7502 ztest should run zdb with -G (debug mode)
[unleashed.git] / usr / src / cmd / ztest / ztest.c
blobae0fd4d958ac7b3f089575871a12ee6fd7cdbeec
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
30 * The objective of this program is to provide a DMU/ZAP/SPA stress test
31 * that runs entirely in userland, is easy to use, and easy to extend.
33 * The overall design of the ztest program is as follows:
35 * (1) For each major functional area (e.g. adding vdevs to a pool,
36 * creating and destroying datasets, reading and writing objects, etc)
37 * we have a simple routine to test that functionality. These
38 * individual routines do not have to do anything "stressful".
40 * (2) We turn these simple functionality tests into a stress test by
41 * running them all in parallel, with as many threads as desired,
42 * and spread across as many datasets, objects, and vdevs as desired.
44 * (3) While all this is happening, we inject faults into the pool to
45 * verify that self-healing data really works.
47 * (4) Every time we open a dataset, we change its checksum and compression
48 * functions. Thus even individual objects vary from block to block
49 * in which checksum they use and whether they're compressed.
51 * (5) To verify that we never lose on-disk consistency after a crash,
52 * we run the entire test in a child of the main process.
53 * At random times, the child self-immolates with a SIGKILL.
54 * This is the software equivalent of pulling the power cord.
55 * The parent then runs the test again, using the existing
56 * storage pool, as many times as desired. If backwards compatibility
57 * testing is enabled ztest will sometimes run the "older" version
58 * of ztest after a SIGKILL.
60 * (6) To verify that we don't have future leaks or temporal incursions,
61 * many of the functional tests record the transaction group number
62 * as part of their data. When reading old data, they verify that
63 * the transaction group number is less than the current, open txg.
64 * If you add a new test, please do this if applicable.
66 * When run with no arguments, ztest runs for about five minutes and
67 * produces no output if successful. To get a little bit of information,
68 * specify -V. To get more information, specify -VV, and so on.
70 * To turn this into an overnight stress test, use -T to specify run time.
72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
73 * to increase the pool capacity, fanout, and overall stress level.
75 * Use the -k option to set the desired frequency of kills.
77 * When ztest invokes itself it passes all relevant information through a
78 * temporary file which is mmap-ed in the child process. This allows shared
79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
80 * stored at offset 0 of this file and contains information on the size and
81 * number of shared structures in the file. The information stored in this file
82 * must remain backwards compatible with older versions of ztest so that
83 * ztest can invoke them during backwards compatibility testing (-B).
86 #include <sys/zfs_context.h>
87 #include <sys/spa.h>
88 #include <sys/dmu.h>
89 #include <sys/txg.h>
90 #include <sys/dbuf.h>
91 #include <sys/zap.h>
92 #include <sys/dmu_objset.h>
93 #include <sys/poll.h>
94 #include <sys/stat.h>
95 #include <sys/time.h>
96 #include <sys/wait.h>
97 #include <sys/mman.h>
98 #include <sys/resource.h>
99 #include <sys/zio.h>
100 #include <sys/zil.h>
101 #include <sys/zil_impl.h>
102 #include <sys/vdev_impl.h>
103 #include <sys/vdev_file.h>
104 #include <sys/spa_impl.h>
105 #include <sys/metaslab_impl.h>
106 #include <sys/dsl_prop.h>
107 #include <sys/dsl_dataset.h>
108 #include <sys/dsl_destroy.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <sys/dsl_userhold.h>
114 #include <stdio.h>
115 #include <stdio_ext.h>
116 #include <stdlib.h>
117 #include <unistd.h>
118 #include <signal.h>
119 #include <umem.h>
120 #include <dlfcn.h>
121 #include <ctype.h>
122 #include <math.h>
123 #include <sys/fs/zfs.h>
124 #include <libnvpair.h>
126 static int ztest_fd_data = -1;
127 static int ztest_fd_rand = -1;
129 typedef struct ztest_shared_hdr {
130 uint64_t zh_hdr_size;
131 uint64_t zh_opts_size;
132 uint64_t zh_size;
133 uint64_t zh_stats_size;
134 uint64_t zh_stats_count;
135 uint64_t zh_ds_size;
136 uint64_t zh_ds_count;
137 } ztest_shared_hdr_t;
139 static ztest_shared_hdr_t *ztest_shared_hdr;
141 typedef struct ztest_shared_opts {
142 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
143 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
144 char zo_alt_ztest[MAXNAMELEN];
145 char zo_alt_libpath[MAXNAMELEN];
146 uint64_t zo_vdevs;
147 uint64_t zo_vdevtime;
148 size_t zo_vdev_size;
149 int zo_ashift;
150 int zo_mirrors;
151 int zo_raidz;
152 int zo_raidz_parity;
153 int zo_datasets;
154 int zo_threads;
155 uint64_t zo_passtime;
156 uint64_t zo_killrate;
157 int zo_verbose;
158 int zo_init;
159 uint64_t zo_time;
160 uint64_t zo_maxloops;
161 uint64_t zo_metaslab_gang_bang;
162 } ztest_shared_opts_t;
164 static const ztest_shared_opts_t ztest_opts_defaults = {
165 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
166 .zo_dir = { '/', 't', 'm', 'p', '\0' },
167 .zo_alt_ztest = { '\0' },
168 .zo_alt_libpath = { '\0' },
169 .zo_vdevs = 5,
170 .zo_ashift = SPA_MINBLOCKSHIFT,
171 .zo_mirrors = 2,
172 .zo_raidz = 4,
173 .zo_raidz_parity = 1,
174 .zo_vdev_size = SPA_MINDEVSIZE * 2,
175 .zo_datasets = 7,
176 .zo_threads = 23,
177 .zo_passtime = 60, /* 60 seconds */
178 .zo_killrate = 70, /* 70% kill rate */
179 .zo_verbose = 0,
180 .zo_init = 1,
181 .zo_time = 300, /* 5 minutes */
182 .zo_maxloops = 50, /* max loops during spa_freeze() */
183 .zo_metaslab_gang_bang = 32 << 10
186 extern uint64_t metaslab_gang_bang;
187 extern uint64_t metaslab_df_alloc_threshold;
188 extern uint64_t zfs_deadman_synctime_ms;
189 extern int metaslab_preload_limit;
190 extern boolean_t zfs_compressed_arc_enabled;
192 static ztest_shared_opts_t *ztest_shared_opts;
193 static ztest_shared_opts_t ztest_opts;
195 typedef struct ztest_shared_ds {
196 uint64_t zd_seq;
197 } ztest_shared_ds_t;
199 static ztest_shared_ds_t *ztest_shared_ds;
200 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
202 #define BT_MAGIC 0x123456789abcdefULL
203 #define MAXFAULTS() \
204 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
206 enum ztest_io_type {
207 ZTEST_IO_WRITE_TAG,
208 ZTEST_IO_WRITE_PATTERN,
209 ZTEST_IO_WRITE_ZEROES,
210 ZTEST_IO_TRUNCATE,
211 ZTEST_IO_SETATTR,
212 ZTEST_IO_REWRITE,
213 ZTEST_IO_TYPES
216 typedef struct ztest_block_tag {
217 uint64_t bt_magic;
218 uint64_t bt_objset;
219 uint64_t bt_object;
220 uint64_t bt_offset;
221 uint64_t bt_gen;
222 uint64_t bt_txg;
223 uint64_t bt_crtxg;
224 } ztest_block_tag_t;
226 typedef struct bufwad {
227 uint64_t bw_index;
228 uint64_t bw_txg;
229 uint64_t bw_data;
230 } bufwad_t;
233 * XXX -- fix zfs range locks to be generic so we can use them here.
235 typedef enum {
236 RL_READER,
237 RL_WRITER,
238 RL_APPEND
239 } rl_type_t;
241 typedef struct rll {
242 void *rll_writer;
243 int rll_readers;
244 mutex_t rll_lock;
245 cond_t rll_cv;
246 } rll_t;
248 typedef struct rl {
249 uint64_t rl_object;
250 uint64_t rl_offset;
251 uint64_t rl_size;
252 rll_t *rl_lock;
253 } rl_t;
255 #define ZTEST_RANGE_LOCKS 64
256 #define ZTEST_OBJECT_LOCKS 64
259 * Object descriptor. Used as a template for object lookup/create/remove.
261 typedef struct ztest_od {
262 uint64_t od_dir;
263 uint64_t od_object;
264 dmu_object_type_t od_type;
265 dmu_object_type_t od_crtype;
266 uint64_t od_blocksize;
267 uint64_t od_crblocksize;
268 uint64_t od_gen;
269 uint64_t od_crgen;
270 char od_name[ZFS_MAX_DATASET_NAME_LEN];
271 } ztest_od_t;
274 * Per-dataset state.
276 typedef struct ztest_ds {
277 ztest_shared_ds_t *zd_shared;
278 objset_t *zd_os;
279 rwlock_t zd_zilog_lock;
280 zilog_t *zd_zilog;
281 ztest_od_t *zd_od; /* debugging aid */
282 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
283 mutex_t zd_dirobj_lock;
284 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
285 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
286 } ztest_ds_t;
289 * Per-iteration state.
291 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
293 typedef struct ztest_info {
294 ztest_func_t *zi_func; /* test function */
295 uint64_t zi_iters; /* iterations per execution */
296 uint64_t *zi_interval; /* execute every <interval> seconds */
297 } ztest_info_t;
299 typedef struct ztest_shared_callstate {
300 uint64_t zc_count; /* per-pass count */
301 uint64_t zc_time; /* per-pass time */
302 uint64_t zc_next; /* next time to call this function */
303 } ztest_shared_callstate_t;
305 static ztest_shared_callstate_t *ztest_shared_callstate;
306 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
309 * Note: these aren't static because we want dladdr() to work.
311 ztest_func_t ztest_dmu_read_write;
312 ztest_func_t ztest_dmu_write_parallel;
313 ztest_func_t ztest_dmu_object_alloc_free;
314 ztest_func_t ztest_dmu_commit_callbacks;
315 ztest_func_t ztest_zap;
316 ztest_func_t ztest_zap_parallel;
317 ztest_func_t ztest_zil_commit;
318 ztest_func_t ztest_zil_remount;
319 ztest_func_t ztest_dmu_read_write_zcopy;
320 ztest_func_t ztest_dmu_objset_create_destroy;
321 ztest_func_t ztest_dmu_prealloc;
322 ztest_func_t ztest_fzap;
323 ztest_func_t ztest_dmu_snapshot_create_destroy;
324 ztest_func_t ztest_dsl_prop_get_set;
325 ztest_func_t ztest_spa_prop_get_set;
326 ztest_func_t ztest_spa_create_destroy;
327 ztest_func_t ztest_fault_inject;
328 ztest_func_t ztest_ddt_repair;
329 ztest_func_t ztest_dmu_snapshot_hold;
330 ztest_func_t ztest_spa_rename;
331 ztest_func_t ztest_scrub;
332 ztest_func_t ztest_dsl_dataset_promote_busy;
333 ztest_func_t ztest_vdev_attach_detach;
334 ztest_func_t ztest_vdev_LUN_growth;
335 ztest_func_t ztest_vdev_add_remove;
336 ztest_func_t ztest_vdev_aux_add_remove;
337 ztest_func_t ztest_split_pool;
338 ztest_func_t ztest_reguid;
339 ztest_func_t ztest_spa_upgrade;
341 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
342 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
343 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
344 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
345 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
347 ztest_info_t ztest_info[] = {
348 { ztest_dmu_read_write, 1, &zopt_always },
349 { ztest_dmu_write_parallel, 10, &zopt_always },
350 { ztest_dmu_object_alloc_free, 1, &zopt_always },
351 { ztest_dmu_commit_callbacks, 1, &zopt_always },
352 { ztest_zap, 30, &zopt_always },
353 { ztest_zap_parallel, 100, &zopt_always },
354 { ztest_split_pool, 1, &zopt_always },
355 { ztest_zil_commit, 1, &zopt_incessant },
356 { ztest_zil_remount, 1, &zopt_sometimes },
357 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
358 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
359 { ztest_dsl_prop_get_set, 1, &zopt_often },
360 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
361 #if 0
362 { ztest_dmu_prealloc, 1, &zopt_sometimes },
363 #endif
364 { ztest_fzap, 1, &zopt_sometimes },
365 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
366 { ztest_spa_create_destroy, 1, &zopt_sometimes },
367 { ztest_fault_inject, 1, &zopt_sometimes },
368 { ztest_ddt_repair, 1, &zopt_sometimes },
369 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
370 { ztest_reguid, 1, &zopt_rarely },
371 { ztest_spa_rename, 1, &zopt_rarely },
372 { ztest_scrub, 1, &zopt_rarely },
373 { ztest_spa_upgrade, 1, &zopt_rarely },
374 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
375 { ztest_vdev_attach_detach, 1, &zopt_sometimes },
376 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
377 { ztest_vdev_add_remove, 1,
378 &ztest_opts.zo_vdevtime },
379 { ztest_vdev_aux_add_remove, 1,
380 &ztest_opts.zo_vdevtime },
383 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
386 * The following struct is used to hold a list of uncalled commit callbacks.
387 * The callbacks are ordered by txg number.
389 typedef struct ztest_cb_list {
390 mutex_t zcl_callbacks_lock;
391 list_t zcl_callbacks;
392 } ztest_cb_list_t;
395 * Stuff we need to share writably between parent and child.
397 typedef struct ztest_shared {
398 boolean_t zs_do_init;
399 hrtime_t zs_proc_start;
400 hrtime_t zs_proc_stop;
401 hrtime_t zs_thread_start;
402 hrtime_t zs_thread_stop;
403 hrtime_t zs_thread_kill;
404 uint64_t zs_enospc_count;
405 uint64_t zs_vdev_next_leaf;
406 uint64_t zs_vdev_aux;
407 uint64_t zs_alloc;
408 uint64_t zs_space;
409 uint64_t zs_splits;
410 uint64_t zs_mirrors;
411 uint64_t zs_metaslab_sz;
412 uint64_t zs_metaslab_df_alloc_threshold;
413 uint64_t zs_guid;
414 } ztest_shared_t;
416 #define ID_PARALLEL -1ULL
418 static char ztest_dev_template[] = "%s/%s.%llua";
419 static char ztest_aux_template[] = "%s/%s.%s.%llu";
420 ztest_shared_t *ztest_shared;
422 static spa_t *ztest_spa = NULL;
423 static ztest_ds_t *ztest_ds;
425 static mutex_t ztest_vdev_lock;
428 * The ztest_name_lock protects the pool and dataset namespace used by
429 * the individual tests. To modify the namespace, consumers must grab
430 * this lock as writer. Grabbing the lock as reader will ensure that the
431 * namespace does not change while the lock is held.
433 static rwlock_t ztest_name_lock;
435 static boolean_t ztest_dump_core = B_TRUE;
436 static boolean_t ztest_exiting;
438 /* Global commit callback list */
439 static ztest_cb_list_t zcl;
441 enum ztest_object {
442 ZTEST_META_DNODE = 0,
443 ZTEST_DIROBJ,
444 ZTEST_OBJECTS
447 static void usage(boolean_t) __NORETURN;
450 * These libumem hooks provide a reasonable set of defaults for the allocator's
451 * debugging facilities.
453 const char *
454 _umem_debug_init()
456 return ("default,verbose"); /* $UMEM_DEBUG setting */
459 const char *
460 _umem_logging_init(void)
462 return ("fail,contents"); /* $UMEM_LOGGING setting */
465 #define FATAL_MSG_SZ 1024
467 char *fatal_msg;
469 static void
470 fatal(int do_perror, char *message, ...)
472 va_list args;
473 int save_errno = errno;
474 char buf[FATAL_MSG_SZ];
476 (void) fflush(stdout);
478 va_start(args, message);
479 (void) sprintf(buf, "ztest: ");
480 /* LINTED */
481 (void) vsprintf(buf + strlen(buf), message, args);
482 va_end(args);
483 if (do_perror) {
484 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
485 ": %s", strerror(save_errno));
487 (void) fprintf(stderr, "%s\n", buf);
488 fatal_msg = buf; /* to ease debugging */
489 if (ztest_dump_core)
490 abort();
491 exit(3);
494 static int
495 str2shift(const char *buf)
497 const char *ends = "BKMGTPEZ";
498 int i;
500 if (buf[0] == '\0')
501 return (0);
502 for (i = 0; i < strlen(ends); i++) {
503 if (toupper(buf[0]) == ends[i])
504 break;
506 if (i == strlen(ends)) {
507 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
508 buf);
509 usage(B_FALSE);
511 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
512 return (10*i);
514 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
515 usage(B_FALSE);
516 /* NOTREACHED */
519 static uint64_t
520 nicenumtoull(const char *buf)
522 char *end;
523 uint64_t val;
525 val = strtoull(buf, &end, 0);
526 if (end == buf) {
527 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
528 usage(B_FALSE);
529 } else if (end[0] == '.') {
530 double fval = strtod(buf, &end);
531 fval *= pow(2, str2shift(end));
532 if (fval > UINT64_MAX) {
533 (void) fprintf(stderr, "ztest: value too large: %s\n",
534 buf);
535 usage(B_FALSE);
537 val = (uint64_t)fval;
538 } else {
539 int shift = str2shift(end);
540 if (shift >= 64 || (val << shift) >> shift != val) {
541 (void) fprintf(stderr, "ztest: value too large: %s\n",
542 buf);
543 usage(B_FALSE);
545 val <<= shift;
547 return (val);
550 static void
551 usage(boolean_t requested)
553 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
555 char nice_vdev_size[10];
556 char nice_gang_bang[10];
557 FILE *fp = requested ? stdout : stderr;
559 nicenum(zo->zo_vdev_size, nice_vdev_size);
560 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
562 (void) fprintf(fp, "Usage: %s\n"
563 "\t[-v vdevs (default: %llu)]\n"
564 "\t[-s size_of_each_vdev (default: %s)]\n"
565 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
566 "\t[-m mirror_copies (default: %d)]\n"
567 "\t[-r raidz_disks (default: %d)]\n"
568 "\t[-R raidz_parity (default: %d)]\n"
569 "\t[-d datasets (default: %d)]\n"
570 "\t[-t threads (default: %d)]\n"
571 "\t[-g gang_block_threshold (default: %s)]\n"
572 "\t[-i init_count (default: %d)] initialize pool i times\n"
573 "\t[-k kill_percentage (default: %llu%%)]\n"
574 "\t[-p pool_name (default: %s)]\n"
575 "\t[-f dir (default: %s)] file directory for vdev files\n"
576 "\t[-V] verbose (use multiple times for ever more blather)\n"
577 "\t[-E] use existing pool instead of creating new one\n"
578 "\t[-T time (default: %llu sec)] total run time\n"
579 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
580 "\t[-P passtime (default: %llu sec)] time per pass\n"
581 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
582 "\t[-o variable=value] ... set global variable to an unsigned\n"
583 "\t 32-bit integer value\n"
584 "\t[-h] (print help)\n"
586 zo->zo_pool,
587 (u_longlong_t)zo->zo_vdevs, /* -v */
588 nice_vdev_size, /* -s */
589 zo->zo_ashift, /* -a */
590 zo->zo_mirrors, /* -m */
591 zo->zo_raidz, /* -r */
592 zo->zo_raidz_parity, /* -R */
593 zo->zo_datasets, /* -d */
594 zo->zo_threads, /* -t */
595 nice_gang_bang, /* -g */
596 zo->zo_init, /* -i */
597 (u_longlong_t)zo->zo_killrate, /* -k */
598 zo->zo_pool, /* -p */
599 zo->zo_dir, /* -f */
600 (u_longlong_t)zo->zo_time, /* -T */
601 (u_longlong_t)zo->zo_maxloops, /* -F */
602 (u_longlong_t)zo->zo_passtime);
603 exit(requested ? 0 : 1);
606 static void
607 process_options(int argc, char **argv)
609 char *path;
610 ztest_shared_opts_t *zo = &ztest_opts;
612 int opt;
613 uint64_t value;
614 char altdir[MAXNAMELEN] = { 0 };
616 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
618 while ((opt = getopt(argc, argv,
619 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
620 value = 0;
621 switch (opt) {
622 case 'v':
623 case 's':
624 case 'a':
625 case 'm':
626 case 'r':
627 case 'R':
628 case 'd':
629 case 't':
630 case 'g':
631 case 'i':
632 case 'k':
633 case 'T':
634 case 'P':
635 case 'F':
636 value = nicenumtoull(optarg);
638 switch (opt) {
639 case 'v':
640 zo->zo_vdevs = value;
641 break;
642 case 's':
643 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
644 break;
645 case 'a':
646 zo->zo_ashift = value;
647 break;
648 case 'm':
649 zo->zo_mirrors = value;
650 break;
651 case 'r':
652 zo->zo_raidz = MAX(1, value);
653 break;
654 case 'R':
655 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
656 break;
657 case 'd':
658 zo->zo_datasets = MAX(1, value);
659 break;
660 case 't':
661 zo->zo_threads = MAX(1, value);
662 break;
663 case 'g':
664 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
665 value);
666 break;
667 case 'i':
668 zo->zo_init = value;
669 break;
670 case 'k':
671 zo->zo_killrate = value;
672 break;
673 case 'p':
674 (void) strlcpy(zo->zo_pool, optarg,
675 sizeof (zo->zo_pool));
676 break;
677 case 'f':
678 path = realpath(optarg, NULL);
679 if (path == NULL) {
680 (void) fprintf(stderr, "error: %s: %s\n",
681 optarg, strerror(errno));
682 usage(B_FALSE);
683 } else {
684 (void) strlcpy(zo->zo_dir, path,
685 sizeof (zo->zo_dir));
687 break;
688 case 'V':
689 zo->zo_verbose++;
690 break;
691 case 'E':
692 zo->zo_init = 0;
693 break;
694 case 'T':
695 zo->zo_time = value;
696 break;
697 case 'P':
698 zo->zo_passtime = MAX(1, value);
699 break;
700 case 'F':
701 zo->zo_maxloops = MAX(1, value);
702 break;
703 case 'B':
704 (void) strlcpy(altdir, optarg, sizeof (altdir));
705 break;
706 case 'o':
707 if (set_global_var(optarg) != 0)
708 usage(B_FALSE);
709 break;
710 case 'h':
711 usage(B_TRUE);
712 break;
713 case '?':
714 default:
715 usage(B_FALSE);
716 break;
720 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
722 zo->zo_vdevtime =
723 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
724 UINT64_MAX >> 2);
726 if (strlen(altdir) > 0) {
727 char *cmd;
728 char *realaltdir;
729 char *bin;
730 char *ztest;
731 char *isa;
732 int isalen;
734 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
735 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
737 VERIFY(NULL != realpath(getexecname(), cmd));
738 if (0 != access(altdir, F_OK)) {
739 ztest_dump_core = B_FALSE;
740 fatal(B_TRUE, "invalid alternate ztest path: %s",
741 altdir);
743 VERIFY(NULL != realpath(altdir, realaltdir));
746 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
747 * We want to extract <isa> to determine if we should use
748 * 32 or 64 bit binaries.
