Merge commit '8671400134a11c848244896ca51a7db4d0f69da4'
[unleashed.git] / kernel / fs / zfs / zcp.c
blobd5d41e8ad606e425f3e70d208dd880787dc08ae9
1 /*
2 * CDDL HEADER START
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
13 * CDDL HEADER END
17 * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
21 * ZFS Channel Programs (ZCP)
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(8) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync. This ensures that no other changes can be written concurrently
29 * with a running Lua script. Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
32 * 1. Atomicity. For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
36 * 2. Performance. If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation. When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
45 * http://www.lua.org/manual/5.2/
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table. Similarly, values returned from
53 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively. Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever. If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occured.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors. In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occured.
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
89 * See zfs-program(8) for more information on high level usage.
92 #include "lua.h"
93 #include "lualib.h"
94 #include "lauxlib.h"
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_synctask.h>
98 #include <sys/dsl_dataset.h>
99 #include <sys/zcp.h>
100 #include <sys/zcp_iter.h>
101 #include <sys/zcp_prop.h>
102 #include <sys/zcp_global.h>
103 #include <util/sscanf.h>
105 #define ZCP_NVLIST_MAX_DEPTH 20
107 uint64_t zfs_lua_check_instrlimit_interval = 100;
108 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
109 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
112 * Forward declarations for mutually recursive functions
114 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
115 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
116 int);
118 typedef struct zcp_alloc_arg {
119 boolean_t aa_must_succeed;
120 int64_t aa_alloc_remaining;
121 int64_t aa_alloc_limit;
122 } zcp_alloc_arg_t;
124 typedef struct zcp_eval_arg {
125 lua_State *ea_state;
126 zcp_alloc_arg_t *ea_allocargs;
127 cred_t *ea_cred;
128 nvlist_t *ea_outnvl;
129 int ea_result;
130 uint64_t ea_instrlimit;
131 } zcp_eval_arg_t;
134 * The outer-most error callback handler for use with lua_pcall(). On
135 * error Lua will call this callback with a single argument that
136 * represents the error value. In most cases this will be a string
137 * containing an error message, but channel programs can use Lua's
138 * error() function to return arbitrary objects as errors. This callback
139 * returns (on the Lua stack) the original error object along with a traceback.
141 * Fatal Lua errors can occur while resources are held, so we also call any
142 * registered cleanup function here.
144 static int
145 zcp_error_handler(lua_State *state)
147 const char *msg;
149 zcp_cleanup(state);
151 VERIFY3U(1, ==, lua_gettop(state));
152 msg = lua_tostring(state, 1);
153 luaL_traceback(state, state, msg, 1);
154 return (1);
158 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
160 va_list alist;
162 va_start(alist, msg);
163 const char *buf = lua_pushvfstring(state, msg, alist);
164 va_end(alist);
166 return (luaL_argerror(state, narg, buf));
170 * Install a new cleanup function, which will be invoked with the given
171 * opaque argument if a fatal error causes the Lua interpreter to longjump out
172 * of a function call.
174 * If an error occurs, the cleanup function will be invoked exactly once and
175 * then unreigstered.
177 * Returns the registered cleanup handler so the caller can deregister it
178 * if no error occurs.
180 zcp_cleanup_handler_t *
181 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
183 zcp_run_info_t *ri = zcp_run_info(state);
185 zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
186 zch->zch_cleanup_func = cleanfunc;
187 zch->zch_cleanup_arg = cleanarg;
188 list_insert_head(&ri->zri_cleanup_handlers, zch);
190 return (zch);
193 void
194 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
196 zcp_run_info_t *ri = zcp_run_info(state);
197 list_remove(&ri->zri_cleanup_handlers, zch);
198 kmem_free(zch, sizeof (*zch));
202 * Execute the currently registered cleanup handlers then free them and
203 * destroy the handler list.
205 void
206 zcp_cleanup(lua_State *state)
208 zcp_run_info_t *ri = zcp_run_info(state);
210 for (zcp_cleanup_handler_t *zch =
211 list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
212 zch = list_remove_head(&ri->zri_cleanup_handlers)) {
213 zch->zch_cleanup_func(zch->zch_cleanup_arg);
214 kmem_free(zch, sizeof (*zch));
219 * Convert the lua table at the given index on the Lua stack to an nvlist
220 * and return it.
222 * If the table can not be converted for any reason, NULL is returned and
223 * an error message is pushed onto the Lua stack.
225 static nvlist_t *
226 zcp_table_to_nvlist(lua_State *state, int index, int depth)
228 nvlist_t *nvl;
230 * Converting a Lua table to an nvlist with key uniqueness checking is
231 * O(n^2) in the number of keys in the nvlist, which can take a long
232 * time when we return a large table from a channel program.
233 * Furthermore, Lua's table interface *almost* guarantees unique keys
234 * on its own (details below). Therefore, we don't use fnvlist_alloc()
235 * here to avoid the built-in uniqueness checking.
