Merge commit '9bba04fed2291aa884d1da64bc62150d5562cc5b'
[unleashed.git] / kernel / fs / zfs / vdev.c
blob7d1a2cfee8c38b20d211f64cf41b4020467d7ec2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
54 * Virtual device management.
57 static vdev_ops_t *vdev_ops_table[] = {
58 &vdev_root_ops,
59 &vdev_raidz_ops,
60 &vdev_mirror_ops,
61 &vdev_replacing_ops,
62 &vdev_spare_ops,
63 &vdev_disk_ops,
64 &vdev_file_ops,
65 &vdev_missing_ops,
66 &vdev_hole_ops,
67 &vdev_indirect_ops,
68 NULL
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
74 /* maximum number of metaslabs per top-level vdev */
75 int vdev_max_ms_count = 200;
77 /* minimum amount of metaslabs per top-level vdev */
78 int vdev_min_ms_count = 16;
80 /* see comment in vdev_metaslab_set_size() */
81 int vdev_default_ms_shift = 29;
83 boolean_t vdev_validate_skip = B_FALSE;
86 * Since the DTL space map of a vdev is not expected to have a lot of
87 * entries, we default its block size to 4K.
89 int vdev_dtl_sm_blksz = (1 << 12);
92 * vdev-wide space maps that have lots of entries written to them at
93 * the end of each transaction can benefit from a higher I/O bandwidth
94 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
96 int vdev_standard_sm_blksz = (1 << 17);
98 /*PRINTFLIKE2*/
99 void
100 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
102 va_list adx;
103 char buf[256];
105 va_start(adx, fmt);
106 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
107 va_end(adx);
109 if (vd->vdev_path != NULL) {
110 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
111 vd->vdev_path, buf);
112 } else {
113 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
114 vd->vdev_ops->vdev_op_type,
115 (u_longlong_t)vd->vdev_id,
116 (u_longlong_t)vd->vdev_guid, buf);
120 void
121 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
123 char state[20];
125 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
126 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
127 vd->vdev_ops->vdev_op_type);
128 return;
131 switch (vd->vdev_state) {
132 case VDEV_STATE_UNKNOWN:
133 (void) snprintf(state, sizeof (state), "unknown");
134 break;
135 case VDEV_STATE_CLOSED:
136 (void) snprintf(state, sizeof (state), "closed");
137 break;
138 case VDEV_STATE_OFFLINE:
139 (void) snprintf(state, sizeof (state), "offline");
140 break;
141 case VDEV_STATE_REMOVED:
142 (void) snprintf(state, sizeof (state), "removed");
143 break;
144 case VDEV_STATE_CANT_OPEN:
145 (void) snprintf(state, sizeof (state), "can't open");
146 break;
147 case VDEV_STATE_FAULTED:
148 (void) snprintf(state, sizeof (state), "faulted");
149 break;
150 case VDEV_STATE_DEGRADED:
151 (void) snprintf(state, sizeof (state), "degraded");
152 break;
153 case VDEV_STATE_HEALTHY:
154 (void) snprintf(state, sizeof (state), "healthy");
155 break;
156 default:
157 (void) snprintf(state, sizeof (state), "<state %u>",
158 (uint_t)vd->vdev_state);
161 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
162 "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
163 vd->vdev_islog ? " (log)" : "",
164 (u_longlong_t)vd->vdev_guid,
165 vd->vdev_path ? vd->vdev_path : "N/A", state);
167 for (uint64_t i = 0; i < vd->vdev_children; i++)
168 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
172 * Given a vdev type, return the appropriate ops vector.
174 static vdev_ops_t *
175 vdev_getops(const char *type)
177 vdev_ops_t *ops, **opspp;
179 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
180 if (strcmp(ops->vdev_op_type, type) == 0)
181 break;
183 return (ops);
187 * Default asize function: return the MAX of psize with the asize of
188 * all children. This is what's used by anything other than RAID-Z.
190 uint64_t
191 vdev_default_asize(vdev_t *vd, uint64_t psize)
193 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
194 uint64_t csize;
196 for (int c = 0; c < vd->vdev_children; c++) {
197 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
198 asize = MAX(asize, csize);
201 return (asize);
205 * Get the minimum allocatable size. We define the allocatable size as
206 * the vdev's asize rounded to the nearest metaslab. This allows us to
207 * replace or attach devices which don't have the same physical size but
208 * can still satisfy the same number of allocations.
210 uint64_t
211 vdev_get_min_asize(vdev_t *vd)
213 vdev_t *pvd = vd->vdev_parent;
216 * If our parent is NULL (inactive spare or cache) or is the root,
217 * just return our own asize.
219 if (pvd == NULL)
220 return (vd->vdev_asize);
223 * The top-level vdev just returns the allocatable size rounded
224 * to the nearest metaslab.
226 if (vd == vd->vdev_top)
227 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
230 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
231 * so each child must provide at least 1/Nth of its asize.
233 if (pvd->vdev_ops == &vdev_raidz_ops)
234 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
235 pvd->vdev_children);
237 return (pvd->vdev_min_asize);
240 void
241 vdev_set_min_asize(vdev_t *vd)
243 vd->vdev_min_asize = vdev_get_min_asize(vd);
245 for (int c = 0; c < vd->vdev_children; c++)
246 vdev_set_min_asize(vd->vdev_child[c]);
249 vdev_t *
250 vdev_lookup_top(spa_t *spa, uint64_t vdev)
252 vdev_t *rvd = spa->spa_root_vdev;
254 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
256 if (vdev < rvd->vdev_children) {
257 ASSERT(rvd->vdev_child[vdev] != NULL);
258 return (rvd->vdev_child[vdev]);
261 return (NULL);
264 vdev_t *
265 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
267 vdev_t *mvd;
269 if (vd->vdev_guid == guid)
270 return (vd);
272 for (int c = 0; c < vd->vdev_children; c++)
273 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
274 NULL)
275 return (mvd);
277 return (NULL);
280 static int
281 vdev_count_leaves_impl(vdev_t *vd)
283 int n = 0;
285 if (vd->vdev_ops->vdev_op_leaf)
286 return (1);
288 for (int c = 0; c < vd->vdev_children; c++)
289 n += vdev_count_leaves_impl(vd->vdev_child[c]);
291 return (n);
295 vdev_count_leaves(spa_t *spa)
297 return (vdev_count_leaves_impl(spa->spa_root_vdev));
300 void
301 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
303 size_t oldsize, newsize;
304 uint64_t id = cvd->vdev_id;
305 vdev_t **newchild;
306 spa_t *spa = cvd->vdev_spa;
308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
309 ASSERT(cvd->vdev_parent == NULL);
311 cvd->vdev_parent = pvd;
313 if (pvd == NULL)
314 return;
316 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
318 oldsize = pvd->vdev_children * sizeof (vdev_t *);
319 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
320 newsize = pvd->vdev_children * sizeof (vdev_t *);
322 newchild = kmem_zalloc(newsize, KM_SLEEP);
323 if (pvd->vdev_child != NULL) {
324 bcopy(pvd->vdev_child, newchild, oldsize);
325 kmem_free(pvd->vdev_child, oldsize);
328 pvd->vdev_child = newchild;
329 pvd->vdev_child[id] = cvd;
331 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
332 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
335 * Walk up all ancestors to update guid sum.
