask;
749 if (flag & FEXCL) {
750 lsp->ls_open_excl |= mask;
753 mutex_exit(&lofi_lock);
754 return (0);
757 /*ARGSUSED*/
758 static int
759 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
761 minor_t part;
762 int id;
763 uint64_t mask;
764 struct lofi_state *lsp;
766 id = LOFI_MINOR2ID(getminor(dev));
767 part = LOFI_PART(getminor(dev));
768 mask = (1U << part);
770 mutex_enter(&lofi_lock);
771 lsp = ddi_get_soft_state(lofi_statep, id);
772 if (lsp == NULL) {
773 mutex_exit(&lofi_lock);
774 return (EINVAL);
777 if (id == 0) {
778 mutex_exit(&lofi_lock);
779 return (0);
782 if (lsp->ls_open_excl & mask)
783 lsp->ls_open_excl &= ~mask;
785 if (otyp == OTYP_LYR) {
786 lsp->ls_open_lyr[part]--;
787 } else {
788 lsp->ls_open_reg[otyp] &= ~mask;
792 * If we forcibly closed the underlying device (li_force), or
793 * asked for cleanup (li_cleanup), finish up if we're the last
794 * out of the door.
796 if (!is_opened(lsp) &&
797 (lsp->ls_cleanup == B_TRUE || lsp->ls_vp == NULL)) {
798 lofi_free_dev(lsp);
799 lofi_destroy(lsp, credp);
802 mutex_exit(&lofi_lock);
803 return (0);
807 * Sets the mechanism's initialization vector (IV) if one is needed.
808 * The IV is computed from the data block number. lsp->ls_mech is
809 * altered so that:
810 * lsp->ls_mech.cm_param_len is set to the IV len.
811 * lsp->ls_mech.cm_param is set to the IV.
813 static int
814 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
816 int ret;
817 crypto_data_t cdata;
818 char *iv;
819 size_t iv_len;
820 size_t min;
821 void *data;
822 size_t datasz;
824 ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
826 if (lsp == NULL)
827 return (CRYPTO_DEVICE_ERROR);
829 /* lsp->ls_mech.cm_param{_len} has already been set for static iv */
830 if (lsp->ls_iv_type == IVM_NONE) {
831 return (CRYPTO_SUCCESS);
835 * if kmem already alloced from previous call and it's the same size
836 * we need now, just recycle it; allocate new kmem only if we have to
838 if (lsp->ls_mech.cm_param == NULL ||
839 lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
840 iv_len = lsp->ls_iv_len;
841 iv = kmem_zalloc(iv_len, KM_SLEEP);
842 } else {
843 iv_len = lsp->ls_mech.cm_param_len;
844 iv = lsp->ls_mech.cm_param;
845 bzero(iv, iv_len);
848 switch (lsp->ls_iv_type) {
849 case IVM_ENC_BLKNO:
850 /* iv is not static, lblkno changes each time */
851 data = &lblkno;
852 datasz = sizeof (lblkno);
853 break;
854 default:
855 data = 0;
856 datasz = 0;
857 break;
861 * write blkno into the iv buffer padded on the left in case
862 * blkno ever grows bigger than its current longlong_t size
863 * or a variation other than blkno is used for the iv data
865 min = MIN(datasz, iv_len);
866 bcopy(data, iv + (iv_len - min), min);
868 /* encrypt the data in-place to get the IV */
869 SETUP_C_DATA(cdata, iv, iv_len);
871 ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
872 NULL, NULL, NULL);
873 if (ret != CRYPTO_SUCCESS) {
874 cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
875 lblkno, ret);
876 if (lsp->ls_mech.cm_param != iv)
877 kmem_free(iv, iv_len);
879 return (ret);
882 /* clean up the iv from the last computation */
883 if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
884 kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
886 lsp->ls_mech.cm_param_len = iv_len;
887 lsp->ls_mech.cm_param = iv;
889 return (CRYPTO_SUCCESS);
893 * Performs encryption and decryption of a chunk of data of size "len",
894 * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of
895 * DEV_BSIZE.
897 static int
898 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
899 caddr_t ciphertext, size_t len, boolean_t op_encrypt)
901 crypto_data_t cdata;
902 crypto_data_t wdata;
903 int ret;
904 longlong_t lblkno = bp->b_lblkno;
906 mutex_enter(&lsp->ls_crypto_lock);
909 * though we could encrypt/decrypt entire "len" chunk of data, we need
910 * to break it into DEV_BSIZE pieces to capture blkno incrementing
912 SETUP_C_DATA(cdata, plaintext, len);
913 cdata.cd_length = DEV_BSIZE;
914 if (ciphertext != NULL) { /* not in-place crypto */
915 SETUP_C_DATA(wdata, ciphertext, len);
916 wdata.cd_length = DEV_BSIZE;
919 do {
920 ret = lofi_blk_mech(lsp, lblkno);
921 if (ret != CRYPTO_SUCCESS)
922 continue;
924 if (op_encrypt) {
925 ret = crypto_encrypt(&lsp->ls_mech, &cdata,
926 &lsp->ls_key, NULL,
927 ((ciphertext != NULL) ? &wdata : NULL), NULL);
928 } else {
929 ret = crypto_decrypt(&lsp->ls_mech, &cdata,
930 &lsp->ls_key, NULL,
931 ((ciphertext != NULL) ? &wdata : NULL), NULL);
934 cdata.cd_offset += DEV_BSIZE;
935 if (ciphertext != NULL)
936 wdata.cd_offset += DEV_BSIZE;
937 lblkno++;
938 } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
940 mutex_exit(&lsp->ls_crypto_lock);
942 if (ret != CRYPTO_SUCCESS) {
943 cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)",
944 op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
945 lblkno, ret);
948 return (ret);
951 #define RDWR_RAW 1
952 #define RDWR_BCOPY 2
954 static int
955 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
956 struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
958 ssize_t resid;
959 int isread;
960 int error;
963 * Handles reads/writes for both plain and encrypted lofi
964 * Note: offset is already shifted by lsp->ls_crypto_offset
965 * when it gets here.
968 isread = bp->b_flags & B_READ;
969 if (isread) {
970 if (method == RDWR_BCOPY) {
971 /* DO NOT update bp->b_resid for bcopy */
972 bcopy(bcopy_locn, bufaddr, len);
973 error = 0;
974 } else { /* RDWR_RAW */
975 error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
976 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
977 &resid);
978 bp->b_resid = resid;
980 if (lsp->ls_crypto_enabled && error == 0) {
981 if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
982 B_FALSE) != CRYPTO_SUCCESS) {
984 * XXX: original code didn't set residual
985 * back to len because no error was expected
986 * from bcopy() if encryption is not enabled
988 if (method != RDWR_BCOPY)
989 bp->b_resid = len;
990 error = EIO;
993 return (error);
994 } else {
995 void *iobuf = bufaddr;
997 if (lsp->ls_crypto_enabled) {
998 /* don't do in-place crypto to keep bufaddr intact */
999 iobuf = kmem_alloc(len, KM_SLEEP);
1000 if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
1001 B_TRUE) != CRYPTO_SUCCESS) {
1002 kmem_free(iobuf, len);
1003 if (method != RDWR_BCOPY)
1004 bp->b_resid = len;
1005 return (EIO);
1008 if (method == RDWR_BCOPY) {
1009 /* DO NOT update bp->b_resid for bcopy */
1010 bcopy(iobuf, bcopy_locn, len);
1011 error = 0;
1012 } else { /* RDWR_RAW */
1013 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
1014 offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
1015 &resid);
1016 bp->b_resid = resid;
1018 if (lsp->ls_crypto_enabled) {
1019 kmem_free(iobuf, len);
1021 return (error);
1025 static int
1026 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
1027 struct lofi_state *lsp)
1029 int error;
1030 offset_t alignedoffset, mapoffset;
1031 size_t xfersize;
1032 int isread;
1033 int smflags;
1034 caddr_t mapaddr;
1035 size_t len;
1036 enum seg_rw srw;
1037 int save_error;
1040 * Note: offset is already shifted by lsp->ls_crypto_offset
1041 * when it gets here.
1043 if (lsp->ls_crypto_enabled)
1044 ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
1047 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1048 * an 8K boundary, but the buf transfer address may not be
1049 * aligned on more than a 512-byte boundary (we don't enforce
1050 * that even though we could). This matters since the initial
1051 * part of the transfer may not start at offset 0 within the
1052 * segmap'd chunk. So we have to compensate for that with
1053 * 'mapoffset'. Subsequent chunks always start off at the
1054 * beginning, and the last is capped by b_resid
1056 * Visually, where "|" represents page map boundaries:
1057 * alignedoffset (mapaddr begins at this segmap boundary)
1058 * | offset (from beginning of file)
1059 * | | len
1060 * v v v
1061 * ===|====X========|====...======|========X====|====
1062 * /-------------...---------------/
1063 * ^ bp->b_bcount/bp->b_resid at start
1064 * /----/--------/----...------/--------/
1065 * ^ ^ ^ ^ ^
1066 * | | | | nth xfersize (<= MAXBSIZE)
1067 * | | 2nd thru n-1st xfersize (= MAXBSIZE)
1068 * | 1st xfersize (<= MAXBSIZE)
1069 * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1071 * Notes: "alignedoffset" is "offset" rounded down to nearest
1072 * MAXBSIZE boundary. "len" is next page boundary of size
1073 * PAGESIZE after "alignedoffset".