237 * The *almost* is because it's possible to have key collisions between
238 * e.g. the string "1" and the number 1, or the string "true" and the
239 * boolean true, so we explicitly check that when we're looking at a
240 * key which is an integer / boolean or a string that can be parsed as
241 * one of those types. In the worst case this could still devolve into
242 * O(n^2), so we only start doing these checks on boolean/integer keys
243 * once we've seen a string key which fits this weird usage pattern.
245 * Ultimately, we still want callers to know that the keys in this
246 * nvlist are unique, so before we return this we set the nvlist's
247 * flags to reflect that.
249 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
252 * Push an empty stack slot where lua_next() will store each
253 * table key.
255 lua_pushnil(state);
256 boolean_t saw_str_could_collide = B_FALSE;
257 while (lua_next(state, index) != 0) {
259 * The next key-value pair from the table at index is
260 * now on the stack, with the key at stack slot -2 and
261 * the value at slot -1.
263 int err = 0;
264 char buf[32];
265 const char *key = NULL;
266 boolean_t key_could_collide = B_FALSE;
268 switch (lua_type(state, -2)) {
269 case LUA_TSTRING:
270 key = lua_tostring(state, -2);
272 /* check if this could collide with a number or bool */
273 long long tmp;
274 int parselen;
275 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
276 parselen == strlen(key)) ||
277 strcmp(key, "true") == 0 ||
278 strcmp(key, "false") == 0) {
279 key_could_collide = B_TRUE;
280 saw_str_could_collide = B_TRUE;
282 break;
283 case LUA_TBOOLEAN:
284 key = (lua_toboolean(state, -2) == B_TRUE ?
285 "true" : "false");
286 if (saw_str_could_collide) {
287 key_could_collide = B_TRUE;
289 break;
290 case LUA_TNUMBER:
291 VERIFY3U(sizeof (buf), >,
292 snprintf(buf, sizeof (buf), "%lld",
293 (longlong_t)lua_tonumber(state, -2)));
294 key = buf;
295 if (saw_str_could_collide) {
296 key_could_collide = B_TRUE;
298 break;
299 default:
300 fnvlist_free(nvl);
301 (void) lua_pushfstring(state, "Invalid key "
302 "type '%s' in table",
303 lua_typename(state, lua_type(state, -2)));
304 return (NULL);
307 * Check for type-mismatched key collisions, and throw an error.
309 if (key_could_collide && nvlist_exists(nvl, key)) {
310 fnvlist_free(nvl);
311 (void) lua_pushfstring(state, "Collision of "
312 "key '%s' in table", key);
313 return (NULL);
316 * Recursively convert the table value and insert into
317 * the new nvlist with the parsed key. To prevent
318 * stack overflow on circular or heavily nested tables,
319 * we track the current nvlist depth.
321 if (depth >= ZCP_NVLIST_MAX_DEPTH) {
322 fnvlist_free(nvl);
323 (void) lua_pushfstring(state, "Maximum table "
324 "depth (%d) exceeded for table",
325 ZCP_NVLIST_MAX_DEPTH);
326 return (NULL);
328 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
329 depth + 1);
330 if (err != 0) {
331 fnvlist_free(nvl);
333 * Error message has been pushed to the lua
334 * stack by the recursive call.
336 return (NULL);
339 * Pop the value pushed by lua_next().
341 lua_pop(state, 1);
345 * Mark the nvlist as having unique keys. This is a little ugly, but we
346 * ensured above that there are no duplicate keys in the nvlist.
348 nvl->nvl_nvflag |= NV_UNIQUE_NAME;
350 return (nvl);
354 * Convert a value from the given index into the lua stack to an nvpair, adding
355 * it to an nvlist with the given key.
357 * Values are converted as follows:
359 * string -> string
360 * number -> int64
361 * boolean -> boolean
362 * nil -> boolean (no value)
364 * Lua tables are converted to nvlists and then inserted. The table's keys
365 * are converted to strings then used as keys in the nvlist to store each table
366 * element. Keys are converted as follows:
368 * string -> no change
369 * number -> "%lld"
370 * boolean -> "true" | "false"
371 * nil -> error
373 * In the case of a key collision, an error is thrown.
375 * If an error is encountered, a nonzero error code is returned, and an error
376 * string will be pushed onto the Lua stack.
378 static int
379 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
380 const char *key, int depth)
383 * Verify that we have enough remaining space in the lua stack to parse
384 * a key-value pair and push an error.
386 if (!lua_checkstack(state, 3)) {
387 (void) lua_pushstring(state, "Lua stack overflow");
388 return (1);
391 index = lua_absindex(state, index);
393 switch (lua_type(state, index)) {
394 case LUA_TNIL:
395 fnvlist_add_boolean(nvl, key);
396 break;
397 case LUA_TBOOLEAN:
398 fnvlist_add_boolean_value(nvl, key,
399 lua_toboolean(state, index));
400 break;
401 case LUA_TNUMBER:
402 fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
403 break;
404 case LUA_TSTRING:
405 fnvlist_add_string(nvl, key, lua_tostring(state, index));
406 break;
407 case LUA_TTABLE: {
408 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
409 if (value_nvl == NULL)
410 return (EINVAL);
412 fnvlist_add_nvlist(nvl, key, value_nvl);
413 fnvlist_free(value_nvl);
414 break;
416 default:
417 (void) lua_pushfstring(state,
418 "Invalid value type '%s' for key '%s'",
419 lua_typename(state, lua_type(state, index)), key);
420 return (EINVAL);
423 return (0);
427 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
429 void
430 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
433 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
434 * stack before returning with a nonzero error code. If an error is
435 * returned, throw a fatal lua error with the given string.