750 bin = strstr(cmd, "/usr/bin/");
751 ztest = strstr(bin, "/ztest");
752 isa = bin + 9;
753 isalen = ztest - isa;
754 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
755 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
756 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
757 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
759 if (0 != access(zo->zo_alt_ztest, X_OK)) {
760 ztest_dump_core = B_FALSE;
761 fatal(B_TRUE, "invalid alternate ztest: %s",
762 zo->zo_alt_ztest);
763 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
764 ztest_dump_core = B_FALSE;
765 fatal(B_TRUE, "invalid alternate lib directory %s",
766 zo->zo_alt_libpath);
769 umem_free(cmd, MAXPATHLEN);
770 umem_free(realaltdir, MAXPATHLEN);
774 static void
775 ztest_kill(ztest_shared_t *zs)
777 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
778 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
781 * Before we kill off ztest, make sure that the config is updated.
782 * See comment above spa_config_sync().
784 mutex_enter(&spa_namespace_lock);
785 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
786 mutex_exit(&spa_namespace_lock);
788 zfs_dbgmsg_print(FTAG);
789 (void) kill(getpid(), SIGKILL);
792 static uint64_t
793 ztest_random(uint64_t range)
795 uint64_t r;
797 ASSERT3S(ztest_fd_rand, >=, 0);
799 if (range == 0)
800 return (0);
802 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
803 fatal(1, "short read from /dev/urandom");
805 return (r % range);
808 /* ARGSUSED */
809 static void
810 ztest_record_enospc(const char *s)
812 ztest_shared->zs_enospc_count++;
815 static uint64_t
816 ztest_get_ashift(void)
818 if (ztest_opts.zo_ashift == 0)
819 return (SPA_MINBLOCKSHIFT + ztest_random(5));
820 return (ztest_opts.zo_ashift);
823 static nvlist_t *
824 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
826 char pathbuf[MAXPATHLEN];
827 uint64_t vdev;
828 nvlist_t *file;
830 if (ashift == 0)
831 ashift = ztest_get_ashift();
833 if (path == NULL) {
834 path = pathbuf;
836 if (aux != NULL) {
837 vdev = ztest_shared->zs_vdev_aux;
838 (void) snprintf(path, sizeof (pathbuf),
839 ztest_aux_template, ztest_opts.zo_dir,
840 pool == NULL ? ztest_opts.zo_pool : pool,
841 aux, vdev);
842 } else {
843 vdev = ztest_shared->zs_vdev_next_leaf++;
844 (void) snprintf(path, sizeof (pathbuf),
845 ztest_dev_template, ztest_opts.zo_dir,
846 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
850 if (size != 0) {
851 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
852 if (fd == -1)
853 fatal(1, "can't open %s", path);
854 if (ftruncate(fd, size) != 0)
855 fatal(1, "can't ftruncate %s", path);
856 (void) close(fd);
859 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
860 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
861 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
862 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
864 return (file);
867 static nvlist_t *
868 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
869 uint64_t ashift, int r)
871 nvlist_t *raidz, **child;
872 int c;
874 if (r < 2)
875 return (make_vdev_file(path, aux, pool, size, ashift));
876 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
878 for (c = 0; c < r; c++)
879 child[c] = make_vdev_file(path, aux, pool, size, ashift);
881 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
882 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
883 VDEV_TYPE_RAIDZ) == 0);
884 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
885 ztest_opts.zo_raidz_parity) == 0);
886 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
887 child, r) == 0);
889 for (c = 0; c < r; c++)
890 nvlist_free(child[c]);
892 umem_free(child, r * sizeof (nvlist_t *));
894 return (raidz);
897 static nvlist_t *
898 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
899 uint64_t ashift, int r, int m)
901 nvlist_t *mirror, **child;
902 int c;
904 if (m < 1)
905 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
907 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
909 for (c = 0; c < m; c++)
910 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
912 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
913 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
914 VDEV_TYPE_MIRROR) == 0);
915 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
916 child, m) == 0);
918 for (c = 0; c < m; c++)
919 nvlist_free(child[c]);
921 umem_free(child, m * sizeof (nvlist_t *));
923 return (mirror);
926 static nvlist_t *
927 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
928 int log, int r, int m, int t)
930 nvlist_t *root, **child;
931 int c;
933 ASSERT(t > 0);
935 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
937 for (c = 0; c < t; c++) {
938 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
939 r, m);
940 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
941 log) == 0);
944 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
945 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
946 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
947 child, t) == 0);
949 for (c = 0; c < t; c++)
950 nvlist_free(child[c]);
952 umem_free(child, t * sizeof (nvlist_t *));
954 return (root);
958 * Find a random spa version. Returns back a random spa version in the
959 * range [initial_version, SPA_VERSION_FEATURES].
961 static uint64_t
962 ztest_random_spa_version(uint64_t initial_version)
964 uint64_t version = initial_version;
966 if (version <= SPA_VERSION_BEFORE_FEATURES) {
967 version = version +
968 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
971 if (version > SPA_VERSION_BEFORE_FEATURES)
972 version = SPA_VERSION_FEATURES;
974 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
975 return (version);
978 static int
979 ztest_random_blocksize(void)
981 uint64_t block_shift;
983 * Choose a block size >= the ashift.
984 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
986 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
987 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
988 maxbs = 20;
989 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
990 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
993 static int
994 ztest_random_ibshift(void)
996 return (DN_MIN_INDBLKSHIFT +
997 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1000 static uint64_t
1001 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1003 uint64_t top;
1004 vdev_t *rvd = spa->spa_root_vdev;
1005 vdev_t *tvd;
1007 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1009 do {
1010 top = ztest_random(rvd->vdev_children);
1011 tvd = rvd->vdev_child[top];
1012 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1013 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1015 return (top);
1018 static uint64_t
1019 ztest_random_dsl_prop(zfs_prop_t prop)
1021 uint64_t value;
1023 do {
1024 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1025 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1027 return (value);
1030 static int
1031 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1032 boolean_t inherit)
1034 const char *propname = zfs_prop_to_name(prop);
1035 const char *valname;
1036 char setpoint[MAXPATHLEN];
1037 uint64_t curval;
1038 int error;
1040 error = dsl_prop_set_int(osname, propname,
1041 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1043 if (error == ENOSPC) {
1044 ztest_record_enospc(FTAG);
1045 return (error);
1047 ASSERT0(error);
1049 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1051 if (ztest_opts.zo_verbose >= 6) {
1052 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1053 (void) printf("%s %s = %s at '%s'\n",
1054 osname, propname, valname, setpoint);
1057 return (error);
1060 static int
1061 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1063 spa_t *spa = ztest_spa;
1064 nvlist_t *props = NULL;
1065 int error;
1067 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1068 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1070 error = spa_prop_set(spa, props);
1072 nvlist_free(props);
1074 if (error == ENOSPC) {
1075 ztest_record_enospc(FTAG);
1076 return (error);
1078 ASSERT0(error);
1080 return (error);
1083 static void
1084 ztest_rll_init(rll_t *rll)
1086 rll->rll_writer = NULL;
1087 rll->rll_readers = 0;
1088 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1089 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1092 static void
1093 ztest_rll_destroy(rll_t *rll)
1095 ASSERT(rll->rll_writer == NULL);
1096 ASSERT(rll->rll_readers == 0);
1097 VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1098 VERIFY(cond_destroy(&rll->rll_cv) == 0);
1101 static void
1102 ztest_rll_lock(rll_t *rll, rl_type_t type)
1104 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1106 if (type == RL_READER) {
1107 while (rll->rll_writer != NULL)
1108 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1109 rll->rll_readers++;
1110 } else {
1111 while (rll->rll_writer != NULL || rll->rll_readers)
1112 (void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1113 rll->rll_writer = curthread;
1116 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1119 static void
1120 ztest_rll_unlock(rll_t *rll)
1122 VERIFY(mutex_lock(&rll->rll_lock) == 0);
1124 if (rll->rll_writer) {
1125 ASSERT(rll->rll_readers == 0);
1126 rll->rll_writer = NULL;
1127 } else {
1128 ASSERT(rll->rll_readers != 0);
1129 ASSERT(rll->rll_writer == NULL);
1130 rll->rll_readers--;
1133 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1134 VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1136 VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1139 static void
1140 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1142 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1144 ztest_rll_lock(rll, type);
1147 static void
1148 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1150 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1152 ztest_rll_unlock(rll);
1155 static rl_t *
1156 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1157 uint64_t size, rl_type_t type)
1159 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1160 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1161 rl_t *rl;
1163 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1164 rl->rl_object = object;
1165 rl->rl_offset = offset;
1166 rl->rl_size = size;
1167 rl->rl_lock = rll;
1169 ztest_rll_lock(rll, type);
1171 return (rl);
1174 static void
1175 ztest_range_unlock(rl_t *rl)
1177 rll_t *rll = rl->rl_lock;
1179 ztest_rll_unlock(rll);
1181 umem_free(rl, sizeof (*rl));
1184 static void
1185 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1187 zd->zd_os = os;
1188 zd->zd_zilog = dmu_objset_zil(os);
1189 zd->zd_shared = szd;
1190 dmu_objset_name(os, zd->zd_name);
1192 if (zd->zd_shared != NULL)
1193 zd->zd_shared->zd_seq = 0;
1195 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1196 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1198 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1199 ztest_rll_init(&zd->zd_object_lock[l]);
1201 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1202 ztest_rll_init(&zd->zd_range_lock[l]);
1205 static void
1206 ztest_zd_fini(ztest_ds_t *zd)
1208 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1210 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1211 ztest_rll_destroy(&zd->zd_object_lock[l]);
1213 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1214 ztest_rll_destroy(&zd->zd_range_lock[l]);
1217 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1219 static uint64_t
1220 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1222 uint64_t txg;
1223 int error;
1226 * Attempt to assign tx to some transaction group.
1228 error = dmu_tx_assign(tx, txg_how);
1229 if (error) {
1230 if (error == ERESTART) {
1231 ASSERT(txg_how == TXG_NOWAIT);
1232 dmu_tx_wait(tx);
1233 } else {
1234 ASSERT3U(error, ==, ENOSPC);
1235 ztest_record_enospc(tag);
1237 dmu_tx_abort(tx);
1238 return (0);
1240 txg = dmu_tx_get_txg(tx);
1241 ASSERT(txg != 0);
1242 return (txg);
1245 static void
1246 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1248 uint64_t *ip = buf;
1249 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1251 while (ip < ip_end)
1252 *ip++ = value;
1255 static boolean_t
1256 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1258 uint64_t *ip = buf;
1259 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1260 uint64_t diff = 0;
1262 while (ip < ip_end)
1263 diff |= (value - *ip++);
1265 return (diff == 0);
1268 static void
1269 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1270 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1272 bt->bt_magic = BT_MAGIC;
1273 bt->bt_objset = dmu_objset_id(os);
1274 bt->bt_object = object;
1275 bt->bt_offset = offset;
1276 bt->bt_gen = gen;
1277 bt->bt_txg = txg;
1278 bt->bt_crtxg = crtxg;
1281 static void
1282 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1283 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1285 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1286 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1287 ASSERT3U(bt->bt_object, ==, object);
1288 ASSERT3U(bt->bt_offset, ==, offset);
1289 ASSERT3U(bt->bt_gen, <=, gen);
1290 ASSERT3U(bt->bt_txg, <=, txg);
1291 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1294 static ztest_block_tag_t *
1295 ztest_bt_bonus(dmu_buf_t *db)
1297 dmu_object_info_t doi;
1298 ztest_block_tag_t *bt;
1300 dmu_object_info_from_db(db, &doi);
1301 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1302 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1303 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1305 return (bt);
1309 * ZIL logging ops
1312 #define lrz_type lr_mode
1313 #define lrz_blocksize lr_uid
1314 #define lrz_ibshift lr_gid
1315 #define lrz_bonustype lr_rdev
1316 #define lrz_bonuslen lr_crtime[1]
1318 static void
1319 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1321 char *name = (void *)(lr + 1); /* name follows lr */
1322 size_t namesize = strlen(name) + 1;
1323 itx_t *itx;
1325 if (zil_replaying(zd->zd_zilog, tx))
1326 return;
1328 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1329 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1330 sizeof (*lr) + namesize - sizeof (lr_t));
1332 zil_itx_assign(zd->zd_zilog, itx, tx);
1335 static void
1336 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1338 char *name = (void *)(lr + 1); /* name follows lr */
1339 size_t namesize = strlen(name) + 1;
1340 itx_t *itx;
1342 if (zil_replaying(zd->zd_zilog, tx))
1343 return;
1345 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1346 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1347 sizeof (*lr) + namesize - sizeof (lr_t));
1349 itx->itx_oid = object;
1350 zil_itx_assign(zd->zd_zilog, itx, tx);
1353 static void
1354 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1356 itx_t *itx;
1357 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1359 if (zil_replaying(zd->zd_zilog, tx))
1360 return;
1362 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1363 write_state = WR_INDIRECT;
1365 itx = zil_itx_create(TX_WRITE,
1366 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1368 if (write_state == WR_COPIED &&
1369 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1370 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1371 zil_itx_destroy(itx);
1372 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1373 write_state = WR_NEED_COPY;
1375 itx->itx_private = zd;
1376 itx->itx_wr_state = write_state;
1377 itx->itx_sync = (ztest_random(8) == 0);
1378 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1380 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1381 sizeof (*lr) - sizeof (lr_t));
1383 zil_itx_assign(zd->zd_zilog, itx, tx);
1386 static void
1387 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1389 itx_t *itx;
1391 if (zil_replaying(zd->zd_zilog, tx))
1392 return;
1394 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1395 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1396 sizeof (*lr) - sizeof (lr_t));
1398 itx->itx_sync = B_FALSE;
1399 zil_itx_assign(zd->zd_zilog, itx, tx);
1402 static void
1403 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1405 itx_t *itx;
1407 if (zil_replaying(zd->zd_zilog, tx))
1408 return;
1410 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1411 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1412 sizeof (*lr) - sizeof (lr_t));
1414 itx->itx_sync = B_FALSE;
1415 zil_itx_assign(zd->zd_zilog, itx, tx);
1419 * ZIL replay ops
1421 static int
1422 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1424 char *name = (void *)(lr + 1); /* name follows lr */
1425 objset_t *os = zd->zd_os;
1426 ztest_block_tag_t *bbt;
1427 dmu_buf_t *db;
1428 dmu_tx_t *tx;
1429 uint64_t txg;
1430 int error = 0;
1432 if (byteswap)
1433 byteswap_uint64_array(lr, sizeof (*lr));
1435 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1436 ASSERT(name[0] != '\0');
1438 tx = dmu_tx_create(os);
1440 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1442 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1443 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1444 } else {
1445 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1448 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1449 if (txg == 0)
1450 return (ENOSPC);
1452 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1454 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1455 if (lr->lr_foid == 0) {
1456 lr->lr_foid = zap_create(os,
1457 lr->lrz_type, lr->lrz_bonustype,
1458 lr->lrz_bonuslen, tx);
1459 } else {
1460 error = zap_create_claim(os, lr->lr_foid,
1461 lr->lrz_type, lr->lrz_bonustype,
1462 lr->lrz_bonuslen, tx);
1464 } else {
1465 if (lr->lr_foid == 0) {
1466 lr->lr_foid = dmu_object_alloc(os,
1467 lr->lrz_type, 0, lr->lrz_bonustype,
1468 lr->lrz_bonuslen, tx);
1469 } else {
1470 error = dmu_object_claim(os, lr->lr_foid,
1471 lr->lrz_type, 0, lr->lrz_bonustype,
1472 lr->lrz_bonuslen, tx);
1476 if (error) {
1477 ASSERT3U(error, ==, EEXIST);
1478 ASSERT(zd->zd_zilog->zl_replay);
1479 dmu_tx_commit(tx);
1480 return (error);
1483 ASSERT(lr->lr_foid != 0);
1485 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1486 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1487 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1489 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1490 bbt = ztest_bt_bonus(db);
1491 dmu_buf_will_dirty(db, tx);
1492 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1493 dmu_buf_rele(db, FTAG);
1495 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1496 &lr->lr_foid, tx));
1498 (void) ztest_log_create(zd, tx, lr);
1500 dmu_tx_commit(tx);
1502 return (0);
1505 static int
1506 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1508 char *name = (void *)(lr + 1); /* name follows lr */
1509 objset_t *os = zd->zd_os;
1510 dmu_object_info_t doi;
1511 dmu_tx_t *tx;
1512 uint64_t object, txg;
1514 if (byteswap)
1515 byteswap_uint64_array(lr, sizeof (*lr));
1517 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1518 ASSERT(name[0] != '\0');
1520 VERIFY3U(0, ==,
1521 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1522 ASSERT(object != 0);
1524 ztest_object_lock(zd, object, RL_WRITER);
1526 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1528 tx = dmu_tx_create(os);
1530 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1531 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1533 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1534 if (txg == 0) {
1535 ztest_object_unlock(zd, object);
1536 return (ENOSPC);
1539 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1540 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1541 } else {
1542 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1545 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1547 (void) ztest_log_remove(zd, tx, lr, object);
1549 dmu_tx_commit(tx);
1551 ztest_object_unlock(zd, object);
1553 return (0);
1556 static int
1557 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1559 objset_t *os = zd->zd_os;
1560 void *data = lr + 1; /* data follows lr */
1561 uint64_t offset, length;
1562 ztest_block_tag_t *bt = data;
1563 ztest_block_tag_t *bbt;
1564 uint64_t gen, txg, lrtxg, crtxg;
1565 dmu_object_info_t doi;
1566 dmu_tx_t *tx;
1567 dmu_buf_t *db;
1568 arc_buf_t *abuf = NULL;
1569 rl_t *rl;
1571 if (byteswap)
1572 byteswap_uint64_array(lr, sizeof (*lr));
1574 offset = lr->lr_offset;
1575 length = lr->lr_length;
1577 /* If it's a dmu_sync() block, write the whole block */
1578 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1579 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1580 if (length < blocksize) {
1581 offset -= offset % blocksize;
1582 length = blocksize;
1586 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1587 byteswap_uint64_array(bt, sizeof (*bt));
1589 if (bt->bt_magic != BT_MAGIC)
1590 bt = NULL;
1592 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1593 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1595 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1597 dmu_object_info_from_db(db, &doi);
1599 bbt = ztest_bt_bonus(db);
1600 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1601 gen = bbt->bt_gen;
1602 crtxg = bbt->bt_crtxg;
1603 lrtxg = lr->lr_common.lrc_txg;
1605 tx = dmu_tx_create(os);
1607 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1609 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1610 P2PHASE(offset, length) == 0)
1611 abuf = dmu_request_arcbuf(db, length);
1613 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1614 if (txg == 0) {
1615 if (abuf != NULL)
1616 dmu_return_arcbuf(abuf);
1617 dmu_buf_rele(db, FTAG);
1618 ztest_range_unlock(rl);
1619 ztest_object_unlock(zd, lr->lr_foid);
1620 return (ENOSPC);
1623 if (bt != NULL) {
1625 * Usually, verify the old data before writing new data --
1626 * but not always, because we also want to verify correct
1627 * behavior when the data was not recently read into cache.