1075 mapoffset = offset & MAXBOFFSET;
1076 alignedoffset = offset - mapoffset;
1077 bp->b_resid = bp->b_bcount;
1078 isread = bp->b_flags & B_READ;
1079 srw = isread ? S_READ : S_WRITE;
1080 do {
1081 xfersize = MIN(lsp->ls_vp_comp_size - offset,
1082 MIN(MAXBSIZE - mapoffset, bp->b_resid));
1083 len = roundup(mapoffset + xfersize, PAGESIZE);
1084 mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1085 alignedoffset, MAXBSIZE, 1, srw);
1087 * Now fault in the pages. This lets us check
1088 * for errors before we reference mapaddr and
1089 * try to resolve the fault in bcopy (which would
1090 * panic instead). And this can easily happen,
1091 * particularly if you've lofi'd a file over NFS
1092 * and someone deletes the file on the server.
1094 error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1095 len, F_SOFTLOCK, srw);
1096 if (error) {
1097 (void) segmap_release(segkmap, mapaddr, 0);
1098 if (FC_CODE(error) == FC_OBJERR)
1099 error = FC_ERRNO(error);
1100 else
1101 error = EIO;
1102 break;
1104 /* error may be non-zero for encrypted lofi */
1105 error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1106 RDWR_BCOPY, mapaddr + mapoffset);
1107 if (error == 0) {
1108 bp->b_resid -= xfersize;
1109 bufaddr += xfersize;
1110 offset += xfersize;
1112 smflags = 0;
1113 if (isread) {
1114 smflags |= SM_FREE;
1116 * If we're reading an entire page starting
1117 * at a page boundary, there's a good chance
1118 * we won't need it again. Put it on the
1119 * head of the freelist.
1121 if (mapoffset == 0 && xfersize == MAXBSIZE)
1122 smflags |= SM_DONTNEED;
1123 } else {
1125 * Write back good pages, it is okay to
1126 * always release asynchronous here as we'll
1127 * follow with VOP_FSYNC for B_SYNC buffers.
1129 if (error == 0)
1130 smflags |= SM_WRITE | SM_ASYNC;
1132 (void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1133 len, F_SOFTUNLOCK, srw);
1134 save_error = segmap_release(segkmap, mapaddr, smflags);
1135 if (error == 0)
1136 error = save_error;
1137 /* only the first map may start partial */
1138 mapoffset = 0;
1139 alignedoffset += MAXBSIZE;
1140 } while ((error == 0) && (bp->b_resid > 0) &&
1141 (offset < lsp->ls_vp_comp_size));
1143 return (error);
1147 * Check if segment seg_index is present in the decompressed segment
1148 * data cache.
1150 * Returns a pointer to the decompressed segment data cache entry if
1151 * found, and NULL when decompressed data for this segment is not yet
1152 * cached.
1154 static struct lofi_comp_cache *
1155 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1157 struct lofi_comp_cache *lc;
1159 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1161 for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1162 lc = list_next(&lsp->ls_comp_cache, lc)) {
1163 if (lc->lc_index == seg_index) {
1165 * Decompressed segment data was found in the
1166 * cache.
1168 * The cache uses an LRU replacement strategy;
1169 * move the entry to head of list.
1171 list_remove(&lsp->ls_comp_cache, lc);
1172 list_insert_head(&lsp->ls_comp_cache, lc);
1173 return (lc);
1176 return (NULL);
1180 * Add the data for a decompressed segment at segment index
1181 * seg_index to the cache of the decompressed segments.
1183 * Returns a pointer to the cache element structure in case
1184 * the data was added to the cache; returns NULL when the data
1185 * wasn't cached.
1187 static struct lofi_comp_cache *
1188 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1189 uchar_t *data)
1191 struct lofi_comp_cache *lc;
1193 ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1195 while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1196 lc = list_remove_tail(&lsp->ls_comp_cache);
1197 ASSERT(lc != NULL);
1198 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1199 kmem_free(lc, sizeof (struct lofi_comp_cache));
1200 lsp->ls_comp_cache_count--;
1204 * Do not cache when disabled by tunable variable
1206 if (lofi_max_comp_cache == 0)
1207 return (NULL);
1210 * When the cache has not yet reached the maximum allowed
1211 * number of segments, allocate a new cache element.
1212 * Otherwise the cache is full; reuse the last list element
1213 * (LRU) for caching the decompressed segment data.
1215 * The cache element for the new decompressed segment data is
1216 * added to the head of the list.
1218 if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1219 lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1220 lc->lc_data = NULL;
1221 list_insert_head(&lsp->ls_comp_cache, lc);
1222 lsp->ls_comp_cache_count++;
1223 } else {
1224 lc = list_remove_tail(&lsp->ls_comp_cache);
1225 if (lc == NULL)
1226 return (NULL);
1227 list_insert_head(&lsp->ls_comp_cache, lc);
1231 * Free old uncompressed segment data when reusing a cache
1232 * entry.
1234 if (lc->lc_data != NULL)
1235 kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1237 lc->lc_data = data;
1238 lc->lc_index = seg_index;
1239 return (lc);
1243 /*ARGSUSED*/
1244 static int
1245 gzip_decompress(void *src, size_t srclen, void *dst,
1246 size_t *dstlen, int level)
1248 ASSERT(*dstlen >= srclen);
1250 if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1251 return (-1);
1252 return (0);
1255 #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8)
1256 /*ARGSUSED*/
1257 static int
1258 lzma_decompress(void *src, size_t srclen, void *dst,
1259 size_t *dstlen, int level)
1261 size_t insizepure;
1262 void *actual_src;
1263 ELzmaStatus status;
1265 insizepure = srclen - LZMA_HEADER_SIZE;
1266 actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1268 if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1269 (const Byte *)actual_src, &insizepure,
1270 (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1271 &g_Alloc) != SZ_OK) {
1272 return (-1);
1274 return (0);
1278 * This is basically what strategy used to be before we found we
1279 * needed task queues.
1281 static void
1282 lofi_strategy_task(void *arg)
1284 struct buf *bp = (struct buf *)arg;
1285 int error;
1286 int syncflag = 0;
1287 struct lofi_state *lsp;
1288 offset_t offset;
1289 caddr_t bufaddr;
1290 size_t len;
1291 size_t xfersize;
1292 boolean_t bufinited = B_FALSE;
1294 lsp = ddi_get_soft_state(lofi_statep,
1295 LOFI_MINOR2ID(getminor(bp->b_edev)));
1297 if (lsp == NULL) {
1298 error = ENXIO;
1299 goto errout;
1301 if (lsp->ls_kstat) {
1302 mutex_enter(lsp->ls_kstat->ks_lock);
1303 kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1304 mutex_exit(lsp->ls_kstat->ks_lock);
1307 mutex_enter(&lsp->ls_vp_lock);
1308 lsp->ls_vp_iocount++;
1309 mutex_exit(&lsp->ls_vp_lock);
1311 bp_mapin(bp);
1312 bufaddr = bp->b_un.b_addr;
1313 offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private)
1314 << lsp->ls_lbshift; /* offset within file */
1315 if (lsp->ls_crypto_enabled) {
1316 /* encrypted data really begins after crypto header */
1317 offset += lsp->ls_crypto_offset;
1319 len = bp->b_bcount;
1320 bufinited = B_TRUE;
1322 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1323 error = EIO;
1324 goto errout;
1328 * If we're writing and the buffer was not B_ASYNC
1329 * we'll follow up with a VOP_FSYNC() to force any
1330 * asynchronous I/O to stable storage.
1332 if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1333 syncflag = FSYNC;
1336 * We used to always use vn_rdwr here, but we cannot do that because
1337 * we might decide to read or write from the the underlying
1338 * file during this call, which would be a deadlock because
1339 * we have the rw_lock. So instead we page, unless it's not
1340 * mapable or it's a character device or it's an encrypted lofi.
1342 if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1343 lsp->ls_crypto_enabled) {
1344 error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1345 NULL);
1346 } else if (lsp->ls_uncomp_seg_sz == 0) {
1347 error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1348 } else {
1349 uchar_t *compressed_seg = NULL, *cmpbuf;
1350 uchar_t *uncompressed_seg = NULL;
1351 lofi_compress_info_t *li;
1352 size_t oblkcount;
1353 ulong_t seglen;
1354 uint64_t sblkno, eblkno, cmpbytes;
1355 uint64_t uncompressed_seg_index;
1356 struct lofi_comp_cache *lc;
1357 offset_t sblkoff, eblkoff;
1358 u_offset_t salign, ealign;
1359 u_offset_t sdiff;
1360 uint32_t comp_data_sz;
1361 uint64_t i;
1362 int j;
1365 * From here on we're dealing primarily with compressed files
1367 ASSERT(!lsp->ls_crypto_enabled);
1370 * Compressed files can only be read from and
1371 * not written to
1373 if (!(bp->b_flags & B_READ)) {
1374 bp->b_resid = bp->b_bcount;
1375 error = EROFS;
1376 goto done;
1379 ASSERT(lsp->ls_comp_algorithm_index >= 0);
1380 li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1382 * Compute starting and ending compressed segment numbers
1383 * We use only bitwise operations avoiding division and
1384 * modulus because we enforce the compression segment size
1385 * to a power of 2
1387 sblkno = offset >> lsp->ls_comp_seg_shift;
1388 sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1389 eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1390 eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1393 * Check the decompressed segment cache.
1395 * The cache is used only when the requested data
1396 * is within a segment. Requests that cross
1397 * segment boundaries bypass the cache.
1399 if (sblkno == eblkno ||
1400 (sblkno + 1 == eblkno && eblkoff == 0)) {
1402 * Request doesn't cross a segment boundary,
1403 * now check the cache.
1405 mutex_enter(&lsp->ls_comp_cache_lock);
1406 lc = lofi_find_comp_data(lsp, sblkno);
1407 if (lc != NULL) {
1409 * We've found the decompressed segment
1410 * data in the cache; reuse it.