337 for (; pvd != NULL; pvd = pvd->vdev_parent)
338 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
341 void
342 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
344 int c;
345 uint_t id = cvd->vdev_id;
347 ASSERT(cvd->vdev_parent == pvd);
349 if (pvd == NULL)
350 return;
352 ASSERT(id < pvd->vdev_children);
353 ASSERT(pvd->vdev_child[id] == cvd);
355 pvd->vdev_child[id] = NULL;
356 cvd->vdev_parent = NULL;
358 for (c = 0; c < pvd->vdev_children; c++)
359 if (pvd->vdev_child[c])
360 break;
362 if (c == pvd->vdev_children) {
363 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
364 pvd->vdev_child = NULL;
365 pvd->vdev_children = 0;
369 * Walk up all ancestors to update guid sum.
371 for (; pvd != NULL; pvd = pvd->vdev_parent)
372 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
376 * Remove any holes in the child array.
378 void
379 vdev_compact_children(vdev_t *pvd)
381 vdev_t **newchild, *cvd;
382 int oldc = pvd->vdev_children;
383 int newc;
385 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
387 for (int c = newc = 0; c < oldc; c++)
388 if (pvd->vdev_child[c])
389 newc++;
391 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
393 for (int c = newc = 0; c < oldc; c++) {
394 if ((cvd = pvd->vdev_child[c]) != NULL) {
395 newchild[newc] = cvd;
396 cvd->vdev_id = newc++;
400 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
401 pvd->vdev_child = newchild;
402 pvd->vdev_children = newc;
406 * Allocate and minimally initialize a vdev_t.
408 vdev_t *
409 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
411 vdev_t *vd;
412 vdev_indirect_config_t *vic;
414 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
415 vic = &vd->vdev_indirect_config;
417 if (spa->spa_root_vdev == NULL) {
418 ASSERT(ops == &vdev_root_ops);
419 spa->spa_root_vdev = vd;
420 spa->spa_load_guid = spa_generate_guid(NULL);
423 if (guid == 0 && ops != &vdev_hole_ops) {
424 if (spa->spa_root_vdev == vd) {
426 * The root vdev's guid will also be the pool guid,
427 * which must be unique among all pools.
429 guid = spa_generate_guid(NULL);
430 } else {
432 * Any other vdev's guid must be unique within the pool.
434 guid = spa_generate_guid(spa);
436 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
439 vd->vdev_spa = spa;
440 vd->vdev_id = id;
441 vd->vdev_guid = guid;
442 vd->vdev_guid_sum = guid;
443 vd->vdev_ops = ops;
444 vd->vdev_state = VDEV_STATE_CLOSED;
445 vd->vdev_ishole = (ops == &vdev_hole_ops);
446 vic->vic_prev_indirect_vdev = UINT64_MAX;
448 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
449 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
450 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
452 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
453 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
454 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
455 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
456 for (int t = 0; t < DTL_TYPES; t++) {
457 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
459 txg_list_create(&vd->vdev_ms_list, spa,
460 offsetof(struct metaslab, ms_txg_node));
461 txg_list_create(&vd->vdev_dtl_list, spa,
462 offsetof(struct vdev, vdev_dtl_node));
463 vd->vdev_stat.vs_timestamp = gethrtime();
464 vdev_queue_init(vd);
465 vdev_cache_init(vd);
467 return (vd);
471 * Allocate a new vdev. The 'alloctype' is used to control whether we are
472 * creating a new vdev or loading an existing one - the behavior is slightly
473 * different for each case.
476 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
477 int alloctype)
479 vdev_ops_t *ops;
480 char *type;
481 uint64_t guid = 0, islog, nparity;
482 vdev_t *vd;
483 vdev_indirect_config_t *vic;
485 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
487 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
488 return (SET_ERROR(EINVAL));
490 if ((ops = vdev_getops(type)) == NULL)
491 return (SET_ERROR(EINVAL));
494 * If this is a load, get the vdev guid from the nvlist.
495 * Otherwise, vdev_alloc_common() will generate one for us.
497 if (alloctype == VDEV_ALLOC_LOAD) {
498 uint64_t label_id;
500 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
501 label_id != id)
502 return (SET_ERROR(EINVAL));
504 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
505 return (SET_ERROR(EINVAL));
506 } else if (alloctype == VDEV_ALLOC_SPARE) {
507 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
508 return (SET_ERROR(EINVAL));
509 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
510 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
511 return (SET_ERROR(EINVAL));
512 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
513 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
514 return (SET_ERROR(EINVAL));
518 * The first allocated vdev must be of type 'root'.
520 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
521 return (SET_ERROR(EINVAL));
524 * Determine whether we're a log vdev.
526 islog = 0;
527 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
528 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
529 return (SET_ERROR(ENOTSUP));
531 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
532 return (SET_ERROR(ENOTSUP));
535 * Set the nparity property for RAID-Z vdevs.
537 nparity = -1ULL;
538 if (ops == &vdev_raidz_ops) {
539 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
540 &nparity) == 0) {
541 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
542 return (SET_ERROR(EINVAL));
544 * Previous versions could only support 1 or 2 parity
545 * device.
547 if (nparity > 1 &&
548 spa_version(spa) < SPA_VERSION_RAIDZ2)
549 return (SET_ERROR(ENOTSUP));
550 if (nparity > 2 &&
551 spa_version(spa) < SPA_VERSION_RAIDZ3)
552 return (SET_ERROR(ENOTSUP));
553 } else {
555 * We require the parity to be specified for SPAs that
556 * support multiple parity levels.
558 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
559 return (SET_ERROR(EINVAL));
561 * Otherwise, we default to 1 parity device for RAID-Z.
563 nparity = 1;
565 } else {
566 nparity = 0;
568 ASSERT(nparity != -1ULL);
570 vd = vdev_alloc_common(spa, id, guid, ops);
571 vic = &vd->vdev_indirect_config;
573 vd->vdev_islog = islog;
574 vd->vdev_nparity = nparity;
576 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
577 vd->vdev_path = spa_strdup(vd->vdev_path);
578 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
579 vd->vdev_devid = spa_strdup(vd->vdev_devid);
580 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
581 &vd->vdev_physpath) == 0)
582 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
583 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
584 vd->vdev_fru = spa_strdup(vd->vdev_fru);
587 * Set the whole_disk property. If it's not specified, leave the value
588 * as -1.
590 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
591 &vd->vdev_wholedisk) != 0)
592 vd->vdev_wholedisk = -1ULL;
594 ASSERT0(vic->vic_mapping_object);
595 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
596 &vic->vic_mapping_object);
597 ASSERT0(vic->vic_births_object);
598 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
599 &vic->vic_births_object);
600 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
601 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
602 &vic->vic_prev_indirect_vdev);
605 * Look for the 'not present' flag. This will only be set if the device
606 * was not present at the time of import.
608 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
609 &vd->vdev_not_present);
612 * Get the alignment requirement.
614 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
617 * Retrieve the vdev creation time.
619 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
620 &vd->vdev_crtxg);
623 * If we're a top-level vdev, try to load the allocation parameters.
625 if (parent && !parent->vdev_parent &&
626 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
627 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
628 &vd->vdev_ms_array);
629 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
630 &vd->vdev_ms_shift);
631 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
632 &vd->vdev_asize);
633 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
634 &vd->vdev_removing);
635 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
636 &vd->vdev_top_zap);
637 } else {
638 ASSERT0(vd->vdev_top_zap);
641 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
642 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
643 alloctype == VDEV_ALLOC_ADD ||
644 alloctype == VDEV_ALLOC_SPLIT ||
645 alloctype == VDEV_ALLOC_ROOTPOOL);
646 vd->vdev_mg = metaslab_group_create(islog ?