1629 ASSERT(offset % doi.doi_data_block_size == 0);
1630 if (ztest_random(4) != 0) {
1631 int prefetch = ztest_random(2) ?
1632 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1633 ztest_block_tag_t rbt;
1635 VERIFY(dmu_read(os, lr->lr_foid, offset,
1636 sizeof (rbt), &rbt, prefetch) == 0);
1637 if (rbt.bt_magic == BT_MAGIC) {
1638 ztest_bt_verify(&rbt, os, lr->lr_foid,
1639 offset, gen, txg, crtxg);
1644 * Writes can appear to be newer than the bonus buffer because
1645 * the ztest_get_data() callback does a dmu_read() of the
1646 * open-context data, which may be different than the data
1647 * as it was when the write was generated.
1649 if (zd->zd_zilog->zl_replay) {
1650 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1651 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1652 bt->bt_crtxg);
1656 * Set the bt's gen/txg to the bonus buffer's gen/txg
1657 * so that all of the usual ASSERTs will work.
1659 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1662 if (abuf == NULL) {
1663 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1664 } else {
1665 bcopy(data, abuf->b_data, length);
1666 dmu_assign_arcbuf(db, offset, abuf, tx);
1669 (void) ztest_log_write(zd, tx, lr);
1671 dmu_buf_rele(db, FTAG);
1673 dmu_tx_commit(tx);
1675 ztest_range_unlock(rl);
1676 ztest_object_unlock(zd, lr->lr_foid);
1678 return (0);
1681 static int
1682 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1684 objset_t *os = zd->zd_os;
1685 dmu_tx_t *tx;
1686 uint64_t txg;
1687 rl_t *rl;
1689 if (byteswap)
1690 byteswap_uint64_array(lr, sizeof (*lr));
1692 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1693 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1694 RL_WRITER);
1696 tx = dmu_tx_create(os);
1698 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1700 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1701 if (txg == 0) {
1702 ztest_range_unlock(rl);
1703 ztest_object_unlock(zd, lr->lr_foid);
1704 return (ENOSPC);
1707 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1708 lr->lr_length, tx) == 0);
1710 (void) ztest_log_truncate(zd, tx, lr);
1712 dmu_tx_commit(tx);
1714 ztest_range_unlock(rl);
1715 ztest_object_unlock(zd, lr->lr_foid);
1717 return (0);
1720 static int
1721 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1723 objset_t *os = zd->zd_os;
1724 dmu_tx_t *tx;
1725 dmu_buf_t *db;
1726 ztest_block_tag_t *bbt;
1727 uint64_t txg, lrtxg, crtxg;
1729 if (byteswap)
1730 byteswap_uint64_array(lr, sizeof (*lr));
1732 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1734 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1736 tx = dmu_tx_create(os);
1737 dmu_tx_hold_bonus(tx, lr->lr_foid);
1739 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1740 if (txg == 0) {
1741 dmu_buf_rele(db, FTAG);
1742 ztest_object_unlock(zd, lr->lr_foid);
1743 return (ENOSPC);
1746 bbt = ztest_bt_bonus(db);
1747 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1748 crtxg = bbt->bt_crtxg;
1749 lrtxg = lr->lr_common.lrc_txg;
1751 if (zd->zd_zilog->zl_replay) {
1752 ASSERT(lr->lr_size != 0);
1753 ASSERT(lr->lr_mode != 0);
1754 ASSERT(lrtxg != 0);
1755 } else {
1757 * Randomly change the size and increment the generation.
1759 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1760 sizeof (*bbt);
1761 lr->lr_mode = bbt->bt_gen + 1;
1762 ASSERT(lrtxg == 0);
1766 * Verify that the current bonus buffer is not newer than our txg.
1768 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1769 MAX(txg, lrtxg), crtxg);
1771 dmu_buf_will_dirty(db, tx);
1773 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1774 ASSERT3U(lr->lr_size, <=, db->db_size);
1775 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1776 bbt = ztest_bt_bonus(db);
1778 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1780 dmu_buf_rele(db, FTAG);
1782 (void) ztest_log_setattr(zd, tx, lr);
1784 dmu_tx_commit(tx);
1786 ztest_object_unlock(zd, lr->lr_foid);
1788 return (0);
1791 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1792 NULL, /* 0 no such transaction type */
1793 ztest_replay_create, /* TX_CREATE */
1794 NULL, /* TX_MKDIR */
1795 NULL, /* TX_MKXATTR */
1796 NULL, /* TX_SYMLINK */
1797 ztest_replay_remove, /* TX_REMOVE */
1798 NULL, /* TX_RMDIR */
1799 NULL, /* TX_LINK */
1800 NULL, /* TX_RENAME */
1801 ztest_replay_write, /* TX_WRITE */
1802 ztest_replay_truncate, /* TX_TRUNCATE */
1803 ztest_replay_setattr, /* TX_SETATTR */
1804 NULL, /* TX_ACL */
1805 NULL, /* TX_CREATE_ACL */
1806 NULL, /* TX_CREATE_ATTR */
1807 NULL, /* TX_CREATE_ACL_ATTR */
1808 NULL, /* TX_MKDIR_ACL */
1809 NULL, /* TX_MKDIR_ATTR */
1810 NULL, /* TX_MKDIR_ACL_ATTR */
1811 NULL, /* TX_WRITE2 */
1815 * ZIL get_data callbacks
1818 static void
1819 ztest_get_done(zgd_t *zgd, int error)
1821 ztest_ds_t *zd = zgd->zgd_private;
1822 uint64_t object = zgd->zgd_rl->rl_object;
1824 if (zgd->zgd_db)
1825 dmu_buf_rele(zgd->zgd_db, zgd);
1827 ztest_range_unlock(zgd->zgd_rl);
1828 ztest_object_unlock(zd, object);
1830 if (error == 0 && zgd->zgd_bp)
1831 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1833 umem_free(zgd, sizeof (*zgd));
1836 static int
1837 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1839 ztest_ds_t *zd = arg;
1840 objset_t *os = zd->zd_os;
1841 uint64_t object = lr->lr_foid;
1842 uint64_t offset = lr->lr_offset;
1843 uint64_t size = lr->lr_length;
1844 blkptr_t *bp = &lr->lr_blkptr;
1845 uint64_t txg = lr->lr_common.lrc_txg;
1846 uint64_t crtxg;
1847 dmu_object_info_t doi;
1848 dmu_buf_t *db;
1849 zgd_t *zgd;
1850 int error;
1852 ztest_object_lock(zd, object, RL_READER);
1853 error = dmu_bonus_hold(os, object, FTAG, &db);
1854 if (error) {
1855 ztest_object_unlock(zd, object);
1856 return (error);
1859 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1861 if (crtxg == 0 || crtxg > txg) {
1862 dmu_buf_rele(db, FTAG);
1863 ztest_object_unlock(zd, object);
1864 return (ENOENT);
1867 dmu_object_info_from_db(db, &doi);
1868 dmu_buf_rele(db, FTAG);
1869 db = NULL;
1871 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1872 zgd->zgd_zilog = zd->zd_zilog;
1873 zgd->zgd_private = zd;
1875 if (buf != NULL) { /* immediate write */
1876 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1877 RL_READER);
1879 error = dmu_read(os, object, offset, size, buf,
1880 DMU_READ_NO_PREFETCH);
1881 ASSERT(error == 0);
1882 } else {
1883 size = doi.doi_data_block_size;
1884 if (ISP2(size)) {
1885 offset = P2ALIGN(offset, size);
1886 } else {
1887 ASSERT(offset < size);
1888 offset = 0;
1891 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1892 RL_READER);
1894 error = dmu_buf_hold(os, object, offset, zgd, &db,
1895 DMU_READ_NO_PREFETCH);
1897 if (error == 0) {
1898 blkptr_t *obp = dmu_buf_get_blkptr(db);
1899 if (obp) {
1900 ASSERT(BP_IS_HOLE(bp));
1901 *bp = *obp;
1904 zgd->zgd_db = db;
1905 zgd->zgd_bp = bp;
1907 ASSERT(db->db_offset == offset);
1908 ASSERT(db->db_size == size);
1910 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1911 ztest_get_done, zgd);
1913 if (error == 0)
1914 return (0);
1918 ztest_get_done(zgd, error);
1920 return (error);
1923 static void *
1924 ztest_lr_alloc(size_t lrsize, char *name)
1926 char *lr;
1927 size_t namesize = name ? strlen(name) + 1 : 0;
1929 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1931 if (name)
1932 bcopy(name, lr + lrsize, namesize);
1934 return (lr);
1937 void
1938 ztest_lr_free(void *lr, size_t lrsize, char *name)
1940 size_t namesize = name ? strlen(name) + 1 : 0;
1942 umem_free(lr, lrsize + namesize);
1946 * Lookup a bunch of objects. Returns the number of objects not found.
1948 static int
1949 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1951 int missing = 0;
1952 int error;
1954 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1956 for (int i = 0; i < count; i++, od++) {
1957 od->od_object = 0;
1958 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1959 sizeof (uint64_t), 1, &od->od_object);
1960 if (error) {
1961 ASSERT(error == ENOENT);
1962 ASSERT(od->od_object == 0);
1963 missing++;
1964 } else {
1965 dmu_buf_t *db;
1966 ztest_block_tag_t *bbt;
1967 dmu_object_info_t doi;
1969 ASSERT(od->od_object != 0);
1970 ASSERT(missing == 0); /* there should be no gaps */
1972 ztest_object_lock(zd, od->od_object, RL_READER);
1973 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1974 od->od_object, FTAG, &db));
1975 dmu_object_info_from_db(db, &doi);
1976 bbt = ztest_bt_bonus(db);
1977 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1978 od->od_type = doi.doi_type;
1979 od->od_blocksize = doi.doi_data_block_size;
1980 od->od_gen = bbt->bt_gen;
1981 dmu_buf_rele(db, FTAG);
1982 ztest_object_unlock(zd, od->od_object);
1986 return (missing);
1989 static int
1990 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1992 int missing = 0;
1994 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1996 for (int i = 0; i < count; i++, od++) {
1997 if (missing) {
1998 od->od_object = 0;
1999 missing++;
2000 continue;
2003 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2005 lr->lr_doid = od->od_dir;
2006 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2007 lr->lrz_type = od->od_crtype;
2008 lr->lrz_blocksize = od->od_crblocksize;
2009 lr->lrz_ibshift = ztest_random_ibshift();
2010 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2011 lr->lrz_bonuslen = dmu_bonus_max();
2012 lr->lr_gen = od->od_crgen;
2013 lr->lr_crtime[0] = time(NULL);
2015 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2016 ASSERT(missing == 0);
2017 od->od_object = 0;
2018 missing++;
2019 } else {
2020 od->od_object = lr->lr_foid;
2021 od->od_type = od->od_crtype;
2022 od->od_blocksize = od->od_crblocksize;
2023 od->od_gen = od->od_crgen;
2024 ASSERT(od->od_object != 0);
2027 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2030 return (missing);
2033 static int
2034 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2036 int missing = 0;
2037 int error;
2039 ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2041 od += count - 1;
2043 for (int i = count - 1; i >= 0; i--, od--) {
2044 if (missing) {
2045 missing++;
2046 continue;
2050 * No object was found.
2052 if (od->od_object == 0)
2053 continue;
2055 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2057 lr->lr_doid = od->od_dir;
2059 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2060 ASSERT3U(error, ==, ENOSPC);
2061 missing++;
2062 } else {
2063 od->od_object = 0;
2065 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2068 return (missing);
2071 static int
2072 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2073 void *data)
2075 lr_write_t *lr;
2076 int error;
2078 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2080 lr->lr_foid = object;
2081 lr->lr_offset = offset;
2082 lr->lr_length = size;
2083 lr->lr_blkoff = 0;
2084 BP_ZERO(&lr->lr_blkptr);
2086 bcopy(data, lr + 1, size);
2088 error = ztest_replay_write(zd, lr, B_FALSE);
2090 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2092 return (error);
2095 static int
2096 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2098 lr_truncate_t *lr;
2099 int error;
2101 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2103 lr->lr_foid = object;
2104 lr->lr_offset = offset;
2105 lr->lr_length = size;
2107 error = ztest_replay_truncate(zd, lr, B_FALSE);
2109 ztest_lr_free(lr, sizeof (*lr), NULL);
2111 return (error);
2114 static int
2115 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2117 lr_setattr_t *lr;
2118 int error;
2120 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2122 lr->lr_foid = object;
2123 lr->lr_size = 0;
2124 lr->lr_mode = 0;
2126 error = ztest_replay_setattr(zd, lr, B_FALSE);
2128 ztest_lr_free(lr, sizeof (*lr), NULL);
2130 return (error);
2133 static void
2134 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2136 objset_t *os = zd->zd_os;
2137 dmu_tx_t *tx;
2138 uint64_t txg;
2139 rl_t *rl;
2141 txg_wait_synced(dmu_objset_pool(os), 0);
2143 ztest_object_lock(zd, object, RL_READER);
2144 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2146 tx = dmu_tx_create(os);
2148 dmu_tx_hold_write(tx, object, offset, size);
2150 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2152 if (txg != 0) {
2153 dmu_prealloc(os, object, offset, size, tx);
2154 dmu_tx_commit(tx);
2155 txg_wait_synced(dmu_objset_pool(os), txg);
2156 } else {
2157 (void) dmu_free_long_range(os, object, offset, size);
2160 ztest_range_unlock(rl);
2161 ztest_object_unlock(zd, object);
2164 static void
2165 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2167 int err;
2168 ztest_block_tag_t wbt;
2169 dmu_object_info_t doi;
2170 enum ztest_io_type io_type;
2171 uint64_t blocksize;
2172 void *data;
2174 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2175 blocksize = doi.doi_data_block_size;
2176 data = umem_alloc(blocksize, UMEM_NOFAIL);
2179 * Pick an i/o type at random, biased toward writing block tags.
2181 io_type = ztest_random(ZTEST_IO_TYPES);
2182 if (ztest_random(2) == 0)
2183 io_type = ZTEST_IO_WRITE_TAG;
2185 (void) rw_rdlock(&zd->zd_zilog_lock);
2187 switch (io_type) {
2189 case ZTEST_IO_WRITE_TAG:
2190 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2191 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2192 break;
2194 case ZTEST_IO_WRITE_PATTERN:
2195 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2196 if (ztest_random(2) == 0) {
2198 * Induce fletcher2 collisions to ensure that
2199 * zio_ddt_collision() detects and resolves them
2200 * when using fletcher2-verify for deduplication.
2202 ((uint64_t *)data)[0] ^= 1ULL << 63;
2203 ((uint64_t *)data)[4] ^= 1ULL << 63;
2205 (void) ztest_write(zd, object, offset, blocksize, data);
2206 break;
2208 case ZTEST_IO_WRITE_ZEROES:
2209 bzero(data, blocksize);
2210 (void) ztest_write(zd, object, offset, blocksize, data);
2211 break;
2213 case ZTEST_IO_TRUNCATE:
2214 (void) ztest_truncate(zd, object, offset, blocksize);
2215 break;
2217 case ZTEST_IO_SETATTR:
2218 (void) ztest_setattr(zd, object);
2219 break;
2221 case ZTEST_IO_REWRITE:
2222 (void) rw_rdlock(&ztest_name_lock);
2223 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2224 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2225 B_FALSE);
2226 VERIFY(err == 0 || err == ENOSPC);
2227 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2228 ZFS_PROP_COMPRESSION,
2229 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2230 B_FALSE);
2231 VERIFY(err == 0 || err == ENOSPC);
2232 (void) rw_unlock(&ztest_name_lock);
2234 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2235 DMU_READ_NO_PREFETCH));
2237 (void) ztest_write(zd, object, offset, blocksize, data);
2238 break;
2241 (void) rw_unlock(&zd->zd_zilog_lock);
2243 umem_free(data, blocksize);
2247 * Initialize an object description template.
2249 static void
2250 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2251 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2253 od->od_dir = ZTEST_DIROBJ;
2254 od->od_object = 0;
2256 od->od_crtype = type;
2257 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2258 od->od_crgen = gen;
2260 od->od_type = DMU_OT_NONE;
2261 od->od_blocksize = 0;
2262 od->od_gen = 0;
2264 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2265 tag, (int64_t)id, index);
2269 * Lookup or create the objects for a test using the od template.
2270 * If the objects do not all exist, or if 'remove' is specified,
2271 * remove any existing objects and create new ones. Otherwise,
2272 * use the existing objects.
2274 static int
2275 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2277 int count = size / sizeof (*od);
2278 int rv = 0;
2280 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2281 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2282 (ztest_remove(zd, od, count) != 0 ||
2283 ztest_create(zd, od, count) != 0))
2284 rv = -1;
2285 zd->zd_od = od;
2286 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2288 return (rv);
2291 /* ARGSUSED */
2292 void
2293 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2295 zilog_t *zilog = zd->zd_zilog;
2297 (void) rw_rdlock(&zd->zd_zilog_lock);
2299 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2302 * Remember the committed values in zd, which is in parent/child
2303 * shared memory. If we die, the next iteration of ztest_run()
2304 * will verify that the log really does contain this record.
2306 mutex_enter(&zilog->zl_lock);
2307 ASSERT(zd->zd_shared != NULL);
2308 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2309 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2310 mutex_exit(&zilog->zl_lock);
2312 (void) rw_unlock(&zd->zd_zilog_lock);
2316 * This function is designed to simulate the operations that occur during a
2317 * mount/unmount operation. We hold the dataset across these operations in an
2318 * attempt to expose any implicit assumptions about ZIL management.
2320 /* ARGSUSED */
2321 void
2322 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2324 objset_t *os = zd->zd_os;
2327 * We grab the zd_dirobj_lock to ensure that no other thread is
2328 * updating the zil (i.e. adding in-memory log records) and the
2329 * zd_zilog_lock to block any I/O.
2331 VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2332 (void) rw_wrlock(&zd->zd_zilog_lock);
2334 /* zfsvfs_teardown() */
2335 zil_close(zd->zd_zilog);
2337 /* zfsvfs_setup() */
2338 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2339 zil_replay(os, zd, ztest_replay_vector);
2341 (void) rw_unlock(&zd->zd_zilog_lock);
2342 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2346 * Verify that we can't destroy an active pool, create an existing pool,
2347 * or create a pool with a bad vdev spec.
2349 /* ARGSUSED */
2350 void
2351 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2353 ztest_shared_opts_t *zo = &ztest_opts;
2354 spa_t *spa;
2355 nvlist_t *nvroot;
2358 * Attempt to create using a bad file.
2360 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2361 VERIFY3U(ENOENT, ==,
2362 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2363 nvlist_free(nvroot);
2366 * Attempt to create using a bad mirror.
2368 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2369 VERIFY3U(ENOENT, ==,
2370 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2371 nvlist_free(nvroot);
2374 * Attempt to create an existing pool. It shouldn't matter
2375 * what's in the nvroot; we should fail with EEXIST.
2377 (void) rw_rdlock(&ztest_name_lock);
2378 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2379 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2380 nvlist_free(nvroot);
2381 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2382 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2383 spa_close(spa, FTAG);
2385 (void) rw_unlock(&ztest_name_lock);
2388 /* ARGSUSED */
2389 void
2390 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2392 spa_t *spa;
2393 uint64_t initial_version = SPA_VERSION_INITIAL;
2394 uint64_t version, newversion;
2395 nvlist_t *nvroot, *props;
2396 char *name;
2398 VERIFY0(mutex_lock(&ztest_vdev_lock));
2399 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2402 * Clean up from previous runs.
2404 (void) spa_destroy(name);
2406 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2407 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2410 * If we're configuring a RAIDZ device then make sure that the
2411 * the initial version is capable of supporting that feature.