1412 bcopy(lc->lc_data + sblkoff, bufaddr,
1413 bp->b_bcount);
1414 mutex_exit(&lsp->ls_comp_cache_lock);
1415 bp->b_resid = 0;
1416 error = 0;
1417 goto done;
1419 mutex_exit(&lsp->ls_comp_cache_lock);
1423 * Align start offset to block boundary for segmap
1425 salign = lsp->ls_comp_seg_index[sblkno];
1426 sdiff = salign & (DEV_BSIZE - 1);
1427 salign -= sdiff;
1428 if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1430 * We're dealing with the last segment of
1431 * the compressed file -- the size of this
1432 * segment *may not* be the same as the
1433 * segment size for the file
1435 eblkoff = (offset + bp->b_bcount) &
1436 (lsp->ls_uncomp_last_seg_sz - 1);
1437 ealign = lsp->ls_vp_comp_size;
1438 } else {
1439 ealign = lsp->ls_comp_seg_index[eblkno + 1];
1443 * Preserve original request paramaters
1445 oblkcount = bp->b_bcount;
1448 * Assign the calculated parameters
1450 comp_data_sz = ealign - salign;
1451 bp->b_bcount = comp_data_sz;
1454 * Buffers to hold compressed segments are pre-allocated
1455 * on a per-thread basis. Find a pre-allocated buffer
1456 * that is not currently in use and mark it for use.
1458 mutex_enter(&lsp->ls_comp_bufs_lock);
1459 for (j = 0; j < lofi_taskq_nthreads; j++) {
1460 if (lsp->ls_comp_bufs[j].inuse == 0) {
1461 lsp->ls_comp_bufs[j].inuse = 1;
1462 break;
1466 mutex_exit(&lsp->ls_comp_bufs_lock);
1467 ASSERT(j < lofi_taskq_nthreads);
1470 * If the pre-allocated buffer size does not match
1471 * the size of the I/O request, re-allocate it with
1472 * the appropriate size
1474 if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1475 if (lsp->ls_comp_bufs[j].bufsize > 0)
1476 kmem_free(lsp->ls_comp_bufs[j].buf,
1477 lsp->ls_comp_bufs[j].bufsize);
1478 lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1479 KM_SLEEP);
1480 lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1482 compressed_seg = lsp->ls_comp_bufs[j].buf;
1485 * Map in the calculated number of blocks
1487 error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1488 bp, lsp);
1490 bp->b_bcount = oblkcount;
1491 bp->b_resid = oblkcount;
1492 if (error != 0)
1493 goto done;
1496 * decompress compressed blocks start
1498 cmpbuf = compressed_seg + sdiff;
1499 for (i = sblkno; i <= eblkno; i++) {
1500 ASSERT(i < lsp->ls_comp_index_sz - 1);
1501 uchar_t *useg;
1504 * The last segment is special in that it is
1505 * most likely not going to be the same
1506 * (uncompressed) size as the other segments.
1508 if (i == (lsp->ls_comp_index_sz - 2)) {
1509 seglen = lsp->ls_uncomp_last_seg_sz;
1510 } else {
1511 seglen = lsp->ls_uncomp_seg_sz;
1515 * Each of the segment index entries contains
1516 * the starting block number for that segment.
1517 * The number of compressed bytes in a segment
1518 * is thus the difference between the starting
1519 * block number of this segment and the starting
1520 * block number of the next segment.
1522 cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1523 lsp->ls_comp_seg_index[i];
1526 * The first byte in a compressed segment is a flag
1527 * that indicates whether this segment is compressed
1528 * at all.
1530 * The variable 'useg' is used (instead of
1531 * uncompressed_seg) in this loop to keep a
1532 * reference to the uncompressed segment.
1534 * N.B. If 'useg' is replaced with uncompressed_seg,
1535 * it leads to memory leaks and heap corruption in
1536 * corner cases where compressed segments lie
1537 * adjacent to uncompressed segments.
1539 if (*cmpbuf == UNCOMPRESSED) {
1540 useg = cmpbuf + SEGHDR;
1541 } else {
1542 if (uncompressed_seg == NULL)
1543 uncompressed_seg =
1544 kmem_alloc(lsp->ls_uncomp_seg_sz,
1545 KM_SLEEP);
1546 useg = uncompressed_seg;
1547 uncompressed_seg_index = i;
1549 if (li->l_decompress((cmpbuf + SEGHDR),
1550 (cmpbytes - SEGHDR), uncompressed_seg,
1551 &seglen, li->l_level) != 0) {
1552 error = EIO;
1553 goto done;
1558 * Determine how much uncompressed data we
1559 * have to copy and copy it
1561 xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1562 if (i == eblkno)
1563 xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1565 bcopy((useg + sblkoff), bufaddr, xfersize);
1567 cmpbuf += cmpbytes;
1568 bufaddr += xfersize;
1569 bp->b_resid -= xfersize;
1570 sblkoff = 0;
1572 if (bp->b_resid == 0)
1573 break;
1574 } /* decompress compressed blocks ends */
1577 * Skip to done if there is no uncompressed data to cache
1579 if (uncompressed_seg == NULL)
1580 goto done;
1583 * Add the data for the last decompressed segment to
1584 * the cache.
1586 * In case the uncompressed segment data was added to (and
1587 * is referenced by) the cache, make sure we don't free it
1588 * here.
1590 mutex_enter(&lsp->ls_comp_cache_lock);
1591 if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1592 uncompressed_seg)) != NULL) {
1593 uncompressed_seg = NULL;
1595 mutex_exit(&lsp->ls_comp_cache_lock);
1597 done:
1598 if (compressed_seg != NULL) {
1599 mutex_enter(&lsp->ls_comp_bufs_lock);
1600 lsp->ls_comp_bufs[j].inuse = 0;
1601 mutex_exit(&lsp->ls_comp_bufs_lock);
1603 if (uncompressed_seg != NULL)
1604 kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1605 } /* end of handling compressed files */
1607 if ((error == 0) && (syncflag != 0))
1608 error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1610 errout:
1611 if (bufinited && lsp->ls_kstat) {
1612 size_t n_done = bp->b_bcount - bp->b_resid;
1613 kstat_io_t *kioptr;
1615 mutex_enter(lsp->ls_kstat->ks_lock);
1616 kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1617 if (bp->b_flags & B_READ) {
1618 kioptr->nread += n_done;
1619 kioptr->reads++;
1620 } else {
1621 kioptr->nwritten += n_done;
1622 kioptr->writes++;
1624 kstat_runq_exit(kioptr);
1625 mutex_exit(lsp->ls_kstat->ks_lock);
1628 mutex_enter(&lsp->ls_vp_lock);
1629 if (--lsp->ls_vp_iocount == 0)
1630 cv_broadcast(&lsp->ls_vp_cv);
1631 mutex_exit(&lsp->ls_vp_lock);
1633 bioerror(bp, error);
1634 biodone(bp);
1637 static int
1638 lofi_strategy(struct buf *bp)
1640 struct lofi_state *lsp;
1641 offset_t offset;
1642 minor_t part;
1643 diskaddr_t p_lba;
1644 diskaddr_t p_nblks;
1645 int shift;
1648 * We cannot just do I/O here, because the current thread
1649 * _might_ end up back in here because the underlying filesystem
1650 * wants a buffer, which eventually gets into bio_recycle and
1651 * might call into lofi to write out a delayed-write buffer.
1652 * This is bad if the filesystem above lofi is the same as below.
1654 * We could come up with a complex strategy using threads to
1655 * do the I/O asynchronously, or we could use task queues. task
1656 * queues were incredibly easy so they win.