647 spa_log_class(spa) : spa_normal_class(spa), vd);
650 if (vd->vdev_ops->vdev_op_leaf &&
651 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
652 (void) nvlist_lookup_uint64(nv,
653 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
654 } else {
655 ASSERT0(vd->vdev_leaf_zap);
659 * If we're a leaf vdev, try to load the DTL object and other state.
662 if (vd->vdev_ops->vdev_op_leaf &&
663 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
664 alloctype == VDEV_ALLOC_ROOTPOOL)) {
665 if (alloctype == VDEV_ALLOC_LOAD) {
666 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
667 &vd->vdev_dtl_object);
668 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
669 &vd->vdev_unspare);
672 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
673 uint64_t spare = 0;
675 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
676 &spare) == 0 && spare)
677 spa_spare_add(vd);
680 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
681 &vd->vdev_offline);
683 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
684 &vd->vdev_resilver_txg);
687 * When importing a pool, we want to ignore the persistent fault
688 * state, as the diagnosis made on another system may not be
689 * valid in the current context. Local vdevs will
690 * remain in the faulted state.
692 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
693 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
694 &vd->vdev_faulted);
695 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
696 &vd->vdev_degraded);
697 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
698 &vd->vdev_removed);
700 if (vd->vdev_faulted || vd->vdev_degraded) {
701 char *aux;
703 vd->vdev_label_aux =
704 VDEV_AUX_ERR_EXCEEDED;
705 if (nvlist_lookup_string(nv,
706 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
707 strcmp(aux, "external") == 0)
708 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
714 * Add ourselves to the parent's list of children.
716 vdev_add_child(parent, vd);
718 *vdp = vd;
720 return (0);
723 void
724 vdev_free(vdev_t *vd)
726 spa_t *spa = vd->vdev_spa;
729 * vdev_free() implies closing the vdev first. This is simpler than
730 * trying to ensure complicated semantics for all callers.
732 vdev_close(vd);
734 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
735 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
738 * Free all children.
740 for (int c = 0; c < vd->vdev_children; c++)
741 vdev_free(vd->vdev_child[c]);
743 ASSERT(vd->vdev_child == NULL);
744 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
747 * Discard allocation state.
749 if (vd->vdev_mg != NULL) {
750 vdev_metaslab_fini(vd);
751 metaslab_group_destroy(vd->vdev_mg);
754 ASSERT0(vd->vdev_stat.vs_space);
755 ASSERT0(vd->vdev_stat.vs_dspace);
756 ASSERT0(vd->vdev_stat.vs_alloc);
759 * Remove this vdev from its parent's child list.
761 vdev_remove_child(vd->vdev_parent, vd);
763 ASSERT(vd->vdev_parent == NULL);
766 * Clean up vdev structure.
768 vdev_queue_fini(vd);
769 vdev_cache_fini(vd);
771 if (vd->vdev_path)
772 spa_strfree(vd->vdev_path);
773 if (vd->vdev_devid)
774 spa_strfree(vd->vdev_devid);
775 if (vd->vdev_physpath)
776 spa_strfree(vd->vdev_physpath);
777 if (vd->vdev_fru)
778 spa_strfree(vd->vdev_fru);
780 if (vd->vdev_isspare)
781 spa_spare_remove(vd);
782 if (vd->vdev_isl2cache)
783 spa_l2cache_remove(vd);
785 txg_list_destroy(&vd->vdev_ms_list);
786 txg_list_destroy(&vd->vdev_dtl_list);
788 mutex_enter(&vd->vdev_dtl_lock);
789 space_map_close(vd->vdev_dtl_sm);
790 for (int t = 0; t < DTL_TYPES; t++) {
791 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
792 range_tree_destroy(vd->vdev_dtl[t]);
794 mutex_exit(&vd->vdev_dtl_lock);
796 EQUIV(vd->vdev_indirect_births != NULL,
797 vd->vdev_indirect_mapping != NULL);
798 if (vd->vdev_indirect_births != NULL) {
799 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
800 vdev_indirect_births_close(vd->vdev_indirect_births);
803 if (vd->vdev_obsolete_sm != NULL) {
804 ASSERT(vd->vdev_removing ||
805 vd->vdev_ops == &vdev_indirect_ops);
806 space_map_close(vd->vdev_obsolete_sm);
807 vd->vdev_obsolete_sm = NULL;
809 range_tree_destroy(vd->vdev_obsolete_segments);
810 rw_destroy(&vd->vdev_indirect_rwlock);
811 mutex_destroy(&vd->vdev_obsolete_lock);
813 mutex_destroy(&vd->vdev_queue_lock);
814 mutex_destroy(&vd->vdev_dtl_lock);
815 mutex_destroy(&vd->vdev_stat_lock);
816 mutex_destroy(&vd->vdev_probe_lock);
818 if (vd == spa->spa_root_vdev)
819 spa->spa_root_vdev = NULL;
821 kmem_free(vd, sizeof (vdev_t));
825 * Transfer top-level vdev state from svd to tvd.
827 static void
828 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
830 spa_t *spa = svd->vdev_spa;
831 metaslab_t *msp;
832 vdev_t *vd;
833 int t;
835 ASSERT(tvd == tvd->vdev_top);
837 tvd->vdev_ms_array = svd->vdev_ms_array;
838 tvd->vdev_ms_shift = svd->vdev_ms_shift;
839 tvd->vdev_ms_count = svd->vdev_ms_count;
840 tvd->vdev_top_zap = svd->vdev_top_zap;
842 svd->vdev_ms_array = 0;
843 svd->vdev_ms_shift = 0;
844 svd->vdev_ms_count = 0;
845 svd->vdev_top_zap = 0;
847 if (tvd->vdev_mg)
848 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
849 tvd->vdev_mg = svd->vdev_mg;
850 tvd->vdev_ms = svd->vdev_ms;
852 svd->vdev_mg = NULL;
853 svd->vdev_ms = NULL;
855 if (tvd->vdev_mg != NULL)
856 tvd->vdev_mg->mg_vd = tvd;
858 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
859 svd->vdev_checkpoint_sm = NULL;
861 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
862 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
863 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
865 svd->vdev_stat.vs_alloc = 0;
866 svd->vdev_stat.vs_space = 0;
867 svd->vdev_stat.vs_dspace = 0;
869 for (t = 0; t < TXG_SIZE; t++) {
870 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
871 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
872 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
873 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
874 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
875 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
878 if (list_link_active(&svd->vdev_config_dirty_node)) {
879 vdev_config_clean(svd);
880 vdev_config_dirty(tvd);
883 if (list_link_active(&svd->vdev_state_dirty_node)) {
884 vdev_state_clean(svd);
885 vdev_state_dirty(tvd);
888 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
889 svd->vdev_deflate_ratio = 0;
891 tvd->vdev_islog = svd->vdev_islog;
892 svd->vdev_islog = 0;
895 static void
896 vdev_top_update(vdev_t *tvd, vdev_t *vd)
898 if (vd == NULL)
899 return;
901 vd->vdev_top = tvd;
903 for (int c = 0; c < vd->vdev_children; c++)
904 vdev_top_update(tvd, vd->vdev_child[c]);
908 * Add a mirror/replacing vdev above an existing vdev.