2413 switch (ztest_opts.zo_raidz_parity) {
2414 case 0:
2415 case 1:
2416 initial_version = SPA_VERSION_INITIAL;
2417 break;
2418 case 2:
2419 initial_version = SPA_VERSION_RAIDZ2;
2420 break;
2421 case 3:
2422 initial_version = SPA_VERSION_RAIDZ3;
2423 break;
2427 * Create a pool with a spa version that can be upgraded. Pick
2428 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2430 do {
2431 version = ztest_random_spa_version(initial_version);
2432 } while (version > SPA_VERSION_BEFORE_FEATURES);
2434 props = fnvlist_alloc();
2435 fnvlist_add_uint64(props,
2436 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2437 VERIFY0(spa_create(name, nvroot, props, NULL));
2438 fnvlist_free(nvroot);
2439 fnvlist_free(props);
2441 VERIFY0(spa_open(name, &spa, FTAG));
2442 VERIFY3U(spa_version(spa), ==, version);
2443 newversion = ztest_random_spa_version(version + 1);
2445 if (ztest_opts.zo_verbose >= 4) {
2446 (void) printf("upgrading spa version from %llu to %llu\n",
2447 (u_longlong_t)version, (u_longlong_t)newversion);
2450 spa_upgrade(spa, newversion);
2451 VERIFY3U(spa_version(spa), >, version);
2452 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2453 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2454 spa_close(spa, FTAG);
2456 strfree(name);
2457 VERIFY0(mutex_unlock(&ztest_vdev_lock));
2460 static vdev_t *
2461 vdev_lookup_by_path(vdev_t *vd, const char *path)
2463 vdev_t *mvd;
2465 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2466 return (vd);
2468 for (int c = 0; c < vd->vdev_children; c++)
2469 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2470 NULL)
2471 return (mvd);
2473 return (NULL);
2477 * Find the first available hole which can be used as a top-level.
2480 find_vdev_hole(spa_t *spa)
2482 vdev_t *rvd = spa->spa_root_vdev;
2483 int c;
2485 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2487 for (c = 0; c < rvd->vdev_children; c++) {
2488 vdev_t *cvd = rvd->vdev_child[c];
2490 if (cvd->vdev_ishole)
2491 break;
2493 return (c);
2497 * Verify that vdev_add() works as expected.
2499 /* ARGSUSED */
2500 void
2501 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2503 ztest_shared_t *zs = ztest_shared;
2504 spa_t *spa = ztest_spa;
2505 uint64_t leaves;
2506 uint64_t guid;
2507 nvlist_t *nvroot;
2508 int error;
2510 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2511 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2513 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2515 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2518 * If we have slogs then remove them 1/4 of the time.
2520 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2522 * Grab the guid from the head of the log class rotor.
2524 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2526 spa_config_exit(spa, SCL_VDEV, FTAG);
2529 * We have to grab the zs_name_lock as writer to
2530 * prevent a race between removing a slog (dmu_objset_find)
2531 * and destroying a dataset. Removing the slog will
2532 * grab a reference on the dataset which may cause
2533 * dmu_objset_destroy() to fail with EBUSY thus
2534 * leaving the dataset in an inconsistent state.
2536 VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2537 error = spa_vdev_remove(spa, guid, B_FALSE);
2538 VERIFY(rw_unlock(&ztest_name_lock) == 0);
2540 if (error && error != EEXIST)
2541 fatal(0, "spa_vdev_remove() = %d", error);
2542 } else {
2543 spa_config_exit(spa, SCL_VDEV, FTAG);
2546 * Make 1/4 of the devices be log devices.
2548 nvroot = make_vdev_root(NULL, NULL, NULL,
2549 ztest_opts.zo_vdev_size, 0,
2550 ztest_random(4) == 0, ztest_opts.zo_raidz,
2551 zs->zs_mirrors, 1);
2553 error = spa_vdev_add(spa, nvroot);
2554 nvlist_free(nvroot);
2556 if (error == ENOSPC)
2557 ztest_record_enospc("spa_vdev_add");
2558 else if (error != 0)
2559 fatal(0, "spa_vdev_add() = %d", error);
2562 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2566 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2568 /* ARGSUSED */
2569 void
2570 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2572 ztest_shared_t *zs = ztest_shared;
2573 spa_t *spa = ztest_spa;
2574 vdev_t *rvd = spa->spa_root_vdev;
2575 spa_aux_vdev_t *sav;
2576 char *aux;
2577 uint64_t guid = 0;
2578 int error;
2580 if (ztest_random(2) == 0) {
2581 sav = &spa->spa_spares;
2582 aux = ZPOOL_CONFIG_SPARES;
2583 } else {
2584 sav = &spa->spa_l2cache;
2585 aux = ZPOOL_CONFIG_L2CACHE;
2588 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2590 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2592 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2594 * Pick a random device to remove.
2596 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2597 } else {
2599 * Find an unused device we can add.
2601 zs->zs_vdev_aux = 0;
2602 for (;;) {
2603 char path[MAXPATHLEN];
2604 int c;
2605 (void) snprintf(path, sizeof (path), ztest_aux_template,
2606 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2607 zs->zs_vdev_aux);
2608 for (c = 0; c < sav->sav_count; c++)
2609 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2610 path) == 0)
2611 break;
2612 if (c == sav->sav_count &&
2613 vdev_lookup_by_path(rvd, path) == NULL)
2614 break;
2615 zs->zs_vdev_aux++;
2619 spa_config_exit(spa, SCL_VDEV, FTAG);
2621 if (guid == 0) {
2623 * Add a new device.
2625 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2626 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2627 error = spa_vdev_add(spa, nvroot);
2628 if (error != 0)
2629 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2630 nvlist_free(nvroot);
2631 } else {
2633 * Remove an existing device. Sometimes, dirty its
2634 * vdev state first to make sure we handle removal
2635 * of devices that have pending state changes.
2637 if (ztest_random(2) == 0)
2638 (void) vdev_online(spa, guid, 0, NULL);
2640 error = spa_vdev_remove(spa, guid, B_FALSE);
2641 if (error != 0 && error != EBUSY)
2642 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2645 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2649 * split a pool if it has mirror tlvdevs
2651 /* ARGSUSED */
2652 void
2653 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2655 ztest_shared_t *zs = ztest_shared;
2656 spa_t *spa = ztest_spa;
2657 vdev_t *rvd = spa->spa_root_vdev;
2658 nvlist_t *tree, **child, *config, *split, **schild;
2659 uint_t c, children, schildren = 0, lastlogid = 0;
2660 int error = 0;
2662 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2664 /* ensure we have a useable config; mirrors of raidz aren't supported */
2665 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2666 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2667 return;
2670 /* clean up the old pool, if any */
2671 (void) spa_destroy("splitp");
2673 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2675 /* generate a config from the existing config */
2676 mutex_enter(&spa->spa_props_lock);
2677 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2678 &tree) == 0);
2679 mutex_exit(&spa->spa_props_lock);
2681 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2682 &children) == 0);
2684 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2685 for (c = 0; c < children; c++) {
2686 vdev_t *tvd = rvd->vdev_child[c];
2687 nvlist_t **mchild;
2688 uint_t mchildren;
2690 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2691 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2692 0) == 0);
2693 VERIFY(nvlist_add_string(schild[schildren],
2694 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2695 VERIFY(nvlist_add_uint64(schild[schildren],
2696 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2697 if (lastlogid == 0)
2698 lastlogid = schildren;
2699 ++schildren;
2700 continue;
2702 lastlogid = 0;
2703 VERIFY(nvlist_lookup_nvlist_array(child[c],
2704 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2705 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2708 /* OK, create a config that can be used to split */
2709 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2710 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2711 VDEV_TYPE_ROOT) == 0);
2712 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2713 lastlogid != 0 ? lastlogid : schildren) == 0);
2715 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2716 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2718 for (c = 0; c < schildren; c++)
2719 nvlist_free(schild[c]);
2720 free(schild);
2721 nvlist_free(split);
2723 spa_config_exit(spa, SCL_VDEV, FTAG);
2725 (void) rw_wrlock(&ztest_name_lock);
2726 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2727 (void) rw_unlock(&ztest_name_lock);
2729 nvlist_free(config);
2731 if (error == 0) {
2732 (void) printf("successful split - results:\n");
2733 mutex_enter(&spa_namespace_lock);
2734 show_pool_stats(spa);
2735 show_pool_stats(spa_lookup("splitp"));
2736 mutex_exit(&spa_namespace_lock);
2737 ++zs->zs_splits;
2738 --zs->zs_mirrors;
2740 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2745 * Verify that we can attach and detach devices.
2747 /* ARGSUSED */
2748 void
2749 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2751 ztest_shared_t *zs = ztest_shared;
2752 spa_t *spa = ztest_spa;
2753 spa_aux_vdev_t *sav = &spa->spa_spares;
2754 vdev_t *rvd = spa->spa_root_vdev;
2755 vdev_t *oldvd, *newvd, *pvd;
2756 nvlist_t *root;
2757 uint64_t leaves;
2758 uint64_t leaf, top;
2759 uint64_t ashift = ztest_get_ashift();
2760 uint64_t oldguid, pguid;
2761 uint64_t oldsize, newsize;
2762 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2763 int replacing;
2764 int oldvd_has_siblings = B_FALSE;
2765 int newvd_is_spare = B_FALSE;
2766 int oldvd_is_log;
2767 int error, expected_error;
2769 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2770 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2772 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2775 * Decide whether to do an attach or a replace.
2777 replacing = ztest_random(2);
2780 * Pick a random top-level vdev.
2782 top = ztest_random_vdev_top(spa, B_TRUE);
2785 * Pick a random leaf within it.
2787 leaf = ztest_random(leaves);
2790 * Locate this vdev.
2792 oldvd = rvd->vdev_child[top];
2793 if (zs->zs_mirrors >= 1) {
2794 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2795 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2796 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2798 if (ztest_opts.zo_raidz > 1) {
2799 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2800 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2801 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2805 * If we're already doing an attach or replace, oldvd may be a
2806 * mirror vdev -- in which case, pick a random child.
2808 while (oldvd->vdev_children != 0) {
2809 oldvd_has_siblings = B_TRUE;
2810 ASSERT(oldvd->vdev_children >= 2);
2811 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2814 oldguid = oldvd->vdev_guid;
2815 oldsize = vdev_get_min_asize(oldvd);
2816 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2817 (void) strcpy(oldpath, oldvd->vdev_path);
2818 pvd = oldvd->vdev_parent;
2819 pguid = pvd->vdev_guid;
2822 * If oldvd has siblings, then half of the time, detach it.
2824 if (oldvd_has_siblings && ztest_random(2) == 0) {
2825 spa_config_exit(spa, SCL_VDEV, FTAG);
2826 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2827 if (error != 0 && error != ENODEV && error != EBUSY &&
2828 error != ENOTSUP)
2829 fatal(0, "detach (%s) returned %d", oldpath, error);
2830 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2831 return;
2835 * For the new vdev, choose with equal probability between the two
2836 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2838 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2839 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2840 newvd_is_spare = B_TRUE;
2841 (void) strcpy(newpath, newvd->vdev_path);
2842 } else {
2843 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2844 ztest_opts.zo_dir, ztest_opts.zo_pool,
2845 top * leaves + leaf);
2846 if (ztest_random(2) == 0)
2847 newpath[strlen(newpath) - 1] = 'b';
2848 newvd = vdev_lookup_by_path(rvd, newpath);
2851 if (newvd) {
2852 newsize = vdev_get_min_asize(newvd);
2853 } else {
2855 * Make newsize a little bigger or smaller than oldsize.
2856 * If it's smaller, the attach should fail.
2857 * If it's larger, and we're doing a replace,
2858 * we should get dynamic LUN growth when we're done.
2860 newsize = 10 * oldsize / (9 + ztest_random(3));
2864 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2865 * unless it's a replace; in that case any non-replacing parent is OK.
2867 * If newvd is already part of the pool, it should fail with EBUSY.
2869 * If newvd is too small, it should fail with EOVERFLOW.
2871 if (pvd->vdev_ops != &vdev_mirror_ops &&
2872 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2873 pvd->vdev_ops == &vdev_replacing_ops ||
2874 pvd->vdev_ops == &vdev_spare_ops))
2875 expected_error = ENOTSUP;
2876 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2877 expected_error = ENOTSUP;
2878 else if (newvd == oldvd)
2879 expected_error = replacing ? 0 : EBUSY;
2880 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2881 expected_error = EBUSY;
2882 else if (newsize < oldsize)
2883 expected_error = EOVERFLOW;
2884 else if (ashift > oldvd->vdev_top->vdev_ashift)
2885 expected_error = EDOM;
2886 else
2887 expected_error = 0;
2889 spa_config_exit(spa, SCL_VDEV, FTAG);
2892 * Build the nvlist describing newpath.
2894 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2895 ashift, 0, 0, 0, 1);
2897 error = spa_vdev_attach(spa, oldguid, root, replacing);
2899 nvlist_free(root);
2902 * If our parent was the replacing vdev, but the replace completed,
2903 * then instead of failing with ENOTSUP we may either succeed,
2904 * fail with ENODEV, or fail with EOVERFLOW.
2906 if (expected_error == ENOTSUP &&
2907 (error == 0 || error == ENODEV || error == EOVERFLOW))
2908 expected_error = error;
2911 * If someone grew the LUN, the replacement may be too small.
2913 if (error == EOVERFLOW || error == EBUSY)
2914 expected_error = error;
2916 /* XXX workaround 6690467 */
2917 if (error != expected_error && expected_error != EBUSY) {
2918 fatal(0, "attach (%s %llu, %s %llu, %d) "
2919 "returned %d, expected %d",
2920 oldpath, oldsize, newpath,
2921 newsize, replacing, error, expected_error);
2924 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2928 * Callback function which expands the physical size of the vdev.
2930 vdev_t *
2931 grow_vdev(vdev_t *vd, void *arg)
2933 spa_t *spa = vd->vdev_spa;
2934 size_t *newsize = arg;
2935 size_t fsize;
2936 int fd;
2938 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2939 ASSERT(vd->vdev_ops->vdev_op_leaf);
2941 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2942 return (vd);
2944 fsize = lseek(fd, 0, SEEK_END);
2945 (void) ftruncate(fd, *newsize);
2947 if (ztest_opts.zo_verbose >= 6) {
2948 (void) printf("%s grew from %lu to %lu bytes\n",
2949 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2951 (void) close(fd);
2952 return (NULL);
2956 * Callback function which expands a given vdev by calling vdev_online().
2958 /* ARGSUSED */
2959 vdev_t *
2960 online_vdev(vdev_t *vd, void *arg)
2962 spa_t *spa = vd->vdev_spa;
2963 vdev_t *tvd = vd->vdev_top;
2964 uint64_t guid = vd->vdev_guid;
2965 uint64_t generation = spa->spa_config_generation + 1;
2966 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2967 int error;
2969 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2970 ASSERT(vd->vdev_ops->vdev_op_leaf);
2972 /* Calling vdev_online will initialize the new metaslabs */
2973 spa_config_exit(spa, SCL_STATE, spa);
2974 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2975 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2978 * If vdev_online returned an error or the underlying vdev_open
2979 * failed then we abort the expand. The only way to know that
2980 * vdev_open fails is by checking the returned newstate.
2982 if (error || newstate != VDEV_STATE_HEALTHY) {
2983 if (ztest_opts.zo_verbose >= 5) {
2984 (void) printf("Unable to expand vdev, state %llu, "
2985 "error %d\n", (u_longlong_t)newstate, error);
2987 return (vd);
2989 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2992 * Since we dropped the lock we need to ensure that we're
2993 * still talking to the original vdev. It's possible this
2994 * vdev may have been detached/replaced while we were
2995 * trying to online it.
2997 if (generation != spa->spa_config_generation) {
2998 if (ztest_opts.zo_verbose >= 5) {
2999 (void) printf("vdev configuration has changed, "
3000 "guid %llu, state %llu, expected gen %llu, "
3001 "got gen %llu\n",
3002 (u_longlong_t)guid,
3003 (u_longlong_t)tvd->vdev_state,
3004 (u_longlong_t)generation,
3005 (u_longlong_t)spa->spa_config_generation);
3007 return (vd);
3009 return (NULL);
3013 * Traverse the vdev tree calling the supplied function.
3014 * We continue to walk the tree until we either have walked all
3015 * children or we receive a non-NULL return from the callback.
3016 * If a NULL callback is passed, then we just return back the first
3017 * leaf vdev we encounter.
3019 vdev_t *
3020 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3022 if (vd->vdev_ops->vdev_op_leaf) {
3023 if (func == NULL)
3024 return (vd);
3025 else
3026 return (func(vd, arg));
3029 for (uint_t c = 0; c < vd->vdev_children; c++) {
3030 vdev_t *cvd = vd->vdev_child[c];
3031 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3032 return (cvd);
3034 return (NULL);
3038 * Verify that dynamic LUN growth works as expected.
3040 /* ARGSUSED */
3041 void
3042 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3044 spa_t *spa = ztest_spa;
3045 vdev_t *vd, *tvd;
3046 metaslab_class_t *mc;
3047 metaslab_group_t *mg;
3048 size_t psize, newsize;
3049 uint64_t top;
3050 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3052 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3053 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3055 top = ztest_random_vdev_top(spa, B_TRUE);
3057 tvd = spa->spa_root_vdev->vdev_child[top];
3058 mg = tvd->vdev_mg;
3059 mc = mg->mg_class;
3060 old_ms_count = tvd->vdev_ms_count;
3061 old_class_space = metaslab_class_get_space(mc);
3064 * Determine the size of the first leaf vdev associated with
3065 * our top-level device.
3067 vd = vdev_walk_tree(tvd, NULL, NULL);
3068 ASSERT3P(vd, !=, NULL);
3069 ASSERT(vd->vdev_ops->vdev_op_leaf);
3071 psize = vd->vdev_psize;
3074 * We only try to expand the vdev if it's healthy, less than 4x its
3075 * original size, and it has a valid psize.
3077 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3078 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3079 spa_config_exit(spa, SCL_STATE, spa);
3080 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3081 return;
3083 ASSERT(psize > 0);
3084 newsize = psize + psize / 8;
3085 ASSERT3U(newsize, >, psize);
3087 if (ztest_opts.zo_verbose >= 6) {
3088 (void) printf("Expanding LUN %s from %lu to %lu\n",
3089 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3093 * Growing the vdev is a two step process:
3094 * 1). expand the physical size (i.e. relabel)
3095 * 2). online the vdev to create the new metaslabs
3097 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3098 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3099 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3100 if (ztest_opts.zo_verbose >= 5) {
3101 (void) printf("Could not expand LUN because "
3102 "the vdev configuration changed.\n");
3104 spa_config_exit(spa, SCL_STATE, spa);
3105 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3106 return;
3109 spa_config_exit(spa, SCL_STATE, spa);
3112 * Expanding the LUN will update the config asynchronously,
3113 * thus we must wait for the async thread to complete any
3114 * pending tasks before proceeding.
3116 for (;;) {
3117 boolean_t done;
3118 mutex_enter(&spa->spa_async_lock);
3119 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3120 mutex_exit(&spa->spa_async_lock);
3121 if (done)
3122 break;
3123 txg_wait_synced(spa_get_dsl(spa), 0);
3124 (void) poll(NULL, 0, 100);
3127 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3129 tvd = spa->spa_root_vdev->vdev_child[top];
3130 new_ms_count = tvd->vdev_ms_count;
3131 new_class_space = metaslab_class_get_space(mc);
3133 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3134 if (ztest_opts.zo_verbose >= 5) {
3135 (void) printf("Could not verify LUN expansion due to "
3136 "intervening vdev offline or remove.\n");
3138 spa_config_exit(spa, SCL_STATE, spa);
3139 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3140 return;
3144 * Make sure we were able to grow the vdev.
3146 if (new_ms_count <= old_ms_count)
3147 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3148 old_ms_count, new_ms_count);
3151 * Make sure we were able to grow the pool.
3153 if (new_class_space <= old_class_space)
3154 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3155 old_class_space, new_class_space);
3157 if (ztest_opts.zo_verbose >= 5) {
3158 char oldnumbuf[6], newnumbuf[6];
3160 nicenum(old_class_space, oldnumbuf);
3161 nicenum(new_class_space, newnumbuf);
3162 (void) printf("%s grew from %s to %s\n",
3163 spa->spa_name, oldnumbuf, newnumbuf);
3166 spa_config_exit(spa, SCL_STATE, spa);
3167 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3171 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3173 /* ARGSUSED */
3174 static void
3175 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3178 * Create the objects common to all ztest datasets.
