Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / dbuf.c
blob002eb5d1dc297c4d118d82a41d0b5ee5b816a04a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
51 uint_t zfs_dbuf_evict_key;
53 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
54 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57 dmu_buf_evict_func_t *evict_func_sync,
58 dmu_buf_evict_func_t *evict_func_async,
59 dmu_buf_t **clear_on_evict_dbufp);
62 * Global data structures and functions for the dbuf cache.
64 static kmem_cache_t *dbuf_kmem_cache;
65 static taskq_t *dbu_evict_taskq;
67 static kthread_t *dbuf_cache_evict_thread;
68 static kmutex_t dbuf_evict_lock;
69 static kcondvar_t dbuf_evict_cv;
70 static boolean_t dbuf_evict_thread_exit;
73 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
74 * are not currently held but have been recently released. These dbufs
75 * are not eligible for arc eviction until they are aged out of the cache.
76 * Dbufs are added to the dbuf cache once the last hold is released. If a
77 * dbuf is later accessed and still exists in the dbuf cache, then it will
78 * be removed from the cache and later re-added to the head of the cache.
79 * Dbufs that are aged out of the cache will be immediately destroyed and
80 * become eligible for arc eviction.
82 static multilist_t *dbuf_cache;
83 static refcount_t dbuf_cache_size;
84 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
86 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
87 int dbuf_cache_max_shift = 5;
90 * The dbuf cache uses a three-stage eviction policy:
91 * - A low water marker designates when the dbuf eviction thread
92 * should stop evicting from the dbuf cache.
93 * - When we reach the maximum size (aka mid water mark), we
94 * signal the eviction thread to run.
95 * - The high water mark indicates when the eviction thread
96 * is unable to keep up with the incoming load and eviction must
97 * happen in the context of the calling thread.
99 * The dbuf cache:
100 * (max size)
101 * low water mid water hi water
102 * +----------------------------------------+----------+----------+
103 * | | | |
104 * | | | |
105 * | | | |
106 * | | | |
107 * +----------------------------------------+----------+----------+
108 * stop signal evict
109 * evicting eviction directly
110 * thread
112 * The high and low water marks indicate the operating range for the eviction
113 * thread. The low water mark is, by default, 90% of the total size of the
114 * cache and the high water mark is at 110% (both of these percentages can be
115 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
116 * respectively). The eviction thread will try to ensure that the cache remains
117 * within this range by waking up every second and checking if the cache is
118 * above the low water mark. The thread can also be woken up by callers adding
119 * elements into the cache if the cache is larger than the mid water (i.e max
120 * cache size). Once the eviction thread is woken up and eviction is required,
121 * it will continue evicting buffers until it's able to reduce the cache size
122 * to the low water mark. If the cache size continues to grow and hits the high
123 * water mark, then callers adding elments to the cache will begin to evict
124 * directly from the cache until the cache is no longer above the high water
125 * mark.
129 * The percentage above and below the maximum cache size.
131 uint_t dbuf_cache_hiwater_pct = 10;
132 uint_t dbuf_cache_lowater_pct = 10;
134 /* ARGSUSED */
135 static int
136 dbuf_cons(void *vdb, void *unused, int kmflag)
138 dmu_buf_impl_t *db = vdb;
139 bzero(db, sizeof (dmu_buf_impl_t));
141 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
142 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
143 multilist_link_init(&db->db_cache_link);
144 refcount_create(&db->db_holds);
146 return (0);
149 /* ARGSUSED */
150 static void
151 dbuf_dest(void *vdb, void *unused)
153 dmu_buf_impl_t *db = vdb;
154 mutex_destroy(&db->db_mtx);
155 cv_destroy(&db->db_changed);
156 ASSERT(!multilist_link_active(&db->db_cache_link));
157 refcount_destroy(&db->db_holds);
161 * dbuf hash table routines
163 static dbuf_hash_table_t dbuf_hash_table;
165 static uint64_t dbuf_hash_count;
167 static uint64_t
168 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
170 uintptr_t osv = (uintptr_t)os;
171 uint64_t crc = -1ULL;
173 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
174 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
181 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
183 return (crc);
186 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
187 ((dbuf)->db.db_object == (obj) && \
188 (dbuf)->db_objset == (os) && \
189 (dbuf)->db_level == (level) && \
190 (dbuf)->db_blkid == (blkid))
192 dmu_buf_impl_t *
193 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
195 dbuf_hash_table_t *h = &dbuf_hash_table;
196 uint64_t hv = dbuf_hash(os, obj, level, blkid);
197 uint64_t idx = hv & h->hash_table_mask;
198 dmu_buf_impl_t *db;
200 mutex_enter(DBUF_HASH_MUTEX(h, idx));
201 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
202 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
203 mutex_enter(&db->db_mtx);
204 if (db->db_state != DB_EVICTING) {
205 mutex_exit(DBUF_HASH_MUTEX(h, idx));
206 return (db);
208 mutex_exit(&db->db_mtx);
211 mutex_exit(DBUF_HASH_MUTEX(h, idx));
212 return (NULL);
215 static dmu_buf_impl_t *
216 dbuf_find_bonus(objset_t *os, uint64_t object)
218 dnode_t *dn;
219 dmu_buf_impl_t *db = NULL;
221 if (dnode_hold(os, object, FTAG, &dn) == 0) {
222 rw_enter(&dn->dn_struct_rwlock, RW_READER);
223 if (dn->dn_bonus != NULL) {
224 db = dn->dn_bonus;
225 mutex_enter(&db->db_mtx);
227 rw_exit(&dn->dn_struct_rwlock);
228 dnode_rele(dn, FTAG);
230 return (db);
234 * Insert an entry into the hash table. If there is already an element
235 * equal to elem in the hash table, then the already existing element
236 * will be returned and the new element will not be inserted.
237 * Otherwise returns NULL.
239 static dmu_buf_impl_t *
240 dbuf_hash_insert(dmu_buf_impl_t *db)
242 dbuf_hash_table_t *h = &dbuf_hash_table;
243 objset_t *os = db->db_objset;
244 uint64_t obj = db->db.db_object;
245 int level = db->db_level;
246 uint64_t blkid = db->db_blkid;
247 uint64_t hv = dbuf_hash(os, obj, level, blkid);
248 uint64_t idx = hv & h->hash_table_mask;
249 dmu_buf_impl_t *dbf;
251 mutex_enter(DBUF_HASH_MUTEX(h, idx));
252 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
253 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
254 mutex_enter(&dbf->db_mtx);
255 if (dbf->db_state != DB_EVICTING) {
256 mutex_exit(DBUF_HASH_MUTEX(h, idx));
257 return (dbf);
259 mutex_exit(&dbf->db_mtx);
263 mutex_enter(&db->db_mtx);
264 db->db_hash_next = h->hash_table[idx];
265 h->hash_table[idx] = db;
266 mutex_exit(DBUF_HASH_MUTEX(h, idx));
267 atomic_inc_64(&dbuf_hash_count);
269 return (NULL);
273 * Remove an entry from the hash table. It must be in the EVICTING state.
275 static void
276 dbuf_hash_remove(dmu_buf_impl_t *db)
278 dbuf_hash_table_t *h = &dbuf_hash_table;
279 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
280 db->db_level, db->db_blkid);
281 uint64_t idx = hv & h->hash_table_mask;
282 dmu_buf_impl_t *dbf, **dbp;
285 * We musn't hold db_mtx to maintain lock ordering:
286 * DBUF_HASH_MUTEX > db_mtx.
288 ASSERT(refcount_is_zero(&db->db_holds));
289 ASSERT(db->db_state == DB_EVICTING);
290 ASSERT(!MUTEX_HELD(&db->db_mtx));
292 mutex_enter(DBUF_HASH_MUTEX(h, idx));
293 dbp = &h->hash_table[idx];
294 while ((dbf = *dbp) != db) {
295 dbp = &dbf->db_hash_next;
296 ASSERT(dbf != NULL);
298 *dbp = db->db_hash_next;
299 db->db_hash_next = NULL;
300 mutex_exit(DBUF_HASH_MUTEX(h, idx));
301 atomic_dec_64(&dbuf_hash_count);
304 typedef enum {
305 DBVU_EVICTING,
306 DBVU_NOT_EVICTING
307 } dbvu_verify_type_t;
309 static void
310 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
312 #ifdef ZFS_DEBUG
313 int64_t holds;
315 if (db->db_user == NULL)
316 return;
318 /* Only data blocks support the attachment of user data. */
319 ASSERT(db->db_level == 0);
321 /* Clients must resolve a dbuf before attaching user data. */
322 ASSERT(db->db.db_data != NULL);
323 ASSERT3U(db->db_state, ==, DB_CACHED);
325 holds = refcount_count(&db->db_holds);
326 if (verify_type == DBVU_EVICTING) {
328 * Immediate eviction occurs when holds == dirtycnt.
329 * For normal eviction buffers, holds is zero on
330 * eviction, except when dbuf_fix_old_data() calls
331 * dbuf_clear_data(). However, the hold count can grow
332 * during eviction even though db_mtx is held (see
333 * dmu_bonus_hold() for an example), so we can only
334 * test the generic invariant that holds >= dirtycnt.
336 ASSERT3U(holds, >=, db->db_dirtycnt);
337 } else {
338 if (db->db_user_immediate_evict == TRUE)
339 ASSERT3U(holds, >=, db->db_dirtycnt);
340 else
341 ASSERT3U(holds, >, 0);
343 #endif
346 static void
347 dbuf_evict_user(dmu_buf_impl_t *db)
349 dmu_buf_user_t *dbu = db->db_user;
351 ASSERT(MUTEX_HELD(&db->db_mtx));
353 if (dbu == NULL)
354 return;
356 dbuf_verify_user(db, DBVU_EVICTING);
357 db->db_user = NULL;
359 #ifdef ZFS_DEBUG
360 if (dbu->dbu_clear_on_evict_dbufp != NULL)
361 *dbu->dbu_clear_on_evict_dbufp = NULL;
362 #endif
365 * There are two eviction callbacks - one that we call synchronously
366 * and one that we invoke via a taskq. The async one is useful for
367 * avoiding lock order reversals and limiting stack depth.
369 * Note that if we have a sync callback but no async callback,
370 * it's likely that the sync callback will free the structure
371 * containing the dbu. In that case we need to take care to not
372 * dereference dbu after calling the sync evict func.
374 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
376 if (dbu->dbu_evict_func_sync != NULL)
377 dbu->dbu_evict_func_sync(dbu);
379 if (has_async) {
380 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
381 dbu, 0, &dbu->dbu_tqent);
385 boolean_t
386 dbuf_is_metadata(dmu_buf_impl_t *db)
388 if (db->db_level > 0) {
389 return (B_TRUE);
390 } else {
391 boolean_t is_metadata;
393 DB_DNODE_ENTER(db);
394 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
395 DB_DNODE_EXIT(db);
397 return (is_metadata);
402 * This function *must* return indices evenly distributed between all
403 * sublists of the multilist. This is needed due to how the dbuf eviction
404 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
405 * distributed between all sublists and uses this assumption when
406 * deciding which sublist to evict from and how much to evict from it.
408 unsigned int
409 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
411 dmu_buf_impl_t *db = obj;
414 * The assumption here, is the hash value for a given
415 * dmu_buf_impl_t will remain constant throughout it's lifetime
416 * (i.e. it's objset, object, level and blkid fields don't change).
417 * Thus, we don't need to store the dbuf's sublist index
418 * on insertion, as this index can be recalculated on removal.
420 * Also, the low order bits of the hash value are thought to be
421 * distributed evenly. Otherwise, in the case that the multilist
422 * has a power of two number of sublists, each sublists' usage
423 * would not be evenly distributed.
425 return (dbuf_hash(db->db_objset, db->db.db_object,
426 db->db_level, db->db_blkid) %
427 multilist_get_num_sublists(ml));
430 static inline boolean_t
431 dbuf_cache_above_hiwater(void)
433 uint64_t dbuf_cache_hiwater_bytes =
434 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
436 return (refcount_count(&dbuf_cache_size) >
437 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
440 static inline boolean_t
441 dbuf_cache_above_lowater(void)
443 uint64_t dbuf_cache_lowater_bytes =
444 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
446 return (refcount_count(&dbuf_cache_size) >
447 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
451 * Evict the oldest eligible dbuf from the dbuf cache.
453 static void
454 dbuf_evict_one(void)
456 int idx = multilist_get_random_index(dbuf_cache);
457 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
459 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
462 * Set the thread's tsd to indicate that it's processing evictions.
463 * Once a thread stops evicting from the dbuf cache it will
464 * reset its tsd to NULL.