437 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
438 (void) lua_error(state);
442 zcp_lua_to_nvlist_helper(lua_State *state)
444 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
445 const char *key = (const char *)lua_touserdata(state, 1);
446 zcp_lua_to_nvlist(state, 3, nv, key);
447 return (0);
450 void
451 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
452 const char *key, zcp_eval_arg_t *evalargs)
454 int err;
455 lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
456 lua_pushlightuserdata(state, (char *)key);
457 lua_pushlightuserdata(state, nvl);
458 lua_pushvalue(state, 1);
459 lua_remove(state, 1);
460 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
461 if (err != 0) {
462 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
463 evalargs->ea_result = SET_ERROR(ECHRNG);
468 * Push a Lua table representing nvl onto the stack. If it can't be
469 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
470 * be specified as NULL, in which case no error string will be output.
472 * Most nvlists are converted as simple key->value Lua tables, but we make
473 * an exception for the case where all nvlist entries are BOOLEANs (a string
474 * key without a value). In Lua, a table key pointing to a value of Nil
475 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
476 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
477 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
478 * convenience we check for this case, and convert it to a simple Lua array of
479 * strings.
482 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
483 char *errbuf, int errbuf_len)
485 nvpair_t *pair;
486 lua_newtable(state);
487 boolean_t has_values = B_FALSE;
489 * If the list doesn't have any values, just convert it to a string
490 * array.
492 for (pair = nvlist_next_nvpair(nvl, NULL);
493 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
494 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
495 has_values = B_TRUE;
496 break;
499 if (!has_values) {
500 int i = 1;
501 for (pair = nvlist_next_nvpair(nvl, NULL);
502 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
503 (void) lua_pushinteger(state, i);
504 (void) lua_pushstring(state, nvpair_name(pair));
505 (void) lua_settable(state, -3);
506 i++;
508 } else {
509 for (pair = nvlist_next_nvpair(nvl, NULL);
510 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
511 int err = zcp_nvpair_value_to_lua(state, pair,
512 errbuf, errbuf_len);
513 if (err != 0) {
514 lua_pop(state, 1);
515 return (err);
517 (void) lua_setfield(state, -2, nvpair_name(pair));
520 return (0);
524 * Push a Lua object representing the value of "pair" onto the stack.
526 * Only understands boolean_value, string, int64, nvlist,
527 * string_array, and int64_array type values. For other
528 * types, returns EINVAL, fills in errbuf, and pushes nothing.
530 static int
531 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
532 char *errbuf, int errbuf_len)
534 int err = 0;
536 if (pair == NULL) {
537 lua_pushnil(state);
538 return (0);
541 switch (nvpair_type(pair)) {
542 case DATA_TYPE_BOOLEAN_VALUE:
543 (void) lua_pushboolean(state,
544 fnvpair_value_boolean_value(pair));
545 break;
546 case DATA_TYPE_STRING:
547 (void) lua_pushstring(state, fnvpair_value_string(pair));
548 break;
549 case DATA_TYPE_INT64:
550 (void) lua_pushinteger(state, fnvpair_value_int64(pair));
551 break;
552 case DATA_TYPE_NVLIST:
553 err = zcp_nvlist_to_lua(state,
554 fnvpair_value_nvlist(pair), errbuf, errbuf_len);
555 break;
556 case DATA_TYPE_STRING_ARRAY: {
557 char **strarr;
558 uint_t nelem;
559 (void) nvpair_value_string_array(pair, &strarr, &nelem);
560 lua_newtable(state);
561 for (int i = 0; i < nelem; i++) {
562 (void) lua_pushinteger(state, i + 1);
563 (void) lua_pushstring(state, strarr[i]);
564 (void) lua_settable(state, -3);
566 break;
568 case DATA_TYPE_UINT64_ARRAY: {
569 uint64_t *intarr;
570 uint_t nelem;
571 (void) nvpair_value_uint64_array(pair, &intarr, &nelem);
572 lua_newtable(state);
573 for (int i = 0; i < nelem; i++) {
574 (void) lua_pushinteger(state, i + 1);
575 (void) lua_pushinteger(state, intarr[i]);
576 (void) lua_settable(state, -3);
578 break;
580 case DATA_TYPE_INT64_ARRAY: {
581 int64_t *intarr;
582 uint_t nelem;
583 (void) nvpair_value_int64_array(pair, &intarr, &nelem);
584 lua_newtable(state);
585 for (int i = 0; i < nelem; i++) {
586 (void) lua_pushinteger(state, i + 1);
587 (void) lua_pushinteger(state, intarr[i]);
588 (void) lua_settable(state, -3);
590 break;
592 default: {
593 if (errbuf != NULL) {
594 (void) snprintf(errbuf, errbuf_len,
595 "Unhandled nvpair type %d for key '%s'",
596 nvpair_type(pair), nvpair_name(pair));
598 return (EINVAL);
601 return (err);
605 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
606 int error)
608 if (error == ENOENT) {
609 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
610 return (0); /* not reached; zcp_argerror will longjmp */
611 } else if (error == EXDEV) {
612 (void) zcp_argerror(state, 1,
613 "dataset '%s' is not in the target pool '%s'",
614 dsname, spa_name(dp->dp_spa));
615 return (0); /* not reached; zcp_argerror will longjmp */
616 } else if (error == EIO) {
617 (void) luaL_error(state,
618 "I/O error while accessing dataset '%s'", dsname);
619 return (0); /* not reached; luaL_error will longjmp */
620 } else if (error != 0) {
621 (void) luaL_error(state,
622 "unexpected error %d while accessing dataset '%s'",
623 error, dsname);
624 return (0); /* not reached; luaL_error will longjmp */
626 return (0);
630 * Note: will longjmp (via lua_error()) on error.