3180 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3181 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3184 static int
3185 ztest_dataset_create(char *dsname)
3187 uint64_t zilset = ztest_random(100);
3188 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3189 ztest_objset_create_cb, NULL);
3191 if (err || zilset < 80)
3192 return (err);
3194 if (ztest_opts.zo_verbose >= 6)
3195 (void) printf("Setting dataset %s to sync always\n", dsname);
3196 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3197 ZFS_SYNC_ALWAYS, B_FALSE));
3200 /* ARGSUSED */
3201 static int
3202 ztest_objset_destroy_cb(const char *name, void *arg)
3204 objset_t *os;
3205 dmu_object_info_t doi;
3206 int error;
3209 * Verify that the dataset contains a directory object.
3211 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3212 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3213 if (error != ENOENT) {
3214 /* We could have crashed in the middle of destroying it */
3215 ASSERT0(error);
3216 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3217 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3219 dmu_objset_disown(os, FTAG);
3222 * Destroy the dataset.
3224 if (strchr(name, '@') != NULL) {
3225 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3226 } else {
3227 error = dsl_destroy_head(name);
3228 /* There could be a hold on this dataset */
3229 if (error != EBUSY)
3230 ASSERT0(error);
3232 return (0);
3235 static boolean_t
3236 ztest_snapshot_create(char *osname, uint64_t id)
3238 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3239 int error;
3241 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3243 error = dmu_objset_snapshot_one(osname, snapname);
3244 if (error == ENOSPC) {
3245 ztest_record_enospc(FTAG);
3246 return (B_FALSE);
3248 if (error != 0 && error != EEXIST) {
3249 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3250 snapname, error);
3252 return (B_TRUE);
3255 static boolean_t
3256 ztest_snapshot_destroy(char *osname, uint64_t id)
3258 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3259 int error;
3261 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3262 (u_longlong_t)id);
3264 error = dsl_destroy_snapshot(snapname, B_FALSE);
3265 if (error != 0 && error != ENOENT)
3266 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3267 return (B_TRUE);
3270 /* ARGSUSED */
3271 void
3272 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3274 ztest_ds_t zdtmp;
3275 int iters;
3276 int error;
3277 objset_t *os, *os2;
3278 char name[ZFS_MAX_DATASET_NAME_LEN];
3279 zilog_t *zilog;
3281 (void) rw_rdlock(&ztest_name_lock);
3283 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
3284 ztest_opts.zo_pool, (u_longlong_t)id);
3287 * If this dataset exists from a previous run, process its replay log
3288 * half of the time. If we don't replay it, then dmu_objset_destroy()
3289 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3291 if (ztest_random(2) == 0 &&
3292 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3293 ztest_zd_init(&zdtmp, NULL, os);
3294 zil_replay(os, &zdtmp, ztest_replay_vector);
3295 ztest_zd_fini(&zdtmp);
3296 dmu_objset_disown(os, FTAG);
3300 * There may be an old instance of the dataset we're about to
3301 * create lying around from a previous run. If so, destroy it
3302 * and all of its snapshots.
3304 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3305 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3308 * Verify that the destroyed dataset is no longer in the namespace.
3310 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3311 FTAG, &os));
3314 * Verify that we can create a new dataset.
3316 error = ztest_dataset_create(name);
3317 if (error) {
3318 if (error == ENOSPC) {
3319 ztest_record_enospc(FTAG);
3320 (void) rw_unlock(&ztest_name_lock);
3321 return;
3323 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3326 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3328 ztest_zd_init(&zdtmp, NULL, os);
3331 * Open the intent log for it.
3333 zilog = zil_open(os, ztest_get_data);
3336 * Put some objects in there, do a little I/O to them,
3337 * and randomly take a couple of snapshots along the way.
3339 iters = ztest_random(5);
3340 for (int i = 0; i < iters; i++) {
3341 ztest_dmu_object_alloc_free(&zdtmp, id);
3342 if (ztest_random(iters) == 0)
3343 (void) ztest_snapshot_create(name, i);
3347 * Verify that we cannot create an existing dataset.
3349 VERIFY3U(EEXIST, ==,
3350 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3353 * Verify that we can hold an objset that is also owned.
3355 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3356 dmu_objset_rele(os2, FTAG);
3359 * Verify that we cannot own an objset that is already owned.
3361 VERIFY3U(EBUSY, ==,
3362 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3364 zil_close(zilog);
3365 dmu_objset_disown(os, FTAG);
3366 ztest_zd_fini(&zdtmp);
3368 (void) rw_unlock(&ztest_name_lock);
3372 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3374 void
3375 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3377 (void) rw_rdlock(&ztest_name_lock);
3378 (void) ztest_snapshot_destroy(zd->zd_name, id);
3379 (void) ztest_snapshot_create(zd->zd_name, id);
3380 (void) rw_unlock(&ztest_name_lock);
3384 * Cleanup non-standard snapshots and clones.
3386 void
3387 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3389 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3390 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3391 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3392 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3393 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3394 int error;
3396 (void) snprintf(snap1name, sizeof (snap1name),
3397 "%s@s1_%llu", osname, id);
3398 (void) snprintf(clone1name, sizeof (clone1name),
3399 "%s/c1_%llu", osname, id);
3400 (void) snprintf(snap2name, sizeof (snap2name),
3401 "%s@s2_%llu", clone1name, id);
3402 (void) snprintf(clone2name, sizeof (clone2name),
3403 "%s/c2_%llu", osname, id);
3404 (void) snprintf(snap3name, sizeof (snap3name),
3405 "%s@s3_%llu", clone1name, id);
3407 error = dsl_destroy_head(clone2name);
3408 if (error && error != ENOENT)
3409 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3410 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3411 if (error && error != ENOENT)
3412 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3413 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3414 if (error && error != ENOENT)
3415 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3416 error = dsl_destroy_head(clone1name);
3417 if (error && error != ENOENT)
3418 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3419 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3420 if (error && error != ENOENT)
3421 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3425 * Verify dsl_dataset_promote handles EBUSY
3427 void
3428 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3430 objset_t *os;
3431 char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3432 char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3433 char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3434 char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3435 char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3436 char *osname = zd->zd_name;
3437 int error;
3439 (void) rw_rdlock(&ztest_name_lock);
3441 ztest_dsl_dataset_cleanup(osname, id);
3443 (void) snprintf(snap1name, sizeof (snap1name),
3444 "%s@s1_%llu", osname, id);
3445 (void) snprintf(clone1name, sizeof (clone1name),
3446 "%s/c1_%llu", osname, id);
3447 (void) snprintf(snap2name, sizeof (snap2name),
3448 "%s@s2_%llu", clone1name, id);
3449 (void) snprintf(clone2name, sizeof (clone2name),
3450 "%s/c2_%llu", osname, id);
3451 (void) snprintf(snap3name, sizeof (snap3name),
3452 "%s@s3_%llu", clone1name, id);
3454 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3455 if (error && error != EEXIST) {
3456 if (error == ENOSPC) {
3457 ztest_record_enospc(FTAG);
3458 goto out;
3460 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3463 error = dmu_objset_clone(clone1name, snap1name);
3464 if (error) {
3465 if (error == ENOSPC) {
3466 ztest_record_enospc(FTAG);
3467 goto out;
3469 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3472 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3473 if (error && error != EEXIST) {
3474 if (error == ENOSPC) {
3475 ztest_record_enospc(FTAG);
3476 goto out;
3478 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3481 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3482 if (error && error != EEXIST) {
3483 if (error == ENOSPC) {
3484 ztest_record_enospc(FTAG);
3485 goto out;
3487 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3490 error = dmu_objset_clone(clone2name, snap3name);
3491 if (error) {
3492 if (error == ENOSPC) {
3493 ztest_record_enospc(FTAG);
3494 goto out;
3496 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3499 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3500 if (error)
3501 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3502 error = dsl_dataset_promote(clone2name, NULL);
3503 if (error == ENOSPC) {
3504 dmu_objset_disown(os, FTAG);
3505 ztest_record_enospc(FTAG);
3506 goto out;
3508 if (error != EBUSY)
3509 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3510 error);
3511 dmu_objset_disown(os, FTAG);
3513 out:
3514 ztest_dsl_dataset_cleanup(osname, id);
3516 (void) rw_unlock(&ztest_name_lock);
3520 * Verify that dmu_object_{alloc,free} work as expected.
3522 void
3523 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3525 ztest_od_t od[4];
3526 int batchsize = sizeof (od) / sizeof (od[0]);
3528 for (int b = 0; b < batchsize; b++)
3529 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3532 * Destroy the previous batch of objects, create a new batch,
3533 * and do some I/O on the new objects.
3535 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3536 return;
3538 while (ztest_random(4 * batchsize) != 0)
3539 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3540 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3544 * Verify that dmu_{read,write} work as expected.
3546 void
3547 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3549 objset_t *os = zd->zd_os;
3550 ztest_od_t od[2];
3551 dmu_tx_t *tx;
3552 int i, freeit, error;
3553 uint64_t n, s, txg;
3554 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3555 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3556 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3557 uint64_t regions = 997;
3558 uint64_t stride = 123456789ULL;
3559 uint64_t width = 40;
3560 int free_percent = 5;
3563 * This test uses two objects, packobj and bigobj, that are always
3564 * updated together (i.e. in the same tx) so that their contents are
3565 * in sync and can be compared. Their contents relate to each other
3566 * in a simple way: packobj is a dense array of 'bufwad' structures,
3567 * while bigobj is a sparse array of the same bufwads. Specifically,
3568 * for any index n, there are three bufwads that should be identical:
3570 * packobj, at offset n * sizeof (bufwad_t)
3571 * bigobj, at the head of the nth chunk
3572 * bigobj, at the tail of the nth chunk
3574 * The chunk size is arbitrary. It doesn't have to be a power of two,
3575 * and it doesn't have any relation to the object blocksize.
3576 * The only requirement is that it can hold at least two bufwads.
3578 * Normally, we write the bufwad to each of these locations.
3579 * However, free_percent of the time we instead write zeroes to
3580 * packobj and perform a dmu_free_range() on bigobj. By comparing
3581 * bigobj to packobj, we can verify that the DMU is correctly
3582 * tracking which parts of an object are allocated and free,
3583 * and that the contents of the allocated blocks are correct.
3587 * Read the directory info. If it's the first time, set things up.
3589 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3590 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3592 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3593 return;
3595 bigobj = od[0].od_object;
3596 packobj = od[1].od_object;
3597 chunksize = od[0].od_gen;
3598 ASSERT(chunksize == od[1].od_gen);
3601 * Prefetch a random chunk of the big object.
3602 * Our aim here is to get some async reads in flight
3603 * for blocks that we may free below; the DMU should
3604 * handle this race correctly.
3606 n = ztest_random(regions) * stride + ztest_random(width);
3607 s = 1 + ztest_random(2 * width - 1);
3608 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3609 ZIO_PRIORITY_SYNC_READ);
3612 * Pick a random index and compute the offsets into packobj and bigobj.
3614 n = ztest_random(regions) * stride + ztest_random(width);
3615 s = 1 + ztest_random(width - 1);
3617 packoff = n * sizeof (bufwad_t);
3618 packsize = s * sizeof (bufwad_t);
3620 bigoff = n * chunksize;
3621 bigsize = s * chunksize;
3623 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3624 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3627 * free_percent of the time, free a range of bigobj rather than
3628 * overwriting it.
3630 freeit = (ztest_random(100) < free_percent);
3633 * Read the current contents of our objects.
3635 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3636 DMU_READ_PREFETCH);
3637 ASSERT0(error);
3638 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3639 DMU_READ_PREFETCH);
3640 ASSERT0(error);
3643 * Get a tx for the mods to both packobj and bigobj.
3645 tx = dmu_tx_create(os);
3647 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3649 if (freeit)
3650 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3651 else
3652 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3654 /* This accounts for setting the checksum/compression. */
3655 dmu_tx_hold_bonus(tx, bigobj);
3657 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3658 if (txg == 0) {
3659 umem_free(packbuf, packsize);
3660 umem_free(bigbuf, bigsize);
3661 return;
3664 enum zio_checksum cksum;
3665 do {
3666 cksum = (enum zio_checksum)
3667 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3668 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3669 dmu_object_set_checksum(os, bigobj, cksum, tx);
3671 enum zio_compress comp;
3672 do {
3673 comp = (enum zio_compress)
3674 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3675 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3676 dmu_object_set_compress(os, bigobj, comp, tx);
3679 * For each index from n to n + s, verify that the existing bufwad
3680 * in packobj matches the bufwads at the head and tail of the
3681 * corresponding chunk in bigobj. Then update all three bufwads
3682 * with the new values we want to write out.
3684 for (i = 0; i < s; i++) {
3685 /* LINTED */
3686 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3687 /* LINTED */
3688 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3689 /* LINTED */
3690 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3692 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3693 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3695 if (pack->bw_txg > txg)
3696 fatal(0, "future leak: got %llx, open txg is %llx",
3697 pack->bw_txg, txg);
3699 if (pack->bw_data != 0 && pack->bw_index != n + i)
3700 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3701 pack->bw_index, n, i);
3703 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3704 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3706 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3707 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3709 if (freeit) {
3710 bzero(pack, sizeof (bufwad_t));
3711 } else {
3712 pack->bw_index = n + i;
3713 pack->bw_txg = txg;
3714 pack->bw_data = 1 + ztest_random(-2ULL);
3716 *bigH = *pack;
3717 *bigT = *pack;
3721 * We've verified all the old bufwads, and made new ones.
3722 * Now write them out.
3724 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3726 if (freeit) {
3727 if (ztest_opts.zo_verbose >= 7) {
3728 (void) printf("freeing offset %llx size %llx"
3729 " txg %llx\n",
3730 (u_longlong_t)bigoff,
3731 (u_longlong_t)bigsize,
3732 (u_longlong_t)txg);
3734 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3735 } else {
3736 if (ztest_opts.zo_verbose >= 7) {
3737 (void) printf("writing offset %llx size %llx"
3738 " txg %llx\n",
3739 (u_longlong_t)bigoff,
3740 (u_longlong_t)bigsize,
3741 (u_longlong_t)txg);
3743 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3746 dmu_tx_commit(tx);
3749 * Sanity check the stuff we just wrote.
3752 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3753 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3755 VERIFY(0 == dmu_read(os, packobj, packoff,
3756 packsize, packcheck, DMU_READ_PREFETCH));
3757 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3758 bigsize, bigcheck, DMU_READ_PREFETCH));
3760 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3761 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3763 umem_free(packcheck, packsize);
3764 umem_free(bigcheck, bigsize);
3767 umem_free(packbuf, packsize);
3768 umem_free(bigbuf, bigsize);
3771 void
3772 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3773 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3775 uint64_t i;
3776 bufwad_t *pack;
3777 bufwad_t *bigH;
3778 bufwad_t *bigT;
3781 * For each index from n to n + s, verify that the existing bufwad
3782 * in packobj matches the bufwads at the head and tail of the
3783 * corresponding chunk in bigobj. Then update all three bufwads
3784 * with the new values we want to write out.
3786 for (i = 0; i < s; i++) {
3787 /* LINTED */
3788 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3789 /* LINTED */
3790 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3791 /* LINTED */
3792 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3794 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3795 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3797 if (pack->bw_txg > txg)
3798 fatal(0, "future leak: got %llx, open txg is %llx",
3799 pack->bw_txg, txg);
3801 if (pack->bw_data != 0 && pack->bw_index != n + i)
3802 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3803 pack->bw_index, n, i);
3805 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3806 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3808 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3809 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3811 pack->bw_index = n + i;
3812 pack->bw_txg = txg;
3813 pack->bw_data = 1 + ztest_random(-2ULL);
3815 *bigH = *pack;
3816 *bigT = *pack;
3820 void
3821 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3823 objset_t *os = zd->zd_os;
3824 ztest_od_t od[2];
3825 dmu_tx_t *tx;
3826 uint64_t i;
3827 int error;
3828 uint64_t n, s, txg;
3829 bufwad_t *packbuf, *bigbuf;
3830 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3831 uint64_t blocksize = ztest_random_blocksize();
3832 uint64_t chunksize = blocksize;
3833 uint64_t regions = 997;
3834 uint64_t stride = 123456789ULL;
3835 uint64_t width = 9;
3836 dmu_buf_t *bonus_db;
3837 arc_buf_t **bigbuf_arcbufs;
3838 dmu_object_info_t doi;
3841 * This test uses two objects, packobj and bigobj, that are always
3842 * updated together (i.e. in the same tx) so that their contents are
3843 * in sync and can be compared. Their contents relate to each other
3844 * in a simple way: packobj is a dense array of 'bufwad' structures,
3845 * while bigobj is a sparse array of the same bufwads. Specifically,
3846 * for any index n, there are three bufwads that should be identical:
3848 * packobj, at offset n * sizeof (bufwad_t)
3849 * bigobj, at the head of the nth chunk
3850 * bigobj, at the tail of the nth chunk
3852 * The chunk size is set equal to bigobj block size so that
3853 * dmu_assign_arcbuf() can be tested for object updates.
3857 * Read the directory info. If it's the first time, set things up.
3859 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3860 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3862 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3863 return;
3865 bigobj = od[0].od_object;
3866 packobj = od[1].od_object;
3867 blocksize = od[0].od_blocksize;
3868 chunksize = blocksize;
3869 ASSERT(chunksize == od[1].od_gen);
3871 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3872 VERIFY(ISP2(doi.doi_data_block_size));
3873 VERIFY(chunksize == doi.doi_data_block_size);
3874 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3877 * Pick a random index and compute the offsets into packobj and bigobj.
3879 n = ztest_random(regions) * stride + ztest_random(width);
3880 s = 1 + ztest_random(width - 1);
3882 packoff = n * sizeof (bufwad_t);
3883 packsize = s * sizeof (bufwad_t);
3885 bigoff = n * chunksize;
3886 bigsize = s * chunksize;
3888 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3889 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3891 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3893 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3896 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3897 * Iteration 1 test zcopy to already referenced dbufs.
3898 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3899 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3900 * Iteration 4 test zcopy when dbuf is no longer dirty.
3901 * Iteration 5 test zcopy when it can't be done.
3902 * Iteration 6 one more zcopy write.
3904 for (i = 0; i < 7; i++) {
3905 uint64_t j;
3906 uint64_t off;
3909 * In iteration 5 (i == 5) use arcbufs
3910 * that don't match bigobj blksz to test
3911 * dmu_assign_arcbuf() when it can't directly
3912 * assign an arcbuf to a dbuf.
3914 for (j = 0; j < s; j++) {
3915 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3916 bigbuf_arcbufs[j] =
3917 dmu_request_arcbuf(bonus_db, chunksize);
3918 } else {
3919 bigbuf_arcbufs[2 * j] =
3920 dmu_request_arcbuf(bonus_db, chunksize / 2);
3921 bigbuf_arcbufs[2 * j + 1] =
3922 dmu_request_arcbuf(bonus_db, chunksize / 2);
3927 * Get a tx for the mods to both packobj and bigobj.
3929 tx = dmu_tx_create(os);
3931 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3932 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3934 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3935 if (txg == 0) {
3936 umem_free(packbuf, packsize);
3937 umem_free(bigbuf, bigsize);
3938 for (j = 0; j < s; j++) {
3939 if (i != 5 ||
3940 chunksize < (SPA_MINBLOCKSIZE * 2)) {
3941 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3942 } else {
3943 dmu_return_arcbuf(
3944 bigbuf_arcbufs[2 * j]);
3945 dmu_return_arcbuf(
3946 bigbuf_arcbufs[2 * j + 1]);
3949 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3950 dmu_buf_rele(bonus_db, FTAG);
3951 return;
3955 * 50% of the time don't read objects in the 1st iteration to
3956 * test dmu_assign_arcbuf() for the case when there're no
3957 * existing dbufs for the specified offsets.
3959 if (i != 0 || ztest_random(2) != 0) {
3960 error = dmu_read(os, packobj, packoff,
3961 packsize, packbuf, DMU_READ_PREFETCH);
3962 ASSERT0(error);
3963 error = dmu_read(os, bigobj, bigoff, bigsize,
3964 bigbuf, DMU_READ_PREFETCH);
3965 ASSERT0(error);
3967 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3968 n, chunksize, txg);
3971 * We've verified all the old bufwads, and made new ones.
3972 * Now write them out.