1659 lsp = ddi_get_soft_state(lofi_statep,
1660 LOFI_MINOR2ID(getminor(bp->b_edev)));
1661 part = LOFI_PART(getminor(bp->b_edev));
1663 if (lsp == NULL) {
1664 bioerror(bp, ENXIO);
1665 biodone(bp);
1666 return (0);
1669 /* Check if we are closing. */
1670 mutex_enter(&lsp->ls_vp_lock);
1671 if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1672 mutex_exit(&lsp->ls_vp_lock);
1673 bioerror(bp, EIO);
1674 biodone(bp);
1675 return (0);
1677 mutex_exit(&lsp->ls_vp_lock);
1679 shift = lsp->ls_lbshift;
1680 p_lba = 0;
1681 p_nblks = lsp->ls_vp_size >> shift;
1683 if (lsp->ls_cmlbhandle != NULL) {
1684 if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1685 NULL, NULL, 0)) {
1686 bioerror(bp, ENXIO);
1687 biodone(bp);
1688 return (0);
1692 /* start block past partition end? */
1693 if (bp->b_lblkno > p_nblks) {
1694 bioerror(bp, ENXIO);
1695 biodone(bp);
1696 return (0);
1699 offset = (bp->b_lblkno+p_lba) << shift; /* offset within file */
1701 mutex_enter(&lsp->ls_vp_lock);
1702 if (lsp->ls_crypto_enabled) {
1703 /* encrypted data really begins after crypto header */
1704 offset += lsp->ls_crypto_offset;
1707 /* make sure we will not pass the file or partition size */
1708 if (offset == lsp->ls_vp_size ||
1709 offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1710 /* EOF */
1711 if ((bp->b_flags & B_READ) != 0) {
1712 bp->b_resid = bp->b_bcount;
1713 bioerror(bp, 0);
1714 } else {
1715 /* writes should fail */
1716 bioerror(bp, ENXIO);
1718 biodone(bp);
1719 mutex_exit(&lsp->ls_vp_lock);
1720 return (0);
1722 if ((offset > lsp->ls_vp_size) ||
1723 (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1724 ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1725 bioerror(bp, ENXIO);
1726 biodone(bp);
1727 mutex_exit(&lsp->ls_vp_lock);
1728 return (0);
1731 mutex_exit(&lsp->ls_vp_lock);
1733 if (lsp->ls_kstat) {
1734 mutex_enter(lsp->ls_kstat->ks_lock);
1735 kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1736 mutex_exit(lsp->ls_kstat->ks_lock);
1738 bp->b_private = (void *)(uintptr_t)p_lba; /* partition start */
1739 (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1740 return (0);
1743 /*ARGSUSED2*/
1744 static int
1745 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1747 if (getminor(dev) == 0)
1748 return (EINVAL);
1749 UIO_CHECK(uio);
1750 return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1753 /*ARGSUSED2*/
1754 static int
1755 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1757 if (getminor(dev) == 0)
1758 return (EINVAL);
1759 UIO_CHECK(uio);
1760 return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1763 /*ARGSUSED2*/
1764 static int
1765 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1767 if (getminor(dev) == 0)
1768 return (EINVAL);
1769 UIO_CHECK(aio->aio_uio);
1770 return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1773 /*ARGSUSED2*/
1774 static int
1775 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1777 if (getminor(dev) == 0)
1778 return (EINVAL);
1779 UIO_CHECK(aio->aio_uio);
1780 return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1783 /*ARGSUSED*/
1784 static int
1785 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1787 struct lofi_state *lsp;
1788 dev_t dev = (dev_t)arg;
1789 int instance;
1791 instance = LOFI_MINOR2ID(getminor(dev));
1792 switch (infocmd) {
1793 case DDI_INFO_DEVT2DEVINFO:
1794 lsp = ddi_get_soft_state(lofi_statep, instance);
1795 if (lsp == NULL)
1796 return (DDI_FAILURE);
1797 *result = lsp->ls_dip;
1798 return (DDI_SUCCESS);
1799 case DDI_INFO_DEVT2INSTANCE:
1800 *result = (void *) (intptr_t)instance;
1801 return (DDI_SUCCESS);
1803 return (DDI_FAILURE);
1806 static int
1807 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
1809 int error = 0;
1810 int instance = ddi_get_instance(lsp->ls_dip);
1812 if (labeled == B_TRUE) {
1813 cmlb_alloc_handle(&lsp->ls_cmlbhandle);
1814 error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
1815 B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
1816 CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
1818 if (error != DDI_SUCCESS) {
1819 cmlb_free_handle(&lsp->ls_cmlbhandle);
1820 lsp->ls_cmlbhandle = NULL;
1821 error = ENXIO;
1823 } else {
1824 /* create minor nodes */
1825 error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
1826 S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
1827 if (error == DDI_SUCCESS) {
1828 error = ddi_create_minor_node(lsp->ls_dip,
1829 LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
1830 DDI_PSEUDO, 0);
1831 if (error != DDI_SUCCESS) {
1832 ddi_remove_minor_node(lsp->ls_dip,
1833 LOFI_BLOCK_NODE);
1834 error = ENXIO;
1836 } else
1837 error = ENXIO;
1839 return (error);
1842 static int
1843 lofi_zone_bind(struct lofi_state *lsp)
1845 int error = 0;
1847 mutex_enter(&curproc->p_lock);
1848 if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
1849 mutex_exit(&curproc->p_lock);
1850 return (error);
1852 mutex_exit(&curproc->p_lock);
1854 if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME,
1855 (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
1856 rctl_decr_lofi(curproc->p_zone, 1);
1857 error = EINVAL;
1858 } else {
1859 zone_init_ref(&lsp->ls_zone);
1860 zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
1862 return (error);
1865 static void
1866 lofi_zone_unbind(struct lofi_state *lsp)
1868 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
1869 rctl_decr_lofi(curproc->p_zone, 1);
1870 zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
1873 static int
1874 lofi_online_dev(dev_info_t *dip)
1876 boolean_t labeled;
1877 int error;
1878 int instance = ddi_get_instance(dip);
1879 struct lofi_state *lsp;
1881 labeled = B_FALSE;
1882 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
1883 labeled = B_TRUE;
1885 /* lsp alloc+init, soft state is freed in lofi_detach */
1886 error = ddi_soft_state_zalloc(lofi_statep, instance);
1887 if (error == DDI_FAILURE) {
1888 return (ENOMEM);
1891 lsp = ddi_get_soft_state(lofi_statep, instance);
1892 lsp->ls_dip = dip;
1894 if ((error = lofi_zone_bind(lsp)) != 0)
1895 goto err;
1897 cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1898 mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1899 mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
1900 mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1901 mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1903 if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
1904 lofi_zone_unbind(lsp);
1905 goto lerr;
1908 /* driver handles kernel-issued IOCTLs */
1909 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1910 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1911 error = DDI_FAILURE;
1912 goto merr;
1915 lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
1916 NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
1917 if (lsp->ls_kstat == NULL) {
1918 (void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
1919 DDI_KERNEL_IOCTL);
1920 error = ENOMEM;
1921 goto merr;
1924 lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1925 kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
1926 kstat_install(lsp->ls_kstat);
1927 return (DDI_SUCCESS);
1928 merr:
1929 if (lsp->ls_cmlbhandle != NULL) {
1930 cmlb_detach(lsp->ls_cmlbhandle, 0);
1931 cmlb_free_handle(&lsp->ls_cmlbhandle);
1933 ddi_remove_minor_node(dip, NULL);
1934 lofi_zone_unbind(lsp);
1935 lerr:
1936 mutex_destroy(&lsp->ls_comp_cache_lock);
1937 mutex_destroy(&lsp->ls_comp_bufs_lock);
1938 mutex_destroy(&lsp->ls_kstat_lock);
1939 mutex_destroy(&lsp->ls_vp_lock);
1940 cv_destroy(&lsp->ls_vp_cv);
1941 err:
1942 ddi_soft_state_free(lofi_statep, instance);
1943 return (error);
1946 static int
1947 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1949 int rv;
1950 int instance = ddi_get_instance(dip);
1951 struct lofi_state *lsp;
1953 if (cmd != DDI_ATTACH)
1954 return (DDI_FAILURE);
1957 * Instance 0 is control instance, attaching control instance
1958 * will set the lofi up and ready.
1960 if (instance == 0) {
1961 rv = ddi_soft_state_zalloc(lofi_statep, 0);
1962 if (rv == DDI_FAILURE) {
1963 return (DDI_FAILURE);
1965 lsp = ddi_get_soft_state(lofi_statep, instance);
1966 rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1967 DDI_PSEUDO, 0);
1968 if (rv == DDI_FAILURE) {
1969 ddi_soft_state_free(lofi_statep, 0);
1970 return (DDI_FAILURE);
1972 /* driver handles kernel-issued IOCTLs */
1973 if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1974 DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1975 ddi_remove_minor_node(dip, NULL);
1976 ddi_soft_state_free(lofi_statep, 0);
1977 return (DDI_FAILURE);
1980 zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1982 lsp->ls_dip = dip;
1983 } else {
1984 if (lofi_online_dev(dip) == DDI_FAILURE)
1985 return (DDI_FAILURE);
1988 ddi_report_dev(dip);
1989 return (DDI_SUCCESS);
1992 static int
1993 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1995 struct lofi_state *lsp;
1996 int instance = ddi_get_instance(dip);
1998 if (cmd != DDI_DETACH)
1999 return (DDI_FAILURE);
2002 * If the instance is not 0, release state.
2003 * The instance 0 is control device, we can not detach it
2004 * before other instances are detached.
2006 if (instance != 0) {
2007 lsp = ddi_get_soft_state(lofi_statep, instance);
2008 if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
2009 ddi_soft_state_free(lofi_statep, instance);
2010 return (DDI_SUCCESS);
2011 } else
2012 return (DDI_FAILURE);
2014 mutex_enter(&lofi_lock);
2016 if (!list_is_empty(&lofi_list)) {
2017 mutex_exit(&lofi_lock);
2018 return (DDI_FAILURE);
2021 ddi_remove_minor_node(dip, NULL);
2022 ddi_prop_remove_all(dip);
2024 mutex_exit(&lofi_lock);
2026 if (zone_key_delete(lofi_zone_key) != 0)
2027 cmn_err(CE_WARN, "failed to delete zone key");
2029 ddi_soft_state_free(lofi_statep, 0);
2031 return (DDI_SUCCESS);
2035 * With the addition of encryption, we must be careful that encryption key is
2036 * wiped before kernel's data structures are freed so it cannot accidentally
2037 * slip out to userland through uninitialized data elsewhere.
2039 static void
2040 free_lofi_ioctl(struct lofi_ioctl *klip)
2042 /* Make sure this encryption key doesn't stick around */
2043 bzero(klip->li_key, sizeof (klip->li_key));
2044 kmem_free(klip, sizeof (struct lofi_ioctl));
2048 * These two functions simplify the rest of the ioctls that need to copyin/out
2049 * the lofi_ioctl structure.
2052 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2053 int flag)
2055 struct lofi_ioctl *klip;
2056 int error;
2058 klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2059 error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2060 if (error)
2061 goto err;
2063 /* ensure NULL termination */
2064 klip->li_filename[MAXPATHLEN-1] = '\0';
2065 klip->li_devpath[MAXPATHLEN-1] = '\0';
2066 klip->li_algorithm[MAXALGLEN-1] = '\0';
2067 klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2068 klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2070 if (klip->li_id > L_MAXMIN32) {
2071 error = EINVAL;
2072 goto err;
2075 return (0);
2077 err:
2078 free_lofi_ioctl(klip);
2079 return (error);
2083 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2084 int flag)
2086 int error;
2089 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2090 * This ensures that an attacker can't trivially find the
2091 * key for a mapping just by issuing the ioctl.
2093 * It can still be found by poking around in kmem with mdb(1),
2094 * but there is no point in making it easy when the info isn't
2095 * of any use in this direction anyway.
2097 * Either way we don't actually have the raw key stored in
2098 * a form that we can get it anyway, since we just used it
2099 * to create a ctx template and didn't keep "the original".