910 vdev_t *
911 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
913 spa_t *spa = cvd->vdev_spa;
914 vdev_t *pvd = cvd->vdev_parent;
915 vdev_t *mvd;
917 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
919 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
921 mvd->vdev_asize = cvd->vdev_asize;
922 mvd->vdev_min_asize = cvd->vdev_min_asize;
923 mvd->vdev_max_asize = cvd->vdev_max_asize;
924 mvd->vdev_psize = cvd->vdev_psize;
925 mvd->vdev_ashift = cvd->vdev_ashift;
926 mvd->vdev_state = cvd->vdev_state;
927 mvd->vdev_crtxg = cvd->vdev_crtxg;
929 vdev_remove_child(pvd, cvd);
930 vdev_add_child(pvd, mvd);
931 cvd->vdev_id = mvd->vdev_children;
932 vdev_add_child(mvd, cvd);
933 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
935 if (mvd == mvd->vdev_top)
936 vdev_top_transfer(cvd, mvd);
938 return (mvd);
942 * Remove a 1-way mirror/replacing vdev from the tree.
944 void
945 vdev_remove_parent(vdev_t *cvd)
947 vdev_t *mvd = cvd->vdev_parent;
948 vdev_t *pvd = mvd->vdev_parent;
950 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
952 ASSERT(mvd->vdev_children == 1);
953 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
954 mvd->vdev_ops == &vdev_replacing_ops ||
955 mvd->vdev_ops == &vdev_spare_ops);
956 cvd->vdev_ashift = mvd->vdev_ashift;
958 vdev_remove_child(mvd, cvd);
959 vdev_remove_child(pvd, mvd);
962 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
963 * Otherwise, we could have detached an offline device, and when we
964 * go to import the pool we'll think we have two top-level vdevs,
965 * instead of a different version of the same top-level vdev.
967 if (mvd->vdev_top == mvd) {
968 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
969 cvd->vdev_orig_guid = cvd->vdev_guid;
970 cvd->vdev_guid += guid_delta;
971 cvd->vdev_guid_sum += guid_delta;
973 cvd->vdev_id = mvd->vdev_id;
974 vdev_add_child(pvd, cvd);
975 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
977 if (cvd == cvd->vdev_top)
978 vdev_top_transfer(mvd, cvd);
980 ASSERT(mvd->vdev_children == 0);
981 vdev_free(mvd);
985 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
987 spa_t *spa = vd->vdev_spa;
988 objset_t *mos = spa->spa_meta_objset;
989 uint64_t m;
990 uint64_t oldc = vd->vdev_ms_count;
991 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
992 metaslab_t **mspp;
993 int error;
995 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
998 * This vdev is not being allocated from yet or is a hole.
1000 if (vd->vdev_ms_shift == 0)
1001 return (0);
1003 ASSERT(!vd->vdev_ishole);
1005 ASSERT(oldc <= newc);
1007 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1009 if (oldc != 0) {
1010 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1011 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1014 vd->vdev_ms = mspp;
1015 vd->vdev_ms_count = newc;
1017 for (m = oldc; m < newc; m++) {
1018 uint64_t object = 0;
1021 * vdev_ms_array may be 0 if we are creating the "fake"
1022 * metaslabs for an indirect vdev for zdb's leak detection.
1023 * See zdb_leak_init().
1025 if (txg == 0 && vd->vdev_ms_array != 0) {
1026 error = dmu_read(mos, vd->vdev_ms_array,
1027 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1028 DMU_READ_PREFETCH);
1029 if (error != 0) {
1030 vdev_dbgmsg(vd, "unable to read the metaslab "
1031 "array [error=%d]", error);
1032 return (error);
1036 error = metaslab_init(vd->vdev_mg, m, object, txg,
1037 &(vd->vdev_ms[m]));
1038 if (error != 0) {
1039 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1040 error);
1041 return (error);
1045 if (txg == 0)
1046 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1049 * If the vdev is being removed we don't activate
1050 * the metaslabs since we want to ensure that no new
1051 * allocations are performed on this device.
1053 if (oldc == 0 && !vd->vdev_removing)
1054 metaslab_group_activate(vd->vdev_mg);
1056 if (txg == 0)
1057 spa_config_exit(spa, SCL_ALLOC, FTAG);
1059 return (0);
1062 void
1063 vdev_metaslab_fini(vdev_t *vd)
1065 if (vd->vdev_checkpoint_sm != NULL) {
1066 ASSERT(spa_feature_is_active(vd->vdev_spa,
1067 SPA_FEATURE_POOL_CHECKPOINT));
1068 space_map_close(vd->vdev_checkpoint_sm);
1070 * Even though we close the space map, we need to set its
1071 * pointer to NULL. The reason is that vdev_metaslab_fini()
1072 * may be called multiple times for certain operations
1073 * (i.e. when destroying a pool) so we need to ensure that
1074 * this clause never executes twice. This logic is similar
1075 * to the one used for the vdev_ms clause below.
1077 vd->vdev_checkpoint_sm = NULL;
1080 if (vd->vdev_ms != NULL) {
1081 uint64_t count = vd->vdev_ms_count;
1083 metaslab_group_passivate(vd->vdev_mg);
1084 for (uint64_t m = 0; m < count; m++) {
1085 metaslab_t *msp = vd->vdev_ms[m];
1087 if (msp != NULL)
1088 metaslab_fini(msp);
1090 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1091 vd->vdev_ms = NULL;
1093 vd->vdev_ms_count = 0;
1095 ASSERT0(vd->vdev_ms_count);
1098 typedef struct vdev_probe_stats {
1099 boolean_t vps_readable;
1100 boolean_t vps_writeable;
1101 int vps_flags;
1102 } vdev_probe_stats_t;
1104 static void
1105 vdev_probe_done(zio_t *zio)
1107 spa_t *spa = zio->io_spa;
1108 vdev_t *vd = zio->io_vd;
1109 vdev_probe_stats_t *vps = zio->io_private;
1111 ASSERT(vd->vdev_probe_zio != NULL);
1113 if (zio->io_type == ZIO_TYPE_READ) {
1114 if (zio->io_error == 0)
1115 vps->vps_readable = 1;
1116 if (zio->io_error == 0 && spa_writeable(spa)) {
1117 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1118 zio->io_offset, zio->io_size, zio->io_abd,
1119 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1120 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1121 } else {
1122 abd_free(zio->io_abd);
1124 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1125 if (zio->io_error == 0)
1126 vps->vps_writeable = 1;
1127 abd_free(zio->io_abd);
1128 } else if (zio->io_type == ZIO_TYPE_NULL) {
1129 zio_t *pio;
1131 vd->vdev_cant_read |= !vps->vps_readable;
1132 vd->vdev_cant_write |= !vps->vps_writeable;
1134 if (vdev_readable(vd) &&
1135 (vdev_writeable(vd) || !spa_writeable(spa))) {
1136 zio->io_error = 0;
1137 } else {
1138 ASSERT(zio->io_error != 0);
1139 vdev_dbgmsg(vd, "failed probe");
1140 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1141 spa, vd, NULL, 0, 0);
1142 zio->io_error = SET_ERROR(ENXIO);
1145 mutex_enter(&vd->vdev_probe_lock);
1146 ASSERT(vd->vdev_probe_zio == zio);
1147 vd->vdev_probe_zio = NULL;
1148 mutex_exit(&vd->vdev_probe_lock);
1150 zio_link_t *zl = NULL;
1151 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1152 if (!vdev_accessible(vd, pio))
1153 pio->io_error = SET_ERROR(ENXIO);
1155 kmem_free(vps, sizeof (*vps));
1160 * Determine whether this device is accessible.