631 * Assumes that the dsname is argument #1 (for error reporting purposes).
633 dsl_dataset_t *
634 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
635 void *tag)
637 dsl_dataset_t *ds;
638 int error = dsl_dataset_hold(dp, dsname, tag, &ds);
639 (void) zcp_dataset_hold_error(state, dp, dsname, error);
640 return (ds);
643 static int zcp_debug(lua_State *);
644 static zcp_lib_info_t zcp_debug_info = {
645 .name = "debug",
646 .func = zcp_debug,
647 .pargs = {
648 { .za_name = "debug string", .za_lua_type = LUA_TSTRING},
649 {NULL, 0}
651 .kwargs = {
652 {NULL, 0}
656 static int
657 zcp_debug(lua_State *state)
659 const char *dbgstring;
660 zcp_run_info_t *ri = zcp_run_info(state);
661 zcp_lib_info_t *libinfo = &zcp_debug_info;
663 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
665 dbgstring = lua_tostring(state, 1);
667 zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
669 return (0);
672 static int zcp_exists(lua_State *);
673 static zcp_lib_info_t zcp_exists_info = {
674 .name = "exists",
675 .func = zcp_exists,
676 .pargs = {
677 { .za_name = "dataset", .za_lua_type = LUA_TSTRING},
678 {NULL, 0}
680 .kwargs = {
681 {NULL, 0}
685 static int
686 zcp_exists(lua_State *state)
688 zcp_run_info_t *ri = zcp_run_info(state);
689 dsl_pool_t *dp = ri->zri_pool;
690 zcp_lib_info_t *libinfo = &zcp_exists_info;
692 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
694 const char *dsname = lua_tostring(state, 1);
696 dsl_dataset_t *ds;
697 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
698 if (error == 0) {
699 dsl_dataset_rele(ds, FTAG);
700 lua_pushboolean(state, B_TRUE);
701 } else if (error == ENOENT) {
702 lua_pushboolean(state, B_FALSE);
703 } else if (error == EXDEV) {
704 return (luaL_error(state, "dataset '%s' is not in the "
705 "target pool", dsname));
706 } else if (error == EIO) {
707 return (luaL_error(state, "I/O error opening dataset '%s'",
708 dsname));
709 } else if (error != 0) {
710 return (luaL_error(state, "unexpected error %d", error));
713 return (1);
717 * Allocate/realloc/free a buffer for the lua interpreter.
719 * When nsize is 0, behaves as free() and returns NULL.
721 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
722 * at least nsize.
724 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
725 * Shrinking the buffer size never fails.
727 * The original allocated buffer size is stored as a uint64 at the beginning of
728 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
729 * requires that this operation never fail.
731 static void *
732 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
734 zcp_alloc_arg_t *allocargs = ud;
735 int flags = (allocargs->aa_must_succeed) ?
736 KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
738 if (nsize == 0) {
739 if (ptr != NULL) {
740 int64_t *allocbuf = (int64_t *)ptr - 1;
741 int64_t allocsize = *allocbuf;
742 ASSERT3S(allocsize, >, 0);
743 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
744 allocargs->aa_alloc_limit);
745 allocargs->aa_alloc_remaining += allocsize;
746 kmem_free(allocbuf, allocsize);
748 return (NULL);
749 } else if (ptr == NULL) {
750 int64_t *allocbuf;
751 int64_t allocsize = nsize + sizeof (int64_t);
753 if (!allocargs->aa_must_succeed &&
754 (allocsize <= 0 ||
755 allocsize > allocargs->aa_alloc_remaining)) {
756 return (NULL);
759 allocbuf = kmem_alloc(allocsize, flags);
760 if (allocbuf == NULL) {
761 return (NULL);
763 allocargs->aa_alloc_remaining -= allocsize;
765 *allocbuf = allocsize;
766 return (allocbuf + 1);
767 } else if (nsize <= osize) {
769 * If shrinking the buffer, lua requires that the reallocation
770 * never fail.