466 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
467 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
469 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
470 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
471 db = multilist_sublist_prev(mls, db);
474 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
475 multilist_sublist_t *, mls);
477 if (db != NULL) {
478 multilist_sublist_remove(mls, db);
479 multilist_sublist_unlock(mls);
480 (void) refcount_remove_many(&dbuf_cache_size,
481 db->db.db_size, db);
482 dbuf_destroy(db);
483 } else {
484 multilist_sublist_unlock(mls);
486 (void) tsd_set(zfs_dbuf_evict_key, NULL);
490 * The dbuf evict thread is responsible for aging out dbufs from the
491 * cache. Once the cache has reached it's maximum size, dbufs are removed
492 * and destroyed. The eviction thread will continue running until the size
493 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
494 * out of the cache it is destroyed and becomes eligible for arc eviction.
496 /* ARGSUSED */
497 static void
498 dbuf_evict_thread(void *unused)
500 callb_cpr_t cpr;
502 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
504 mutex_enter(&dbuf_evict_lock);
505 while (!dbuf_evict_thread_exit) {
506 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
507 CALLB_CPR_SAFE_BEGIN(&cpr);
508 (void) cv_timedwait_hires(&dbuf_evict_cv,
509 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
510 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
512 mutex_exit(&dbuf_evict_lock);
515 * Keep evicting as long as we're above the low water mark
516 * for the cache. We do this without holding the locks to
517 * minimize lock contention.
519 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
520 dbuf_evict_one();
523 mutex_enter(&dbuf_evict_lock);
526 dbuf_evict_thread_exit = B_FALSE;
527 cv_broadcast(&dbuf_evict_cv);
528 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
529 thread_exit();
533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
534 * If the dbuf cache is at its high water mark, then evict a dbuf from the
535 * dbuf cache using the callers context.
537 static void
538 dbuf_evict_notify(void)
542 * We use thread specific data to track when a thread has
543 * started processing evictions. This allows us to avoid deeply
544 * nested stacks that would have a call flow similar to this:
546 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
547 * ^ |
548 * | |
549 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
551 * The dbuf_eviction_thread will always have its tsd set until
552 * that thread exits. All other threads will only set their tsd
553 * if they are participating in the eviction process. This only
554 * happens if the eviction thread is unable to process evictions
555 * fast enough. To keep the dbuf cache size in check, other threads
556 * can evict from the dbuf cache directly. Those threads will set
557 * their tsd values so that we ensure that they only evict one dbuf
558 * from the dbuf cache.
560 if (tsd_get(zfs_dbuf_evict_key) != NULL)
561 return;
563 * We check if we should evict without holding the dbuf_evict_lock,
564 * because it's OK to occasionally make the wrong decision here,
565 * and grabbing the lock results in massive lock contention.
567 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
568 if (dbuf_cache_above_hiwater())
569 dbuf_evict_one();
570 cv_signal(&dbuf_evict_cv);
574 void
575 dbuf_init(void)
577 uint64_t hsize = 1ULL << 16;
578 dbuf_hash_table_t *h = &dbuf_hash_table;
579 int i;
582 * The hash table is big enough to fill all of physical memory
583 * with an average 4K block size. The table will take up
584 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
586 while (hsize * 4096 < physmem * PAGESIZE)
587 hsize <<= 1;
589 retry:
590 h->hash_table_mask = hsize - 1;
591 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
592 if (h->hash_table == NULL) {
593 /* XXX - we should really return an error instead of assert */
594 ASSERT(hsize > (1ULL << 10));
595 hsize >>= 1;
596 goto retry;
599 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
600 sizeof (dmu_buf_impl_t),
601 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
603 for (i = 0; i < DBUF_MUTEXES; i++)
604 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
607 * Setup the parameters for the dbuf cache. We cap the size of the
608 * dbuf cache to 1/32nd (default) of the size of the ARC.
610 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
611 arc_max_bytes() >> dbuf_cache_max_shift);
614 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
615 * configuration is not required.
617 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
619 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
620 offsetof(dmu_buf_impl_t, db_cache_link),
621 dbuf_cache_multilist_index_func);
622 refcount_create(&dbuf_cache_size);
624 tsd_create(&zfs_dbuf_evict_key, NULL);
625 dbuf_evict_thread_exit = B_FALSE;
626 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
627 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
628 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
629 NULL, 0, &p0, TS_RUN, minclsyspri);
632 void
633 dbuf_fini(void)
635 dbuf_hash_table_t *h = &dbuf_hash_table;
636 int i;
638 for (i = 0; i < DBUF_MUTEXES; i++)
639 mutex_destroy(&h->hash_mutexes[i]);
640 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
641 kmem_cache_destroy(dbuf_kmem_cache);
642 taskq_destroy(dbu_evict_taskq);
644 mutex_enter(&dbuf_evict_lock);
645 dbuf_evict_thread_exit = B_TRUE;
646 while (dbuf_evict_thread_exit) {
647 cv_signal(&dbuf_evict_cv);
648 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
650 mutex_exit(&dbuf_evict_lock);
651 tsd_destroy(&zfs_dbuf_evict_key);
653 mutex_destroy(&dbuf_evict_lock);
654 cv_destroy(&dbuf_evict_cv);
656 refcount_destroy(&dbuf_cache_size);
657 multilist_destroy(dbuf_cache);
661 * Other stuff.
664 #ifdef ZFS_DEBUG
665 static void
666 dbuf_verify(dmu_buf_impl_t *db)
668 dnode_t *dn;
669 dbuf_dirty_record_t *dr;
671 ASSERT(MUTEX_HELD(&db->db_mtx));
673 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
674 return;
676 ASSERT(db->db_objset != NULL);
677 DB_DNODE_ENTER(db);
678 dn = DB_DNODE(db);
679 if (dn == NULL) {
680 ASSERT(db->db_parent == NULL);
681 ASSERT(db->db_blkptr == NULL);
682 } else {
683 ASSERT3U(db->db.db_object, ==, dn->dn_object);
684 ASSERT3P(db->db_objset, ==, dn->dn_objset);
685 ASSERT3U(db->db_level, <, dn->dn_nlevels);
686 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
687 db->db_blkid == DMU_SPILL_BLKID ||
688 !avl_is_empty(&dn->dn_dbufs));
690 if (db->db_blkid == DMU_BONUS_BLKID) {
691 ASSERT(dn != NULL);
692 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
693 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
694 } else if (db->db_blkid == DMU_SPILL_BLKID) {
695 ASSERT(dn != NULL);
696 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
697 ASSERT0(db->db.db_offset);
698 } else {
699 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
702 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
703 ASSERT(dr->dr_dbuf == db);
705 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
706 ASSERT(dr->dr_dbuf == db);
709 * We can't assert that db_size matches dn_datablksz because it
710 * can be momentarily different when another thread is doing
711 * dnode_set_blksz().
713 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
714 dr = db->db_data_pending;
716 * It should only be modified in syncing context, so
717 * make sure we only have one copy of the data.
719 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
722 /* verify db->db_blkptr */
723 if (db->db_blkptr) {
724 if (db->db_parent == dn->dn_dbuf) {
725 /* db is pointed to by the dnode */
726 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
727 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
728 ASSERT(db->db_parent == NULL);
729 else
730 ASSERT(db->db_parent != NULL);
731 if (db->db_blkid != DMU_SPILL_BLKID)
732 ASSERT3P(db->db_blkptr, ==,
733 &dn->dn_phys->dn_blkptr[db->db_blkid]);
734 } else {
735 /* db is pointed to by an indirect block */
736 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
737 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
738 ASSERT3U(db->db_parent->db.db_object, ==,
739 db->db.db_object);
741 * dnode_grow_indblksz() can make this fail if we don't
742 * have the struct_rwlock. XXX indblksz no longer
743 * grows. safe to do this now?
745 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
746 ASSERT3P(db->db_blkptr, ==,
747 ((blkptr_t *)db->db_parent->db.db_data +
748 db->db_blkid % epb));
752 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
753 (db->db_buf == NULL || db->db_buf->b_data) &&
754 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
755 db->db_state != DB_FILL && !dn->dn_free_txg) {
757 * If the blkptr isn't set but they have nonzero data,
758 * it had better be dirty, otherwise we'll lose that
759 * data when we evict this buffer.
761 * There is an exception to this rule for indirect blocks; in
762 * this case, if the indirect block is a hole, we fill in a few
763 * fields on each of the child blocks (importantly, birth time)
764 * to prevent hole birth times from being lost when you
765 * partially fill in a hole.
767 if (db->db_dirtycnt == 0) {
768 if (db->db_level == 0) {
769 uint64_t *buf = db->db.db_data;
770 int i;
772 for (i = 0; i < db->db.db_size >> 3; i++) {
773 ASSERT(buf[i] == 0);
775 } else {
776 blkptr_t *bps = db->db.db_data;
777 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
778 db->db.db_size);
780 * We want to verify that all the blkptrs in the
781 * indirect block are holes, but we may have
782 * automatically set up a few fields for them.
783 * We iterate through each blkptr and verify
784 * they only have those fields set.
786 for (int i = 0;
787 i < db->db.db_size / sizeof (blkptr_t);
788 i++) {
789 blkptr_t *bp = &bps[i];
790 ASSERT(ZIO_CHECKSUM_IS_ZERO(
791 &bp->blk_cksum));
792 ASSERT(
793 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
794 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
795 DVA_IS_EMPTY(&bp->blk_dva[2]));
796 ASSERT0(bp->blk_fill);
797 ASSERT0(bp->blk_pad[0]);
798 ASSERT0(bp->blk_pad[1]);
799 ASSERT(!BP_IS_EMBEDDED(bp));
800 ASSERT(BP_IS_HOLE(bp));
801 ASSERT0(bp->blk_phys_birth);
806 DB_DNODE_EXIT(db);
808 #endif
810 static void
811 dbuf_clear_data(dmu_buf_impl_t *db)
813 ASSERT(MUTEX_HELD(&db->db_mtx));
814 dbuf_evict_user(db);
815 ASSERT3P(db->db_buf, ==, NULL);
816 db->db.db_data = NULL;
817 if (db->db_state != DB_NOFILL)
818 db->db_state = DB_UNCACHED;
821 static void
822 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
824 ASSERT(MUTEX_HELD(&db->db_mtx));
825 ASSERT(buf != NULL);
827 db->db_buf = buf;
828 ASSERT(buf->b_data != NULL);
829 db->db.db_data = buf->b_data;
833 * Loan out an arc_buf for read. Return the loaned arc_buf.
835 arc_buf_t *
836 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
838 arc_buf_t *abuf;
840 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
841 mutex_enter(&db->db_mtx);
842 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
843 int blksz = db->db.db_size;
844 spa_t *spa = db->db_objset->os_spa;
846 mutex_exit(&db->db_mtx);
847 abuf = arc_loan_buf(spa, B_FALSE, blksz);
848 bcopy(db->db.db_data, abuf->b_data, blksz);
849 } else {
850 abuf = db->db_buf;
851 arc_loan_inuse_buf(abuf, db);
852 db->db_buf = NULL;
853 dbuf_clear_data(db);
854 mutex_exit(&db->db_mtx);
856 return (abuf);
860 * Calculate which level n block references the data at the level 0 offset
861 * provided.
863 uint64_t
864 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
866 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
868 * The level n blkid is equal to the level 0 blkid divided by
869 * the number of level 0s in a level n block.
871 * The level 0 blkid is offset >> datablkshift =
872 * offset / 2^datablkshift.
874 * The number of level 0s in a level n is the number of block
875 * pointers in an indirect block, raised to the power of level.
876 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
877 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
879 * Thus, the level n blkid is: offset /
880 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
881 * = offset / 2^(datablkshift + level *
882 * (indblkshift - SPA_BLKPTRSHIFT))
883 * = offset >> (datablkshift + level *
884 * (indblkshift - SPA_BLKPTRSHIFT))
886 return (offset >> (dn->dn_datablkshift + level *
887 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
888 } else {
889 ASSERT3U(offset, <, dn->dn_datablksz);
890 return (0);
894 static void
895 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
897 dmu_buf_impl_t *db = vdb;
899 mutex_enter(&db->db_mtx);
900 ASSERT3U(db->db_state, ==, DB_READ);
902 * All reads are synchronous, so we must have a hold on the dbuf
904 ASSERT(refcount_count(&db->db_holds) > 0);
905 ASSERT(db->db_buf == NULL);
906 ASSERT(db->db.db_data == NULL);
907 if (db->db_level == 0 && db->db_freed_in_flight) {
908 /* we were freed in flight; disregard any error */
909 arc_release(buf, db);
910 bzero(buf->b_data, db->db.db_size);
911 arc_buf_freeze(buf);
912 db->db_freed_in_flight = FALSE;
913 dbuf_set_data(db, buf);
914 db->db_state = DB_CACHED;
915 } else if (zio == NULL || zio->io_error == 0) {
916 dbuf_set_data(db, buf);
917 db->db_state = DB_CACHED;
918 } else {
919 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
920 ASSERT3P(db->db_buf, ==, NULL);
921 arc_buf_destroy(buf, db);
922 db->db_state = DB_UNCACHED;
924 cv_broadcast(&db->db_changed);
925 dbuf_rele_and_unlock(db, NULL);
928 static void
929 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
931 dnode_t *dn;
932 zbookmark_phys_t zb;
933 arc_flags_t aflags = ARC_FLAG_NOWAIT;
935 DB_DNODE_ENTER(db);
936 dn = DB_DNODE(db);
937 ASSERT(!refcount_is_zero(&db->db_holds));
938 /* We need the struct_rwlock to prevent db_blkptr from changing. */
939 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
940 ASSERT(MUTEX_HELD(&db->db_mtx));
941 ASSERT(db->db_state == DB_UNCACHED);
942 ASSERT(db->db_buf == NULL);
944 if (db->db_blkid == DMU_BONUS_BLKID) {
945 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
947 ASSERT3U(bonuslen, <=, db->db.db_size);
948 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
949 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
950 if (bonuslen < DN_MAX_BONUSLEN)
951 bzero(db->db.db_data, DN_MAX_BONUSLEN);
952 if (bonuslen)
953 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
954 DB_DNODE_EXIT(db);
955 db->db_state = DB_CACHED;
956 mutex_exit(&db->db_mtx);
957 return;
961 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
962 * processes the delete record and clears the bp while we are waiting
963 * for the dn_mtx (resulting in a "no" from block_freed).