1162 * Read and write to several known locations: the pad regions of each
1163 * vdev label but the first, which we leave alone in case it contains
1164 * a VTOC.
1166 zio_t *
1167 vdev_probe(vdev_t *vd, zio_t *zio)
1169 spa_t *spa = vd->vdev_spa;
1170 vdev_probe_stats_t *vps = NULL;
1171 zio_t *pio;
1173 ASSERT(vd->vdev_ops->vdev_op_leaf);
1176 * Don't probe the probe.
1178 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1179 return (NULL);
1182 * To prevent 'probe storms' when a device fails, we create
1183 * just one probe i/o at a time. All zios that want to probe
1184 * this vdev will become parents of the probe io.
1186 mutex_enter(&vd->vdev_probe_lock);
1188 if ((pio = vd->vdev_probe_zio) == NULL) {
1189 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1191 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1192 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1193 ZIO_FLAG_TRYHARD;
1195 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1197 * vdev_cant_read and vdev_cant_write can only
1198 * transition from TRUE to FALSE when we have the
1199 * SCL_ZIO lock as writer; otherwise they can only
1200 * transition from FALSE to TRUE. This ensures that
1201 * any zio looking at these values can assume that
1202 * failures persist for the life of the I/O. That's
1203 * important because when a device has intermittent
1204 * connectivity problems, we want to ensure that
1205 * they're ascribed to the device (ENXIO) and not
1206 * the zio (EIO).
1208 * Since we hold SCL_ZIO as writer here, clear both
1209 * values so the probe can reevaluate from first
1210 * principles.
1212 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1213 vd->vdev_cant_read = B_FALSE;
1214 vd->vdev_cant_write = B_FALSE;
1217 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1218 vdev_probe_done, vps,
1219 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1222 * We can't change the vdev state in this context, so we
1223 * kick off an async task to do it on our behalf.
1225 if (zio != NULL) {
1226 vd->vdev_probe_wanted = B_TRUE;
1227 spa_async_request(spa, SPA_ASYNC_PROBE);
1231 if (zio != NULL)
1232 zio_add_child(zio, pio);
1234 mutex_exit(&vd->vdev_probe_lock);
1236 if (vps == NULL) {
1237 ASSERT(zio != NULL);
1238 return (NULL);
1241 for (int l = 1; l < VDEV_LABELS; l++) {
1242 zio_nowait(zio_read_phys(pio, vd,
1243 vdev_label_offset(vd->vdev_psize, l,
1244 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1245 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1246 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1247 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1250 if (zio == NULL)
1251 return (pio);
1253 zio_nowait(pio);
1254 return (NULL);
1257 static void
1258 vdev_open_child(void *arg)
1260 vdev_t *vd = arg;
1262 vd->vdev_open_thread = curthread;
1263 vd->vdev_open_error = vdev_open(vd);
1264 vd->vdev_open_thread = NULL;
1267 boolean_t
1268 vdev_uses_zvols(vdev_t *vd)
1270 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1271 strlen(ZVOL_DIR)) == 0)
1272 return (B_TRUE);
1273 for (int c = 0; c < vd->vdev_children; c++)
1274 if (vdev_uses_zvols(vd->vdev_child[c]))
1275 return (B_TRUE);
1276 return (B_FALSE);
1279 void
1280 vdev_open_children(vdev_t *vd)
1282 taskq_t *tq;
1283 int children = vd->vdev_children;
1286 * in order to handle pools on top of zvols, do the opens
1287 * in a single thread so that the same thread holds the
1288 * spa_namespace_lock
1290 if (vdev_uses_zvols(vd)) {
1291 for (int c = 0; c < children; c++)
1292 vd->vdev_child[c]->vdev_open_error =
1293 vdev_open(vd->vdev_child[c]);
1294 return;
1296 tq = taskq_create("vdev_open", children, minclsyspri,
1297 children, children, TASKQ_PREPOPULATE);
1299 for (int c = 0; c < children; c++)
1300 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1301 TQ_SLEEP) != 0);
1303 taskq_destroy(tq);
1307 * Compute the raidz-deflation ratio. Note, we hard-code
1308 * in 128k (1 << 17) because it is the "typical" blocksize.
1309 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1310 * otherwise it would inconsistently account for existing bp's.
1312 static void
1313 vdev_set_deflate_ratio(vdev_t *vd)
1315 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1316 vd->vdev_deflate_ratio = (1 << 17) /
1317 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1322 * Prepare a virtual device for access.
1325 vdev_open(vdev_t *vd)
1327 spa_t *spa = vd->vdev_spa;
1328 int error;
1329 uint64_t osize = 0;
1330 uint64_t max_osize = 0;
1331 uint64_t asize, max_asize, psize;
1332 uint64_t ashift = 0;
1334 ASSERT(vd->vdev_open_thread == curthread ||
1335 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1336 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1337 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1338 vd->vdev_state == VDEV_STATE_OFFLINE);
1340 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1341 vd->vdev_cant_read = B_FALSE;
1342 vd->vdev_cant_write = B_FALSE;
1343 vd->vdev_min_asize = vdev_get_min_asize(vd);
1346 * If this vdev is not removed, check its fault status. If it's
1347 * faulted, bail out of the open.
1349 if (!vd->vdev_removed && vd->vdev_faulted) {
1350 ASSERT(vd->vdev_children == 0);
1351 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1352 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1353 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1354 vd->vdev_label_aux);
1355 return (SET_ERROR(ENXIO));
1356 } else if (vd->vdev_offline) {
1357 ASSERT(vd->vdev_children == 0);
1358 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1359 return (SET_ERROR(ENXIO));
1362 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1365 * Reset the vdev_reopening flag so that we actually close
1366 * the vdev on error.
1368 vd->vdev_reopening = B_FALSE;
1369 if (zio_injection_enabled && error == 0)
1370 error = zio_handle_device_injection(vd, NULL, ENXIO);
1372 if (error) {
1373 if (vd->vdev_removed &&
1374 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1375 vd->vdev_removed = B_FALSE;
1377 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1378 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1379 vd->vdev_stat.vs_aux);
1380 } else {
1381 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1382 vd->vdev_stat.vs_aux);
1384 return (error);
1387 vd->vdev_removed = B_FALSE;
1390 * Recheck the faulted flag now that we have confirmed that
1391 * the vdev is accessible. If we're faulted, bail.
1393 if (vd->vdev_faulted) {
1394 ASSERT(vd->vdev_children == 0);
1395 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1396 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1397 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1398 vd->vdev_label_aux);
1399 return (SET_ERROR(ENXIO));
1402 if (vd->vdev_degraded) {
1403 ASSERT(vd->vdev_children == 0);
1404 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1405 VDEV_AUX_ERR_EXCEEDED);
1406 } else {
1407 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1411 * For hole or missing vdevs we just return success.
1413 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1414 return (0);
1416 for (int c = 0; c < vd->vdev_children; c++) {
1417 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1418 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1419 VDEV_AUX_NONE);
1420 break;
1424 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1425 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1427 if (vd->vdev_children == 0) {
1428 if (osize < SPA_MINDEVSIZE) {
1429 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1430 VDEV_AUX_TOO_SMALL);
1431 return (SET_ERROR(EOVERFLOW));
1433 psize = osize;
1434 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1435 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1436 VDEV_LABEL_END_SIZE);
1437 } else {
1438 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1439 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1440 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1441 VDEV_AUX_TOO_SMALL);
1442 return (SET_ERROR(EOVERFLOW));
1444 psize = 0;
1445 asize = osize;
1446 max_asize = max_osize;
1449 vd->vdev_psize = psize;
1452 * Make sure the allocatable size hasn't shrunk too much.