3974 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3975 if (ztest_opts.zo_verbose >= 7) {
3976 (void) printf("writing offset %llx size %llx"
3977 " txg %llx\n",
3978 (u_longlong_t)bigoff,
3979 (u_longlong_t)bigsize,
3980 (u_longlong_t)txg);
3982 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3983 dmu_buf_t *dbt;
3984 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3985 bcopy((caddr_t)bigbuf + (off - bigoff),
3986 bigbuf_arcbufs[j]->b_data, chunksize);
3987 } else {
3988 bcopy((caddr_t)bigbuf + (off - bigoff),
3989 bigbuf_arcbufs[2 * j]->b_data,
3990 chunksize / 2);
3991 bcopy((caddr_t)bigbuf + (off - bigoff) +
3992 chunksize / 2,
3993 bigbuf_arcbufs[2 * j + 1]->b_data,
3994 chunksize / 2);
3997 if (i == 1) {
3998 VERIFY(dmu_buf_hold(os, bigobj, off,
3999 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4001 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4002 dmu_assign_arcbuf(bonus_db, off,
4003 bigbuf_arcbufs[j], tx);
4004 } else {
4005 dmu_assign_arcbuf(bonus_db, off,
4006 bigbuf_arcbufs[2 * j], tx);
4007 dmu_assign_arcbuf(bonus_db,
4008 off + chunksize / 2,
4009 bigbuf_arcbufs[2 * j + 1], tx);
4011 if (i == 1) {
4012 dmu_buf_rele(dbt, FTAG);
4015 dmu_tx_commit(tx);
4018 * Sanity check the stuff we just wrote.
4021 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4022 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4024 VERIFY(0 == dmu_read(os, packobj, packoff,
4025 packsize, packcheck, DMU_READ_PREFETCH));
4026 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4027 bigsize, bigcheck, DMU_READ_PREFETCH));
4029 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4030 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4032 umem_free(packcheck, packsize);
4033 umem_free(bigcheck, bigsize);
4035 if (i == 2) {
4036 txg_wait_open(dmu_objset_pool(os), 0);
4037 } else if (i == 3) {
4038 txg_wait_synced(dmu_objset_pool(os), 0);
4042 dmu_buf_rele(bonus_db, FTAG);
4043 umem_free(packbuf, packsize);
4044 umem_free(bigbuf, bigsize);
4045 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4048 /* ARGSUSED */
4049 void
4050 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4052 ztest_od_t od[1];
4053 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4054 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4057 * Have multiple threads write to large offsets in an object
4058 * to verify that parallel writes to an object -- even to the
4059 * same blocks within the object -- doesn't cause any trouble.
4061 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4063 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4064 return;
4066 while (ztest_random(10) != 0)
4067 ztest_io(zd, od[0].od_object, offset);
4070 void
4071 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4073 ztest_od_t od[1];
4074 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4075 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4076 uint64_t count = ztest_random(20) + 1;
4077 uint64_t blocksize = ztest_random_blocksize();
4078 void *data;
4080 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4082 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4083 return;
4085 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4086 return;
4088 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4090 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4092 while (ztest_random(count) != 0) {
4093 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4094 if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4095 data) != 0)
4096 break;
4097 while (ztest_random(4) != 0)
4098 ztest_io(zd, od[0].od_object, randoff);
4101 umem_free(data, blocksize);
4105 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4107 #define ZTEST_ZAP_MIN_INTS 1
4108 #define ZTEST_ZAP_MAX_INTS 4
4109 #define ZTEST_ZAP_MAX_PROPS 1000
4111 void
4112 ztest_zap(ztest_ds_t *zd, uint64_t id)
4114 objset_t *os = zd->zd_os;
4115 ztest_od_t od[1];
4116 uint64_t object;
4117 uint64_t txg, last_txg;
4118 uint64_t value[ZTEST_ZAP_MAX_INTS];
4119 uint64_t zl_ints, zl_intsize, prop;
4120 int i, ints;
4121 dmu_tx_t *tx;
4122 char propname[100], txgname[100];
4123 int error;
4124 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4126 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4128 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4129 return;
4131 object = od[0].od_object;
4134 * Generate a known hash collision, and verify that
4135 * we can lookup and remove both entries.
4137 tx = dmu_tx_create(os);
4138 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4139 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4140 if (txg == 0)
4141 return;
4142 for (i = 0; i < 2; i++) {
4143 value[i] = i;
4144 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4145 1, &value[i], tx));
4147 for (i = 0; i < 2; i++) {
4148 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4149 sizeof (uint64_t), 1, &value[i], tx));
4150 VERIFY3U(0, ==,
4151 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4152 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4153 ASSERT3U(zl_ints, ==, 1);
4155 for (i = 0; i < 2; i++) {
4156 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4158 dmu_tx_commit(tx);
4161 * Generate a buch of random entries.
4163 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4165 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4166 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4167 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4168 bzero(value, sizeof (value));
4169 last_txg = 0;
4172 * If these zap entries already exist, validate their contents.
4174 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4175 if (error == 0) {
4176 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4177 ASSERT3U(zl_ints, ==, 1);
4179 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4180 zl_ints, &last_txg) == 0);
4182 VERIFY(zap_length(os, object, propname, &zl_intsize,
4183 &zl_ints) == 0);
4185 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4186 ASSERT3U(zl_ints, ==, ints);
4188 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4189 zl_ints, value) == 0);
4191 for (i = 0; i < ints; i++) {
4192 ASSERT3U(value[i], ==, last_txg + object + i);
4194 } else {
4195 ASSERT3U(error, ==, ENOENT);
4199 * Atomically update two entries in our zap object.
4200 * The first is named txg_%llu, and contains the txg
4201 * in which the property was last updated. The second
4202 * is named prop_%llu, and the nth element of its value
4203 * should be txg + object + n.
4205 tx = dmu_tx_create(os);
4206 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4207 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4208 if (txg == 0)
4209 return;
4211 if (last_txg > txg)
4212 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4214 for (i = 0; i < ints; i++)
4215 value[i] = txg + object + i;
4217 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4218 1, &txg, tx));
4219 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4220 ints, value, tx));
4222 dmu_tx_commit(tx);
4225 * Remove a random pair of entries.
4227 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4228 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4229 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4231 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4233 if (error == ENOENT)
4234 return;
4236 ASSERT0(error);
4238 tx = dmu_tx_create(os);
4239 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4240 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4241 if (txg == 0)
4242 return;
4243 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4244 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4245 dmu_tx_commit(tx);
4249 * Testcase to test the upgrading of a microzap to fatzap.
4251 void
4252 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4254 objset_t *os = zd->zd_os;
4255 ztest_od_t od[1];
4256 uint64_t object, txg;
4258 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4260 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4261 return;
4263 object = od[0].od_object;
4266 * Add entries to this ZAP and make sure it spills over
4267 * and gets upgraded to a fatzap. Also, since we are adding
4268 * 2050 entries we should see ptrtbl growth and leaf-block split.
4270 for (int i = 0; i < 2050; i++) {
4271 char name[ZFS_MAX_DATASET_NAME_LEN];
4272 uint64_t value = i;
4273 dmu_tx_t *tx;
4274 int error;
4276 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4277 id, value);
4279 tx = dmu_tx_create(os);
4280 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4281 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4282 if (txg == 0)
4283 return;
4284 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4285 &value, tx);
4286 ASSERT(error == 0 || error == EEXIST);
4287 dmu_tx_commit(tx);
4291 /* ARGSUSED */
4292 void
4293 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4295 objset_t *os = zd->zd_os;
4296 ztest_od_t od[1];
4297 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4298 dmu_tx_t *tx;
4299 int i, namelen, error;
4300 int micro = ztest_random(2);
4301 char name[20], string_value[20];
4302 void *data;
4304 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4306 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4307 return;
4309 object = od[0].od_object;
4312 * Generate a random name of the form 'xxx.....' where each
4313 * x is a random printable character and the dots are dots.
4314 * There are 94 such characters, and the name length goes from
4315 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4317 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4319 for (i = 0; i < 3; i++)
4320 name[i] = '!' + ztest_random('~' - '!' + 1);
4321 for (; i < namelen - 1; i++)
4322 name[i] = '.';
4323 name[i] = '\0';
4325 if ((namelen & 1) || micro) {
4326 wsize = sizeof (txg);
4327 wc = 1;
4328 data = &txg;
4329 } else {
4330 wsize = 1;
4331 wc = namelen;
4332 data = string_value;
4335 count = -1ULL;
4336 VERIFY0(zap_count(os, object, &count));
4337 ASSERT(count != -1ULL);
4340 * Select an operation: length, lookup, add, update, remove.
4342 i = ztest_random(5);
4344 if (i >= 2) {
4345 tx = dmu_tx_create(os);
4346 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4347 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4348 if (txg == 0)
4349 return;
4350 bcopy(name, string_value, namelen);
4351 } else {
4352 tx = NULL;
4353 txg = 0;
4354 bzero(string_value, namelen);
4357 switch (i) {
4359 case 0:
4360 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4361 if (error == 0) {
4362 ASSERT3U(wsize, ==, zl_wsize);
4363 ASSERT3U(wc, ==, zl_wc);
4364 } else {
4365 ASSERT3U(error, ==, ENOENT);
4367 break;
4369 case 1:
4370 error = zap_lookup(os, object, name, wsize, wc, data);
4371 if (error == 0) {
4372 if (data == string_value &&
4373 bcmp(name, data, namelen) != 0)
4374 fatal(0, "name '%s' != val '%s' len %d",
4375 name, data, namelen);
4376 } else {
4377 ASSERT3U(error, ==, ENOENT);
4379 break;
4381 case 2:
4382 error = zap_add(os, object, name, wsize, wc, data, tx);
4383 ASSERT(error == 0 || error == EEXIST);
4384 break;
4386 case 3:
4387 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4388 break;
4390 case 4:
4391 error = zap_remove(os, object, name, tx);
4392 ASSERT(error == 0 || error == ENOENT);
4393 break;
4396 if (tx != NULL)
4397 dmu_tx_commit(tx);
4401 * Commit callback data.
4403 typedef struct ztest_cb_data {
4404 list_node_t zcd_node;
4405 uint64_t zcd_txg;
4406 int zcd_expected_err;
4407 boolean_t zcd_added;
4408 boolean_t zcd_called;
4409 spa_t *zcd_spa;
4410 } ztest_cb_data_t;
4412 /* This is the actual commit callback function */
4413 static void
4414 ztest_commit_callback(void *arg, int error)
4416 ztest_cb_data_t *data = arg;
4417 uint64_t synced_txg;
4419 VERIFY(data != NULL);
4420 VERIFY3S(data->zcd_expected_err, ==, error);
4421 VERIFY(!data->zcd_called);
4423 synced_txg = spa_last_synced_txg(data->zcd_spa);
4424 if (data->zcd_txg > synced_txg)
4425 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4426 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4427 synced_txg);
4429 data->zcd_called = B_TRUE;
4431 if (error == ECANCELED) {
4432 ASSERT0(data->zcd_txg);
4433 ASSERT(!data->zcd_added);
4436 * The private callback data should be destroyed here, but
4437 * since we are going to check the zcd_called field after
4438 * dmu_tx_abort(), we will destroy it there.
4440 return;
4443 /* Was this callback added to the global callback list? */
4444 if (!data->zcd_added)
4445 goto out;
4447 ASSERT3U(data->zcd_txg, !=, 0);
4449 /* Remove our callback from the list */
4450 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4451 list_remove(&zcl.zcl_callbacks, data);
4452 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4454 out:
4455 umem_free(data, sizeof (ztest_cb_data_t));
4458 /* Allocate and initialize callback data structure */
4459 static ztest_cb_data_t *
4460 ztest_create_cb_data(objset_t *os, uint64_t txg)
4462 ztest_cb_data_t *cb_data;
4464 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4466 cb_data->zcd_txg = txg;
4467 cb_data->zcd_spa = dmu_objset_spa(os);
4469 return (cb_data);
4473 * If a number of txgs equal to this threshold have been created after a commit
4474 * callback has been registered but not called, then we assume there is an
4475 * implementation bug.
4477 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2)
4480 * Commit callback test.
4482 void
4483 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4485 objset_t *os = zd->zd_os;
4486 ztest_od_t od[1];
4487 dmu_tx_t *tx;
4488 ztest_cb_data_t *cb_data[3], *tmp_cb;
4489 uint64_t old_txg, txg;
4490 int i, error;
4492 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4494 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4495 return;
4497 tx = dmu_tx_create(os);
4499 cb_data[0] = ztest_create_cb_data(os, 0);
4500 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4502 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4504 /* Every once in a while, abort the transaction on purpose */
4505 if (ztest_random(100) == 0)
4506 error = -1;
4508 if (!error)
4509 error = dmu_tx_assign(tx, TXG_NOWAIT);
4511 txg = error ? 0 : dmu_tx_get_txg(tx);
4513 cb_data[0]->zcd_txg = txg;
4514 cb_data[1] = ztest_create_cb_data(os, txg);
4515 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4517 if (error) {
4519 * It's not a strict requirement to call the registered
4520 * callbacks from inside dmu_tx_abort(), but that's what
4521 * it's supposed to happen in the current implementation
4522 * so we will check for that.
4524 for (i = 0; i < 2; i++) {
4525 cb_data[i]->zcd_expected_err = ECANCELED;
4526 VERIFY(!cb_data[i]->zcd_called);
4529 dmu_tx_abort(tx);
4531 for (i = 0; i < 2; i++) {
4532 VERIFY(cb_data[i]->zcd_called);
4533 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4536 return;
4539 cb_data[2] = ztest_create_cb_data(os, txg);
4540 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4543 * Read existing data to make sure there isn't a future leak.
4545 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4546 &old_txg, DMU_READ_PREFETCH));
4548 if (old_txg > txg)
4549 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4550 old_txg, txg);
4552 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4554 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4557 * Since commit callbacks don't have any ordering requirement and since
4558 * it is theoretically possible for a commit callback to be called
4559 * after an arbitrary amount of time has elapsed since its txg has been
4560 * synced, it is difficult to reliably determine whether a commit
4561 * callback hasn't been called due to high load or due to a flawed
4562 * implementation.
4564 * In practice, we will assume that if after a certain number of txgs a
4565 * commit callback hasn't been called, then most likely there's an
4566 * implementation bug..
4568 tmp_cb = list_head(&zcl.zcl_callbacks);
4569 if (tmp_cb != NULL &&
4570 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4571 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4572 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4576 * Let's find the place to insert our callbacks.
4578 * Even though the list is ordered by txg, it is possible for the
4579 * insertion point to not be the end because our txg may already be
4580 * quiescing at this point and other callbacks in the open txg
4581 * (from other objsets) may have sneaked in.
4583 tmp_cb = list_tail(&zcl.zcl_callbacks);
4584 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4585 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4587 /* Add the 3 callbacks to the list */
4588 for (i = 0; i < 3; i++) {
4589 if (tmp_cb == NULL)
4590 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4591 else
4592 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4593 cb_data[i]);
4595 cb_data[i]->zcd_added = B_TRUE;
4596 VERIFY(!cb_data[i]->zcd_called);
4598 tmp_cb = cb_data[i];
4601 (void) mutex_unlock(&zcl.zcl_callbacks_lock);
4603 dmu_tx_commit(tx);
4606 /* ARGSUSED */
4607 void
4608 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4610 zfs_prop_t proplist[] = {
4611 ZFS_PROP_CHECKSUM,
4612 ZFS_PROP_COMPRESSION,
4613 ZFS_PROP_COPIES,
4614 ZFS_PROP_DEDUP
4617 (void) rw_rdlock(&ztest_name_lock);
4619 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4620 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4621 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4623 (void) rw_unlock(&ztest_name_lock);
4626 /* ARGSUSED */
4627 void
4628 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4630 nvlist_t *props = NULL;
4632 (void) rw_rdlock(&ztest_name_lock);
4634 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4635 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4637 VERIFY0(spa_prop_get(ztest_spa, &props));
4639 if (ztest_opts.zo_verbose >= 6)
4640 dump_nvlist(props, 4);
4642 nvlist_free(props);
4644 (void) rw_unlock(&ztest_name_lock);
4647 static int
4648 user_release_one(const char *snapname, const char *holdname)
4650 nvlist_t *snaps, *holds;
4651 int error;
4653 snaps = fnvlist_alloc();
4654 holds = fnvlist_alloc();
4655 fnvlist_add_boolean(holds, holdname);
4656 fnvlist_add_nvlist(snaps, snapname, holds);
4657 fnvlist_free(holds);
4658 error = dsl_dataset_user_release(snaps, NULL);
4659 fnvlist_free(snaps);
4660 return (error);
4664 * Test snapshot hold/release and deferred destroy.
4666 void
4667 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4669 int error;
4670 objset_t *os = zd->zd_os;
4671 objset_t *origin;
4672 char snapname[100];
4673 char fullname[100];
4674 char clonename[100];
4675 char tag[100];
4676 char osname[ZFS_MAX_DATASET_NAME_LEN];
4677 nvlist_t *holds;
4679 (void) rw_rdlock(&ztest_name_lock);
4681 dmu_objset_name(os, osname);
4683 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4684 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4685 (void) snprintf(clonename, sizeof (clonename),
4686 "%s/ch1_%llu", osname, id);
4687 (void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4690 * Clean up from any previous run.
4692 error = dsl_destroy_head(clonename);
4693 if (error != ENOENT)
4694 ASSERT0(error);
4695 error = user_release_one(fullname, tag);
4696 if (error != ESRCH && error != ENOENT)
4697 ASSERT0(error);
4698 error = dsl_destroy_snapshot(fullname, B_FALSE);
4699 if (error != ENOENT)
4700 ASSERT0(error);
4703 * Create snapshot, clone it, mark snap for deferred destroy,
4704 * destroy clone, verify snap was also destroyed.
4706 error = dmu_objset_snapshot_one(osname, snapname);
4707 if (error) {
4708 if (error == ENOSPC) {
4709 ztest_record_enospc("dmu_objset_snapshot");
4710 goto out;
4712 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4715 error = dmu_objset_clone(clonename, fullname);
4716 if (error) {
4717 if (error == ENOSPC) {
4718 ztest_record_enospc("dmu_objset_clone");
4719 goto out;
4721 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4724 error = dsl_destroy_snapshot(fullname, B_TRUE);
4725 if (error) {
4726 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4727 fullname, error);
4730 error = dsl_destroy_head(clonename);
4731 if (error)
4732 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4734 error = dmu_objset_hold(fullname, FTAG, &origin);
4735 if (error != ENOENT)
4736 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4739 * Create snapshot, add temporary hold, verify that we can't
4740 * destroy a held snapshot, mark for deferred destroy,
4741 * release hold, verify snapshot was destroyed.
4743 error = dmu_objset_snapshot_one(osname, snapname);
4744 if (error) {
4745 if (error == ENOSPC) {
4746 ztest_record_enospc("dmu_objset_snapshot");
4747 goto out;
4749 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4752 holds = fnvlist_alloc();
4753 fnvlist_add_string(holds, fullname, tag);
4754 error = dsl_dataset_user_hold(holds, 0, NULL);
4755 fnvlist_free(holds);
4757 if (error == ENOSPC) {
4758 ztest_record_enospc("dsl_dataset_user_hold");
4759 goto out;
4760 } else if (error) {
4761 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4762 fullname, tag, error);
4765 error = dsl_destroy_snapshot(fullname, B_FALSE);
4766 if (error != EBUSY) {
4767 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4768 fullname, error);
4771 error = dsl_destroy_snapshot(fullname, B_TRUE);
4772 if (error) {
4773 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4774 fullname, error);
4777 error = user_release_one(fullname, tag);
4778 if (error)
4779 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4781 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4783 out:
4784 (void) rw_unlock(&ztest_name_lock);
4788 * Inject random faults into the on-disk data.
4790 /* ARGSUSED */
4791 void
4792 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4794 ztest_shared_t *zs = ztest_shared;
4795 spa_t *spa = ztest_spa;
4796 int fd;
4797 uint64_t offset;
4798 uint64_t leaves;
4799 uint64_t bad = 0x1990c0ffeedecade;
4800 uint64_t top, leaf;
4801 char path0[MAXPATHLEN];
4802 char pathrand[MAXPATHLEN];
4803 size_t fsize;
4804 int bshift = SPA_MAXBLOCKSHIFT + 2;
4805 int iters = 1000;
4806 int maxfaults;
4807 int mirror_save;
4808 vdev_t *vd0 = NULL;
4809 uint64_t guid0 = 0;
4810 boolean_t islog = B_FALSE;
4812 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4813 maxfaults = MAXFAULTS();
4814 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4815 mirror_save = zs->zs_mirrors;
4816 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4818 ASSERT(leaves >= 1);
4821 * Grab the name lock as reader. There are some operations
4822 * which don't like to have their vdevs changed while
4823 * they are in progress (i.e. spa_change_guid). Those
4824 * operations will have grabbed the name lock as writer.
4826 (void) rw_rdlock(&ztest_name_lock);
4829 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4831 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4833 if (ztest_random(2) == 0) {
4835 * Inject errors on a normal data device or slog device.