965 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
966 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
967 BP_IS_HOLE(db->db_blkptr)))) {
968 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
970 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
971 db->db.db_size));
972 bzero(db->db.db_data, db->db.db_size);
974 if (db->db_blkptr != NULL && db->db_level > 0 &&
975 BP_IS_HOLE(db->db_blkptr) &&
976 db->db_blkptr->blk_birth != 0) {
977 blkptr_t *bps = db->db.db_data;
978 for (int i = 0; i < ((1 <<
979 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
980 i++) {
981 blkptr_t *bp = &bps[i];
982 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
983 1 << dn->dn_indblkshift);
984 BP_SET_LSIZE(bp,
985 BP_GET_LEVEL(db->db_blkptr) == 1 ?
986 dn->dn_datablksz :
987 BP_GET_LSIZE(db->db_blkptr));
988 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
989 BP_SET_LEVEL(bp,
990 BP_GET_LEVEL(db->db_blkptr) - 1);
991 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
994 DB_DNODE_EXIT(db);
995 db->db_state = DB_CACHED;
996 mutex_exit(&db->db_mtx);
997 return;
1000 DB_DNODE_EXIT(db);
1002 db->db_state = DB_READ;
1003 mutex_exit(&db->db_mtx);
1005 if (DBUF_IS_L2CACHEABLE(db))
1006 aflags |= ARC_FLAG_L2CACHE;
1008 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1009 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1010 db->db.db_object, db->db_level, db->db_blkid);
1012 dbuf_add_ref(db, NULL);
1014 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1015 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1016 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1017 &aflags, &zb);
1021 * This is our just-in-time copy function. It makes a copy of buffers that
1022 * have been modified in a previous transaction group before we access them in
1023 * the current active group.
1025 * This function is used in three places: when we are dirtying a buffer for the
1026 * first time in a txg, when we are freeing a range in a dnode that includes
1027 * this buffer, and when we are accessing a buffer which was received compressed
1028 * and later referenced in a WRITE_BYREF record.
1030 * Note that when we are called from dbuf_free_range() we do not put a hold on
1031 * the buffer, we just traverse the active dbuf list for the dnode.
1033 static void
1034 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1036 dbuf_dirty_record_t *dr = db->db_last_dirty;
1038 ASSERT(MUTEX_HELD(&db->db_mtx));
1039 ASSERT(db->db.db_data != NULL);
1040 ASSERT(db->db_level == 0);
1041 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1043 if (dr == NULL ||
1044 (dr->dt.dl.dr_data !=
1045 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1046 return;
1049 * If the last dirty record for this dbuf has not yet synced
1050 * and its referencing the dbuf data, either:
1051 * reset the reference to point to a new copy,
1052 * or (if there a no active holders)
1053 * just null out the current db_data pointer.
1055 ASSERT(dr->dr_txg >= txg - 2);
1056 if (db->db_blkid == DMU_BONUS_BLKID) {
1057 /* Note that the data bufs here are zio_bufs */
1058 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1059 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1060 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1061 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1062 int size = arc_buf_size(db->db_buf);
1063 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1064 spa_t *spa = db->db_objset->os_spa;
1065 enum zio_compress compress_type =
1066 arc_get_compression(db->db_buf);
1068 if (compress_type == ZIO_COMPRESS_OFF) {
1069 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1070 } else {
1071 ASSERT3U(type, ==, ARC_BUFC_DATA);
1072 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1073 size, arc_buf_lsize(db->db_buf), compress_type);
1075 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1076 } else {
1077 db->db_buf = NULL;
1078 dbuf_clear_data(db);
1083 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1085 int err = 0;
1086 boolean_t prefetch;
1087 dnode_t *dn;
1090 * We don't have to hold the mutex to check db_state because it
1091 * can't be freed while we have a hold on the buffer.
1093 ASSERT(!refcount_is_zero(&db->db_holds));
1095 if (db->db_state == DB_NOFILL)
1096 return (SET_ERROR(EIO));
1098 DB_DNODE_ENTER(db);
1099 dn = DB_DNODE(db);
1100 if ((flags & DB_RF_HAVESTRUCT) == 0)
1101 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1103 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1104 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1105 DBUF_IS_CACHEABLE(db);
1107 mutex_enter(&db->db_mtx);
1108 if (db->db_state == DB_CACHED) {
1110 * If the arc buf is compressed, we need to decompress it to
1111 * read the data. This could happen during the "zfs receive" of
1112 * a stream which is compressed and deduplicated.
1114 if (db->db_buf != NULL &&
1115 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1116 dbuf_fix_old_data(db,
1117 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1118 err = arc_decompress(db->db_buf);
1119 dbuf_set_data(db, db->db_buf);
1121 mutex_exit(&db->db_mtx);
1122 if (prefetch)
1123 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1124 if ((flags & DB_RF_HAVESTRUCT) == 0)
1125 rw_exit(&dn->dn_struct_rwlock);
1126 DB_DNODE_EXIT(db);
1127 } else if (db->db_state == DB_UNCACHED) {
1128 spa_t *spa = dn->dn_objset->os_spa;
1129 boolean_t need_wait = B_FALSE;
1131 if (zio == NULL &&
1132 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1133 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1134 need_wait = B_TRUE;
1136 dbuf_read_impl(db, zio, flags);
1138 /* dbuf_read_impl has dropped db_mtx for us */
1140 if (prefetch)
1141 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1143 if ((flags & DB_RF_HAVESTRUCT) == 0)
1144 rw_exit(&dn->dn_struct_rwlock);
1145 DB_DNODE_EXIT(db);
1147 if (need_wait)
1148 err = zio_wait(zio);
1149 } else {
1151 * Another reader came in while the dbuf was in flight
1152 * between UNCACHED and CACHED. Either a writer will finish
1153 * writing the buffer (sending the dbuf to CACHED) or the
1154 * first reader's request will reach the read_done callback
1155 * and send the dbuf to CACHED. Otherwise, a failure
1156 * occurred and the dbuf went to UNCACHED.
1158 mutex_exit(&db->db_mtx);
1159 if (prefetch)
1160 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1161 if ((flags & DB_RF_HAVESTRUCT) == 0)
1162 rw_exit(&dn->dn_struct_rwlock);
1163 DB_DNODE_EXIT(db);
1165 /* Skip the wait per the caller's request. */
1166 mutex_enter(&db->db_mtx);
1167 if ((flags & DB_RF_NEVERWAIT) == 0) {
1168 while (db->db_state == DB_READ ||
1169 db->db_state == DB_FILL) {
1170 ASSERT(db->db_state == DB_READ ||
1171 (flags & DB_RF_HAVESTRUCT) == 0);
1172 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1173 db, zio_t *, zio);
1174 cv_wait(&db->db_changed, &db->db_mtx);
1176 if (db->db_state == DB_UNCACHED)
1177 err = SET_ERROR(EIO);
1179 mutex_exit(&db->db_mtx);
1182 return (err);
1185 static void
1186 dbuf_noread(dmu_buf_impl_t *db)
1188 ASSERT(!refcount_is_zero(&db->db_holds));
1189 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1190 mutex_enter(&db->db_mtx);
1191 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1192 cv_wait(&db->db_changed, &db->db_mtx);
1193 if (db->db_state == DB_UNCACHED) {
1194 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1195 spa_t *spa = db->db_objset->os_spa;
1197 ASSERT(db->db_buf == NULL);
1198 ASSERT(db->db.db_data == NULL);
1199 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1200 db->db_state = DB_FILL;
1201 } else if (db->db_state == DB_NOFILL) {
1202 dbuf_clear_data(db);
1203 } else {
1204 ASSERT3U(db->db_state, ==, DB_CACHED);
1206 mutex_exit(&db->db_mtx);
1209 void
1210 dbuf_unoverride(dbuf_dirty_record_t *dr)
1212 dmu_buf_impl_t *db = dr->dr_dbuf;
1213 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1214 uint64_t txg = dr->dr_txg;
1216 ASSERT(MUTEX_HELD(&db->db_mtx));
1218 * This assert is valid because dmu_sync() expects to be called by
1219 * a zilog's get_data while holding a range lock. This call only
1220 * comes from dbuf_dirty() callers who must also hold a range lock.
1222 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1223 ASSERT(db->db_level == 0);
1225 if (db->db_blkid == DMU_BONUS_BLKID ||
1226 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1227 return;
1229 ASSERT(db->db_data_pending != dr);
1231 /* free this block */
1232 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1233 zio_free(db->db_objset->os_spa, txg, bp);
1235 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1236 dr->dt.dl.dr_nopwrite = B_FALSE;
1239 * Release the already-written buffer, so we leave it in
1240 * a consistent dirty state. Note that all callers are
1241 * modifying the buffer, so they will immediately do
1242 * another (redundant) arc_release(). Therefore, leave
1243 * the buf thawed to save the effort of freezing &
1244 * immediately re-thawing it.
1246 arc_release(dr->dt.dl.dr_data, db);
1250 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1251 * data blocks in the free range, so that any future readers will find
1252 * empty blocks.
1254 void
1255 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1256 dmu_tx_t *tx)
1258 dmu_buf_impl_t db_search;
1259 dmu_buf_impl_t *db, *db_next;
1260 uint64_t txg = tx->tx_txg;
1261 avl_index_t where;
1263 if (end_blkid > dn->dn_maxblkid &&
1264 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1265 end_blkid = dn->dn_maxblkid;
1266 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1268 db_search.db_level = 0;
1269 db_search.db_blkid = start_blkid;
1270 db_search.db_state = DB_SEARCH;
1272 mutex_enter(&dn->dn_dbufs_mtx);
1273 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1274 ASSERT3P(db, ==, NULL);
1276 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1278 for (; db != NULL; db = db_next) {
1279 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1280 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1282 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1283 break;
1285 ASSERT3U(db->db_blkid, >=, start_blkid);
1287 /* found a level 0 buffer in the range */
1288 mutex_enter(&db->db_mtx);
1289 if (dbuf_undirty(db, tx)) {
1290 /* mutex has been dropped and dbuf destroyed */
1291 continue;
1294 if (db->db_state == DB_UNCACHED ||
1295 db->db_state == DB_NOFILL ||
1296 db->db_state == DB_EVICTING) {
1297 ASSERT(db->db.db_data == NULL);
1298 mutex_exit(&db->db_mtx);
1299 continue;
1301 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1302 /* will be handled in dbuf_read_done or dbuf_rele */
1303 db->db_freed_in_flight = TRUE;
1304 mutex_exit(&db->db_mtx);
1305 continue;
1307 if (refcount_count(&db->db_holds) == 0) {
1308 ASSERT(db->db_buf);
1309 dbuf_destroy(db);
1310 continue;
1312 /* The dbuf is referenced */
1314 if (db->db_last_dirty != NULL) {
1315 dbuf_dirty_record_t *dr = db->db_last_dirty;
1317 if (dr->dr_txg == txg) {
1319 * This buffer is "in-use", re-adjust the file
1320 * size to reflect that this buffer may
1321 * contain new data when we sync.
1323 if (db->db_blkid != DMU_SPILL_BLKID &&
1324 db->db_blkid > dn->dn_maxblkid)
1325 dn->dn_maxblkid = db->db_blkid;
1326 dbuf_unoverride(dr);
1327 } else {
1329 * This dbuf is not dirty in the open context.
1330 * Either uncache it (if its not referenced in
1331 * the open context) or reset its contents to
1332 * empty.