1454 if (asize < vd->vdev_min_asize) {
1455 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1456 VDEV_AUX_BAD_LABEL);
1457 return (SET_ERROR(EINVAL));
1460 if (vd->vdev_asize == 0) {
1462 * This is the first-ever open, so use the computed values.
1463 * For testing purposes, a higher ashift can be requested.
1465 vd->vdev_asize = asize;
1466 vd->vdev_max_asize = max_asize;
1467 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1468 } else {
1470 * Detect if the alignment requirement has increased.
1471 * We don't want to make the pool unavailable, just
1472 * issue a warning instead.
1474 if (ashift > vd->vdev_top->vdev_ashift &&
1475 vd->vdev_ops->vdev_op_leaf) {
1476 cmn_err(CE_WARN,
1477 "Disk, '%s', has a block alignment that is "
1478 "larger than the pool's alignment\n",
1479 vd->vdev_path);
1481 vd->vdev_max_asize = max_asize;
1485 * If all children are healthy we update asize if either:
1486 * The asize has increased, due to a device expansion caused by dynamic
1487 * LUN growth or vdev replacement, and automatic expansion is enabled;
1488 * making the additional space available.
1490 * The asize has decreased, due to a device shrink usually caused by a
1491 * vdev replace with a smaller device. This ensures that calculations
1492 * based of max_asize and asize e.g. esize are always valid. It's safe
1493 * to do this as we've already validated that asize is greater than
1494 * vdev_min_asize.
1496 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1497 ((asize > vd->vdev_asize &&
1498 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1499 (asize < vd->vdev_asize)))
1500 vd->vdev_asize = asize;
1502 vdev_set_min_asize(vd);
1505 * Ensure we can issue some IO before declaring the
1506 * vdev open for business.
1508 if (vd->vdev_ops->vdev_op_leaf &&
1509 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1510 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1511 VDEV_AUX_ERR_EXCEEDED);
1512 return (error);
1516 * Track the min and max ashift values for normal data devices.
1518 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1519 !vd->vdev_islog && vd->vdev_aux == NULL) {
1520 if (vd->vdev_ashift > spa->spa_max_ashift)
1521 spa->spa_max_ashift = vd->vdev_ashift;
1522 if (vd->vdev_ashift < spa->spa_min_ashift)
1523 spa->spa_min_ashift = vd->vdev_ashift;
1527 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1528 * resilver. But don't do this if we are doing a reopen for a scrub,
1529 * since this would just restart the scrub we are already doing.
1531 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1532 vdev_resilver_needed(vd, NULL, NULL))
1533 spa_async_request(spa, SPA_ASYNC_RESILVER);
1535 return (0);
1539 * Called once the vdevs are all opened, this routine validates the label
1540 * contents. This needs to be done before vdev_load() so that we don't
1541 * inadvertently do repair I/Os to the wrong device.
1543 * This function will only return failure if one of the vdevs indicates that it
1544 * has since been destroyed or exported. This is only possible if
1545 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1546 * will be updated but the function will return 0.
1549 vdev_validate(vdev_t *vd)
1551 spa_t *spa = vd->vdev_spa;
1552 nvlist_t *label;
1553 uint64_t guid = 0, aux_guid = 0, top_guid;
1554 uint64_t state;
1555 nvlist_t *nvl;
1556 uint64_t txg;
1558 if (vdev_validate_skip)
1559 return (0);
1561 for (uint64_t c = 0; c < vd->vdev_children; c++)
1562 if (vdev_validate(vd->vdev_child[c]) != 0)
1563 return (SET_ERROR(EBADF));
1566 * If the device has already failed, or was marked offline, don't do
1567 * any further validation. Otherwise, label I/O will fail and we will
1568 * overwrite the previous state.
1570 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1571 return (0);
1574 * If we are performing an extreme rewind, we allow for a label that
1575 * was modified at a point after the current txg.
1576 * If config lock is not held do not check for the txg. spa_sync could
1577 * be updating the vdev's label before updating spa_last_synced_txg.
1579 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1580 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1581 txg = UINT64_MAX;
1582 else
1583 txg = spa_last_synced_txg(spa);
1585 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1586 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1587 VDEV_AUX_BAD_LABEL);
1588 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1589 "txg %llu", (u_longlong_t)txg);
1590 return (0);
1594 * Determine if this vdev has been split off into another
1595 * pool. If so, then refuse to open it.
1597 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1598 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1599 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1600 VDEV_AUX_SPLIT_POOL);
1601 nvlist_free(label);
1602 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1603 return (0);
1606 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1607 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1608 VDEV_AUX_CORRUPT_DATA);
1609 nvlist_free(label);
1610 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1611 ZPOOL_CONFIG_POOL_GUID);
1612 return (0);
1616 * If config is not trusted then ignore the spa guid check. This is
1617 * necessary because if the machine crashed during a re-guid the new
1618 * guid might have been written to all of the vdev labels, but not the
1619 * cached config. The check will be performed again once we have the
1620 * trusted config from the MOS.
1622 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1623 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1624 VDEV_AUX_CORRUPT_DATA);
1625 nvlist_free(label);
1626 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1627 "match config (%llu != %llu)", (u_longlong_t)guid,
1628 (u_longlong_t)spa_guid(spa));
1629 return (0);
1632 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1633 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1634 &aux_guid) != 0)
1635 aux_guid = 0;
1637 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1638 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1639 VDEV_AUX_CORRUPT_DATA);
1640 nvlist_free(label);
1641 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1642 ZPOOL_CONFIG_GUID);
1643 return (0);
1646 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1647 != 0) {
1648 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1649 VDEV_AUX_CORRUPT_DATA);
1650 nvlist_free(label);
1651 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1652 ZPOOL_CONFIG_TOP_GUID);
1653 return (0);
1657 * If this vdev just became a top-level vdev because its sibling was
1658 * detached, it will have adopted the parent's vdev guid -- but the
1659 * label may or may not be on disk yet. Fortunately, either version
1660 * of the label will have the same top guid, so if we're a top-level
1661 * vdev, we can safely compare to that instead.
1662 * However, if the config comes from a cachefile that failed to update
1663 * after the detach, a top-level vdev will appear as a non top-level
1664 * vdev in the config. Also relax the constraints if we perform an
1665 * extreme rewind.
1667 * If we split this vdev off instead, then we also check the
1668 * original pool's guid. We don't want to consider the vdev
1669 * corrupt if it is partway through a split operation.
1671 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1672 boolean_t mismatch = B_FALSE;
1673 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1674 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1675 mismatch = B_TRUE;
1676 } else {
1677 if (vd->vdev_guid != top_guid &&
1678 vd->vdev_top->vdev_guid != guid)
1679 mismatch = B_TRUE;
1682 if (mismatch) {
1683 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1684 VDEV_AUX_CORRUPT_DATA);
1685 nvlist_free(label);
1686 vdev_dbgmsg(vd, "vdev_validate: config guid "
1687 "doesn't match label guid");
1688 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1689 (u_longlong_t)vd->vdev_guid,
1690 (u_longlong_t)vd->vdev_top->vdev_guid);
1691 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1692 "aux_guid %llu", (u_longlong_t)guid,
1693 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1694 return (0);
1698 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1699 &state) != 0) {
1700 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1701 VDEV_AUX_CORRUPT_DATA);
1702 nvlist_free(label);
1703 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1704 ZPOOL_CONFIG_POOL_STATE);
1705 return (0);
1708 nvlist_free(label);
1711 * If this is a verbatim import, no need to check the
1712 * state of the pool.
