Merge commit '74ecdb5171c9f3673b9393b1a3dc6f3a65e93895'
[unleashed.git] / arch / x86 / kernel / kdi / kdi_idt.c
blob9706f179b1acd49867cab08b8c8908b0ebf9274a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
25 * Copyright 2018 Joyent, Inc.
29 * Management of KMDB's IDT, which is installed upon KMDB activation.
31 * Debugger activation has two flavors, which cover the cases where KMDB is
32 * loaded at boot, and when it is loaded after boot. In brief, in both cases,
33 * the KDI needs to interpose upon several handlers in the IDT. When
34 * mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the
35 * handlers to what they were before we started.
37 * We also take over the entirety of IDT (except the double-fault handler) on
38 * the active CPU when we're in kmdb so we can handle things like page faults
39 * sensibly.
41 * Boot-loaded KMDB
43 * When we're first activated, we're running on boot's IDT. We need to be able
44 * to function in this world, so we'll install our handlers into boot's IDT.
45 * This is a little complicated: we're using the fake cpu_t set up by
46 * boot_kdi_tmpinit(), so we can't access cpu_idt directly. Instead,
47 * kdi_idt_write() notices that cpu_idt is NULL, and works around this problem.
49 * Later, when we're about to switch to the kernel's IDT, it'll call us via
50 * kdi_idt_sync(), allowing us to add our handlers to the new IDT. While
51 * boot-loaded KMDB can't be unloaded, we still need to save the descriptors we
52 * replace so we can pass traps back to the kernel as necessary.
54 * The last phase of boot-loaded KMDB activation occurs at non-boot CPU
55 * startup. We will be called on each non-boot CPU, thus allowing us to set up
56 * any watchpoints that may have been configured on the boot CPU and interpose
57 * on the given CPU's IDT. We don't save the interposed descriptors in this
58 * case -- see kdi_cpu_init() for details.
60 * Mod-loaded KMDB
62 * This style of activation is much simpler, as the CPUs are already running,
63 * and are using their own copy of the kernel's IDT. We simply interpose upon
64 * each CPU's IDT. We save the handlers we replace, both for deactivation and
65 * for passing traps back to the kernel. Note that for the hypervisors'
66 * benefit, we need to xcall to the other CPUs to do this, since we need to
67 * actively set the trap entries in its virtual IDT from that vcpu's context
68 * rather than just modifying the IDT table from the CPU running kdi_activate().
71 #include <sys/types.h>
72 #include <sys/segments.h>
73 #include <sys/trap.h>
74 #include <sys/cpuvar.h>
75 #include <sys/reboot.h>
76 #include <sys/sunddi.h>
77 #include <sys/archsystm.h>
78 #include <sys/kdi_impl.h>
79 #include <sys/x_call.h>
80 #include <ia32/sys/psw.h>
81 #include <vm/hat_i86.h>
83 #define KDI_GATE_NVECS 3
85 #define KDI_IDT_NOSAVE 0
86 #define KDI_IDT_SAVE 1
88 #define KDI_IDT_DTYPE_KERNEL 0
89 #define KDI_IDT_DTYPE_BOOT 1
91 kdi_cpusave_t *kdi_cpusave;
92 int kdi_ncpusave;
94 static kdi_main_t kdi_kmdb_main;
96 kdi_drreg_t kdi_drreg;
98 #ifndef __amd64
99 /* Used to track the current set of valid kernel selectors. */
100 uint32_t kdi_cs;
101 uint32_t kdi_ds;
102 uint32_t kdi_fs;
103 uint32_t kdi_gs;
104 #endif
106 uintptr_t kdi_kernel_handler;
108 int kdi_trap_switch;
110 #define KDI_MEMRANGES_MAX 2
112 kdi_memrange_t kdi_memranges[KDI_MEMRANGES_MAX];
113 int kdi_nmemranges;
115 typedef void idt_hdlr_f(void);
117 extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4;
118 extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9;
119 extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12;
120 extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_traperr17;
121 extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32;
122 extern idt_hdlr_f kdi_invaltrap;
123 extern size_t kdi_ivct_size;
125 typedef struct kdi_gate_spec {
126 uint_t kgs_vec;
127 uint_t kgs_dpl;
128 } kdi_gate_spec_t;
131 * Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list.