4837 top = ztest_random_vdev_top(spa, B_TRUE);
4838 leaf = ztest_random(leaves) + zs->zs_splits;
4841 * Generate paths to the first leaf in this top-level vdev,
4842 * and to the random leaf we selected. We'll induce transient
4843 * write failures and random online/offline activity on leaf 0,
4844 * and we'll write random garbage to the randomly chosen leaf.
4846 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
4847 ztest_opts.zo_dir, ztest_opts.zo_pool,
4848 top * leaves + zs->zs_splits);
4849 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4850 ztest_opts.zo_dir, ztest_opts.zo_pool,
4851 top * leaves + leaf);
4853 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4854 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4855 islog = B_TRUE;
4858 * If the top-level vdev needs to be resilvered
4859 * then we only allow faults on the device that is
4860 * resilvering.
4862 if (vd0 != NULL && maxfaults != 1 &&
4863 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4864 vd0->vdev_resilver_txg != 0)) {
4866 * Make vd0 explicitly claim to be unreadable,
4867 * or unwriteable, or reach behind its back
4868 * and close the underlying fd. We can do this if
4869 * maxfaults == 0 because we'll fail and reexecute,
4870 * and we can do it if maxfaults >= 2 because we'll
4871 * have enough redundancy. If maxfaults == 1, the
4872 * combination of this with injection of random data
4873 * corruption below exceeds the pool's fault tolerance.
4875 vdev_file_t *vf = vd0->vdev_tsd;
4877 if (vf != NULL && ztest_random(3) == 0) {
4878 (void) close(vf->vf_vnode->v_fd);
4879 vf->vf_vnode->v_fd = -1;
4880 } else if (ztest_random(2) == 0) {
4881 vd0->vdev_cant_read = B_TRUE;
4882 } else {
4883 vd0->vdev_cant_write = B_TRUE;
4885 guid0 = vd0->vdev_guid;
4887 } else {
4889 * Inject errors on an l2cache device.
4891 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4893 if (sav->sav_count == 0) {
4894 spa_config_exit(spa, SCL_STATE, FTAG);
4895 (void) rw_unlock(&ztest_name_lock);
4896 return;
4898 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4899 guid0 = vd0->vdev_guid;
4900 (void) strcpy(path0, vd0->vdev_path);
4901 (void) strcpy(pathrand, vd0->vdev_path);
4903 leaf = 0;
4904 leaves = 1;
4905 maxfaults = INT_MAX; /* no limit on cache devices */
4908 spa_config_exit(spa, SCL_STATE, FTAG);
4909 (void) rw_unlock(&ztest_name_lock);
4912 * If we can tolerate two or more faults, or we're dealing
4913 * with a slog, randomly online/offline vd0.
4915 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4916 if (ztest_random(10) < 6) {
4917 int flags = (ztest_random(2) == 0 ?
4918 ZFS_OFFLINE_TEMPORARY : 0);
4921 * We have to grab the zs_name_lock as writer to
4922 * prevent a race between offlining a slog and
4923 * destroying a dataset. Offlining the slog will
4924 * grab a reference on the dataset which may cause
4925 * dmu_objset_destroy() to fail with EBUSY thus
4926 * leaving the dataset in an inconsistent state.
4928 if (islog)
4929 (void) rw_wrlock(&ztest_name_lock);
4931 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4933 if (islog)
4934 (void) rw_unlock(&ztest_name_lock);
4935 } else {
4937 * Ideally we would like to be able to randomly
4938 * call vdev_[on|off]line without holding locks
4939 * to force unpredictable failures but the side
4940 * effects of vdev_[on|off]line prevent us from
4941 * doing so. We grab the ztest_vdev_lock here to
4942 * prevent a race between injection testing and
4943 * aux_vdev removal.
4945 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4946 (void) vdev_online(spa, guid0, 0, NULL);
4947 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4951 if (maxfaults == 0)
4952 return;
4955 * We have at least single-fault tolerance, so inject data corruption.
4957 fd = open(pathrand, O_RDWR);
4959 if (fd == -1) /* we hit a gap in the device namespace */
4960 return;
4962 fsize = lseek(fd, 0, SEEK_END);
4964 while (--iters != 0) {
4966 * The offset must be chosen carefully to ensure that
4967 * we do not inject a given logical block with errors
4968 * on two different leaf devices, because ZFS can not
4969 * tolerate that (if maxfaults==1).
4971 * We divide each leaf into chunks of size
4972 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
4973 * there is a series of ranges to which we can inject errors.
4974 * Each range can accept errors on only a single leaf vdev.
4975 * The error injection ranges are separated by ranges
4976 * which we will not inject errors on any device (DMZs).
4977 * Each DMZ must be large enough such that a single block
4978 * can not straddle it, so that a single block can not be
4979 * a target in two different injection ranges (on different
4980 * leaf vdevs).
4982 * For example, with 3 leaves, each chunk looks like:
4983 * 0 to 32M: injection range for leaf 0
4984 * 32M to 64M: DMZ - no injection allowed
4985 * 64M to 96M: injection range for leaf 1
4986 * 96M to 128M: DMZ - no injection allowed
4987 * 128M to 160M: injection range for leaf 2
4988 * 160M to 192M: DMZ - no injection allowed
4990 offset = ztest_random(fsize / (leaves << bshift)) *
4991 (leaves << bshift) + (leaf << bshift) +
4992 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4995 * Only allow damage to the labels at one end of the vdev.
4997 * If all labels are damaged, the device will be totally
4998 * inaccessible, which will result in loss of data,
4999 * because we also damage (parts of) the other side of
5000 * the mirror/raidz.
5002 * Additionally, we will always have both an even and an
5003 * odd label, so that we can handle crashes in the
5004 * middle of vdev_config_sync().
5006 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5007 continue;
5010 * The two end labels are stored at the "end" of the disk, but
5011 * the end of the disk (vdev_psize) is aligned to
5012 * sizeof (vdev_label_t).
5014 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5015 if ((leaf & 1) == 1 &&
5016 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5017 continue;
5019 VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5020 if (mirror_save != zs->zs_mirrors) {
5021 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5022 (void) close(fd);
5023 return;
5026 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5027 fatal(1, "can't inject bad word at 0x%llx in %s",
5028 offset, pathrand);
5030 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5032 if (ztest_opts.zo_verbose >= 7)
5033 (void) printf("injected bad word into %s,"
5034 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5037 (void) close(fd);
5041 * Verify that DDT repair works as expected.
5043 void
5044 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5046 ztest_shared_t *zs = ztest_shared;
5047 spa_t *spa = ztest_spa;
5048 objset_t *os = zd->zd_os;
5049 ztest_od_t od[1];
5050 uint64_t object, blocksize, txg, pattern, psize;
5051 enum zio_checksum checksum = spa_dedup_checksum(spa);
5052 dmu_buf_t *db;
5053 dmu_tx_t *tx;
5054 void *buf;
5055 blkptr_t blk;
5056 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5058 blocksize = ztest_random_blocksize();
5059 blocksize = MIN(blocksize, 2048); /* because we write so many */
5061 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5063 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5064 return;
5067 * Take the name lock as writer to prevent anyone else from changing
5068 * the pool and dataset properies we need to maintain during this test.
5070 (void) rw_wrlock(&ztest_name_lock);
5072 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5073 B_FALSE) != 0 ||
5074 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5075 B_FALSE) != 0) {
5076 (void) rw_unlock(&ztest_name_lock);
5077 return;
5080 dmu_objset_stats_t dds;
5081 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5082 dmu_objset_fast_stat(os, &dds);
5083 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5085 object = od[0].od_object;
5086 blocksize = od[0].od_blocksize;
5087 pattern = zs->zs_guid ^ dds.dds_guid;
5089 ASSERT(object != 0);
5091 tx = dmu_tx_create(os);
5092 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5093 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5094 if (txg == 0) {
5095 (void) rw_unlock(&ztest_name_lock);
5096 return;
5100 * Write all the copies of our block.
5102 for (int i = 0; i < copies; i++) {
5103 uint64_t offset = i * blocksize;
5104 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5105 DMU_READ_NO_PREFETCH);
5106 if (error != 0) {
5107 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5108 os, (long long)object, (long long) offset, error);
5110 ASSERT(db->db_offset == offset);
5111 ASSERT(db->db_size == blocksize);
5112 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5113 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5114 dmu_buf_will_fill(db, tx);
5115 ztest_pattern_set(db->db_data, db->db_size, pattern);
5116 dmu_buf_rele(db, FTAG);
5119 dmu_tx_commit(tx);
5120 txg_wait_synced(spa_get_dsl(spa), txg);
5123 * Find out what block we got.
5125 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5126 DMU_READ_NO_PREFETCH));
5127 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5128 dmu_buf_rele(db, FTAG);
5131 * Damage the block. Dedup-ditto will save us when we read it later.
5133 psize = BP_GET_PSIZE(&blk);
5134 buf = zio_buf_alloc(psize);
5135 ztest_pattern_set(buf, psize, ~pattern);
5137 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5138 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5139 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5141 zio_buf_free(buf, psize);
5143 (void) rw_unlock(&ztest_name_lock);
5147 * Scrub the pool.
5149 /* ARGSUSED */
5150 void
5151 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5153 spa_t *spa = ztest_spa;
5155 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5156 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5157 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5161 * Change the guid for the pool.
5163 /* ARGSUSED */
5164 void
5165 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5167 spa_t *spa = ztest_spa;
5168 uint64_t orig, load;
5169 int error;
5171 orig = spa_guid(spa);
5172 load = spa_load_guid(spa);
5174 (void) rw_wrlock(&ztest_name_lock);
5175 error = spa_change_guid(spa);
5176 (void) rw_unlock(&ztest_name_lock);
5178 if (error != 0)
5179 return;
5181 if (ztest_opts.zo_verbose >= 4) {
5182 (void) printf("Changed guid old %llu -> %llu\n",
5183 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5186 VERIFY3U(orig, !=, spa_guid(spa));
5187 VERIFY3U(load, ==, spa_load_guid(spa));
5191 * Rename the pool to a different name and then rename it back.
5193 /* ARGSUSED */
5194 void
5195 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5197 char *oldname, *newname;
5198 spa_t *spa;
5200 (void) rw_wrlock(&ztest_name_lock);
5202 oldname = ztest_opts.zo_pool;
5203 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5204 (void) strcpy(newname, oldname);
5205 (void) strcat(newname, "_tmp");
5208 * Do the rename
5210 VERIFY3U(0, ==, spa_rename(oldname, newname));
5213 * Try to open it under the old name, which shouldn't exist
5215 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5218 * Open it under the new name and make sure it's still the same spa_t.
5220 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5222 ASSERT(spa == ztest_spa);
5223 spa_close(spa, FTAG);
5226 * Rename it back to the original
5228 VERIFY3U(0, ==, spa_rename(newname, oldname));
5231 * Make sure it can still be opened
5233 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5235 ASSERT(spa == ztest_spa);
5236 spa_close(spa, FTAG);
5238 umem_free(newname, strlen(newname) + 1);
5240 (void) rw_unlock(&ztest_name_lock);
5244 * Verify pool integrity by running zdb.
5246 static void
5247 ztest_run_zdb(char *pool)
5249 int status;
5250 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5251 char zbuf[1024];
5252 char *bin;
5253 char *ztest;
5254 char *isa;
5255 int isalen;
5256 FILE *fp;
5258 (void) realpath(getexecname(), zdb);
5260 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5261 bin = strstr(zdb, "/usr/bin/");
5262 ztest = strstr(bin, "/ztest");
5263 isa = bin + 8;
5264 isalen = ztest - isa;
5265 isa = strdup(isa);
5266 /* LINTED */
5267 (void) sprintf(bin,
5268 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5269 isalen,
5270 isa,
5271 ztest_opts.zo_verbose >= 3 ? "s" : "",
5272 ztest_opts.zo_verbose >= 4 ? "v" : "",
5273 spa_config_path,
5274 pool);
5275 free(isa);
5277 if (ztest_opts.zo_verbose >= 5)
5278 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5280 fp = popen(zdb, "r");
5282 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5283 if (ztest_opts.zo_verbose >= 3)
5284 (void) printf("%s", zbuf);
5286 status = pclose(fp);
5288 if (status == 0)
5289 return;
5291 ztest_dump_core = 0;
5292 if (WIFEXITED(status))
5293 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5294 else
5295 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5298 static void
5299 ztest_walk_pool_directory(char *header)
5301 spa_t *spa = NULL;
5303 if (ztest_opts.zo_verbose >= 6)
5304 (void) printf("%s\n", header);
5306 mutex_enter(&spa_namespace_lock);
5307 while ((spa = spa_next(spa)) != NULL)
5308 if (ztest_opts.zo_verbose >= 6)
5309 (void) printf("\t%s\n", spa_name(spa));
5310 mutex_exit(&spa_namespace_lock);
5313 static void
5314 ztest_spa_import_export(char *oldname, char *newname)
5316 nvlist_t *config, *newconfig;
5317 uint64_t pool_guid;
5318 spa_t *spa;
5319 int error;
5321 if (ztest_opts.zo_verbose >= 4) {
5322 (void) printf("import/export: old = %s, new = %s\n",
5323 oldname, newname);
5327 * Clean up from previous runs.
5329 (void) spa_destroy(newname);
5332 * Get the pool's configuration and guid.
5334 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5337 * Kick off a scrub to tickle scrub/export races.
5339 if (ztest_random(2) == 0)
5340 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5342 pool_guid = spa_guid(spa);
5343 spa_close(spa, FTAG);
5345 ztest_walk_pool_directory("pools before export");
5348 * Export it.
5350 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5352 ztest_walk_pool_directory("pools after export");
5355 * Try to import it.
5357 newconfig = spa_tryimport(config);
5358 ASSERT(newconfig != NULL);
5359 nvlist_free(newconfig);
5362 * Import it under the new name.
5364 error = spa_import(newname, config, NULL, 0);
5365 if (error != 0) {
5366 dump_nvlist(config, 0);
5367 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5368 oldname, newname, error);
5371 ztest_walk_pool_directory("pools after import");
5374 * Try to import it again -- should fail with EEXIST.
5376 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5379 * Try to import it under a different name -- should fail with EEXIST.
5381 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5384 * Verify that the pool is no longer visible under the old name.
5386 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5389 * Verify that we can open and close the pool using the new name.
5391 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5392 ASSERT(pool_guid == spa_guid(spa));
5393 spa_close(spa, FTAG);
5395 nvlist_free(config);
5398 static void
5399 ztest_resume(spa_t *spa)
5401 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5402 (void) printf("resuming from suspended state\n");
5403 spa_vdev_state_enter(spa, SCL_NONE);
5404 vdev_clear(spa, NULL);
5405 (void) spa_vdev_state_exit(spa, NULL, 0);
5406 (void) zio_resume(spa);
5409 static void *
5410 ztest_resume_thread(void *arg)
5412 spa_t *spa = arg;
5414 while (!ztest_exiting) {
5415 if (spa_suspended(spa))
5416 ztest_resume(spa);
5417 (void) poll(NULL, 0, 100);
5420 * Periodically change the zfs_compressed_arc_enabled setting.
5422 if (ztest_random(10) == 0)
5423 zfs_compressed_arc_enabled = ztest_random(2);
5425 return (NULL);
5428 static void *
5429 ztest_deadman_thread(void *arg)
5431 ztest_shared_t *zs = arg;
5432 spa_t *spa = ztest_spa;
5433 hrtime_t delta, total = 0;
5435 for (;;) {
5436 delta = zs->zs_thread_stop - zs->zs_thread_start +
5437 MSEC2NSEC(zfs_deadman_synctime_ms);
5439 (void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5442 * If the pool is suspended then fail immediately. Otherwise,
5443 * check to see if the pool is making any progress. If
5444 * vdev_deadman() discovers that there hasn't been any recent
5445 * I/Os then it will end up aborting the tests.
5447 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5448 fatal(0, "aborting test after %llu seconds because "
5449 "pool has transitioned to a suspended state.",
5450 zfs_deadman_synctime_ms / 1000);
5451 return (NULL);
5453 vdev_deadman(spa->spa_root_vdev);
5455 total += zfs_deadman_synctime_ms/1000;
5456 (void) printf("ztest has been running for %lld seconds\n",
5457 total);
5461 static void
5462 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5464 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5465 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5466 hrtime_t functime = gethrtime();
5468 for (int i = 0; i < zi->zi_iters; i++)
5469 zi->zi_func(zd, id);
5471 functime = gethrtime() - functime;
5473 atomic_add_64(&zc->zc_count, 1);
5474 atomic_add_64(&zc->zc_time, functime);
5476 if (ztest_opts.zo_verbose >= 4) {
5477 Dl_info dli;
5478 (void) dladdr((void *)zi->zi_func, &dli);
5479 (void) printf("%6.2f sec in %s\n",
5480 (double)functime / NANOSEC, dli.dli_sname);
5484 static void *
5485 ztest_thread(void *arg)
5487 int rand;
5488 uint64_t id = (uintptr_t)arg;
5489 ztest_shared_t *zs = ztest_shared;
5490 uint64_t call_next;
5491 hrtime_t now;
5492 ztest_info_t *zi;
5493 ztest_shared_callstate_t *zc;
5495 while ((now = gethrtime()) < zs->zs_thread_stop) {
5497 * See if it's time to force a crash.
5499 if (now > zs->zs_thread_kill)
5500 ztest_kill(zs);
5503 * If we're getting ENOSPC with some regularity, stop.
5505 if (zs->zs_enospc_count > 10)
5506 break;
5509 * Pick a random function to execute.
5511 rand = ztest_random(ZTEST_FUNCS);
5512 zi = &ztest_info[rand];
5513 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5514 call_next = zc->zc_next;
5516 if (now >= call_next &&
5517 atomic_cas_64(&zc->zc_next, call_next, call_next +
5518 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5519 ztest_execute(rand, zi, id);
5523 return (NULL);
5526 static void
5527 ztest_dataset_name(char *dsname, char *pool, int d)
5529 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5532 static void
5533 ztest_dataset_destroy(int d)
5535 char name[ZFS_MAX_DATASET_NAME_LEN];
5537 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5539 if (ztest_opts.zo_verbose >= 3)
5540 (void) printf("Destroying %s to free up space\n", name);
5543 * Cleanup any non-standard clones and snapshots. In general,
5544 * ztest thread t operates on dataset (t % zopt_datasets),
5545 * so there may be more than one thing to clean up.
5547 for (int t = d; t < ztest_opts.zo_threads;
5548 t += ztest_opts.zo_datasets) {
5549 ztest_dsl_dataset_cleanup(name, t);
5552 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5553 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5556 static void
5557 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5559 uint64_t usedobjs, dirobjs, scratch;
5562 * ZTEST_DIROBJ is the object directory for the entire dataset.
5563 * Therefore, the number of objects in use should equal the
5564 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5565 * If not, we have an object leak.
5567 * Note that we can only check this in ztest_dataset_open(),
5568 * when the open-context and syncing-context values agree.
5569 * That's because zap_count() returns the open-context value,
5570 * while dmu_objset_space() returns the rootbp fill count.
5572 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5573 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5574 ASSERT3U(dirobjs + 1, ==, usedobjs);
5577 static int
5578 ztest_dataset_open(int d)
5580 ztest_ds_t *zd = &ztest_ds[d];
5581 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5582 objset_t *os;
5583 zilog_t *zilog;
5584 char name[ZFS_MAX_DATASET_NAME_LEN];
5585 int error;
5587 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5589 (void) rw_rdlock(&ztest_name_lock);
5591 error = ztest_dataset_create(name);
5592 if (error == ENOSPC) {
5593 (void) rw_unlock(&ztest_name_lock);
5594 ztest_record_enospc(FTAG);
5595 return (error);
5597 ASSERT(error == 0 || error == EEXIST);
5599 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5600 (void) rw_unlock(&ztest_name_lock);
5602 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5604 zilog = zd->zd_zilog;
5606 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5607 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5608 fatal(0, "missing log records: claimed %llu < committed %llu",
5609 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5611 ztest_dataset_dirobj_verify(zd);
5613 zil_replay(os, zd, ztest_replay_vector);
5615 ztest_dataset_dirobj_verify(zd);
5617 if (ztest_opts.zo_verbose >= 6)
5618 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5619 zd->zd_name,
5620 (u_longlong_t)zilog->zl_parse_blk_count,
5621 (u_longlong_t)zilog->zl_parse_lr_count,
5622 (u_longlong_t)zilog->zl_replaying_seq);
5624 zilog = zil_open(os, ztest_get_data);
5626 if (zilog->zl_replaying_seq != 0 &&
5627 zilog->zl_replaying_seq < committed_seq)
5628 fatal(0, "missing log records: replayed %llu < committed %llu",
5629 zilog->zl_replaying_seq, committed_seq);
5631 return (0);
5634 static void
5635 ztest_dataset_close(int d)
5637 ztest_ds_t *zd = &ztest_ds[d];
5639 zil_close(zd->zd_zilog);
5640 dmu_objset_disown(zd->zd_os, zd);
5642 ztest_zd_fini(zd);
5646 * Kick off threads to run tests on all datasets in parallel.