1714 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1715 spa_load_state(spa) == SPA_LOAD_OPEN &&
1716 state != POOL_STATE_ACTIVE) {
1717 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1718 "for spa %s", (u_longlong_t)state, spa->spa_name);
1719 return (SET_ERROR(EBADF));
1723 * If we were able to open and validate a vdev that was
1724 * previously marked permanently unavailable, clear that state
1725 * now.
1727 if (vd->vdev_not_present)
1728 vd->vdev_not_present = 0;
1730 return (0);
1733 static void
1734 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1736 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1737 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1738 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1739 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1740 dvd->vdev_path, svd->vdev_path);
1741 spa_strfree(dvd->vdev_path);
1742 dvd->vdev_path = spa_strdup(svd->vdev_path);
1744 } else if (svd->vdev_path != NULL) {
1745 dvd->vdev_path = spa_strdup(svd->vdev_path);
1746 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1747 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1752 * Recursively copy vdev paths from one vdev to another. Source and destination
1753 * vdev trees must have same geometry otherwise return error. Intended to copy
1754 * paths from userland config into MOS config.
1757 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1759 if ((svd->vdev_ops == &vdev_missing_ops) ||
1760 (svd->vdev_ishole && dvd->vdev_ishole) ||
1761 (dvd->vdev_ops == &vdev_indirect_ops))
1762 return (0);
1764 if (svd->vdev_ops != dvd->vdev_ops) {
1765 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1766 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1767 return (SET_ERROR(EINVAL));
1770 if (svd->vdev_guid != dvd->vdev_guid) {
1771 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1772 "%llu)", (u_longlong_t)svd->vdev_guid,
1773 (u_longlong_t)dvd->vdev_guid);
1774 return (SET_ERROR(EINVAL));
1777 if (svd->vdev_children != dvd->vdev_children) {
1778 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1779 "%llu != %llu", (u_longlong_t)svd->vdev_children,
1780 (u_longlong_t)dvd->vdev_children);
1781 return (SET_ERROR(EINVAL));
1784 for (uint64_t i = 0; i < svd->vdev_children; i++) {
1785 int error = vdev_copy_path_strict(svd->vdev_child[i],
1786 dvd->vdev_child[i]);
1787 if (error != 0)
1788 return (error);
1791 if (svd->vdev_ops->vdev_op_leaf)
1792 vdev_copy_path_impl(svd, dvd);
1794 return (0);
1797 static void
1798 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1800 ASSERT(stvd->vdev_top == stvd);
1801 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1803 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1804 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1807 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1808 return;
1811 * The idea here is that while a vdev can shift positions within
1812 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1813 * step outside of it.
1815 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1817 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1818 return;
1820 ASSERT(vd->vdev_ops->vdev_op_leaf);
1822 vdev_copy_path_impl(vd, dvd);
1826 * Recursively copy vdev paths from one root vdev to another. Source and
1827 * destination vdev trees may differ in geometry. For each destination leaf
1828 * vdev, search a vdev with the same guid and top vdev id in the source.
1829 * Intended to copy paths from userland config into MOS config.
1831 void
1832 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1834 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1835 ASSERT(srvd->vdev_ops == &vdev_root_ops);
1836 ASSERT(drvd->vdev_ops == &vdev_root_ops);
1838 for (uint64_t i = 0; i < children; i++) {
1839 vdev_copy_path_search(srvd->vdev_child[i],
1840 drvd->vdev_child[i]);
1845 * Close a virtual device.
1847 void
1848 vdev_close(vdev_t *vd)
1850 spa_t *spa = vd->vdev_spa;
1851 vdev_t *pvd = vd->vdev_parent;
1853 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1856 * If our parent is reopening, then we are as well, unless we are
1857 * going offline.
1859 if (pvd != NULL && pvd->vdev_reopening)
1860 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1862 vd->vdev_ops->vdev_op_close(vd);
1864 vdev_cache_purge(vd);
1867 * We record the previous state before we close it, so that if we are
1868 * doing a reopen(), we don't generate FMA ereports if we notice that
1869 * it's still faulted.
1871 vd->vdev_prevstate = vd->vdev_state;
1873 if (vd->vdev_offline)
1874 vd->vdev_state = VDEV_STATE_OFFLINE;
1875 else
1876 vd->vdev_state = VDEV_STATE_CLOSED;
1877 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1880 void
1881 vdev_hold(vdev_t *vd)
1883 spa_t *spa = vd->vdev_spa;
1885 ASSERT(spa_is_root(spa));
1886 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1887 return;
1889 for (int c = 0; c < vd->vdev_children; c++)
1890 vdev_hold(vd->vdev_child[c]);
1892 if (vd->vdev_ops->vdev_op_leaf)
1893 vd->vdev_ops->vdev_op_hold(vd);
1896 void
1897 vdev_rele(vdev_t *vd)
1899 spa_t *spa = vd->vdev_spa;
1901 ASSERT(spa_is_root(spa));
1902 for (int c = 0; c < vd->vdev_children; c++)
1903 vdev_rele(vd->vdev_child[c]);
1905 if (vd->vdev_ops->vdev_op_leaf)
1906 vd->vdev_ops->vdev_op_rele(vd);
1910 * Reopen all interior vdevs and any unopened leaves. We don't actually
1911 * reopen leaf vdevs which had previously been opened as they might deadlock
1912 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1913 * If the leaf has never been opened then open it, as usual.
1915 void
1916 vdev_reopen(vdev_t *vd)
1918 spa_t *spa = vd->vdev_spa;
1920 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1922 /* set the reopening flag unless we're taking the vdev offline */
1923 vd->vdev_reopening = !vd->vdev_offline;
1924 vdev_close(vd);
1925 (void) vdev_open(vd);
1928 * Call vdev_validate() here to make sure we have the same device.
1929 * Otherwise, a device with an invalid label could be successfully
1930 * opened in response to vdev_reopen().
1932 if (vd->vdev_aux) {
1933 (void) vdev_validate_aux(vd);
1934 if (vdev_readable(vd) && vdev_writeable(vd) &&
1935 vd->vdev_aux == &spa->spa_l2cache &&
1936 !l2arc_vdev_present(vd))
1937 l2arc_add_vdev(spa, vd);
1938 } else {
1939 (void) vdev_validate(vd);
1943 * Reassess parent vdev's health.
1945 vdev_propagate_state(vd);
1949 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1951 int error;
1954 * Normally, partial opens (e.g. of a mirror) are allowed.
1955 * For a create, however, we want to fail the request if
1956 * there are any components we can't open.
1958 error = vdev_open(vd);
1960 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1961 vdev_close(vd);
1962 return (error ? error : ENXIO);
1966 * Recursively load DTLs and initialize all labels.
1968 if ((error = vdev_dtl_load(vd)) != 0 ||
1969 (error = vdev_label_init(vd, txg, isreplacing ?
1970 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1971 vdev_close(vd);
1972 return (error);
1975 return (0);
1978 void
1979 vdev_metaslab_set_size(vdev_t *vd)
1981 uint64_t asize = vd->vdev_asize;
1982 uint64_t ms_shift = 0;
1985 * For vdevs that are bigger than 8G the metaslab size varies in
1986 * a way that the number of metaslabs increases in powers of two,
1987 * linearly in terms of vdev_asize, starting from 16 metaslabs.