772 return (ptr);
773 } else {
774 ASSERT3U(nsize, >, osize);
776 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
777 if (luabuf == NULL) {
778 return (NULL);
780 (void) memcpy(luabuf, ptr, osize);
781 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
782 return (luabuf);
786 /* ARGSUSED */
787 static void
788 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
791 * If we're called, check how many instructions the channel program has
792 * executed so far, and compare against the limit.
794 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
795 zcp_run_info_t *ri = lua_touserdata(state, -1);
797 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
798 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
799 ri->zri_timed_out = B_TRUE;
800 (void) lua_pushstring(state,
801 "Channel program timed out.");
802 (void) lua_error(state);
806 static int
807 zcp_panic_cb(lua_State *state)
809 panic("unprotected error in call to Lua API (%s)\n",
810 lua_tostring(state, -1));
811 return (0);
814 static void
815 zcp_eval_impl(dmu_tx_t *tx, boolean_t sync, zcp_eval_arg_t *evalargs)
817 int err;
818 zcp_run_info_t ri;
819 lua_State *state = evalargs->ea_state;
821 VERIFY3U(3, ==, lua_gettop(state));
824 * Store the zcp_run_info_t struct for this run in the Lua registry.
825 * Registry entries are not directly accessible by the Lua scripts but
826 * can be accessed by our callbacks.
828 ri.zri_space_used = 0;
829 ri.zri_pool = dmu_tx_pool(tx);
830 ri.zri_cred = evalargs->ea_cred;
831 ri.zri_tx = tx;
832 ri.zri_timed_out = B_FALSE;
833 ri.zri_sync = sync;
834 list_create(&ri.zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
835 offsetof(zcp_cleanup_handler_t, zch_node));
836 ri.zri_curinstrs = 0;
837 ri.zri_maxinstrs = evalargs->ea_instrlimit;
839 lua_pushlightuserdata(state, &ri);
840 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
841 VERIFY3U(3, ==, lua_gettop(state));
844 * Tell the Lua interpreter to call our handler every count
845 * instructions. Channel programs that execute too many instructions
846 * should die with ETIME.
848 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
849 zfs_lua_check_instrlimit_interval);
852 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
853 * off control to the channel program. Channel programs that use too
854 * much memory should die with ENOSPC.
856 evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
859 * Call the Lua function that open-context passed us. This pops the
860 * function and its input from the stack and pushes any return
861 * or error values.
863 err = lua_pcall(state, 1, LUA_MULTRET, 1);
866 * Let Lua use KM_SLEEP while we interpret the return values.
868 evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
871 * Remove the error handler callback from the stack. At this point,
872 * there shouldn't be any cleanup handler registered in the handler
873 * list (zri_cleanup_handlers), regardless of whether it ran or not.
875 list_destroy(&ri.zri_cleanup_handlers);
876 lua_remove(state, 1);
878 switch (err) {
879 case LUA_OK: {
881 * Lua supports returning multiple values in a single return
882 * statement. Return values will have been pushed onto the
883 * stack:
884 * 1: Return value 1
885 * 2: Return value 2
886 * 3: etc...
887 * To simplify the process of retrieving a return value from a
888 * channel program, we disallow returning more than one value
889 * to ZFS from the Lua script, yielding a singleton return
890 * nvlist of the form { "return": Return value 1 }.
892 int return_count = lua_gettop(state);
894 if (return_count == 1) {
895 evalargs->ea_result = 0;
896 zcp_convert_return_values(state, evalargs->ea_outnvl,
897 ZCP_RET_RETURN, evalargs);
898 } else if (return_count > 1) {
899 evalargs->ea_result = SET_ERROR(ECHRNG);
900 (void) lua_pushfstring(state, "Multiple return "
901 "values not supported");
902 zcp_convert_return_values(state, evalargs->ea_outnvl,
903 ZCP_RET_ERROR, evalargs);
905 break;
907 case LUA_ERRRUN:
908 case LUA_ERRGCMM: {
910 * The channel program encountered a fatal error within the
911 * script, such as failing an assertion, or calling a function
912 * with incompatible arguments. The error value and the
913 * traceback generated by zcp_error_handler() should be on the
914 * stack.
916 VERIFY3U(1, ==, lua_gettop(state));
917 if (ri.zri_timed_out) {
918 evalargs->ea_result = SET_ERROR(ETIME);
919 } else {
920 evalargs->ea_result = SET_ERROR(ECHRNG);
923 zcp_convert_return_values(state, evalargs->ea_outnvl,
924 ZCP_RET_ERROR, evalargs);
925 break;
927 case LUA_ERRERR: {
929 * The channel program encountered a fatal error within the
930 * script, and we encountered another error while trying to
931 * compute the traceback in zcp_error_handler(). We can only
932 * return the error message.
934 VERIFY3U(1, ==, lua_gettop(state));
935 if (ri.zri_timed_out) {
936 evalargs->ea_result = SET_ERROR(ETIME);
937 } else {
938 evalargs->ea_result = SET_ERROR(ECHRNG);
941 zcp_convert_return_values(state, evalargs->ea_outnvl,
942 ZCP_RET_ERROR, evalargs);
943 break;
945 case LUA_ERRMEM:
947 * Lua ran out of memory while running the channel program.