1334 dbuf_fix_old_data(db, txg);
1337 /* clear the contents if its cached */
1338 if (db->db_state == DB_CACHED) {
1339 ASSERT(db->db.db_data != NULL);
1340 arc_release(db->db_buf, db);
1341 bzero(db->db.db_data, db->db.db_size);
1342 arc_buf_freeze(db->db_buf);
1345 mutex_exit(&db->db_mtx);
1347 mutex_exit(&dn->dn_dbufs_mtx);
1350 void
1351 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1353 arc_buf_t *buf, *obuf;
1354 int osize = db->db.db_size;
1355 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1356 dnode_t *dn;
1358 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1360 DB_DNODE_ENTER(db);
1361 dn = DB_DNODE(db);
1363 /* XXX does *this* func really need the lock? */
1364 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1367 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1368 * is OK, because there can be no other references to the db
1369 * when we are changing its size, so no concurrent DB_FILL can
1370 * be happening.
1373 * XXX we should be doing a dbuf_read, checking the return
1374 * value and returning that up to our callers
1376 dmu_buf_will_dirty(&db->db, tx);
1378 /* create the data buffer for the new block */
1379 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1381 /* copy old block data to the new block */
1382 obuf = db->db_buf;
1383 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1384 /* zero the remainder */
1385 if (size > osize)
1386 bzero((uint8_t *)buf->b_data + osize, size - osize);
1388 mutex_enter(&db->db_mtx);
1389 dbuf_set_data(db, buf);
1390 arc_buf_destroy(obuf, db);
1391 db->db.db_size = size;
1393 if (db->db_level == 0) {
1394 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1395 db->db_last_dirty->dt.dl.dr_data = buf;
1397 mutex_exit(&db->db_mtx);
1399 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1400 DB_DNODE_EXIT(db);
1403 void
1404 dbuf_release_bp(dmu_buf_impl_t *db)
1406 objset_t *os = db->db_objset;
1408 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1409 ASSERT(arc_released(os->os_phys_buf) ||
1410 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1411 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1413 (void) arc_release(db->db_buf, db);
1417 * We already have a dirty record for this TXG, and we are being
1418 * dirtied again.
1420 static void
1421 dbuf_redirty(dbuf_dirty_record_t *dr)
1423 dmu_buf_impl_t *db = dr->dr_dbuf;
1425 ASSERT(MUTEX_HELD(&db->db_mtx));
1427 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1429 * If this buffer has already been written out,
1430 * we now need to reset its state.
1432 dbuf_unoverride(dr);
1433 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1434 db->db_state != DB_NOFILL) {
1435 /* Already released on initial dirty, so just thaw. */
1436 ASSERT(arc_released(db->db_buf));
1437 arc_buf_thaw(db->db_buf);
1442 dbuf_dirty_record_t *
1443 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1445 dnode_t *dn;
1446 objset_t *os;
1447 dbuf_dirty_record_t **drp, *dr;
1448 int drop_struct_lock = FALSE;
1449 int txgoff = tx->tx_txg & TXG_MASK;
1451 ASSERT(tx->tx_txg != 0);
1452 ASSERT(!refcount_is_zero(&db->db_holds));
1453 DMU_TX_DIRTY_BUF(tx, db);
1455 DB_DNODE_ENTER(db);
1456 dn = DB_DNODE(db);
1458 * Shouldn't dirty a regular buffer in syncing context. Private
1459 * objects may be dirtied in syncing context, but only if they
1460 * were already pre-dirtied in open context.
1462 #ifdef DEBUG
1463 if (dn->dn_objset->os_dsl_dataset != NULL) {
1464 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1465 RW_READER, FTAG);
1467 ASSERT(!dmu_tx_is_syncing(tx) ||
1468 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1469 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1470 dn->dn_objset->os_dsl_dataset == NULL);
1471 if (dn->dn_objset->os_dsl_dataset != NULL)
1472 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1473 #endif
1475 * We make this assert for private objects as well, but after we
1476 * check if we're already dirty. They are allowed to re-dirty
1477 * in syncing context.
1479 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1480 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1481 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1483 mutex_enter(&db->db_mtx);
1485 * XXX make this true for indirects too? The problem is that
1486 * transactions created with dmu_tx_create_assigned() from
1487 * syncing context don't bother holding ahead.
1489 ASSERT(db->db_level != 0 ||
1490 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1491 db->db_state == DB_NOFILL);
1493 mutex_enter(&dn->dn_mtx);
1495 * Don't set dirtyctx to SYNC if we're just modifying this as we
1496 * initialize the objset.
1498 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1499 if (dn->dn_objset->os_dsl_dataset != NULL) {
1500 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1501 RW_READER, FTAG);
1503 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1504 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1505 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1506 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1507 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1509 if (dn->dn_objset->os_dsl_dataset != NULL) {
1510 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1511 FTAG);
1514 mutex_exit(&dn->dn_mtx);
1516 if (db->db_blkid == DMU_SPILL_BLKID)
1517 dn->dn_have_spill = B_TRUE;
1520 * If this buffer is already dirty, we're done.
1522 drp = &db->db_last_dirty;
1523 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1524 db->db.db_object == DMU_META_DNODE_OBJECT);
1525 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1526 drp = &dr->dr_next;
1527 if (dr && dr->dr_txg == tx->tx_txg) {
1528 DB_DNODE_EXIT(db);
1530 dbuf_redirty(dr);
1531 mutex_exit(&db->db_mtx);
1532 return (dr);
1536 * Only valid if not already dirty.
1538 ASSERT(dn->dn_object == 0 ||
1539 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1540 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1542 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1545 * We should only be dirtying in syncing context if it's the
1546 * mos or we're initializing the os or it's a special object.
1547 * However, we are allowed to dirty in syncing context provided
1548 * we already dirtied it in open context. Hence we must make
1549 * this assertion only if we're not already dirty.
1551 os = dn->dn_objset;
1552 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1553 #ifdef DEBUG
1554 if (dn->dn_objset->os_dsl_dataset != NULL)
1555 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1556 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1557 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1558 if (dn->dn_objset->os_dsl_dataset != NULL)
1559 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1560 #endif
1561 ASSERT(db->db.db_size != 0);
1563 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1565 if (db->db_blkid != DMU_BONUS_BLKID) {
1566 dmu_objset_willuse_space(os, db->db.db_size, tx);
1570 * If this buffer is dirty in an old transaction group we need
1571 * to make a copy of it so that the changes we make in this
1572 * transaction group won't leak out when we sync the older txg.
1574 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1575 if (db->db_level == 0) {
1576 void *data_old = db->db_buf;
1578 if (db->db_state != DB_NOFILL) {
1579 if (db->db_blkid == DMU_BONUS_BLKID) {
1580 dbuf_fix_old_data(db, tx->tx_txg);
1581 data_old = db->db.db_data;
1582 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1584 * Release the data buffer from the cache so
1585 * that we can modify it without impacting
1586 * possible other users of this cached data
1587 * block. Note that indirect blocks and
1588 * private objects are not released until the
1589 * syncing state (since they are only modified
1590 * then).
1592 arc_release(db->db_buf, db);
1593 dbuf_fix_old_data(db, tx->tx_txg);
1594 data_old = db->db_buf;
1596 ASSERT(data_old != NULL);
1598 dr->dt.dl.dr_data = data_old;
1599 } else {
1600 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1601 list_create(&dr->dt.di.dr_children,
1602 sizeof (dbuf_dirty_record_t),
1603 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1605 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1606 dr->dr_accounted = db->db.db_size;
1607 dr->dr_dbuf = db;
1608 dr->dr_txg = tx->tx_txg;
1609 dr->dr_next = *drp;
1610 *drp = dr;
1613 * We could have been freed_in_flight between the dbuf_noread
1614 * and dbuf_dirty. We win, as though the dbuf_noread() had
1615 * happened after the free.
1617 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1618 db->db_blkid != DMU_SPILL_BLKID) {
1619 mutex_enter(&dn->dn_mtx);
1620 if (dn->dn_free_ranges[txgoff] != NULL) {
1621 range_tree_clear(dn->dn_free_ranges[txgoff],
1622 db->db_blkid, 1);
1624 mutex_exit(&dn->dn_mtx);
1625 db->db_freed_in_flight = FALSE;
1629 * This buffer is now part of this txg
1631 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1632 db->db_dirtycnt += 1;
1633 ASSERT3U(db->db_dirtycnt, <=, 3);
1635 mutex_exit(&db->db_mtx);
1637 if (db->db_blkid == DMU_BONUS_BLKID ||
1638 db->db_blkid == DMU_SPILL_BLKID) {
1639 mutex_enter(&dn->dn_mtx);
1640 ASSERT(!list_link_active(&dr->dr_dirty_node));
1641 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1642 mutex_exit(&dn->dn_mtx);
1643 dnode_setdirty(dn, tx);
1644 DB_DNODE_EXIT(db);
1645 return (dr);
1649 * The dn_struct_rwlock prevents db_blkptr from changing
1650 * due to a write from syncing context completing
1651 * while we are running, so we want to acquire it before
1652 * looking at db_blkptr.
1654 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1655 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1656 drop_struct_lock = TRUE;
1660 * We need to hold the dn_struct_rwlock to make this assertion,
1661 * because it protects dn_phys / dn_next_nlevels from changing.
1663 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1664 dn->dn_phys->dn_nlevels > db->db_level ||
1665 dn->dn_next_nlevels[txgoff] > db->db_level ||
1666 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1667 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1670 * If we are overwriting a dedup BP, then unless it is snapshotted,
1671 * when we get to syncing context we will need to decrement its
1672 * refcount in the DDT. Prefetch the relevant DDT block so that
1673 * syncing context won't have to wait for the i/o.
1675 ddt_prefetch(os->os_spa, db->db_blkptr);
1677 if (db->db_level == 0) {
1678 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1679 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1682 if (db->db_level+1 < dn->dn_nlevels) {
1683 dmu_buf_impl_t *parent = db->db_parent;
1684 dbuf_dirty_record_t *di;
1685 int parent_held = FALSE;
1687 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1688 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1690 parent = dbuf_hold_level(dn, db->db_level+1,
1691 db->db_blkid >> epbs, FTAG);
1692 ASSERT(parent != NULL);
1693 parent_held = TRUE;
1695 if (drop_struct_lock)
1696 rw_exit(&dn->dn_struct_rwlock);
1697 ASSERT3U(db->db_level+1, ==, parent->db_level);
1698 di = dbuf_dirty(parent, tx);
1699 if (parent_held)
1700 dbuf_rele(parent, FTAG);
1702 mutex_enter(&db->db_mtx);
1704 * Since we've dropped the mutex, it's possible that
1705 * dbuf_undirty() might have changed this out from under us.
1707 if (db->db_last_dirty == dr ||
1708 dn->dn_object == DMU_META_DNODE_OBJECT) {
1709 mutex_enter(&di->dt.di.dr_mtx);
1710 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1711 ASSERT(!list_link_active(&dr->dr_dirty_node));
1712 list_insert_tail(&di->dt.di.dr_children, dr);
1713 mutex_exit(&di->dt.di.dr_mtx);
1714 dr->dr_parent = di;
1716 mutex_exit(&db->db_mtx);
1717 } else {
1718 ASSERT(db->db_level+1 == dn->dn_nlevels);
1719 ASSERT(db->db_blkid < dn->dn_nblkptr);
1720 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1721 mutex_enter(&dn->dn_mtx);
1722 ASSERT(!list_link_active(&dr->dr_dirty_node));
1723 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1724 mutex_exit(&dn->dn_mtx);
1725 if (drop_struct_lock)
1726 rw_exit(&dn->dn_struct_rwlock);
1729 dnode_setdirty(dn, tx);
1730 DB_DNODE_EXIT(db);
1731 return (dr);
1735 * Undirty a buffer in the transaction group referenced by the given
1736 * transaction. Return whether this evicted the dbuf.
1738 static boolean_t
1739 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1741 dnode_t *dn;
1742 uint64_t txg = tx->tx_txg;
1743 dbuf_dirty_record_t *dr, **drp;
1745 ASSERT(txg != 0);
1748 * Due to our use of dn_nlevels below, this can only be called
1749 * in open context, unless we are operating on the MOS.
1750 * From syncing context, dn_nlevels may be different from the
1751 * dn_nlevels used when dbuf was dirtied.
1753 ASSERT(db->db_objset ==
1754 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1755 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1756 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1757 ASSERT0(db->db_level);
1758 ASSERT(MUTEX_HELD(&db->db_mtx));
1761 * If this buffer is not dirty, we're done.
1763 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1764 if (dr->dr_txg <= txg)
1765 break;
1766 if (dr == NULL || dr->dr_txg < txg)
1767 return (B_FALSE);
1768 ASSERT(dr->dr_txg == txg);
1769 ASSERT(dr->dr_dbuf == db);
1771 DB_DNODE_ENTER(db);
1772 dn = DB_DNODE(db);
1774 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1776 ASSERT(db->db.db_size != 0);
1778 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1779 dr->dr_accounted, txg);
1781 *drp = dr->dr_next;
1784 * Note that there are three places in dbuf_dirty()
1785 * where this dirty record may be put on a list.