5648 static void
5649 ztest_run(ztest_shared_t *zs)
5651 thread_t *tid;
5652 spa_t *spa;
5653 objset_t *os;
5654 thread_t resume_tid;
5655 int error;
5657 ztest_exiting = B_FALSE;
5660 * Initialize parent/child shared state.
5662 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5663 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5665 zs->zs_thread_start = gethrtime();
5666 zs->zs_thread_stop =
5667 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5668 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5669 zs->zs_thread_kill = zs->zs_thread_stop;
5670 if (ztest_random(100) < ztest_opts.zo_killrate) {
5671 zs->zs_thread_kill -=
5672 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5675 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5677 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5678 offsetof(ztest_cb_data_t, zcd_node));
5681 * Open our pool.
5683 kernel_init(FREAD | FWRITE);
5684 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5685 spa->spa_debug = B_TRUE;
5686 metaslab_preload_limit = ztest_random(20) + 1;
5687 ztest_spa = spa;
5689 dmu_objset_stats_t dds;
5690 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5691 DMU_OST_ANY, B_TRUE, FTAG, &os));
5692 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5693 dmu_objset_fast_stat(os, &dds);
5694 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5695 zs->zs_guid = dds.dds_guid;
5696 dmu_objset_disown(os, FTAG);
5698 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5701 * We don't expect the pool to suspend unless maxfaults == 0,
5702 * in which case ztest_fault_inject() temporarily takes away
5703 * the only valid replica.
5705 if (MAXFAULTS() == 0)
5706 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5707 else
5708 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5711 * Create a thread to periodically resume suspended I/O.
5713 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5714 &resume_tid) == 0);
5717 * Create a deadman thread to abort() if we hang.
5719 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5720 NULL) == 0);
5723 * Verify that we can safely inquire about about any object,
5724 * whether it's allocated or not. To make it interesting,
5725 * we probe a 5-wide window around each power of two.
5726 * This hits all edge cases, including zero and the max.
5728 for (int t = 0; t < 64; t++) {
5729 for (int d = -5; d <= 5; d++) {
5730 error = dmu_object_info(spa->spa_meta_objset,
5731 (1ULL << t) + d, NULL);
5732 ASSERT(error == 0 || error == ENOENT ||
5733 error == EINVAL);
5738 * If we got any ENOSPC errors on the previous run, destroy something.
5740 if (zs->zs_enospc_count != 0) {
5741 int d = ztest_random(ztest_opts.zo_datasets);
5742 ztest_dataset_destroy(d);
5744 zs->zs_enospc_count = 0;
5746 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5747 UMEM_NOFAIL);
5749 if (ztest_opts.zo_verbose >= 4)
5750 (void) printf("starting main threads...\n");
5753 * Kick off all the tests that run in parallel.
5755 for (int t = 0; t < ztest_opts.zo_threads; t++) {
5756 if (t < ztest_opts.zo_datasets &&
5757 ztest_dataset_open(t) != 0)
5758 return;
5759 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5760 THR_BOUND, &tid[t]) == 0);
5764 * Wait for all of the tests to complete. We go in reverse order
5765 * so we don't close datasets while threads are still using them.
5767 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5768 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5769 if (t < ztest_opts.zo_datasets)
5770 ztest_dataset_close(t);
5773 txg_wait_synced(spa_get_dsl(spa), 0);
5775 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5776 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5777 zfs_dbgmsg_print(FTAG);
5779 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5781 /* Kill the resume thread */
5782 ztest_exiting = B_TRUE;
5783 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5784 ztest_resume(spa);
5787 * Right before closing the pool, kick off a bunch of async I/O;
5788 * spa_close() should wait for it to complete.
5790 for (uint64_t object = 1; object < 50; object++) {
5791 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5792 ZIO_PRIORITY_SYNC_READ);
5795 spa_close(spa, FTAG);
5798 * Verify that we can loop over all pools.
5800 mutex_enter(&spa_namespace_lock);
5801 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5802 if (ztest_opts.zo_verbose > 3)
5803 (void) printf("spa_next: found %s\n", spa_name(spa));
5804 mutex_exit(&spa_namespace_lock);
5807 * Verify that we can export the pool and reimport it under a
5808 * different name.
5810 if (ztest_random(2) == 0) {
5811 char name[ZFS_MAX_DATASET_NAME_LEN];
5812 (void) snprintf(name, sizeof (name), "%s_import",
5813 ztest_opts.zo_pool);
5814 ztest_spa_import_export(ztest_opts.zo_pool, name);
5815 ztest_spa_import_export(name, ztest_opts.zo_pool);
5818 kernel_fini();
5820 list_destroy(&zcl.zcl_callbacks);
5822 (void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5824 (void) rwlock_destroy(&ztest_name_lock);
5825 (void) _mutex_destroy(&ztest_vdev_lock);
5828 static void
5829 ztest_freeze(void)
5831 ztest_ds_t *zd = &ztest_ds[0];
5832 spa_t *spa;
5833 int numloops = 0;
5835 if (ztest_opts.zo_verbose >= 3)
5836 (void) printf("testing spa_freeze()...\n");
5838 kernel_init(FREAD | FWRITE);
5839 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5840 VERIFY3U(0, ==, ztest_dataset_open(0));
5841 spa->spa_debug = B_TRUE;
5842 ztest_spa = spa;
5845 * Force the first log block to be transactionally allocated.
5846 * We have to do this before we freeze the pool -- otherwise
5847 * the log chain won't be anchored.
5849 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5850 ztest_dmu_object_alloc_free(zd, 0);
5851 zil_commit(zd->zd_zilog, 0);
5854 txg_wait_synced(spa_get_dsl(spa), 0);
5857 * Freeze the pool. This stops spa_sync() from doing anything,
5858 * so that the only way to record changes from now on is the ZIL.
5860 spa_freeze(spa);
5863 * Because it is hard to predict how much space a write will actually
5864 * require beforehand, we leave ourselves some fudge space to write over
5865 * capacity.
5867 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5870 * Run tests that generate log records but don't alter the pool config
5871 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5872 * We do a txg_wait_synced() after each iteration to force the txg
5873 * to increase well beyond the last synced value in the uberblock.
5874 * The ZIL should be OK with that.
5876 * Run a random number of times less than zo_maxloops and ensure we do
5877 * not run out of space on the pool.
5879 while (ztest_random(10) != 0 &&
5880 numloops++ < ztest_opts.zo_maxloops &&
5881 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5882 ztest_od_t od;
5883 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5884 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5885 ztest_io(zd, od.od_object,
5886 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5887 txg_wait_synced(spa_get_dsl(spa), 0);
5891 * Commit all of the changes we just generated.
5893 zil_commit(zd->zd_zilog, 0);
5894 txg_wait_synced(spa_get_dsl(spa), 0);
5897 * Close our dataset and close the pool.
5899 ztest_dataset_close(0);
5900 spa_close(spa, FTAG);
5901 kernel_fini();
5904 * Open and close the pool and dataset to induce log replay.
5906 kernel_init(FREAD | FWRITE);
5907 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5908 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5909 VERIFY3U(0, ==, ztest_dataset_open(0));
5910 ztest_dataset_close(0);
5912 spa->spa_debug = B_TRUE;
5913 ztest_spa = spa;
5914 txg_wait_synced(spa_get_dsl(spa), 0);
5915 ztest_reguid(NULL, 0);
5917 spa_close(spa, FTAG);
5918 kernel_fini();
5921 void
5922 print_time(hrtime_t t, char *timebuf)
5924 hrtime_t s = t / NANOSEC;
5925 hrtime_t m = s / 60;
5926 hrtime_t h = m / 60;
5927 hrtime_t d = h / 24;
5929 s -= m * 60;
5930 m -= h * 60;
5931 h -= d * 24;
5933 timebuf[0] = '\0';
5935 if (d)
5936 (void) sprintf(timebuf,
5937 "%llud%02lluh%02llum%02llus", d, h, m, s);
5938 else if (h)
5939 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5940 else if (m)
5941 (void) sprintf(timebuf, "%llum%02llus", m, s);
5942 else
5943 (void) sprintf(timebuf, "%llus", s);
5946 static nvlist_t *
5947 make_random_props()
5949 nvlist_t *props;
5951 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5952 if (ztest_random(2) == 0)
5953 return (props);
5954 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5956 return (props);
5960 * Create a storage pool with the given name and initial vdev size.
5961 * Then test spa_freeze() functionality.
5963 static void
5964 ztest_init(ztest_shared_t *zs)
5966 spa_t *spa;
5967 nvlist_t *nvroot, *props;
5969 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5970 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5972 kernel_init(FREAD | FWRITE);
5975 * Create the storage pool.
5977 (void) spa_destroy(ztest_opts.zo_pool);
5978 ztest_shared->zs_vdev_next_leaf = 0;
5979 zs->zs_splits = 0;
5980 zs->zs_mirrors = ztest_opts.zo_mirrors;
5981 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
5982 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5983 props = make_random_props();
5984 for (int i = 0; i < SPA_FEATURES; i++) {
5985 char buf[1024];
5986 (void) snprintf(buf, sizeof (buf), "feature@%s",
5987 spa_feature_table[i].fi_uname);
5988 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5990 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5991 nvlist_free(nvroot);
5992 nvlist_free(props);
5994 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5995 zs->zs_metaslab_sz =
5996 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5998 spa_close(spa, FTAG);
6000 kernel_fini();
6002 ztest_run_zdb(ztest_opts.zo_pool);
6004 ztest_freeze();
6006 ztest_run_zdb(ztest_opts.zo_pool);
6008 (void) rwlock_destroy(&ztest_name_lock);
6009 (void) _mutex_destroy(&ztest_vdev_lock);
6012 static void
6013 setup_data_fd(void)
6015 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6017 ztest_fd_data = mkstemp(ztest_name_data);
6018 ASSERT3S(ztest_fd_data, >=, 0);
6019 (void) unlink(ztest_name_data);
6023 static int
6024 shared_data_size(ztest_shared_hdr_t *hdr)
6026 int size;
6028 size = hdr->zh_hdr_size;
6029 size += hdr->zh_opts_size;
6030 size += hdr->zh_size;
6031 size += hdr->zh_stats_size * hdr->zh_stats_count;
6032 size += hdr->zh_ds_size * hdr->zh_ds_count;
6034 return (size);
6037 static void
6038 setup_hdr(void)
6040 int size;
6041 ztest_shared_hdr_t *hdr;
6043 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6044 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6045 ASSERT(hdr != MAP_FAILED);
6047 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6049 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6050 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6051 hdr->zh_size = sizeof (ztest_shared_t);
6052 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6053 hdr->zh_stats_count = ZTEST_FUNCS;
6054 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6055 hdr->zh_ds_count = ztest_opts.zo_datasets;
6057 size = shared_data_size(hdr);
6058 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6060 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6063 static void
6064 setup_data(void)
6066 int size, offset;
6067 ztest_shared_hdr_t *hdr;
6068 uint8_t *buf;
6070 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6071 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6072 ASSERT(hdr != MAP_FAILED);
6074 size = shared_data_size(hdr);
6076 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6077 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6078 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6079 ASSERT(hdr != MAP_FAILED);
6080 buf = (uint8_t *)hdr;
6082 offset = hdr->zh_hdr_size;
6083 ztest_shared_opts = (void *)&buf[offset];
6084 offset += hdr->zh_opts_size;
6085 ztest_shared = (void *)&buf[offset];
6086 offset += hdr->zh_size;
6087 ztest_shared_callstate = (void *)&buf[offset];
6088 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6089 ztest_shared_ds = (void *)&buf[offset];
6092 static boolean_t
6093 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6095 pid_t pid;
6096 int status;
6097 char *cmdbuf = NULL;
6099 pid = fork();
6101 if (cmd == NULL) {
6102 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6103 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6104 cmd = cmdbuf;
6107 if (pid == -1)
6108 fatal(1, "fork failed");
6110 if (pid == 0) { /* child */
6111 char *emptyargv[2] = { cmd, NULL };
6112 char fd_data_str[12];
6114 struct rlimit rl = { 1024, 1024 };
6115 (void) setrlimit(RLIMIT_NOFILE, &rl);
6117 (void) close(ztest_fd_rand);
6118 VERIFY3U(11, >=,
6119 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6120 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6122 (void) enable_extended_FILE_stdio(-1, -1);
6123 if (libpath != NULL)
6124 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6125 (void) execv(cmd, emptyargv);
6126 ztest_dump_core = B_FALSE;
6127 fatal(B_TRUE, "exec failed: %s", cmd);
6130 if (cmdbuf != NULL) {
6131 umem_free(cmdbuf, MAXPATHLEN);
6132 cmd = NULL;
6135 while (waitpid(pid, &status, 0) != pid)
6136 continue;
6137 if (statusp != NULL)
6138 *statusp = status;
6140 if (WIFEXITED(status)) {
6141 if (WEXITSTATUS(status) != 0) {
6142 (void) fprintf(stderr, "child exited with code %d\n",
6143 WEXITSTATUS(status));
6144 exit(2);
6146 return (B_FALSE);
6147 } else if (WIFSIGNALED(status)) {
6148 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6149 (void) fprintf(stderr, "child died with signal %d\n",
6150 WTERMSIG(status));
6151 exit(3);
6153 return (B_TRUE);
6154 } else {
6155 (void) fprintf(stderr, "something strange happened to child\n");
6156 exit(4);
6157 /* NOTREACHED */
6161 static void
6162 ztest_run_init(void)
6164 ztest_shared_t *zs = ztest_shared;
6166 ASSERT(ztest_opts.zo_init != 0);
6169 * Blow away any existing copy of zpool.cache
6171 (void) remove(spa_config_path);
6174 * Create and initialize our storage pool.
6176 for (int i = 1; i <= ztest_opts.zo_init; i++) {
6177 bzero(zs, sizeof (ztest_shared_t));
6178 if (ztest_opts.zo_verbose >= 3 &&
6179 ztest_opts.zo_init != 1) {
6180 (void) printf("ztest_init(), pass %d\n", i);
6182 ztest_init(zs);
6187 main(int argc, char **argv)
6189 int kills = 0;
6190 int iters = 0;
6191 int older = 0;
6192 int newer = 0;
6193 ztest_shared_t *zs;
6194 ztest_info_t *zi;
6195 ztest_shared_callstate_t *zc;
6196 char timebuf[100];
6197 char numbuf[6];
6198 spa_t *spa;
6199 char *cmd;
6200 boolean_t hasalt;
6201 char *fd_data_str = getenv("ZTEST_FD_DATA");
6203 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6205 dprintf_setup(&argc, argv);
6206 zfs_deadman_synctime_ms = 300000;
6208 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6209 ASSERT3S(ztest_fd_rand, >=, 0);
6211 if (!fd_data_str) {
6212 process_options(argc, argv);
6214 setup_data_fd();
6215 setup_hdr();
6216 setup_data();
6217 bcopy(&ztest_opts, ztest_shared_opts,
6218 sizeof (*ztest_shared_opts));
6219 } else {
6220 ztest_fd_data = atoi(fd_data_str);
6221 setup_data();
6222 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6224 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6226 /* Override location of zpool.cache */
6227 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6228 ztest_opts.zo_dir), !=, -1);
6230 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6231 UMEM_NOFAIL);
6232 zs = ztest_shared;
6234 if (fd_data_str) {
6235 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6236 metaslab_df_alloc_threshold =
6237 zs->zs_metaslab_df_alloc_threshold;
6239 if (zs->zs_do_init)
6240 ztest_run_init();
6241 else
6242 ztest_run(zs);
6243 exit(0);
6246 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6248 if (ztest_opts.zo_verbose >= 1) {
6249 (void) printf("%llu vdevs, %d datasets, %d threads,"
6250 " %llu seconds...\n",
6251 (u_longlong_t)ztest_opts.zo_vdevs,
6252 ztest_opts.zo_datasets,
6253 ztest_opts.zo_threads,
6254 (u_longlong_t)ztest_opts.zo_time);
6257 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6258 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6260 zs->zs_do_init = B_TRUE;
6261 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6262 if (ztest_opts.zo_verbose >= 1) {
6263 (void) printf("Executing older ztest for "
6264 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6266 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6267 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6268 } else {
6269 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6271 zs->zs_do_init = B_FALSE;
6273 zs->zs_proc_start = gethrtime();
6274 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6276 for (int f = 0; f < ZTEST_FUNCS; f++) {
6277 zi = &ztest_info[f];
6278 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6279 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6280 zc->zc_next = UINT64_MAX;
6281 else
6282 zc->zc_next = zs->zs_proc_start +
6283 ztest_random(2 * zi->zi_interval[0] + 1);
6287 * Run the tests in a loop. These tests include fault injection
6288 * to verify that self-healing data works, and forced crashes
6289 * to verify that we never lose on-disk consistency.
6291 while (gethrtime() < zs->zs_proc_stop) {
6292 int status;
6293 boolean_t killed;
6296 * Initialize the workload counters for each function.
6298 for (int f = 0; f < ZTEST_FUNCS; f++) {
6299 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6300 zc->zc_count = 0;
6301 zc->zc_time = 0;
6304 /* Set the allocation switch size */
6305 zs->zs_metaslab_df_alloc_threshold =
6306 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6308 if (!hasalt || ztest_random(2) == 0) {
6309 if (hasalt && ztest_opts.zo_verbose >= 1) {
6310 (void) printf("Executing newer ztest: %s\n",
6311 cmd);
6313 newer++;
6314 killed = exec_child(cmd, NULL, B_TRUE, &status);
6315 } else {
6316 if (hasalt && ztest_opts.zo_verbose >= 1) {
6317 (void) printf("Executing older ztest: %s\n",
6318 ztest_opts.zo_alt_ztest);
6320 older++;
6321 killed = exec_child(ztest_opts.zo_alt_ztest,
6322 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6325 if (killed)
6326 kills++;
6327 iters++;
6329 if (ztest_opts.zo_verbose >= 1) {
6330 hrtime_t now = gethrtime();
6332 now = MIN(now, zs->zs_proc_stop);
6333 print_time(zs->zs_proc_stop - now, timebuf);
6334 nicenum(zs->zs_space, numbuf);
6336 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6337 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6338 iters,
6339 WIFEXITED(status) ? "Complete" : "SIGKILL",
6340 (u_longlong_t)zs->zs_enospc_count,
6341 100.0 * zs->zs_alloc / zs->zs_space,
6342 numbuf,
6343 100.0 * (now - zs->zs_proc_start) /
6344 (ztest_opts.zo_time * NANOSEC), timebuf);
6347 if (ztest_opts.zo_verbose >= 2) {
6348 (void) printf("\nWorkload summary:\n\n");
6349 (void) printf("%7s %9s %s\n",
6350 "Calls", "Time", "Function");
6351 (void) printf("%7s %9s %s\n",
6352 "-----", "----", "--------");
6353 for (int f = 0; f < ZTEST_FUNCS; f++) {
6354 Dl_info dli;
6356 zi = &ztest_info[f];
6357 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6358 print_time(zc->zc_time, timebuf);
6359 (void) dladdr((void *)zi->zi_func, &dli);
6360 (void) printf("%7llu %9s %s\n",
6361 (u_longlong_t)zc->zc_count, timebuf,
6362 dli.dli_sname);
6364 (void) printf("\n");
6368 * It's possible that we killed a child during a rename test,
6369 * in which case we'll have a 'ztest_tmp' pool lying around
6370 * instead of 'ztest'. Do a blind rename in case this happened.
6372 kernel_init(FREAD);
6373 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6374 spa_close(spa, FTAG);
6375 } else {
6376 char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6377 kernel_fini();
6378 kernel_init(FREAD | FWRITE);
6379 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6380 ztest_opts.zo_pool);
6381 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6383 kernel_fini();
6385 ztest_run_zdb(ztest_opts.zo_pool);
6388 if (ztest_opts.zo_verbose >= 1) {
6389 if (hasalt) {
6390 (void) printf("%d runs of older ztest: %s\n", older,
6391 ztest_opts.zo_alt_ztest);
6392 (void) printf("%d runs of newer ztest: %s\n", newer,
6393 cmd);
6395 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6396 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6399 umem_free(cmd, MAXNAMELEN);
6401 return (0);