2101 error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2102 if (error)
2103 return (EFAULT);
2104 return (0);
2107 static int
2108 lofi_access(struct lofi_state *lsp)
2110 ASSERT(MUTEX_HELD(&lofi_lock));
2111 if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2112 return (0);
2113 return (EPERM);
2117 * Find the lofi state for the given filename. We compare by vnode to
2118 * allow the global zone visibility into NGZ lofi nodes.
2120 static int
2121 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2122 struct lofi_state **lspp)
2124 struct lofi_state *lsp;
2125 vnode_t *vp = NULL;
2126 int err = 0;
2127 int rdfiles = 0;
2129 ASSERT(MUTEX_HELD(&lofi_lock));
2131 if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2132 NULLVPP, &vp)) != 0)
2133 goto out;
2135 if (vp->v_type == VREG) {
2136 vnode_t *realvp;
2137 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2138 VN_HOLD(realvp);
2139 VN_RELE(vp);
2140 vp = realvp;
2144 for (lsp = list_head(&lofi_list); lsp != NULL;
2145 lsp = list_next(&lofi_list, lsp)) {
2146 if (lsp->ls_vp == vp) {
2147 if (lspp != NULL)
2148 *lspp = lsp;
2149 if (lsp->ls_readonly) {
2150 rdfiles++;
2151 /* Skip if '-r' is specified */
2152 if (readonly)
2153 continue;
2155 goto out;
2159 err = ENOENT;
2162 * If a filename is given as an argument for lofi_unmap, we shouldn't
2163 * allow unmap if there are multiple read-only lofi devices associated
2164 * with this file.
2166 if (lspp != NULL) {
2167 if (rdfiles == 1)
2168 err = 0;
2169 else if (rdfiles > 1)
2170 err = EBUSY;
2173 out:
2174 if (vp != NULL)
2175 VN_RELE(vp);
2176 return (err);
2180 * Find the minor for the given filename, checking the zone can access
2181 * it.
2183 static int
2184 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2186 int err = 0;
2188 ASSERT(MUTEX_HELD(&lofi_lock));
2190 if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2191 return (err);
2193 if ((err = lofi_access(*lspp)) != 0)
2194 return (err);
2196 return (0);
2200 * Fakes up a disk geometry based on the size of the file. This is needed
2201 * to support newfs on traditional lofi device, but also will provide
2202 * geometry hint for cmlb.
2204 static void
2205 fake_disk_geometry(struct lofi_state *lsp)
2207 u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2209 /* dk_geom - see dkio(7I) */
2211 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2212 * of sectors), but that breaks programs like fdisk which want to
2213 * partition a disk by cylinder. With one cylinder, you can't create
2214 * an fdisk partition and put pcfs on it for testing (hard to pick
2215 * a number between one and one).
2217 * The cheezy floppy test is an attempt to not have too few cylinders
2218 * for a small file, or so many on a big file that you waste space
2219 * for backup superblocks or cylinder group structures.
2221 bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2222 if (dsize < (2 * 1024 * 1024)) /* floppy? */
2223 lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2224 else
2225 lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2226 /* in case file file is < 100k */
2227 if (lsp->ls_dkg.dkg_ncyl == 0)
2228 lsp->ls_dkg.dkg_ncyl = 1;
2230 lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2231 lsp->ls_dkg.dkg_nhead = 1;
2232 lsp->ls_dkg.dkg_rpm = 7200;
2234 lsp->ls_dkg.dkg_nsect = dsize /
2235 (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2239 * build vtoc - see dkio(7I)
2241 * Fakes one big partition based on the size of the file. This is needed
2242 * because we allow newfs'ing the traditional lofi device and newfs will
2243 * do several disk ioctls to figure out the geometry and partition information.
2244 * It uses that information to determine the parameters to pass to mkfs.
2246 static void
2247 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2249 bzero(vt, sizeof (struct vtoc));
2250 vt->v_sanity = VTOC_SANE;
2251 vt->v_version = V_VERSION;
2252 (void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2253 sizeof (vt->v_volume));
2254 vt->v_sectorsz = 1 << lsp->ls_pbshift;
2255 vt->v_nparts = 1;
2256 vt->v_part[0].p_tag = V_UNASSIGNED;
2259 * A compressed file is read-only, other files can
2260 * be read-write
2262 if (lsp->ls_uncomp_seg_sz > 0) {
2263 vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2264 } else {
2265 vt->v_part[0].p_flag = V_UNMNT;
2267 vt->v_part[0].p_start = (daddr_t)0;
2269 * The partition size cannot just be the number of sectors, because
2270 * that might not end on a cylinder boundary. And if that's the case,
2271 * newfs/mkfs will print a scary warning. So just figure the size
2272 * based on the number of cylinders and sectors/cylinder.
2274 vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2275 lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2279 * build dk_cinfo - see dkio(7I)
2281 static void
2282 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2284 bzero(ci, sizeof (struct dk_cinfo));
2285 (void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2286 ci->dki_ctype = DKC_SCSI_CCS;
2287 (void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2288 ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2289 ci->dki_partition = LOFI_PART(getminor(dev));
2291 * newfs uses this to set maxcontig. Must not be < 16, or it
2292 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2293 * it by the block size. Then tunefs doesn't work because
2294 * maxcontig is 0.
2296 ci->dki_maxtransfer = 16;
2300 * map in a compressed file
2302 * Read in the header and the index that follows.
2304 * The header is as follows -
2306 * Signature (name of the compression algorithm)
2307 * Compression segment size (a multiple of 512)
2308 * Number of index entries
2309 * Size of the last block
2310 * The array containing the index entries
2312 * The header information is always stored in
2313 * network byte order on disk.
2315 static int
2316 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2318 uint32_t index_sz, header_len, i;
2319 ssize_t resid;
2320 enum uio_rw rw;
2321 char *tbuf = buf;
2322 int error;
2324 /* The signature has already been read */
2325 tbuf += sizeof (lsp->ls_comp_algorithm);
2326 bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2327 lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2330 * The compressed segment size must be a power of 2
2332 if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2333 !ISP2(lsp->ls_uncomp_seg_sz))
2334 return (EINVAL);
2336 for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2339 lsp->ls_comp_seg_shift = i;
2341 tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2342 bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2343 lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2345 tbuf += sizeof (lsp->ls_comp_index_sz);
2346 bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2347 sizeof (lsp->ls_uncomp_last_seg_sz));
2348 lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2351 * Compute the total size of the uncompressed data
2352 * for use in fake_disk_geometry and other calculations.
2353 * Disk geometry has to be faked with respect to the
2354 * actual uncompressed data size rather than the
2355 * compressed file size.
2357 lsp->ls_vp_size =
2358 (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2359 + lsp->ls_uncomp_last_seg_sz;
2362 * Index size is rounded up to DEV_BSIZE for ease
2363 * of segmapping
2365 index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2366 header_len = sizeof (lsp->ls_comp_algorithm) +
2367 sizeof (lsp->ls_uncomp_seg_sz) +
2368 sizeof (lsp->ls_comp_index_sz) +
2369 sizeof (lsp->ls_uncomp_last_seg_sz);
2370 lsp->ls_comp_offbase = header_len + index_sz;
2372 index_sz += header_len;
2373 index_sz = roundup(index_sz, DEV_BSIZE);
2375 lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2376 lsp->ls_comp_index_data_sz = index_sz;
2379 * Read in the index -- this has a side-effect
2380 * of reading in the header as well
2382 rw = UIO_READ;
2383 error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2384 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2386 if (error != 0)
2387 return (error);
2389 /* Skip the header, this is where the index really begins */
2390 lsp->ls_comp_seg_index =
2391 /*LINTED*/
2392 (uint64_t *)(lsp->ls_comp_index_data + header_len);
2395 * Now recompute offsets in the index to account for
2396 * the header length
2398 for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2399 lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2400 BE_64(lsp->ls_comp_seg_index[i]);
2403 return (error);
2406 static int
2407 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2409 struct crypto_meta chead;
2410 char buf[DEV_BSIZE];
2411 ssize_t resid;
2412 char *marker;
2413 int error;
2414 int ret;
2415 int i;
2417 if (!klip->li_crypto_enabled)
2418 return (0);
2421 * All current algorithms have a max of 448 bits.
2423 if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2424 return (EINVAL);
2426 if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2427 return (EINVAL);
2429 lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2431 mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2433 lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2434 if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2435 cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2436 klip->li_cipher, klip->li_filename);
2437 return (EINVAL);
2440 /* this is just initialization here */
2441 lsp->ls_mech.cm_param = NULL;
2442 lsp->ls_mech.cm_param_len = 0;
2444 lsp->ls_iv_type = klip->li_iv_type;
2445 lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2446 if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2447 cmn_err(CE_WARN, "invalid iv cipher %s requested"
2448 " for %s", klip->li_iv_cipher, klip->li_filename);
2449 return (EINVAL);
2452 /* iv mech must itself take a null iv */
2453 lsp->ls_iv_mech.cm_param = NULL;
2454 lsp->ls_iv_mech.cm_param_len = 0;
2455 lsp->ls_iv_len = klip->li_iv_len;
2458 * Create ctx using li_cipher & the raw li_key after checking
2459 * that it isn't a weak key.
2461 lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2462 lsp->ls_key.ck_length = klip->li_key_len;
2463 lsp->ls_key.ck_data = kmem_alloc(
2464 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2465 bcopy(klip->li_key, lsp->ls_key.ck_data,
2466 CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2468 ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2469 if (ret != CRYPTO_SUCCESS) {
2470 cmn_err(CE_WARN, "weak key check failed for cipher "
2471 "%s on file %s (0x%x)", klip->li_cipher,
2472 klip->li_filename, ret);
2473 return (EINVAL);
2476 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2477 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2478 if (error != 0)
2479 return (error);
2482 * This is the case where the header in the lofi image is already
2483 * initialized to indicate it is encrypted.