948 * There's not much we can do.
950 evalargs->ea_result = SET_ERROR(ENOSPC);
951 break;
952 default:
953 VERIFY0(err);
957 static void
958 zcp_pool_error(zcp_eval_arg_t *evalargs, const char *poolname)
960 evalargs->ea_result = SET_ERROR(ECHRNG);
961 (void) lua_pushfstring(evalargs->ea_state, "Could not open pool: %s",
962 poolname);
963 zcp_convert_return_values(evalargs->ea_state, evalargs->ea_outnvl,
964 ZCP_RET_ERROR, evalargs);
968 static void
969 zcp_eval_sync(void *arg, dmu_tx_t *tx)
971 zcp_eval_arg_t *evalargs = arg;
974 * Open context should have setup the stack to contain:
975 * 1: Error handler callback
976 * 2: Script to run (converted to a Lua function)
977 * 3: nvlist input to function (converted to Lua table or nil)
979 VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
981 zcp_eval_impl(tx, B_TRUE, evalargs);
984 static void
985 zcp_eval_open(zcp_eval_arg_t *evalargs, const char *poolname)
988 int error;
989 dsl_pool_t *dp;
990 dmu_tx_t *tx;
993 * See comment from the same assertion in zcp_eval_sync().
995 VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
997 error = dsl_pool_hold(poolname, FTAG, &dp);
998 if (error != 0) {
999 zcp_pool_error(evalargs, poolname);
1000 return;
1004 * As we are running in open-context, we have no transaction associated
1005 * with the channel program. At the same time, functions from the
1006 * zfs.check submodule need to be associated with a transaction as
1007 * they are basically dry-runs of their counterparts in the zfs.sync
1008 * submodule. These functions should be able to run in open-context.
1009 * Therefore we create a new transaction that we later abort once
1010 * the channel program has been evaluated.
1012 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1014 zcp_eval_impl(tx, B_FALSE, evalargs);
1016 dmu_tx_abort(tx);
1018 dsl_pool_rele(dp, FTAG);
1022 zcp_eval(const char *poolname, const char *program, boolean_t sync,
1023 uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1025 int err;
1026 lua_State *state;
1027 zcp_eval_arg_t evalargs;
1029 if (instrlimit > zfs_lua_max_instrlimit)
1030 return (SET_ERROR(EINVAL));
1031 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1032 return (SET_ERROR(EINVAL));
1034 zcp_alloc_arg_t allocargs = {
1035 .aa_must_succeed = B_TRUE,
1036 .aa_alloc_remaining = (int64_t)memlimit,
1037 .aa_alloc_limit = (int64_t)memlimit,
1041 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1042 * This should never fail.
1044 state = lua_newstate(zcp_lua_alloc, &allocargs);
1045 VERIFY(state != NULL);
1046 (void) lua_atpanic(state, zcp_panic_cb);
1049 * Load core Lua libraries we want access to.
1051 VERIFY3U(1, ==, luaopen_base(state));
1052 lua_pop(state, 1);
1053 VERIFY3U(1, ==, luaopen_coroutine(state));
1054 lua_setglobal(state, LUA_COLIBNAME);
1055 VERIFY0(lua_gettop(state));
1056 VERIFY3U(1, ==, luaopen_string(state));
1057 lua_setglobal(state, LUA_STRLIBNAME);
1058 VERIFY0(lua_gettop(state));
1059 VERIFY3U(1, ==, luaopen_table(state));
1060 lua_setglobal(state, LUA_TABLIBNAME);
1061 VERIFY0(lua_gettop(state));
1064 * Load globally visible variables such as errno aliases.
1066 zcp_load_globals(state);
1067 VERIFY0(lua_gettop(state));
1070 * Load ZFS-specific modules.
1072 lua_newtable(state);
1073 VERIFY3U(1, ==, zcp_load_list_lib(state));
1074 lua_setfield(state, -2, "list");
1075 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1076 lua_setfield(state, -2, "check");
1077 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1078 lua_setfield(state, -2, "sync");
1079 VERIFY3U(1, ==, zcp_load_get_lib(state));
1080 lua_pushcclosure(state, zcp_debug_info.func, 0);
1081 lua_setfield(state, -2, zcp_debug_info.name);
1082 lua_pushcclosure(state, zcp_exists_info.func, 0);
1083 lua_setfield(state, -2, zcp_exists_info.name);
1084 lua_setglobal(state, "zfs");
1085 VERIFY0(lua_gettop(state));
1088 * Push the error-callback that calculates Lua stack traces on
1089 * unexpected failures.
1091 lua_pushcfunction(state, zcp_error_handler);
1092 VERIFY3U(1, ==, lua_gettop(state));
1095 * Load the actual script as a function onto the stack as text ("t").
1096 * The only valid error condition is a syntax error in the script.