133 static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = {
134 { T_SGLSTP, TRP_KPL },
135 { T_BPTFLT, TRP_UPL },
136 { T_DBGENTR, TRP_KPL }
139 static gate_desc_t kdi_kgates[KDI_GATE_NVECS];
141 extern gate_desc_t kdi_idt[NIDT];
143 struct idt_description {
144 uint_t id_low;
145 uint_t id_high;
146 idt_hdlr_f *id_basehdlr;
147 size_t *id_incrp;
148 } idt_description[] = {
149 { T_ZERODIV, 0, kdi_trap0, NULL },
150 { T_SGLSTP, 0, kdi_trap1, NULL },
151 { T_NMIFLT, 0, kdi_int2, NULL },
152 { T_BPTFLT, 0, kdi_trap3, NULL },
153 { T_OVFLW, 0, kdi_trap4, NULL },
154 { T_BOUNDFLT, 0, kdi_trap5, NULL },
155 { T_ILLINST, 0, kdi_trap6, NULL },
156 { T_NOEXTFLT, 0, kdi_trap7, NULL },
157 { T_DBLFLT, 0, syserrtrap, NULL },
158 { T_EXTOVRFLT, 0, kdi_trap9, NULL },
159 { T_TSSFLT, 0, kdi_traperr10, NULL },
160 { T_SEGFLT, 0, kdi_traperr11, NULL },
161 { T_STKFLT, 0, kdi_traperr12, NULL },
162 { T_GPFLT, 0, kdi_traperr13, NULL },
163 { T_PGFLT, 0, kdi_traperr14, NULL },
164 { 15, 0, kdi_invaltrap, NULL },
165 { T_EXTERRFLT, 0, kdi_trap16, NULL },
166 { T_ALIGNMENT, 0, kdi_traperr17, NULL },
167 { T_MCE, 0, kdi_trap18, NULL },
168 { T_SIMDFPE, 0, kdi_trap19, NULL },
169 { T_DBGENTR, 0, kdi_trap20, NULL },
170 { 21, 31, kdi_invaltrap, NULL },
171 { 32, 255, kdi_ivct32, &kdi_ivct_size },
172 { 0, 0, NULL },
175 void
176 kdi_idt_init(selector_t sel)
178 struct idt_description *id;
179 int i;
181 for (id = idt_description; id->id_basehdlr != NULL; id++) {
182 uint_t high = id->id_high != 0 ? id->id_high : id->id_low;
183 size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0;
185 #if !defined(__xpv)
186 if (kpti_enable && sel == KCS_SEL && id->id_low == T_DBLFLT)
187 id->id_basehdlr = tr_syserrtrap;
188 #endif
190 for (i = id->id_low; i <= high; i++) {
191 caddr_t hdlr = (caddr_t)id->id_basehdlr +
192 incr * (i - id->id_low);
193 set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel,
194 SDT_SYSIGT, TRP_KPL, IST_DBG);
199 static void
200 kdi_idt_gates_install(selector_t sel, int saveold)
202 gate_desc_t gates[KDI_GATE_NVECS];
203 int i;
205 bzero(gates, sizeof (*gates));
207 for (i = 0; i < KDI_GATE_NVECS; i++) {
208 const kdi_gate_spec_t *gs = &kdi_gate_specs[i];
209 uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]);
210 set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT,
211 gs->kgs_dpl, IST_DBG);
214 for (i = 0; i < KDI_GATE_NVECS; i++) {
215 uint_t vec = kdi_gate_specs[i].kgs_vec;
217 if (saveold)
218 kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec];
220 kdi_idt_write(&gates[i], vec);
224 static void
225 kdi_idt_gates_restore(void)
227 int i;
229 for (i = 0; i < KDI_GATE_NVECS; i++)
230 kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec);
234 * Called when we switch to the kernel's IDT. We need to interpose on the
235 * kernel's IDT entries and stop using KMDBCODE_SEL.
237 void
238 kdi_idt_sync(void)
240 kdi_idt_init(KCS_SEL);
241 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
244 void
245 kdi_update_drreg(kdi_drreg_t *drreg)
247 kdi_drreg = *drreg;
250 void
251 kdi_memrange_add(caddr_t base, size_t len)
253 kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges];
255 ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX);
257 mr->mr_base = base;
258 mr->mr_lim = base + len - 1;
259 kdi_nmemranges++;
262 void
263 kdi_idt_switch(kdi_cpusave_t *cpusave)
265 if (cpusave == NULL)
266 kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1);
267 else
268 kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1);
272 * Activation for CPUs other than the boot CPU, called from that CPU's
273 * mp_startup(). We saved the kernel's descriptors when we initialized the
274 * boot CPU, so we don't want to do it again. Saving the handlers from this
275 * CPU's IDT would actually be dangerous with the CPU initialization method in
276 * use at the time of this writing. With that method, the startup code creates
277 * the IDTs for slave CPUs by copying the one used by the boot CPU, which has
278 * already been interposed upon by KMDB. Were we to interpose again, we'd
279 * replace the kernel's descriptors with our own in the save area. By not
280 * saving, but still overwriting, we'll work in the current world, and in any
281 * future world where the IDT is generated from scratch.