1786 * Make sure to do a list_remove corresponding to
1787 * every one of those list_insert calls.
1789 if (dr->dr_parent) {
1790 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1791 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1792 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1793 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1794 db->db_level + 1 == dn->dn_nlevels) {
1795 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1796 mutex_enter(&dn->dn_mtx);
1797 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1798 mutex_exit(&dn->dn_mtx);
1800 DB_DNODE_EXIT(db);
1802 if (db->db_state != DB_NOFILL) {
1803 dbuf_unoverride(dr);
1805 ASSERT(db->db_buf != NULL);
1806 ASSERT(dr->dt.dl.dr_data != NULL);
1807 if (dr->dt.dl.dr_data != db->db_buf)
1808 arc_buf_destroy(dr->dt.dl.dr_data, db);
1811 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1813 ASSERT(db->db_dirtycnt > 0);
1814 db->db_dirtycnt -= 1;
1816 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1817 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1818 dbuf_destroy(db);
1819 return (B_TRUE);
1822 return (B_FALSE);
1825 void
1826 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1828 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1829 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1831 ASSERT(tx->tx_txg != 0);
1832 ASSERT(!refcount_is_zero(&db->db_holds));
1835 * Quick check for dirtyness. For already dirty blocks, this
1836 * reduces runtime of this function by >90%, and overall performance
1837 * by 50% for some workloads (e.g. file deletion with indirect blocks
1838 * cached).
1840 mutex_enter(&db->db_mtx);
1841 dbuf_dirty_record_t *dr;
1842 for (dr = db->db_last_dirty;
1843 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1845 * It's possible that it is already dirty but not cached,
1846 * because there are some calls to dbuf_dirty() that don't
1847 * go through dmu_buf_will_dirty().
1849 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1850 /* This dbuf is already dirty and cached. */
1851 dbuf_redirty(dr);
1852 mutex_exit(&db->db_mtx);
1853 return;
1856 mutex_exit(&db->db_mtx);
1858 DB_DNODE_ENTER(db);
1859 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1860 rf |= DB_RF_HAVESTRUCT;
1861 DB_DNODE_EXIT(db);
1862 (void) dbuf_read(db, NULL, rf);
1863 (void) dbuf_dirty(db, tx);
1866 void
1867 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1869 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1871 db->db_state = DB_NOFILL;
1873 dmu_buf_will_fill(db_fake, tx);
1876 void
1877 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1879 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1881 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1882 ASSERT(tx->tx_txg != 0);
1883 ASSERT(db->db_level == 0);
1884 ASSERT(!refcount_is_zero(&db->db_holds));
1886 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1887 dmu_tx_private_ok(tx));
1889 dbuf_noread(db);
1890 (void) dbuf_dirty(db, tx);
1893 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1894 /* ARGSUSED */
1895 void
1896 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1898 mutex_enter(&db->db_mtx);
1899 DBUF_VERIFY(db);
1901 if (db->db_state == DB_FILL) {
1902 if (db->db_level == 0 && db->db_freed_in_flight) {
1903 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1904 /* we were freed while filling */
1905 /* XXX dbuf_undirty? */
1906 bzero(db->db.db_data, db->db.db_size);
1907 db->db_freed_in_flight = FALSE;
1909 db->db_state = DB_CACHED;
1910 cv_broadcast(&db->db_changed);
1912 mutex_exit(&db->db_mtx);
1915 void
1916 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1917 bp_embedded_type_t etype, enum zio_compress comp,
1918 int uncompressed_size, int compressed_size, int byteorder,
1919 dmu_tx_t *tx)
1921 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1922 struct dirty_leaf *dl;
1923 dmu_object_type_t type;
1925 if (etype == BP_EMBEDDED_TYPE_DATA) {
1926 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1927 SPA_FEATURE_EMBEDDED_DATA));
1930 DB_DNODE_ENTER(db);
1931 type = DB_DNODE(db)->dn_type;
1932 DB_DNODE_EXIT(db);
1934 ASSERT0(db->db_level);
1935 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1937 dmu_buf_will_not_fill(dbuf, tx);
1939 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1940 dl = &db->db_last_dirty->dt.dl;
1941 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1942 data, comp, uncompressed_size, compressed_size);
1943 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1944 BP_SET_TYPE(&dl->dr_overridden_by, type);
1945 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1946 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1948 dl->dr_override_state = DR_OVERRIDDEN;
1949 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1953 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1954 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1956 void
1957 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1959 ASSERT(!refcount_is_zero(&db->db_holds));
1960 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1961 ASSERT(db->db_level == 0);
1962 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1963 ASSERT(buf != NULL);
1964 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1965 ASSERT(tx->tx_txg != 0);
1967 arc_return_buf(buf, db);
1968 ASSERT(arc_released(buf));
1970 mutex_enter(&db->db_mtx);
1972 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1973 cv_wait(&db->db_changed, &db->db_mtx);
1975 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1977 if (db->db_state == DB_CACHED &&
1978 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1979 mutex_exit(&db->db_mtx);
1980 (void) dbuf_dirty(db, tx);
1981 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1982 arc_buf_destroy(buf, db);
1983 xuio_stat_wbuf_copied();
1984 return;
1987 xuio_stat_wbuf_nocopy();
1988 if (db->db_state == DB_CACHED) {
1989 dbuf_dirty_record_t *dr = db->db_last_dirty;
1991 ASSERT(db->db_buf != NULL);
1992 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1993 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1994 if (!arc_released(db->db_buf)) {
1995 ASSERT(dr->dt.dl.dr_override_state ==
1996 DR_OVERRIDDEN);
1997 arc_release(db->db_buf, db);
1999 dr->dt.dl.dr_data = buf;
2000 arc_buf_destroy(db->db_buf, db);
2001 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2002 arc_release(db->db_buf, db);
2003 arc_buf_destroy(db->db_buf, db);
2005 db->db_buf = NULL;
2007 ASSERT(db->db_buf == NULL);
2008 dbuf_set_data(db, buf);
2009 db->db_state = DB_FILL;
2010 mutex_exit(&db->db_mtx);
2011 (void) dbuf_dirty(db, tx);
2012 dmu_buf_fill_done(&db->db, tx);
2015 void
2016 dbuf_destroy(dmu_buf_impl_t *db)
2018 dnode_t *dn;
2019 dmu_buf_impl_t *parent = db->db_parent;
2020 dmu_buf_impl_t *dndb;
2022 ASSERT(MUTEX_HELD(&db->db_mtx));
2023 ASSERT(refcount_is_zero(&db->db_holds));
2025 if (db->db_buf != NULL) {
2026 arc_buf_destroy(db->db_buf, db);
2027 db->db_buf = NULL;
2030 if (db->db_blkid == DMU_BONUS_BLKID) {
2031 ASSERT(db->db.db_data != NULL);
2032 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2033 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2034 db->db_state = DB_UNCACHED;
2037 dbuf_clear_data(db);
2039 if (multilist_link_active(&db->db_cache_link)) {
2040 multilist_remove(dbuf_cache, db);
2041 (void) refcount_remove_many(&dbuf_cache_size,
2042 db->db.db_size, db);
2045 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2046 ASSERT(db->db_data_pending == NULL);
2048 db->db_state = DB_EVICTING;
2049 db->db_blkptr = NULL;
2052 * Now that db_state is DB_EVICTING, nobody else can find this via
2053 * the hash table. We can now drop db_mtx, which allows us to
2054 * acquire the dn_dbufs_mtx.
2056 mutex_exit(&db->db_mtx);
2058 DB_DNODE_ENTER(db);
2059 dn = DB_DNODE(db);
2060 dndb = dn->dn_dbuf;
2061 if (db->db_blkid != DMU_BONUS_BLKID) {
2062 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2063 if (needlock)
2064 mutex_enter(&dn->dn_dbufs_mtx);
2065 avl_remove(&dn->dn_dbufs, db);
2066 atomic_dec_32(&dn->dn_dbufs_count);
2067 membar_producer();
2068 DB_DNODE_EXIT(db);
2069 if (needlock)
2070 mutex_exit(&dn->dn_dbufs_mtx);
2072 * Decrementing the dbuf count means that the hold corresponding
2073 * to the removed dbuf is no longer discounted in dnode_move(),
2074 * so the dnode cannot be moved until after we release the hold.
2075 * The membar_producer() ensures visibility of the decremented
2076 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2077 * release any lock.
2079 dnode_rele(dn, db);
2080 db->db_dnode_handle = NULL;
2082 dbuf_hash_remove(db);
2083 } else {
2084 DB_DNODE_EXIT(db);
2087 ASSERT(refcount_is_zero(&db->db_holds));
2089 db->db_parent = NULL;
2091 ASSERT(db->db_buf == NULL);
2092 ASSERT(db->db.db_data == NULL);
2093 ASSERT(db->db_hash_next == NULL);
2094 ASSERT(db->db_blkptr == NULL);
2095 ASSERT(db->db_data_pending == NULL);
2096 ASSERT(!multilist_link_active(&db->db_cache_link));
2098 kmem_cache_free(dbuf_kmem_cache, db);
2099 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2102 * If this dbuf is referenced from an indirect dbuf,
2103 * decrement the ref count on the indirect dbuf.
2105 if (parent && parent != dndb)
2106 dbuf_rele(parent, db);
2110 * Note: While bpp will always be updated if the function returns success,
2111 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2112 * this happens when the dnode is the meta-dnode, or a userused or groupused
2113 * object.
2115 static int
2116 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2117 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2119 *parentp = NULL;
2120 *bpp = NULL;
2122 ASSERT(blkid != DMU_BONUS_BLKID);
2124 if (blkid == DMU_SPILL_BLKID) {
2125 mutex_enter(&dn->dn_mtx);
2126 if (dn->dn_have_spill &&
2127 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2128 *bpp = &dn->dn_phys->dn_spill;
2129 else
2130 *bpp = NULL;
2131 dbuf_add_ref(dn->dn_dbuf, NULL);
2132 *parentp = dn->dn_dbuf;
2133 mutex_exit(&dn->dn_mtx);
2134 return (0);
2137 int nlevels =
2138 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2139 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2141 ASSERT3U(level * epbs, <, 64);
2142 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2144 * This assertion shouldn't trip as long as the max indirect block size
2145 * is less than 1M. The reason for this is that up to that point,
2146 * the number of levels required to address an entire object with blocks
2147 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2148 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2149 * (i.e. we can address the entire object), objects will all use at most
2150 * N-1 levels and the assertion won't overflow. However, once epbs is
2151 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2152 * enough to address an entire object, so objects will have 5 levels,
2153 * but then this assertion will overflow.
2155 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2156 * need to redo this logic to handle overflows.
2158 ASSERT(level >= nlevels ||
2159 ((nlevels - level - 1) * epbs) +
2160 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2161 if (level >= nlevels ||
2162 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2163 ((nlevels - level - 1) * epbs)) ||
2164 (fail_sparse &&
2165 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2166 /* the buffer has no parent yet */
2167 return (SET_ERROR(ENOENT));
2168 } else if (level < nlevels-1) {
2169 /* this block is referenced from an indirect block */
2170 int err = dbuf_hold_impl(dn, level+1,
2171 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2172 if (err)
2173 return (err);
2174 err = dbuf_read(*parentp, NULL,
2175 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2176 if (err) {
2177 dbuf_rele(*parentp, NULL);
2178 *parentp = NULL;
2179 return (err);
2181 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2182 (blkid & ((1ULL << epbs) - 1));
2183 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2184 ASSERT(BP_IS_HOLE(*bpp));
2185 return (0);
2186 } else {
2187 /* the block is referenced from the dnode */
2188 ASSERT3U(level, ==, nlevels-1);
2189 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2190 blkid < dn->dn_phys->dn_nblkptr);
2191 if (dn->dn_dbuf) {
2192 dbuf_add_ref(dn->dn_dbuf, NULL);
2193 *parentp = dn->dn_dbuf;
2195 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2196 return (0);
2200 static dmu_buf_impl_t *
2201 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2202 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2204 objset_t *os = dn->dn_objset;
2205 dmu_buf_impl_t *db, *odb;
2207 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2208 ASSERT(dn->dn_type != DMU_OT_NONE);
2210 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2212 db->db_objset = os;
2213 db->db.db_object = dn->dn_object;
2214 db->db_level = level;
2215 db->db_blkid = blkid;
2216 db->db_last_dirty = NULL;
2217 db->db_dirtycnt = 0;
2218 db->db_dnode_handle = dn->dn_handle;
2219 db->db_parent = parent;
2220 db->db_blkptr = blkptr;
2222 db->db_user = NULL;
2223 db->db_user_immediate_evict = FALSE;
2224 db->db_freed_in_flight = FALSE;
2225 db->db_pending_evict = FALSE;
2227 if (blkid == DMU_BONUS_BLKID) {
2228 ASSERT3P(parent, ==, dn->dn_dbuf);
2229 db->db.db_size = DN_MAX_BONUSLEN -
2230 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2231 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2232 db->db.db_offset = DMU_BONUS_BLKID;
2233 db->db_state = DB_UNCACHED;
2234 /* the bonus dbuf is not placed in the hash table */
2235 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2236 return (db);
2237 } else if (blkid == DMU_SPILL_BLKID) {
2238 db->db.db_size = (blkptr != NULL) ?