1097 * ERRMEM should not be possible because our allocator is using
1098 * KM_SLEEP. ERRGCMM should not be possible because we have not added
1099 * any objects with __gc metamethods to the interpreter that could
1100 * fail.
1102 err = luaL_loadbufferx(state, program, strlen(program),
1103 "channel program", "t");
1104 if (err == LUA_ERRSYNTAX) {
1105 fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1106 lua_tostring(state, -1));
1107 lua_close(state);
1108 return (SET_ERROR(EINVAL));
1110 VERIFY0(err);
1111 VERIFY3U(2, ==, lua_gettop(state));
1114 * Convert the input nvlist to a Lua object and put it on top of the
1115 * stack.
1117 char errmsg[128];
1118 err = zcp_nvpair_value_to_lua(state, nvarg,
1119 errmsg, sizeof (errmsg));
1120 if (err != 0) {
1121 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1122 lua_close(state);
1123 return (SET_ERROR(EINVAL));
1125 VERIFY3U(3, ==, lua_gettop(state));
1127 evalargs.ea_state = state;
1128 evalargs.ea_allocargs = &allocargs;
1129 evalargs.ea_instrlimit = instrlimit;
1130 evalargs.ea_cred = CRED();
1131 evalargs.ea_outnvl = outnvl;
1132 evalargs.ea_result = 0;
1134 if (sync) {
1135 err = dsl_sync_task(poolname, NULL,
1136 zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1137 if (err != 0)
1138 zcp_pool_error(&evalargs, poolname);
1139 } else {
1140 zcp_eval_open(&evalargs, poolname);
1142 lua_close(state);
1144 return (evalargs.ea_result);
1148 * Retrieve metadata about the currently running channel program.
1150 zcp_run_info_t *
1151 zcp_run_info(lua_State *state)
1153 zcp_run_info_t *ri;
1155 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1156 ri = lua_touserdata(state, -1);
1157 lua_pop(state, 1);
1158 return (ri);
1162 * Argument Parsing
1163 * ================
1165 * The Lua language allows methods to be called with any number
1166 * of arguments of any type. When calling back into ZFS we need to sanitize
1167 * arguments from channel programs to make sure unexpected arguments or
1168 * arguments of the wrong type result in clear error messages. To do this
1169 * in a uniform way all callbacks from channel programs should use the
1170 * zcp_parse_args() function to interpret inputs.
1172 * Positional vs Keyword Arguments
1173 * ===============================
1175 * Every callback function takes a fixed set of required positional arguments
1176 * and optional keyword arguments. For example, the destroy function takes
1177 * a single positional string argument (the name of the dataset to destroy)
1178 * and an optional "defer" keyword boolean argument. When calling lua functions
1179 * with parentheses, only positional arguments can be used:
1181 * zfs.sync.snapshot("rpool@snap")
1183 * To use keyword arguments functions should be called with a single argument
1184 * that is a lua table containing mappings of integer -> positional arguments
1185 * and string -> keyword arguments:
1187 * zfs.sync.snapshot({1="rpool@snap", defer=true})
1189 * The lua language allows curly braces to be used in place of parenthesis as
1190 * syntactic sugar for this calling convention:
1192 * zfs.sync.snapshot{"rpool@snap", defer=true}
1196 * Throw an error and print the given arguments. If there are too many
1197 * arguments to fit in the output buffer, only the error format string is
1198 * output.
1200 static void
1201 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1202 const zcp_arg_t *kwargs, const char *fmt, ...)
1204 int i;
1205 char errmsg[512];
1206 size_t len = sizeof (errmsg);
1207 size_t msglen = 0;
1208 va_list argp;
1210 va_start(argp, fmt);
1211 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1212 va_end(argp);
1215 * Calculate the total length of the final string, including extra
1216 * formatting characters. If the argument dump would be too large,
1217 * only print the error string.
1219 msglen = strlen(errmsg);
1220 msglen += strlen(fname) + 4; /* : + {} + null terminator */
1221 for (i = 0; pargs[i].za_name != NULL; i++) {
1222 msglen += strlen(pargs[i].za_name);
1223 msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1224 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1225 msglen += 5; /* < + ( + )> + , */
1226 else
1227 msglen += 4; /* < + ( + )> */
1229 for (i = 0; kwargs[i].za_name != NULL; i++) {
1230 msglen += strlen(kwargs[i].za_name);
1231 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1232 if (kwargs[i + 1].za_name != NULL)
1233 msglen += 4; /* =( + ) + , */
1234 else
1235 msglen += 3; /* =( + ) */
1238 if (msglen >= len)
1239 (void) luaL_error(state, errmsg);
1241 VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1242 VERIFY3U(len, >, strlcat(errmsg, fname, len));
1243 VERIFY3U(len, >, strlcat(errmsg, "{", len));
1244 for (i = 0; pargs[i].za_name != NULL; i++) {
1245 VERIFY3U(len, >, strlcat(errmsg, "<", len));
1246 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1247 VERIFY3U(len, >, strlcat(errmsg, "(", len));
1248 VERIFY3U(len, >, strlcat(errmsg,
1249 lua_typename(state, pargs[i].za_lua_type), len));
1250 VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1251 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1252 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1255 for (i = 0; kwargs[i].za_name != NULL; i++) {
1256 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1257 VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1258 VERIFY3U(len, >, strlcat(errmsg,
1259 lua_typename(state, kwargs[i].za_lua_type), len));
1260 VERIFY3U(len, >, strlcat(errmsg, ")", len));
1261 if (kwargs[i + 1].za_name != NULL) {
1262 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1265 VERIFY3U(len, >, strlcat(errmsg, "}", len));
1267 (void) luaL_error(state, errmsg);
1268 panic("unreachable code");
1271 static void
1272 zcp_parse_table_args(lua_State *state, const char *fname,
1273 const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1275 int i;
1276 int type;
1278 for (i = 0; pargs[i].za_name != NULL; i++) {
1280 * Check the table for this positional argument, leaving it
1281 * on the top of the stack once we finish validating it.