2485 if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2487 * The encryption header information is laid out this way:
2488 * 6 bytes: hex "CFLOFI"
2489 * 2 bytes: version = 0 ... for now
2490 * 96 bytes: reserved1 (not implemented yet)
2491 * 4 bytes: data_sector = 2 ... for now
2492 * more... not implemented yet
2495 marker = buf;
2497 /* copy the magic */
2498 bcopy(marker, lsp->ls_crypto.magic,
2499 sizeof (lsp->ls_crypto.magic));
2500 marker += sizeof (lsp->ls_crypto.magic);
2502 /* read the encryption version number */
2503 bcopy(marker, &(lsp->ls_crypto.version),
2504 sizeof (lsp->ls_crypto.version));
2505 lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2506 marker += sizeof (lsp->ls_crypto.version);
2508 /* read a chunk of reserved data */
2509 bcopy(marker, lsp->ls_crypto.reserved1,
2510 sizeof (lsp->ls_crypto.reserved1));
2511 marker += sizeof (lsp->ls_crypto.reserved1);
2513 /* read block number where encrypted data begins */
2514 bcopy(marker, &(lsp->ls_crypto.data_sector),
2515 sizeof (lsp->ls_crypto.data_sector));
2516 lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2517 marker += sizeof (lsp->ls_crypto.data_sector);
2519 /* and ignore the rest until it is implemented */
2521 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2522 return (0);
2526 * We've requested encryption, but no magic was found, so it must be
2527 * a new image.
2530 for (i = 0; i < sizeof (struct crypto_meta); i++) {
2531 if (buf[i] != '\0')
2532 return (EINVAL);
2535 marker = buf;
2536 bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2537 marker += sizeof (lofi_crypto_magic);
2538 chead.version = htons(LOFI_CRYPTO_VERSION);
2539 bcopy(&(chead.version), marker, sizeof (chead.version));
2540 marker += sizeof (chead.version);
2541 marker += sizeof (chead.reserved1);
2542 chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2543 bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2545 /* write the header */
2546 error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2547 CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2548 if (error != 0)
2549 return (error);
2551 /* fix things up so it looks like we read this info */
2552 bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2553 sizeof (lofi_crypto_magic));
2554 lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2555 lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2556 lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2557 return (0);
2561 * Check to see if the passed in signature is a valid one. If it is
2562 * valid, return the index into lofi_compress_table.
2564 * Return -1 if it is invalid
2566 static int
2567 lofi_compress_select(const char *signature)
2569 int i;
2571 for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2572 if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2573 return (i);
2576 return (-1);
2579 static int
2580 lofi_init_compress(struct lofi_state *lsp)
2582 char buf[DEV_BSIZE];
2583 int compress_index;
2584 ssize_t resid;
2585 int error;
2587 error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2588 0, RLIM64_INFINITY, kcred, &resid);
2590 if (error != 0)
2591 return (error);
2593 if ((compress_index = lofi_compress_select(buf)) == -1)
2594 return (0);
2596 /* compression and encryption are mutually exclusive */
2597 if (lsp->ls_crypto_enabled)
2598 return (ENOTSUP);
2600 /* initialize compression info for compressed lofi */
2601 lsp->ls_comp_algorithm_index = compress_index;
2602 (void) strlcpy(lsp->ls_comp_algorithm,
2603 lofi_compress_table[compress_index].l_name,
2604 sizeof (lsp->ls_comp_algorithm));
2606 /* Finally setup per-thread pre-allocated buffers */
2607 lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2608 sizeof (struct compbuf), KM_SLEEP);
2610 return (lofi_map_compressed_file(lsp, buf));
2614 * Allocate new or proposed id from lofi_id.
2616 * Special cases for proposed id:
2617 * 0: not allowed, 0 is id for control device.
2618 * -1: allocate first usable id from lofi_id.
2619 * any other value is proposed value from userland
2621 * returns DDI_SUCCESS or errno.
2623 static int
2624 lofi_alloc_id(int *idp)
2626 int id, error = DDI_SUCCESS;
2628 if (*idp == -1) {
2629 id = id_allocff_nosleep(lofi_id);
2630 if (id == -1) {
2631 error = EAGAIN;
2632 goto err;
2634 } else if (*idp == 0) {
2635 error = EINVAL;
2636 goto err;
2637 } else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2638 error = ERANGE;
2639 goto err;
2640 } else {
2641 if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2642 error = EEXIST;
2643 goto err;
2646 id = id_alloc_specific_nosleep(lofi_id, *idp);
2647 if (id == -1) {
2648 error = EAGAIN;
2649 goto err;
2652 *idp = id;
2653 err:
2654 return (error);
2657 static int
2658 lofi_create_dev(struct lofi_ioctl *klip)
2660 dev_info_t *parent, *child;
2661 struct lofi_state *lsp = NULL;
2662 char namebuf[MAXNAMELEN];
2663 int error, circ;
2665 /* get control device */
2666 lsp = ddi_get_soft_state(lofi_statep, 0);
2667 parent = ddi_get_parent(lsp->ls_dip);
2669 if ((error = lofi_alloc_id((int *)&klip->li_id)))
2670 return (error);
2672 (void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2673 klip->li_id);
2675 ndi_devi_enter(parent, &circ);
2676 child = ndi_devi_findchild(parent, namebuf);
2677 ndi_devi_exit(parent, circ);
2679 if (child == NULL) {
2680 child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2681 (pnode_t)DEVI_SID_NODEID, klip->li_id);
2682 if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2683 "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2684 goto err;
2686 if (klip->li_labeled == B_TRUE) {
2687 if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2688 DDI_PROP_CANSLEEP, "labeled", 0, 0))
2689 != DDI_PROP_SUCCESS)
2690 goto err;
2693 if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2694 != NDI_SUCCESS)
2695 goto err;
2696 } else {
2697 id_free(lofi_id, klip->li_id);
2698 error = EEXIST;
2699 return (error);
2702 goto done;
2704 err:
2705 ddi_prop_remove_all(child);
2706 (void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2707 id_free(lofi_id, klip->li_id);
2708 done:
2710 return (error);
2713 static void
2714 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2716 char *p = NULL;
2718 (void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2720 mutex_enter(&lsp->ls_vp_lock);
2721 if (lsp->ls_vp != NULL)
2722 p = strrchr(lsp->ls_vp->v_path, '/');
2723 if (p != NULL)
2724 (void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2725 mutex_exit(&lsp->ls_vp_lock);
2726 (void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2730 * copy devlink name from event cache
2732 static void
2733 lofi_copy_devpath(struct lofi_ioctl *klip)
2735 int error;
2736 char namebuf[MAXNAMELEN], *str;
2737 clock_t ticks;
2738 nvlist_t *nvl = NULL;
2740 if (klip->li_labeled == B_TRUE)
2741 klip->li_devpath[0] = '\0';
2742 else {
2743 /* no need to wait for messages */
2744 (void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2745 "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2746 return;
2749 (void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2750 ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
2752 mutex_enter(&lofi_devlink_cache.ln_lock);
2753 error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data, namebuf, &nvl);
2754 while (error != 0) {
2755 error = cv_timedwait(&lofi_devlink_cache.ln_cv,
2756 &lofi_devlink_cache.ln_lock, ticks);
2757 if (error == -1)
2758 break;
2759 error = nvlist_lookup_nvlist(lofi_devlink_cache.ln_data,
2760 namebuf, &nvl);
2763 if (nvl != NULL) {
2764 if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) {
2765 (void) strlcpy(klip->li_devpath, str,
2766 sizeof (klip->li_devpath));
2769 mutex_exit(&lofi_devlink_cache.ln_lock);
2773 * map a file to a minor number. Return the minor number.
2775 static int
2776 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2777 int *rvalp, struct cred *credp, int ioctl_flag)
2779 int id = -1;
2780 struct lofi_state *lsp = NULL;
2781 struct lofi_ioctl *klip;
2782 int error;
2783 struct vnode *vp = NULL;
2784 vattr_t vattr;
2785 int flag;
2786 char namebuf[MAXNAMELEN];
2788 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2789 if (error != 0)
2790 return (error);
2792 mutex_enter(&lofi_lock);
2794 if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2795 NULL) == 0) {
2796 error = EBUSY;
2797 goto err;
2800 flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2801 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2802 if (error) {
2803 /* try read-only */
2804 flag &= ~FWRITE;
2805 error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2806 &vp, 0, 0);
2807 if (error)
2808 goto err;
2811 if (!V_ISLOFIABLE(vp->v_type)) {
2812 error = EINVAL;
2813 goto err;
2816 vattr.va_mask = AT_SIZE;
2817 error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2818 if (error)
2819 goto err;
2821 /* the file needs to be a multiple of the block size */
2822 if ((vattr.va_size % DEV_BSIZE) != 0) {
2823 error = EINVAL;
2824 goto err;
2827 if (pickminor) {
2828 klip->li_id = (uint32_t)-1;
2830 if ((error = lofi_create_dev(klip)) != 0)
2831 goto err;
2833 id = klip->li_id;
2834 lsp = ddi_get_soft_state(lofi_statep, id);
2835 if (lsp == NULL)
2836 goto err;
2839 * from this point lofi_destroy() is used to clean up on error
2840 * make sure the basic data is set
2842 list_insert_tail(&lofi_list, lsp);
2843 lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
2845 list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2846 offsetof(struct lofi_comp_cache, lc_list));
2849 * save open mode so file can be closed properly and vnode counts
2850 * updated correctly.
2852 lsp->ls_openflag = flag;
2854 lsp->ls_vp = vp;
2855 lsp->ls_stacked_vp = vp;
2857 lsp->ls_vp_size = vattr.va_size;
2858 lsp->ls_vp_comp_size = lsp->ls_vp_size;
2861 * Try to handle stacked lofs vnodes.