283 void
284 kdi_cpu_init(void)
286 kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE);
287 /* Load the debug registers. */
288 kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]);
292 * Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't
293 * loaded at boot.
295 static int
296 kdi_cpu_activate(void)
298 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
299 return (0);
302 void
303 kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave)
305 int i;
306 cpuset_t cpuset;
308 CPUSET_ALL(cpuset);
310 kdi_cpusave = cpusave;
311 kdi_ncpusave = ncpusave;
313 kdi_kmdb_main = main;
315 for (i = 0; i < kdi_ncpusave; i++) {
316 kdi_cpusave[i].krs_cpu_id = i;
318 kdi_cpusave[i].krs_curcrumb =
319 &kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1];
320 kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1;
323 if (boothowto & RB_KMDB)
324 kdi_idt_init(KMDBCODE_SEL);
325 else
326 kdi_idt_init(KCS_SEL);
328 /* The initial selector set. Updated by the debugger-entry code */
329 #ifndef __amd64
330 kdi_cs = B32CODE_SEL;
331 kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL;
332 #endif
334 kdi_memranges[0].mr_base = kdi_segdebugbase;
335 kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1;
336 kdi_nmemranges = 1;
338 kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED;
339 kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED;
341 if (boothowto & RB_KMDB) {
342 kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE);
343 } else {
344 xc_call(0, 0, 0, CPUSET2BV(cpuset),
345 (xc_func_t)kdi_cpu_activate);
349 static int
350 kdi_cpu_deactivate(void)
352 kdi_idt_gates_restore();
353 return (0);
356 void
357 kdi_deactivate(void)
359 cpuset_t cpuset;
360 CPUSET_ALL(cpuset);
362 xc_call(0, 0, 0, CPUSET2BV(cpuset), (xc_func_t)kdi_cpu_deactivate);
363 kdi_nmemranges = 0;
367 * We receive all breakpoints and single step traps. Some of them,
368 * including those from userland and those induced by DTrace providers,
369 * are intended for the kernel, and must be processed there. We adopt
370 * this ours-until-proven-otherwise position due to the painful
371 * consequences of sending the kernel an unexpected breakpoint or
372 * single step. Unless someone can prove to us that the kernel is
373 * prepared to handle the trap, we'll assume there's a problem and will
374 * give the user a chance to debug it.
377 kdi_trap_pass(kdi_cpusave_t *cpusave)
379 greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO];
380 greg_t pc = cpusave->krs_gregs[KDIREG_PC];
381 greg_t cs = cpusave->krs_gregs[KDIREG_CS];
383 if (USERMODE(cs))
384 return (1);
386 if (tt != T_BPTFLT && tt != T_SGLSTP)
387 return (0);
389 if (tt == T_BPTFLT && kdi_dtrace_get_state() ==
390 KDI_DTSTATE_DTRACE_ACTIVE)
391 return (1);
394 * See the comments in the kernel's T_SGLSTP handler for why we need to
395 * do this.
397 #if !defined(__xpv)
398 if (tt == T_SGLSTP &&
399 (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter ||
400 pc == (greg_t)tr_sys_sysenter ||
401 pc == (greg_t)tr_brand_sys_sysenter)) {
402 #else
403 if (tt == T_SGLSTP &&
404 (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter)) {
405 #endif
406 return (1);
409 return (0);
413 * State has been saved, and all CPUs are on the CPU-specific stacks. All
414 * CPUs enter here, and head off into the debugger proper.
416 void
417 kdi_debugger_entry(kdi_cpusave_t *cpusave)
420 * BPTFLT gives us control with %eip set to the instruction *after*
421 * the int 3. Back it off, so we're looking at the instruction that
422 * triggered the fault.
424 if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT)
425 cpusave->krs_gregs[KDIREG_PC]--;
427 kdi_kmdb_main(cpusave);