1283 lua_pushinteger(state, i + 1);
1284 lua_gettable(state, 1);
1286 type = lua_type(state, -1);
1287 if (type == LUA_TNIL) {
1288 zcp_args_error(state, fname, pargs, kwargs,
1289 "too few arguments");
1290 panic("unreachable code");
1291 } else if (type != pargs[i].za_lua_type) {
1292 zcp_args_error(state, fname, pargs, kwargs,
1293 "arg %d wrong type (is '%s', expected '%s')",
1294 i + 1, lua_typename(state, type),
1295 lua_typename(state, pargs[i].za_lua_type));
1296 panic("unreachable code");
1300 * Remove the positional argument from the table.
1302 lua_pushinteger(state, i + 1);
1303 lua_pushnil(state);
1304 lua_settable(state, 1);
1307 for (i = 0; kwargs[i].za_name != NULL; i++) {
1309 * Check the table for this keyword argument, which may be
1310 * nil if it was omitted. Leave the value on the top of
1311 * the stack after validating it.
1313 lua_getfield(state, 1, kwargs[i].za_name);
1315 type = lua_type(state, -1);
1316 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1317 zcp_args_error(state, fname, pargs, kwargs,
1318 "kwarg '%s' wrong type (is '%s', expected '%s')",
1319 kwargs[i].za_name, lua_typename(state, type),
1320 lua_typename(state, kwargs[i].za_lua_type));
1321 panic("unreachable code");
1325 * Remove the keyword argument from the table.
1327 lua_pushnil(state);
1328 lua_setfield(state, 1, kwargs[i].za_name);
1332 * Any entries remaining in the table are invalid inputs, print
1333 * an error message based on what the entry is.
1335 lua_pushnil(state);
1336 if (lua_next(state, 1)) {
1337 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1338 zcp_args_error(state, fname, pargs, kwargs,
1339 "too many positional arguments");
1340 } else if (lua_isstring(state, -2)) {
1341 zcp_args_error(state, fname, pargs, kwargs,
1342 "invalid kwarg '%s'", lua_tostring(state, -2));
1343 } else {
1344 zcp_args_error(state, fname, pargs, kwargs,
1345 "kwarg keys must be strings");
1347 panic("unreachable code");
1350 lua_remove(state, 1);
1353 static void
1354 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1355 const zcp_arg_t *kwargs)
1357 int i;
1358 int type;
1360 for (i = 0; pargs[i].za_name != NULL; i++) {
1361 type = lua_type(state, i + 1);
1362 if (type == LUA_TNONE) {
1363 zcp_args_error(state, fname, pargs, kwargs,
1364 "too few arguments");
1365 panic("unreachable code");
1366 } else if (type != pargs[i].za_lua_type) {
1367 zcp_args_error(state, fname, pargs, kwargs,
1368 "arg %d wrong type (is '%s', expected '%s')",
1369 i + 1, lua_typename(state, type),
1370 lua_typename(state, pargs[i].za_lua_type));
1371 panic("unreachable code");
1374 if (lua_gettop(state) != i) {
1375 zcp_args_error(state, fname, pargs, kwargs,
1376 "too many positional arguments");
1377 panic("unreachable code");
1380 for (i = 0; kwargs[i].za_name != NULL; i++) {
1381 lua_pushnil(state);
1386 * Checks the current Lua stack against an expected set of positional and
1387 * keyword arguments. If the stack does not match the expected arguments
1388 * aborts the current channel program with a useful error message, otherwise
1389 * it re-arranges the stack so that it contains the positional arguments
1390 * followed by the keyword argument values in declaration order. Any missing
1391 * keyword argument will be represented by a nil value on the stack.
1393 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1394 * braces calling convention is assumed, otherwise the stack is parsed for
1395 * positional arguments only.
1397 * This function should be used by every function callback. It should be called
1398 * before the callback manipulates the Lua stack as it assumes the stack
1399 * represents the function arguments.
1401 void
1402 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1403 const zcp_arg_t *kwargs)
1405 if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1406 zcp_parse_table_args(state, fname, pargs, kwargs);
1407 } else {
1408 zcp_parse_pos_args(state, fname, pargs, kwargs);