2863 if (vp->v_type == VREG) {
2864 vnode_t *realvp;
2866 if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2868 * We need to use the realvp for uniqueness
2869 * checking, but keep the stacked vp for
2870 * LOFI_GET_FILENAME display.
2872 VN_HOLD(realvp);
2873 lsp->ls_vp = realvp;
2877 lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
2878 lsp->ls_pbshift = lsp->ls_lbshift;
2880 lsp->ls_readonly = klip->li_readonly;
2881 lsp->ls_uncomp_seg_sz = 0;
2882 lsp->ls_comp_algorithm[0] = '\0';
2883 lsp->ls_crypto_offset = 0;
2885 (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2886 LOFI_DRIVER_NAME, id);
2887 lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2888 minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2890 if ((error = lofi_init_crypto(lsp, klip)) != 0)
2891 goto err;
2893 if ((error = lofi_init_compress(lsp)) != 0)
2894 goto err;
2896 fake_disk_geometry(lsp);
2898 /* For unlabeled lofi add Nblocks and Size */
2899 if (klip->li_labeled == B_FALSE) {
2900 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2901 SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset);
2902 if (error != DDI_PROP_SUCCESS) {
2903 error = EINVAL;
2904 goto err;
2906 error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2907 NBLOCKS_PROP_NAME,
2908 (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE);
2909 if (error != DDI_PROP_SUCCESS) {
2910 error = EINVAL;
2911 goto err;
2916 * Notify we are ready to rock.
2918 mutex_enter(&lsp->ls_vp_lock);
2919 lsp->ls_vp_ready = B_TRUE;
2920 cv_broadcast(&lsp->ls_vp_cv);
2921 mutex_exit(&lsp->ls_vp_lock);
2922 mutex_exit(&lofi_lock);
2924 lofi_copy_devpath(klip);
2926 if (rvalp)
2927 *rvalp = id;
2928 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2929 free_lofi_ioctl(klip);
2930 return (0);
2932 err:
2933 if (lsp != NULL) {
2934 lofi_destroy(lsp, credp);
2935 } else {
2936 if (vp != NULL) {
2937 (void) VOP_PUTPAGE(vp, 0, 0, B_INVAL, credp, NULL);
2938 (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2939 VN_RELE(vp);
2943 mutex_exit(&lofi_lock);
2944 free_lofi_ioctl(klip);
2945 return (error);
2949 * unmap a file.
2951 static int
2952 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2953 struct cred *credp, int ioctl_flag)
2955 struct lofi_state *lsp;
2956 struct lofi_ioctl *klip;
2957 int err;
2959 err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2960 if (err != 0)
2961 return (err);
2963 mutex_enter(&lofi_lock);
2964 if (byfilename) {
2965 if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
2966 &lsp)) != 0) {
2967 goto done;
2969 } else if (klip->li_id == 0) {
2970 err = ENXIO;
2971 goto done;
2972 } else {
2973 lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
2976 if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2977 err = ENXIO;
2978 goto done;
2981 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
2984 * If it's still held open, we'll do one of three things:
2986 * If no flag is set, just return EBUSY.
2988 * If the 'cleanup' flag is set, unmap and remove the device when
2989 * the last user finishes.
2991 * If the 'force' flag is set, then we forcibly close the underlying
2992 * file. Subsequent operations will fail, and the DKIOCSTATE ioctl
2993 * will return DKIO_DEV_GONE. When the device is last closed, the
2994 * device will be cleaned up appropriately.
2996 * This is complicated by the fact that we may have outstanding
2997 * dispatched I/Os. Rather than having a single mutex to serialize all
2998 * I/O, we keep a count of the number of outstanding I/O requests
2999 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
3000 * should be dispatched (ls_vp_closereq).
3002 * We set the flag, wait for the number of outstanding I/Os to reach 0,
3003 * and then close the underlying vnode.
3005 if (is_opened(lsp)) {
3006 if (klip->li_force) {
3007 /* Mark the device for cleanup. */
3008 lofi_set_cleanup(lsp);
3009 mutex_enter(&lsp->ls_vp_lock);
3010 lsp->ls_vp_closereq = B_TRUE;
3011 /* Wake up any threads waiting on dkiocstate. */
3012 cv_broadcast(&lsp->ls_vp_cv);
3013 while (lsp->ls_vp_iocount > 0)
3014 cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
3015 mutex_exit(&lsp->ls_vp_lock);
3016 } else if (klip->li_cleanup) {
3017 lofi_set_cleanup(lsp);
3018 } else {
3019 err = EBUSY;
3021 } else {
3022 lofi_free_dev(lsp);
3023 lofi_destroy(lsp, credp);
3026 done:
3027 mutex_exit(&lofi_lock);
3028 if (err == 0)
3029 (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3030 free_lofi_ioctl(klip);
3031 return (err);
3035 * get the filename given the minor number, or the minor number given
3036 * the name.
3038 /*ARGSUSED*/
3039 static int
3040 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
3041 struct cred *credp, int ioctl_flag)
3043 struct lofi_ioctl *klip;
3044 struct lofi_state *lsp;
3045 int error;
3047 error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3048 if (error != 0)
3049 return (error);
3051 switch (which) {
3052 case LOFI_GET_FILENAME:
3053 if (klip->li_id == 0) {
3054 free_lofi_ioctl(klip);
3055 return (EINVAL);
3058 mutex_enter(&lofi_lock);
3059 lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3060 if (lsp == NULL || lofi_access(lsp) != 0) {
3061 mutex_exit(&lofi_lock);
3062 free_lofi_ioctl(klip);
3063 return (ENXIO);
3067 * This may fail if, for example, we're trying to look
3068 * up a zoned NFS path from the global zone.
3070 if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3071 sizeof (klip->li_filename), CRED()) != 0) {
3072 (void) strlcpy(klip->li_filename, "?",
3073 sizeof (klip->li_filename));
3076 klip->li_readonly = lsp->ls_readonly;
3077 klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3079 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3080 sizeof (klip->li_algorithm));
3081 klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3082 mutex_exit(&lofi_lock);
3084 lofi_copy_devpath(klip);
3085 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3086 free_lofi_ioctl(klip);
3087 return (error);
3088 case LOFI_GET_MINOR:
3089 mutex_enter(&lofi_lock);
3090 error = file_to_lofi(klip->li_filename,
3091 klip->li_readonly, &lsp);
3092 if (error != 0) {
3093 mutex_exit(&lofi_lock);
3094 free_lofi_ioctl(klip);
3095 return (error);
3097 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3099 klip->li_readonly = lsp->ls_readonly;
3100 klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3101 mutex_exit(&lofi_lock);
3103 lofi_copy_devpath(klip);
3104 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3106 free_lofi_ioctl(klip);
3107 return (error);
3108 case LOFI_CHECK_COMPRESSED:
3109 mutex_enter(&lofi_lock);
3110 error = file_to_lofi(klip->li_filename,
3111 klip->li_readonly, &lsp);
3112 if (error != 0) {
3113 mutex_exit(&lofi_lock);
3114 free_lofi_ioctl(klip);
3115 return (error);
3118 klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3119 (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3120 sizeof (klip->li_algorithm));
3122 mutex_exit(&lofi_lock);
3123 error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3124 free_lofi_ioctl(klip);
3125 return (error);
3126 default:
3127 free_lofi_ioctl(klip);
3128 return (EINVAL);
3132 static int
3133 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3134 struct uscsi_cmd *uscmd)
3136 int rval;
3138 #ifdef _MULTI_DATAMODEL
3139 switch (ddi_model_convert_from(flag & FMODELS)) {
3140 case DDI_MODEL_ILP32: {
3141 struct uscsi_cmd32 ucmd32;
3143 if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3144 rval = EFAULT;
3145 goto err;
3147 uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3148 break;
3150 case DDI_MODEL_NONE:
3151 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3152 rval = EFAULT;
3153 goto err;
3155 break;
3156 default:
3157 rval = EFAULT;
3158 goto err;
3160 #else
3161 if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3162 rval = EFAULT;
3163 goto err;
3165 #endif /* _MULTI_DATAMODEL */
3166 if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3167 rval = EFAULT;
3168 goto err;
3170 if (cdb->scc_cmd == SCMD_INQUIRY) {
3171 return (0);
3173 err:
3174 return (rval);
3177 static int
3178 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3179 int *rvalp)
3181 int error;
3182 enum dkio_state dkstate;
3183 struct lofi_state *lsp;
3184 int id;
3186 id = LOFI_MINOR2ID(getminor(dev));
3188 /* lofi ioctls only apply to the master device */
3189 if (id == 0) {
3190 struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3193 * the query command only need read-access - i.e., normal
3194 * users are allowed to do those on the ctl device as
3195 * long as they can open it read-only.
3197 switch (cmd) {
3198 case LOFI_MAP_FILE:
3199 if ((flag & FWRITE) == 0)
3200 return (EPERM);
3201 return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3202 case LOFI_MAP_FILE_MINOR:
3203 if ((flag & FWRITE) == 0)
3204 return (EPERM);
3205 return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3206 case LOFI_UNMAP_FILE:
3207 if ((flag & FWRITE) == 0)
3208 return (EPERM);
3209 return (lofi_unmap_file(lip, 1, credp, flag));
3210 case LOFI_UNMAP_FILE_MINOR:
3211 if ((flag & FWRITE) == 0)
3212 return (EPERM);
3213 return (lofi_unmap_file(lip, 0, credp, flag));
3214 case LOFI_GET_FILENAME:
3215 return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3216 credp, flag));
3217 case LOFI_GET_MINOR:
3218 return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3219 credp, flag));
3222 * This API made limited sense when this value was fixed
3223 * at LOFI_MAX_FILES. However, its use to iterate
3224 * across all possible devices in lofiadm means we don't
3225 * want to return L_MAXMIN, but the highest
3226 * *allocated* id.