2239 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2240 db->db.db_offset = 0;
2241 } else {
2242 int blocksize =
2243 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2244 db->db.db_size = blocksize;
2245 db->db.db_offset = db->db_blkid * blocksize;
2249 * Hold the dn_dbufs_mtx while we get the new dbuf
2250 * in the hash table *and* added to the dbufs list.
2251 * This prevents a possible deadlock with someone
2252 * trying to look up this dbuf before its added to the
2253 * dn_dbufs list.
2255 mutex_enter(&dn->dn_dbufs_mtx);
2256 db->db_state = DB_EVICTING;
2257 if ((odb = dbuf_hash_insert(db)) != NULL) {
2258 /* someone else inserted it first */
2259 kmem_cache_free(dbuf_kmem_cache, db);
2260 mutex_exit(&dn->dn_dbufs_mtx);
2261 return (odb);
2263 avl_add(&dn->dn_dbufs, db);
2265 db->db_state = DB_UNCACHED;
2266 mutex_exit(&dn->dn_dbufs_mtx);
2267 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2269 if (parent && parent != dn->dn_dbuf)
2270 dbuf_add_ref(parent, db);
2272 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2273 refcount_count(&dn->dn_holds) > 0);
2274 (void) refcount_add(&dn->dn_holds, db);
2275 atomic_inc_32(&dn->dn_dbufs_count);
2277 dprintf_dbuf(db, "db=%p\n", db);
2279 return (db);
2282 typedef struct dbuf_prefetch_arg {
2283 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2284 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2285 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2286 int dpa_curlevel; /* The current level that we're reading */
2287 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2288 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2289 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2290 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2291 } dbuf_prefetch_arg_t;
2294 * Actually issue the prefetch read for the block given.
2296 static void
2297 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2299 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2300 return;
2302 arc_flags_t aflags =
2303 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2305 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2306 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2307 ASSERT(dpa->dpa_zio != NULL);
2308 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2309 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2310 &aflags, &dpa->dpa_zb);
2314 * Called when an indirect block above our prefetch target is read in. This
2315 * will either read in the next indirect block down the tree or issue the actual
2316 * prefetch if the next block down is our target.
2318 static void
2319 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2321 dbuf_prefetch_arg_t *dpa = private;
2323 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2324 ASSERT3S(dpa->dpa_curlevel, >, 0);
2327 * The dpa_dnode is only valid if we are called with a NULL
2328 * zio. This indicates that the arc_read() returned without
2329 * first calling zio_read() to issue a physical read. Once
2330 * a physical read is made the dpa_dnode must be invalidated
2331 * as the locks guarding it may have been dropped. If the
2332 * dpa_dnode is still valid, then we want to add it to the dbuf
2333 * cache. To do so, we must hold the dbuf associated with the block
2334 * we just prefetched, read its contents so that we associate it
2335 * with an arc_buf_t, and then release it.
2337 if (zio != NULL) {
2338 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2339 if (zio->io_flags & ZIO_FLAG_RAW) {
2340 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2341 } else {
2342 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2344 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2346 dpa->dpa_dnode = NULL;
2347 } else if (dpa->dpa_dnode != NULL) {
2348 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2349 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2350 dpa->dpa_zb.zb_level));
2351 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2352 dpa->dpa_curlevel, curblkid, FTAG);
2353 (void) dbuf_read(db, NULL,
2354 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2355 dbuf_rele(db, FTAG);
2358 dpa->dpa_curlevel--;
2360 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2361 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2362 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2363 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2364 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2365 kmem_free(dpa, sizeof (*dpa));
2366 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2367 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2368 dbuf_issue_final_prefetch(dpa, bp);
2369 kmem_free(dpa, sizeof (*dpa));
2370 } else {
2371 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2372 zbookmark_phys_t zb;
2374 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2375 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2376 iter_aflags |= ARC_FLAG_L2CACHE;
2378 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2380 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2381 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2383 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2384 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2385 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2386 &iter_aflags, &zb);
2389 arc_buf_destroy(abuf, private);
2393 * Issue prefetch reads for the given block on the given level. If the indirect
2394 * blocks above that block are not in memory, we will read them in
2395 * asynchronously. As a result, this call never blocks waiting for a read to
2396 * complete.
2398 void
2399 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2400 arc_flags_t aflags)
2402 blkptr_t bp;
2403 int epbs, nlevels, curlevel;
2404 uint64_t curblkid;
2406 ASSERT(blkid != DMU_BONUS_BLKID);
2407 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2409 if (blkid > dn->dn_maxblkid)
2410 return;
2412 if (dnode_block_freed(dn, blkid))
2413 return;
2416 * This dnode hasn't been written to disk yet, so there's nothing to
2417 * prefetch.
2419 nlevels = dn->dn_phys->dn_nlevels;
2420 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2421 return;
2423 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2424 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2425 return;
2427 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2428 level, blkid);
2429 if (db != NULL) {
2430 mutex_exit(&db->db_mtx);
2432 * This dbuf already exists. It is either CACHED, or
2433 * (we assume) about to be read or filled.
2435 return;
2439 * Find the closest ancestor (indirect block) of the target block
2440 * that is present in the cache. In this indirect block, we will
2441 * find the bp that is at curlevel, curblkid.
2443 curlevel = level;
2444 curblkid = blkid;
2445 while (curlevel < nlevels - 1) {
2446 int parent_level = curlevel + 1;
2447 uint64_t parent_blkid = curblkid >> epbs;
2448 dmu_buf_impl_t *db;
2450 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2451 FALSE, TRUE, FTAG, &db) == 0) {
2452 blkptr_t *bpp = db->db_buf->b_data;
2453 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2454 dbuf_rele(db, FTAG);
2455 break;
2458 curlevel = parent_level;
2459 curblkid = parent_blkid;
2462 if (curlevel == nlevels - 1) {
2463 /* No cached indirect blocks found. */
2464 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2465 bp = dn->dn_phys->dn_blkptr[curblkid];
2467 if (BP_IS_HOLE(&bp))
2468 return;
2470 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2472 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2473 ZIO_FLAG_CANFAIL);
2475 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2476 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2477 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2478 dn->dn_object, level, blkid);
2479 dpa->dpa_curlevel = curlevel;
2480 dpa->dpa_prio = prio;
2481 dpa->dpa_aflags = aflags;
2482 dpa->dpa_spa = dn->dn_objset->os_spa;
2483 dpa->dpa_dnode = dn;
2484 dpa->dpa_epbs = epbs;
2485 dpa->dpa_zio = pio;
2487 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2488 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2489 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2492 * If we have the indirect just above us, no need to do the asynchronous
2493 * prefetch chain; we'll just run the last step ourselves. If we're at
2494 * a higher level, though, we want to issue the prefetches for all the
2495 * indirect blocks asynchronously, so we can go on with whatever we were
2496 * doing.
2498 if (curlevel == level) {
2499 ASSERT3U(curblkid, ==, blkid);
2500 dbuf_issue_final_prefetch(dpa, &bp);
2501 kmem_free(dpa, sizeof (*dpa));
2502 } else {
2503 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2504 zbookmark_phys_t zb;
2506 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2507 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2508 iter_aflags |= ARC_FLAG_L2CACHE;
2510 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2511 dn->dn_object, curlevel, curblkid);
2512 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2513 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2514 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2515 &iter_aflags, &zb);
2518 * We use pio here instead of dpa_zio since it's possible that
2519 * dpa may have already been freed.
2521 zio_nowait(pio);
2525 * Returns with db_holds incremented, and db_mtx not held.
2526 * Note: dn_struct_rwlock must be held.
2529 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2530 boolean_t fail_sparse, boolean_t fail_uncached,
2531 void *tag, dmu_buf_impl_t **dbp)
2533 dmu_buf_impl_t *db, *parent = NULL;
2535 ASSERT(blkid != DMU_BONUS_BLKID);
2536 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2537 ASSERT3U(dn->dn_nlevels, >, level);
2539 *dbp = NULL;
2540 top:
2541 /* dbuf_find() returns with db_mtx held */
2542 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2544 if (db == NULL) {
2545 blkptr_t *bp = NULL;
2546 int err;
2548 if (fail_uncached)
2549 return (SET_ERROR(ENOENT));
2551 ASSERT3P(parent, ==, NULL);
2552 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2553 if (fail_sparse) {
2554 if (err == 0 && bp && BP_IS_HOLE(bp))
2555 err = SET_ERROR(ENOENT);
2556 if (err) {
2557 if (parent)
2558 dbuf_rele(parent, NULL);
2559 return (err);
2562 if (err && err != ENOENT)
2563 return (err);
2564 db = dbuf_create(dn, level, blkid, parent, bp);
2567 if (fail_uncached && db->db_state != DB_CACHED) {
2568 mutex_exit(&db->db_mtx);
2569 return (SET_ERROR(ENOENT));
2572 if (db->db_buf != NULL)
2573 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2575 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2578 * If this buffer is currently syncing out, and we are are
2579 * still referencing it from db_data, we need to make a copy
2580 * of it in case we decide we want to dirty it again in this txg.
2582 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2583 dn->dn_object != DMU_META_DNODE_OBJECT &&
2584 db->db_state == DB_CACHED && db->db_data_pending) {
2585 dbuf_dirty_record_t *dr = db->db_data_pending;
2587 if (dr->dt.dl.dr_data == db->db_buf) {
2588 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2590 dbuf_set_data(db,
2591 arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2592 db->db.db_size));
2593 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2594 db->db.db_size);
2598 if (multilist_link_active(&db->db_cache_link)) {
2599 ASSERT(refcount_is_zero(&db->db_holds));
2600 multilist_remove(dbuf_cache, db);
2601 (void) refcount_remove_many(&dbuf_cache_size,
2602 db->db.db_size, db);
2604 (void) refcount_add(&db->db_holds, tag);
2605 DBUF_VERIFY(db);
2606 mutex_exit(&db->db_mtx);
2608 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2609 if (parent)
2610 dbuf_rele(parent, NULL);
2612 ASSERT3P(DB_DNODE(db), ==, dn);
2613 ASSERT3U(db->db_blkid, ==, blkid);
2614 ASSERT3U(db->db_level, ==, level);
2615 *dbp = db;
2617 return (0);
2620 dmu_buf_impl_t *
2621 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2623 return (dbuf_hold_level(dn, 0, blkid, tag));
2626 dmu_buf_impl_t *
2627 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2629 dmu_buf_impl_t *db;
2630 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2631 return (err ? NULL : db);
2634 void
2635 dbuf_create_bonus(dnode_t *dn)
2637 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2639 ASSERT(dn->dn_bonus == NULL);
2640 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2644 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2646 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2647 dnode_t *dn;
2649 if (db->db_blkid != DMU_SPILL_BLKID)
2650 return (SET_ERROR(ENOTSUP));
2651 if (blksz == 0)
2652 blksz = SPA_MINBLOCKSIZE;
2653 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2654 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2656 DB_DNODE_ENTER(db);
2657 dn = DB_DNODE(db);
2658 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2659 dbuf_new_size(db, blksz, tx);
2660 rw_exit(&dn->dn_struct_rwlock);
2661 DB_DNODE_EXIT(db);
2663 return (0);
2666 void
2667 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2669 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2672 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2673 void
2674 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2676 int64_t holds = refcount_add(&db->db_holds, tag);
2677 ASSERT3S(holds, >, 1);
2680 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2681 boolean_t
2682 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2683 void *tag)
2685 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2686 dmu_buf_impl_t *found_db;
2687 boolean_t result = B_FALSE;
2689 if (db->db_blkid == DMU_BONUS_BLKID)
2690 found_db = dbuf_find_bonus(os, obj);
2691 else
2692 found_db = dbuf_find(os, obj, 0, blkid);
2694 if (found_db != NULL) {
2695 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2696 (void) refcount_add(&db->db_holds, tag);
2697 result = B_TRUE;
2699 mutex_exit(&db->db_mtx);
2701 return (result);
2705 * If you call dbuf_rele() you had better not be referencing the dnode handle
2706 * unless you have some other direct or indirect hold on the dnode. (An indirect
2707 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2708 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2709 * dnode's parent dbuf evicting its dnode handles.
2711 void
2712 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2714 mutex_enter(&db->db_mtx);
2715 dbuf_rele_and_unlock(db, tag);
2718 void
2719 dmu_buf_rele(dmu_buf_t *db, void *tag)
2721 dbuf_rele((dmu_buf_impl_t *)db, tag);
2725 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2726 * db_dirtycnt and db_holds to be updated atomically.