3228 case LOFI_GET_MAXMINOR:
3229 id = 0;
3231 mutex_enter(&lofi_lock);
3233 for (lsp = list_head(&lofi_list); lsp != NULL;
3234 lsp = list_next(&lofi_list, lsp)) {
3235 int i;
3236 if (lofi_access(lsp) != 0)
3237 continue;
3239 i = ddi_get_instance(lsp->ls_dip);
3240 if (i > id)
3241 id = i;
3244 mutex_exit(&lofi_lock);
3246 error = ddi_copyout(&id, &lip->li_id,
3247 sizeof (id), flag);
3248 if (error)
3249 return (EFAULT);
3250 return (0);
3252 case LOFI_CHECK_COMPRESSED:
3253 return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3254 credp, flag));
3255 default:
3256 return (EINVAL);
3260 mutex_enter(&lofi_lock);
3261 lsp = ddi_get_soft_state(lofi_statep, id);
3262 if (lsp == NULL || lsp->ls_cleanup) {
3263 mutex_exit(&lofi_lock);
3264 return (ENXIO);
3266 mutex_exit(&lofi_lock);
3268 if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3269 "labeled") == 1) {
3270 error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3271 credp, rvalp, 0);
3272 if (error != ENOTTY)
3273 return (error);
3277 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3278 * EIO as if the device was no longer present.
3280 if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3281 return (EIO);
3283 /* these are for faking out utilities like newfs */
3284 switch (cmd) {
3285 case DKIOCGMEDIAINFO:
3286 case DKIOCGMEDIAINFOEXT: {
3287 struct dk_minfo_ext media_info;
3288 int shift = lsp->ls_lbshift;
3289 int size;
3291 if (cmd == DKIOCGMEDIAINFOEXT) {
3292 media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3293 size = sizeof (struct dk_minfo_ext);
3294 } else {
3295 size = sizeof (struct dk_minfo);
3298 media_info.dki_media_type = DK_FIXED_DISK;
3299 media_info.dki_lbsize = 1U << shift;
3300 media_info.dki_capacity =
3301 (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3303 if (ddi_copyout(&media_info, (void *)arg, size, flag))
3304 return (EFAULT);
3305 return (0);
3307 case DKIOCREMOVABLE: {
3308 int i = 0;
3309 if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3310 return (EFAULT);
3311 return (0);
3314 case DKIOCGVTOC: {
3315 struct vtoc vt;
3316 fake_disk_vtoc(lsp, &vt);
3318 switch (ddi_model_convert_from(flag & FMODELS)) {
3319 case DDI_MODEL_ILP32: {
3320 struct vtoc32 vtoc32;
3322 vtoctovtoc32(vt, vtoc32);
3323 if (ddi_copyout(&vtoc32, (void *)arg,
3324 sizeof (struct vtoc32), flag))
3325 return (EFAULT);
3326 break;
3329 case DDI_MODEL_NONE:
3330 if (ddi_copyout(&vt, (void *)arg,
3331 sizeof (struct vtoc), flag))
3332 return (EFAULT);
3333 break;
3335 return (0);
3337 case DKIOCINFO: {
3338 struct dk_cinfo ci;
3339 fake_disk_info(dev, &ci);
3340 if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3341 return (EFAULT);
3342 return (0);
3344 case DKIOCG_VIRTGEOM:
3345 case DKIOCG_PHYGEOM:
3346 case DKIOCGGEOM:
3347 error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3348 sizeof (struct dk_geom), flag);
3349 if (error)
3350 return (EFAULT);
3351 return (0);
3352 case DKIOCSTATE:
3354 * Normally, lofi devices are always in the INSERTED state. If
3355 * a device is forcefully unmapped, then the device transitions
3356 * to the DKIO_DEV_GONE state.
3358 if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3359 flag) != 0)
3360 return (EFAULT);
3362 mutex_enter(&lsp->ls_vp_lock);
3363 while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3364 (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3365 !lsp->ls_cleanup) {
3367 * By virtue of having the device open, we know that
3368 * 'lsp' will remain valid when we return.
3370 if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) {
3371 mutex_exit(&lsp->ls_vp_lock);
3372 return (EINTR);
3376 dkstate = (!lsp->ls_cleanup && lsp->ls_vp != NULL ?
3377 DKIO_INSERTED : DKIO_DEV_GONE);
3378 mutex_exit(&lsp->ls_vp_lock);
3380 if (ddi_copyout(&dkstate, (void *)arg,
3381 sizeof (dkstate), flag) != 0)
3382 return (EFAULT);
3383 return (0);
3384 case USCSICMD: {
3385 struct uscsi_cmd uscmd;
3386 union scsi_cdb cdb;
3388 if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3389 struct scsi_inquiry inq = {0};
3391 lofi_create_inquiry(lsp, &inq);
3392 if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3393 uscmd.uscsi_buflen, flag) != 0)
3394 return (EFAULT);
3395 return (0);
3396 } else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3397 struct scsi_capacity capacity;
3399 capacity.capacity =
3400 BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3401 lsp->ls_lbshift);
3402 capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3403 if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3404 uscmd.uscsi_buflen, flag) != 0)
3405 return (EFAULT);
3406 return (0);
3409 uscmd.uscsi_rqstatus = 0xff;
3410 #ifdef _MULTI_DATAMODEL
3411 switch (ddi_model_convert_from(flag & FMODELS)) {
3412 case DDI_MODEL_ILP32: {
3413 struct uscsi_cmd32 ucmd32;
3414 uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3415 if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3416 flag) != 0)
3417 return (EFAULT);
3418 break;
3420 case DDI_MODEL_NONE:
3421 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3422 flag) != 0)
3423 return (EFAULT);
3424 break;
3425 default:
3426 return (EFAULT);
3428 #else
3429 if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3430 return (EFAULT);
3431 #endif /* _MULTI_DATAMODEL */
3432 return (0);
3434 default:
3435 #ifdef DEBUG
3436 cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3437 #endif /* DEBUG */
3438 return (ENOTTY);
3442 static int
3443 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3444 char *name, caddr_t valuep, int *lengthp)
3446 struct lofi_state *lsp;
3447 int rc;
3449 lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3450 if (lsp == NULL) {
3451 return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3452 name, valuep, lengthp));
3455 rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3456 name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL);
3457 if (rc == DDI_PROP_SUCCESS)
3458 return (rc);
3460 return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags,
3461 name, valuep, lengthp));
3464 static struct cb_ops lofi_cb_ops = {
3465 lofi_open, /* open */
3466 lofi_close, /* close */
3467 lofi_strategy, /* strategy */
3468 nodev, /* print */
3469 nodev, /* dump */
3470 lofi_read, /* read */
3471 lofi_write, /* write */
3472 lofi_ioctl, /* ioctl */
3473 nodev, /* devmap */
3474 nodev, /* mmap */
3475 nodev, /* segmap */
3476 nochpoll, /* poll */
3477 lofi_prop_op, /* prop_op */
3478 0, /* streamtab */
3479 D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */
3480 CB_REV,
3481 lofi_aread,
3482 lofi_awrite
3485 static struct dev_ops lofi_ops = {
3486 DEVO_REV, /* devo_rev, */
3487 0, /* refcnt */
3488 lofi_info, /* info */
3489 nulldev, /* identify */
3490 nulldev, /* probe */
3491 lofi_attach, /* attach */
3492 lofi_detach, /* detach */
3493 nodev, /* reset */
3494 &lofi_cb_ops, /* driver operations */
3495 NULL, /* no bus operations */
3496 NULL, /* power */
3497 ddi_quiesce_not_needed, /* quiesce */
3500 static struct modldrv modldrv = {
3501 &mod_driverops,
3502 "loopback file driver",
3503 &lofi_ops,
3506 static struct modlinkage modlinkage = {
3507 MODREV_1,
3508 &modldrv,
3509 NULL
3513 _init(void)
3515 int error;
3517 list_create(&lofi_list, sizeof (struct lofi_state),
3518 offsetof(struct lofi_state, ls_list));
3520 error = ddi_soft_state_init((void **)&lofi_statep,
3521 sizeof (struct lofi_state), 0);
3522 if (error) {
3523 list_destroy(&lofi_list);
3524 return (error);
3528 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3529 * we need to reserve space for cmlb minor numbers.
3530 * This will leave out 4096 id values on 32bit kernel, which should
3531 * still suffice.
3533 lofi_id = id_space_create("lofi_id", 1,
3534 (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3536 if (lofi_id == NULL) {
3537 ddi_soft_state_fini((void **)&lofi_statep);
3538 list_destroy(&lofi_list);
3539 return (DDI_FAILURE);
3542 mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3544 error = mod_install(&modlinkage);
3546 if (error) {
3547 id_space_destroy(lofi_id);
3548 mutex_destroy(&lofi_lock);
3549 ddi_soft_state_fini((void **)&lofi_statep);
3550 list_destroy(&lofi_list);
3553 return (error);
3557 _fini(void)
3559 int error;
3561 mutex_enter(&lofi_lock);
3563 if (!list_is_empty(&lofi_list)) {
3564 mutex_exit(&lofi_lock);
3565 return (EBUSY);
3568 mutex_exit(&lofi_lock);
3570 error = mod_remove(&modlinkage);
3571 if (error)
3572 return (error);
3574 mutex_destroy(&lofi_lock);
3575 id_space_destroy(lofi_id);
3576 ddi_soft_state_fini((void **)&lofi_statep);
3577 list_destroy(&lofi_list);
3579 return (error);
3583 _info(struct modinfo *modinfop)
3585 return (mod_info(&modlinkage, modinfop));