2728 void
2729 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2731 int64_t holds;
2733 ASSERT(MUTEX_HELD(&db->db_mtx));
2734 DBUF_VERIFY(db);
2737 * Remove the reference to the dbuf before removing its hold on the
2738 * dnode so we can guarantee in dnode_move() that a referenced bonus
2739 * buffer has a corresponding dnode hold.
2741 holds = refcount_remove(&db->db_holds, tag);
2742 ASSERT(holds >= 0);
2745 * We can't freeze indirects if there is a possibility that they
2746 * may be modified in the current syncing context.
2748 if (db->db_buf != NULL &&
2749 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2750 arc_buf_freeze(db->db_buf);
2753 if (holds == db->db_dirtycnt &&
2754 db->db_level == 0 && db->db_user_immediate_evict)
2755 dbuf_evict_user(db);
2757 if (holds == 0) {
2758 if (db->db_blkid == DMU_BONUS_BLKID) {
2759 dnode_t *dn;
2760 boolean_t evict_dbuf = db->db_pending_evict;
2763 * If the dnode moves here, we cannot cross this
2764 * barrier until the move completes.
2766 DB_DNODE_ENTER(db);
2768 dn = DB_DNODE(db);
2769 atomic_dec_32(&dn->dn_dbufs_count);
2772 * Decrementing the dbuf count means that the bonus
2773 * buffer's dnode hold is no longer discounted in
2774 * dnode_move(). The dnode cannot move until after
2775 * the dnode_rele() below.
2777 DB_DNODE_EXIT(db);
2780 * Do not reference db after its lock is dropped.
2781 * Another thread may evict it.
2783 mutex_exit(&db->db_mtx);
2785 if (evict_dbuf)
2786 dnode_evict_bonus(dn);
2788 dnode_rele(dn, db);
2789 } else if (db->db_buf == NULL) {
2791 * This is a special case: we never associated this
2792 * dbuf with any data allocated from the ARC.
2794 ASSERT(db->db_state == DB_UNCACHED ||
2795 db->db_state == DB_NOFILL);
2796 dbuf_destroy(db);
2797 } else if (arc_released(db->db_buf)) {
2799 * This dbuf has anonymous data associated with it.
2801 dbuf_destroy(db);
2802 } else {
2803 boolean_t do_arc_evict = B_FALSE;
2804 blkptr_t bp;
2805 spa_t *spa = dmu_objset_spa(db->db_objset);
2807 if (!DBUF_IS_CACHEABLE(db) &&
2808 db->db_blkptr != NULL &&
2809 !BP_IS_HOLE(db->db_blkptr) &&
2810 !BP_IS_EMBEDDED(db->db_blkptr)) {
2811 do_arc_evict = B_TRUE;
2812 bp = *db->db_blkptr;
2815 if (!DBUF_IS_CACHEABLE(db) ||
2816 db->db_pending_evict) {
2817 dbuf_destroy(db);
2818 } else if (!multilist_link_active(&db->db_cache_link)) {
2819 multilist_insert(dbuf_cache, db);
2820 (void) refcount_add_many(&dbuf_cache_size,
2821 db->db.db_size, db);
2822 mutex_exit(&db->db_mtx);
2824 dbuf_evict_notify();
2827 if (do_arc_evict)
2828 arc_freed(spa, &bp);
2830 } else {
2831 mutex_exit(&db->db_mtx);
2836 #pragma weak dmu_buf_refcount = dbuf_refcount
2837 uint64_t
2838 dbuf_refcount(dmu_buf_impl_t *db)
2840 return (refcount_count(&db->db_holds));
2843 void *
2844 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2845 dmu_buf_user_t *new_user)
2847 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2849 mutex_enter(&db->db_mtx);
2850 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2851 if (db->db_user == old_user)
2852 db->db_user = new_user;
2853 else
2854 old_user = db->db_user;
2855 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2856 mutex_exit(&db->db_mtx);
2858 return (old_user);
2861 void *
2862 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2864 return (dmu_buf_replace_user(db_fake, NULL, user));
2867 void *
2868 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2870 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2872 db->db_user_immediate_evict = TRUE;
2873 return (dmu_buf_set_user(db_fake, user));
2876 void *
2877 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2879 return (dmu_buf_replace_user(db_fake, user, NULL));
2882 void *
2883 dmu_buf_get_user(dmu_buf_t *db_fake)
2885 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2887 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2888 return (db->db_user);
2891 void
2892 dmu_buf_user_evict_wait()
2894 taskq_wait(dbu_evict_taskq);
2897 blkptr_t *
2898 dmu_buf_get_blkptr(dmu_buf_t *db)
2900 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2901 return (dbi->db_blkptr);
2904 objset_t *
2905 dmu_buf_get_objset(dmu_buf_t *db)
2907 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2908 return (dbi->db_objset);
2911 dnode_t *
2912 dmu_buf_dnode_enter(dmu_buf_t *db)
2914 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2915 DB_DNODE_ENTER(dbi);
2916 return (DB_DNODE(dbi));
2919 void
2920 dmu_buf_dnode_exit(dmu_buf_t *db)
2922 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2923 DB_DNODE_EXIT(dbi);
2926 static void
2927 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2929 /* ASSERT(dmu_tx_is_syncing(tx) */
2930 ASSERT(MUTEX_HELD(&db->db_mtx));
2932 if (db->db_blkptr != NULL)
2933 return;
2935 if (db->db_blkid == DMU_SPILL_BLKID) {
2936 db->db_blkptr = &dn->dn_phys->dn_spill;
2937 BP_ZERO(db->db_blkptr);
2938 return;
2940 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2942 * This buffer was allocated at a time when there was
2943 * no available blkptrs from the dnode, or it was
2944 * inappropriate to hook it in (i.e., nlevels mis-match).
2946 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2947 ASSERT(db->db_parent == NULL);
2948 db->db_parent = dn->dn_dbuf;
2949 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2950 DBUF_VERIFY(db);
2951 } else {
2952 dmu_buf_impl_t *parent = db->db_parent;
2953 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2955 ASSERT(dn->dn_phys->dn_nlevels > 1);
2956 if (parent == NULL) {
2957 mutex_exit(&db->db_mtx);
2958 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2959 parent = dbuf_hold_level(dn, db->db_level + 1,
2960 db->db_blkid >> epbs, db);
2961 rw_exit(&dn->dn_struct_rwlock);
2962 mutex_enter(&db->db_mtx);
2963 db->db_parent = parent;
2965 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2966 (db->db_blkid & ((1ULL << epbs) - 1));
2967 DBUF_VERIFY(db);
2971 static void
2972 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2974 dmu_buf_impl_t *db = dr->dr_dbuf;
2975 dnode_t *dn;
2976 zio_t *zio;
2978 ASSERT(dmu_tx_is_syncing(tx));
2980 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2982 mutex_enter(&db->db_mtx);
2984 ASSERT(db->db_level > 0);
2985 DBUF_VERIFY(db);
2987 /* Read the block if it hasn't been read yet. */
2988 if (db->db_buf == NULL) {
2989 mutex_exit(&db->db_mtx);
2990 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2991 mutex_enter(&db->db_mtx);
2993 ASSERT3U(db->db_state, ==, DB_CACHED);
2994 ASSERT(db->db_buf != NULL);
2996 DB_DNODE_ENTER(db);
2997 dn = DB_DNODE(db);
2998 /* Indirect block size must match what the dnode thinks it is. */
2999 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3000 dbuf_check_blkptr(dn, db);
3001 DB_DNODE_EXIT(db);
3003 /* Provide the pending dirty record to child dbufs */
3004 db->db_data_pending = dr;
3006 mutex_exit(&db->db_mtx);
3007 dbuf_write(dr, db->db_buf, tx);
3009 zio = dr->dr_zio;
3010 mutex_enter(&dr->dt.di.dr_mtx);
3011 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3012 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3013 mutex_exit(&dr->dt.di.dr_mtx);
3014 zio_nowait(zio);
3017 static void
3018 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3020 arc_buf_t **datap = &dr->dt.dl.dr_data;
3021 dmu_buf_impl_t *db = dr->dr_dbuf;
3022 dnode_t *dn;
3023 objset_t *os;
3024 uint64_t txg = tx->tx_txg;
3026 ASSERT(dmu_tx_is_syncing(tx));
3028 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3030 mutex_enter(&db->db_mtx);
3032 * To be synced, we must be dirtied. But we
3033 * might have been freed after the dirty.
3035 if (db->db_state == DB_UNCACHED) {
3036 /* This buffer has been freed since it was dirtied */
3037 ASSERT(db->db.db_data == NULL);
3038 } else if (db->db_state == DB_FILL) {
3039 /* This buffer was freed and is now being re-filled */
3040 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3041 } else {
3042 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3044 DBUF_VERIFY(db);
3046 DB_DNODE_ENTER(db);
3047 dn = DB_DNODE(db);
3049 if (db->db_blkid == DMU_SPILL_BLKID) {
3050 mutex_enter(&dn->dn_mtx);
3051 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3052 mutex_exit(&dn->dn_mtx);
3056 * If this is a bonus buffer, simply copy the bonus data into the
3057 * dnode. It will be written out when the dnode is synced (and it
3058 * will be synced, since it must have been dirty for dbuf_sync to
3059 * be called).
3061 if (db->db_blkid == DMU_BONUS_BLKID) {
3062 dbuf_dirty_record_t **drp;
3064 ASSERT(*datap != NULL);
3065 ASSERT0(db->db_level);
3066 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3067 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3068 DB_DNODE_EXIT(db);
3070 if (*datap != db->db.db_data) {
3071 zio_buf_free(*datap, DN_MAX_BONUSLEN);
3072 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3074 db->db_data_pending = NULL;
3075 drp = &db->db_last_dirty;
3076 while (*drp != dr)
3077 drp = &(*drp)->dr_next;
3078 ASSERT(dr->dr_next == NULL);
3079 ASSERT(dr->dr_dbuf == db);
3080 *drp = dr->dr_next;
3081 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3082 ASSERT(db->db_dirtycnt > 0);
3083 db->db_dirtycnt -= 1;
3084 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3085 return;
3088 os = dn->dn_objset;
3091 * This function may have dropped the db_mtx lock allowing a dmu_sync
3092 * operation to sneak in. As a result, we need to ensure that we
3093 * don't check the dr_override_state until we have returned from
3094 * dbuf_check_blkptr.
3096 dbuf_check_blkptr(dn, db);
3099 * If this buffer is in the middle of an immediate write,
3100 * wait for the synchronous IO to complete.
3102 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3103 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3104 cv_wait(&db->db_changed, &db->db_mtx);
3105 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3108 if (db->db_state != DB_NOFILL &&
3109 dn->dn_object != DMU_META_DNODE_OBJECT &&
3110 refcount_count(&db->db_holds) > 1 &&
3111 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3112 *datap == db->db_buf) {
3114 * If this buffer is currently "in use" (i.e., there
3115 * are active holds and db_data still references it),
3116 * then make a copy before we start the write so that
3117 * any modifications from the open txg will not leak
3118 * into this write.
3120 * NOTE: this copy does not need to be made for
3121 * objects only modified in the syncing context (e.g.
3122 * DNONE_DNODE blocks).
3124 int psize = arc_buf_size(*datap);
3125 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3126 enum zio_compress compress_type = arc_get_compression(*datap);
3128 if (compress_type == ZIO_COMPRESS_OFF) {
3129 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3130 } else {
3131 ASSERT3U(type, ==, ARC_BUFC_DATA);
3132 int lsize = arc_buf_lsize(*datap);
3133 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3134 psize, lsize, compress_type);
3136 bcopy(db->db.db_data, (*datap)->b_data, psize);
3138 db->db_data_pending = dr;
3140 mutex_exit(&db->db_mtx);
3142 dbuf_write(dr, *datap, tx);
3144 ASSERT(!list_link_active(&dr->dr_dirty_node));
3145 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3146 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3147 DB_DNODE_EXIT(db);
3148 } else {
3150 * Although zio_nowait() does not "wait for an IO", it does
3151 * initiate the IO. If this is an empty write it seems plausible
3152 * that the IO could actually be completed before the nowait
3153 * returns. We need to DB_DNODE_EXIT() first in case
3154 * zio_nowait() invalidates the dbuf.
3156 DB_DNODE_EXIT(db);
3157 zio_nowait(dr->dr_zio);
3161 void
3162 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3164 dbuf_dirty_record_t *dr;
3166 while (dr = list_head(list)) {
3167 if (dr->dr_zio != NULL) {
3169 * If we find an already initialized zio then we
3170 * are processing the meta-dnode, and we have finished.
3171 * The dbufs for all dnodes are put back on the list
3172 * during processing, so that we can zio_wait()
3173 * these IOs after initiating all child IOs.
3175 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3176 DMU_META_DNODE_OBJECT);
3177 break;
3179 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3180 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3181 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3183 list_remove(list, dr);
3184 if (dr->dr_dbuf->db_level > 0)
3185 dbuf_sync_indirect(dr, tx);
3186 else
3187 dbuf_sync_leaf(dr, tx);
3191 /* ARGSUSED */
3192 static void
3193 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3195 dmu_buf_impl_t *db = vdb;
3196 dnode_t *dn;
3197 blkptr_t *bp = zio->io_bp;
3198 blkptr_t *bp_orig = &zio->io_bp_orig;
3199 spa_t *spa = zio->io_spa;
3200 int64_t delta;
3201 uint64_t fill = 0;
3202 int i;
3204 ASSERT3P(db->db_blkptr, !=, NULL);
3205 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3207 DB_DNODE_ENTER(db);
3208 dn = DB_DNODE(db);
3209 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3210 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3211 zio->io_prev_space_delta = delta;
3213 if (bp->blk_birth != 0) {
3214 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3215 BP_GET_TYPE(bp) == dn->dn_type) ||
3216 (db->db_blkid == DMU_SPILL_BLKID &&
3217 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3218 BP_IS_EMBEDDED(bp));
3219 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3222 mutex_enter(&db->db_mtx);
3224 #ifdef ZFS_DEBUG
3225 if (db->db_blkid == DMU_SPILL_BLKID) {
3226 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3227 ASSERT(!(BP_IS_HOLE(bp)) &&
3228 db->db_blkptr == &dn->dn_phys->dn_spill);
3230 #endif
3232 if (db->db_level == 0) {
3233 mutex_enter(&dn->dn_mtx);
3234 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3235 db->db_blkid != DMU_SPILL_BLKID)
3236 dn->dn_phys->dn_maxblkid = db->db_blkid;
3237 mutex_exit(&dn->dn_mtx);
3239 if (dn->dn_type == DMU_OT_DNODE) {
3240 dnode_phys_t *dnp = db->db.db_data;
3241 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3242 i--, dnp++) {
3243 if (dnp->dn_type != DMU_OT_NONE)
3244 fill++;
3246 } else {
3247 if (BP_IS_HOLE(bp)) {
3248 fill = 0;
3249 } else {
3250 fill = 1;
3253 } else {
3254 blkptr_t *ibp = db->db.db_data;
3255 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3256 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3257 if (BP_IS_HOLE(ibp))
3258 continue;
3259 fill += BP_GET_FILL(ibp);
3262 DB_DNODE_EXIT(db);
3264 if (!BP_IS_EMBEDDED(bp))
3265 bp->blk_fill = fill;
3267 mutex_exit(&db->db_mtx);
3269 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3270 *db->db_blkptr = *bp;
3271 rw_exit(&dn->dn_struct_rwlock);
3274 /* ARGSUSED */
3276 * This function gets called just prior to running through the compression
3277 * stage of the zio pipeline. If we're an indirect block comprised of only
3278 * holes, then we want this indirect to be compressed away to a hole. In
3279 * order to do that we must zero out any information about the holes that
3280 * this indirect points to prior to before we try to compress it.
3282 static void
3283 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3285 dmu_buf_impl_t *db = vdb;
3286 dnode_t *dn;
3287 blkptr_t *bp;
3288 unsigned int epbs, i;
3290 ASSERT3U(db->db_level, >, 0);
3291 DB_DNODE_ENTER(db);
3292 dn = DB_DNODE(db);
3293 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3294 ASSERT3U(epbs, <, 31);
3296 /* Determine if all our children are holes */
3297 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3298 if (!BP_IS_HOLE(bp))
3299 break;
3303 * If all the children are holes, then zero them all out so that
3304 * we may get compressed away.
3306 if (i == 1 << epbs) {
3308 * We only found holes. Grab the rwlock to prevent
3309 * anybody from reading the blocks we're about to
3310 * zero out.
3312 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3313 bzero(db->db.db_data, db->db.db_size);
3314 rw_exit(&dn->dn_struct_rwlock);
3316 DB_DNODE_EXIT(db);
3320 * The SPA will call this callback several times for each zio - once
3321 * for every physical child i/o (zio->io_phys_children times). This
3322 * allows the DMU to monitor the progress of each logical i/o. For example,
3323 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3324 * block. There may be a long delay before all copies/fragments are completed,
3325 * so this callback allows us to retire dirty space gradually, as the physical
3326 * i/os complete.
3328 /* ARGSUSED */
3329 static void
3330 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3332 dmu_buf_impl_t *db = arg;
3333 objset_t *os = db->db_objset;
3334 dsl_pool_t *dp = dmu_objset_pool(os);
3335 dbuf_dirty_record_t *dr;
3336 int delta = 0;
3338 dr = db->db_data_pending;
3339 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3342 * The callback will be called io_phys_children times. Retire one
3343 * portion of our dirty space each time we are called. Any rounding
3344 * error will be cleaned up by dsl_pool_sync()'s call to
3345 * dsl_pool_undirty_space().
3347 delta = dr->dr_accounted / zio->io_phys_children;
3348 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3351 /* ARGSUSED */
3352 static void
3353 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3355 dmu_buf_impl_t *db = vdb;
3356 blkptr_t *bp_orig = &zio->io_bp_orig;
3357 blkptr_t *bp = db->db_blkptr;
3358 objset_t *os = db->db_objset;
3359 dmu_tx_t *tx = os->os_synctx;
3360 dbuf_dirty_record_t **drp, *dr;
3362 ASSERT0(zio->io_error);
3363 ASSERT(db->db_blkptr == bp);
3366 * For nopwrites and rewrites we ensure that the bp matches our
3367 * original and bypass all the accounting.
3369 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3370 ASSERT(BP_EQUAL(bp, bp_orig));
3371 } else {
3372 dsl_dataset_t *ds = os->os_dsl_dataset;
3373 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3374 dsl_dataset_block_born(ds, bp, tx);
3377 mutex_enter(&db->db_mtx);
3379 DBUF_VERIFY(db);
3381 drp = &db->db_last_dirty;
3382 while ((dr = *drp) != db->db_data_pending)
3383 drp = &dr->dr_next;
3384 ASSERT(!list_link_active(&dr->dr_dirty_node));
3385 ASSERT(dr->dr_dbuf == db);
3386 ASSERT(dr->dr_next == NULL);
3387 *drp = dr->dr_next;
3389 #ifdef ZFS_DEBUG
3390 if (db->db_blkid == DMU_SPILL_BLKID) {
3391 dnode_t *dn;
3393 DB_DNODE_ENTER(db);
3394 dn = DB_DNODE(db);
3395 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3396 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3397 db->db_blkptr == &dn->dn_phys->dn_spill);
3398 DB_DNODE_EXIT(db);
3400 #endif
3402 if (db->db_level == 0) {
3403 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3404 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3405 if (db->db_state != DB_NOFILL) {
3406 if (dr->dt.dl.dr_data != db->db_buf)
3407 arc_buf_destroy(dr->dt.dl.dr_data, db);
3409 } else {
3410 dnode_t *dn;
3412 DB_DNODE_ENTER(db);
3413 dn = DB_DNODE(db);
3414 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3415 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3416 if (!BP_IS_HOLE(db->db_blkptr)) {
3417 int epbs =
3418 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3419 ASSERT3U(db->db_blkid, <=,
3420 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3421 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3422 db->db.db_size);
3424 DB_DNODE_EXIT(db);
3425 mutex_destroy(&dr->dt.di.dr_mtx);
3426 list_destroy(&dr->dt.di.dr_children);
3428 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3430 cv_broadcast(&db->db_changed);
3431 ASSERT(db->db_dirtycnt > 0);
3432 db->db_dirtycnt -= 1;
3433 db->db_data_pending = NULL;
3434 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3437 static void
3438 dbuf_write_nofill_ready(zio_t *zio)
3440 dbuf_write_ready(zio, NULL, zio->io_private);
3443 static void
3444 dbuf_write_nofill_done(zio_t *zio)
3446 dbuf_write_done(zio, NULL, zio->io_private);
3449 static void
3450 dbuf_write_override_ready(zio_t *zio)
3452 dbuf_dirty_record_t *dr = zio->io_private;
3453 dmu_buf_impl_t *db = dr->dr_dbuf;
3455 dbuf_write_ready(zio, NULL, db);
3458 static void
3459 dbuf_write_override_done(zio_t *zio)
3461 dbuf_dirty_record_t *dr = zio->io_private;
3462 dmu_buf_impl_t *db = dr->dr_dbuf;
3463 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3465 mutex_enter(&db->db_mtx);
3466 if (!BP_EQUAL(zio->io_bp, obp)) {
3467 if (!BP_IS_HOLE(obp))
3468 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3469 arc_release(dr->dt.dl.dr_data, db);
3471 mutex_exit(&db->db_mtx);
3472 dbuf_write_done(zio, NULL, db);
3474 if (zio->io_abd != NULL)
3475 abd_put(zio->io_abd);
3478 /* Issue I/O to commit a dirty buffer to disk. */
3479 static void
3480 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3482 dmu_buf_impl_t *db = dr->dr_dbuf;
3483 dnode_t *dn;
3484 objset_t *os;
3485 dmu_buf_impl_t *parent = db->db_parent;
3486 uint64_t txg = tx->tx_txg;
3487 zbookmark_phys_t zb;
3488 zio_prop_t zp;
3489 zio_t *zio;
3490 int wp_flag = 0;
3492 ASSERT(dmu_tx_is_syncing(tx));
3494 DB_DNODE_ENTER(db);
3495 dn = DB_DNODE(db);
3496 os = dn->dn_objset;
3498 if (db->db_state != DB_NOFILL) {
3499 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3501 * Private object buffers are released here rather
3502 * than in dbuf_dirty() since they are only modified
3503 * in the syncing context and we don't want the
3504 * overhead of making multiple copies of the data.
3506 if (BP_IS_HOLE(db->db_blkptr)) {
3507 arc_buf_thaw(data);
3508 } else {
3509 dbuf_release_bp(db);
3514 if (parent != dn->dn_dbuf) {
3515 /* Our parent is an indirect block. */
3516 /* We have a dirty parent that has been scheduled for write. */
3517 ASSERT(parent && parent->db_data_pending);
3518 /* Our parent's buffer is one level closer to the dnode. */
3519 ASSERT(db->db_level == parent->db_level-1);
3521 * We're about to modify our parent's db_data by modifying
3522 * our block pointer, so the parent must be released.
3524 ASSERT(arc_released(parent->db_buf));
3525 zio = parent->db_data_pending->dr_zio;
3526 } else {
3527 /* Our parent is the dnode itself. */
3528 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3529 db->db_blkid != DMU_SPILL_BLKID) ||
3530 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3531 if (db->db_blkid != DMU_SPILL_BLKID)
3532 ASSERT3P(db->db_blkptr, ==,
3533 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3534 zio = dn->dn_zio;
3537 ASSERT(db->db_level == 0 || data == db->db_buf);
3538 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3539 ASSERT(zio);
3541 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3542 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3543 db->db.db_object, db->db_level, db->db_blkid);
3545 if (db->db_blkid == DMU_SPILL_BLKID)
3546 wp_flag = WP_SPILL;
3547 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3549 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3550 DB_DNODE_EXIT(db);
3553 * We copy the blkptr now (rather than when we instantiate the dirty
3554 * record), because its value can change between open context and
3555 * syncing context. We do not need to hold dn_struct_rwlock to read
3556 * db_blkptr because we are in syncing context.
3558 dr->dr_bp_copy = *db->db_blkptr;
3560 if (db->db_level == 0 &&
3561 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3563 * The BP for this block has been provided by open context
3564 * (by dmu_sync() or dmu_buf_write_embedded()).
3566 abd_t *contents = (data != NULL) ?
3567 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3569 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3570 contents, db->db.db_size, db->db.db_size, &zp,
3571 dbuf_write_override_ready, NULL, NULL,
3572 dbuf_write_override_done,
3573 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3574 mutex_enter(&db->db_mtx);
3575 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3576 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3577 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3578 mutex_exit(&db->db_mtx);
3579 } else if (db->db_state == DB_NOFILL) {
3580 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3581 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3582 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3583 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3584 dbuf_write_nofill_ready, NULL, NULL,
3585 dbuf_write_nofill_done, db,
3586 ZIO_PRIORITY_ASYNC_WRITE,
3587 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3588 } else {
3589 ASSERT(arc_released(data));
3592 * For indirect blocks, we want to setup the children
3593 * ready callback so that we can properly handle an indirect
3594 * block that only contains holes.
3596 arc_done_func_t *children_ready_cb = NULL;
3597 if (db->db_level != 0)
3598 children_ready_cb = dbuf_write_children_ready;
3600 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3601 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3602 &zp, dbuf_write_ready, children_ready_cb,
3603 dbuf_write_physdone, dbuf_write_done, db,
3604 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);