1988 * So for vdev_asize of 8G we get 16 metaslabs, for 16G, we get 32,
1989 * and so on, until we hit the maximum metaslab count limit
1990 * [vdev_max_ms_count] from which point the metaslab count stays
1991 * the same.
1993 ms_shift = vdev_default_ms_shift;
1995 if ((asize >> ms_shift) < vdev_min_ms_count) {
1997 * For devices that are less than 8G we want to have
1998 * exactly 16 metaslabs. We don't want less as integer
1999 * division rounds down, so less metaslabs mean more
2000 * wasted space. We don't want more as these vdevs are
2001 * small and in the likely event that we are running
2002 * out of space, the SPA will have a hard time finding
2003 * space due to fragmentation.
2005 ms_shift = highbit64(asize / vdev_min_ms_count);
2006 ms_shift = MAX(ms_shift, SPA_MAXBLOCKSHIFT);
2008 } else if ((asize >> ms_shift) > vdev_max_ms_count) {
2009 ms_shift = highbit64(asize / vdev_max_ms_count);
2012 vd->vdev_ms_shift = ms_shift;
2013 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2016 void
2017 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2019 ASSERT(vd == vd->vdev_top);
2020 /* indirect vdevs don't have metaslabs or dtls */
2021 ASSERT(vdev_is_concrete(vd) || flags == 0);
2022 ASSERT(ISP2(flags));
2023 ASSERT(spa_writeable(vd->vdev_spa));
2025 if (flags & VDD_METASLAB)
2026 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2028 if (flags & VDD_DTL)
2029 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2031 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2034 void
2035 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2037 for (int c = 0; c < vd->vdev_children; c++)
2038 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2040 if (vd->vdev_ops->vdev_op_leaf)
2041 vdev_dirty(vd->vdev_top, flags, vd, txg);
2045 * DTLs.
2047 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2048 * the vdev has less than perfect replication. There are four kinds of DTL:
2050 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2052 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2054 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2055 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2056 * txgs that was scrubbed.
2058 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2059 * persistent errors or just some device being offline.
2060 * Unlike the other three, the DTL_OUTAGE map is not generally
2061 * maintained; it's only computed when needed, typically to
2062 * determine whether a device can be detached.
2064 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2065 * either has the data or it doesn't.
2067 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2068 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2069 * if any child is less than fully replicated, then so is its parent.
2070 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2071 * comprising only those txgs which appear in 'maxfaults' or more children;
2072 * those are the txgs we don't have enough replication to read. For example,
2073 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2074 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2075 * two child DTL_MISSING maps.
2077 * It should be clear from the above that to compute the DTLs and outage maps
2078 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2079 * Therefore, that is all we keep on disk. When loading the pool, or after
2080 * a configuration change, we generate all other DTLs from first principles.
2082 void
2083 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2085 range_tree_t *rt = vd->vdev_dtl[t];
2087 ASSERT(t < DTL_TYPES);
2088 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2089 ASSERT(spa_writeable(vd->vdev_spa));
2091 mutex_enter(&vd->vdev_dtl_lock);
2092 if (!range_tree_contains(rt, txg, size))
2093 range_tree_add(rt, txg, size);
2094 mutex_exit(&vd->vdev_dtl_lock);
2097 boolean_t
2098 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2100 range_tree_t *rt = vd->vdev_dtl[t];
2101 boolean_t dirty = B_FALSE;
2103 ASSERT(t < DTL_TYPES);
2104 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2107 * While we are loading the pool, the DTLs have not been loaded yet.
2108 * Ignore the DTLs and try all devices. This avoids a recursive
2109 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2110 * when loading the pool (relying on the checksum to ensure that
2111 * we get the right data -- note that we while loading, we are
2112 * only reading the MOS, which is always checksummed).
2114 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2115 return (B_FALSE);
2117 mutex_enter(&vd->vdev_dtl_lock);
2118 if (!range_tree_is_empty(rt))
2119 dirty = range_tree_contains(rt, txg, size);
2120 mutex_exit(&vd->vdev_dtl_lock);
2122 return (dirty);
2125 boolean_t
2126 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2128 range_tree_t *rt = vd->vdev_dtl[t];
2129 boolean_t empty;
2131 mutex_enter(&vd->vdev_dtl_lock);
2132 empty = range_tree_is_empty(rt);
2133 mutex_exit(&vd->vdev_dtl_lock);
2135 return (empty);
2139 * Returns the lowest txg in the DTL range.
2141 static uint64_t
2142 vdev_dtl_min(vdev_t *vd)
2144 range_seg_t *rs;
2146 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2147 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2148 ASSERT0(vd->vdev_children);
2150 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2151 return (rs->rs_start - 1);
2155 * Returns the highest txg in the DTL.
2157 static uint64_t
2158 vdev_dtl_max(vdev_t *vd)
2160 range_seg_t *rs;
2162 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2163 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2164 ASSERT0(vd->vdev_children);
2166 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2167 return (rs->rs_end);
2171 * Determine if a resilvering vdev should remove any DTL entries from
2172 * its range. If the vdev was resilvering for the entire duration of the
2173 * scan then it should excise that range from its DTLs. Otherwise, this
2174 * vdev is considered partially resilvered and should leave its DTL
2175 * entries intact. The comment in vdev_dtl_reassess() describes how we
2176 * excise the DTLs.
2178 static boolean_t
2179 vdev_dtl_should_excise(vdev_t *vd)
2181 spa_t *spa = vd->vdev_spa;
2182 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2184 ASSERT0(scn->scn_phys.scn_errors);
2185 ASSERT0(vd->vdev_children);
2187 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2188 return (B_FALSE);
2190 if (vd->vdev_resilver_txg == 0 ||
2191 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2192 return (B_TRUE);
2195 * When a resilver is initiated the scan will assign the scn_max_txg
2196 * value to the highest txg value that exists in all DTLs. If this
2197 * device's max DTL is not part of this scan (i.e. it is not in
2198 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2199 * for excision.
2201 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2202 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2203 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2204 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2205 return (B_TRUE);
2207 return (B_FALSE);
2211 * Reassess DTLs after a config change or scrub completion.
2213 void
2214 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2216 spa_t *spa = vd->vdev_spa;
2217 avl_tree_t reftree;
2218 int minref;
2220 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2222 for (int c = 0; c < vd->vdev_children; c++)
2223 vdev_dtl_reassess(vd->vdev_child[c], txg,
2224 scrub_txg, scrub_done);
2226 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2227 return;
2229 if (vd->vdev_ops->vdev_op_leaf) {
2230 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2232 mutex_enter(&vd->vdev_dtl_lock);
2235 * If we've completed a scan cleanly then determine
2236 * if this vdev should remove any DTLs. We only want to
2237 * excise regions on vdevs that were available during
2238 * the entire duration of this scan.
2240 if (scrub_txg != 0 &&
2241 (spa->spa_scrub_started ||
2242 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2243 vdev_dtl_should_excise(vd)) {
2245 * We completed a scrub up to scrub_txg. If we
2246 * did it without rebooting, then the scrub dtl
2247 * will be valid, so excise the old region and
2248 * fold in the scrub dtl. Otherwise, leave the
2249 * dtl as-is if there was an error.
2251 * There's little trick here: to excise the beginning
2252 * of the DTL_MISSING map, we put it into a reference
2253 * tree and then add a segment with refcnt -1 that
2254 * covers the range [0, scrub_txg). This means
2255 * that each txg in that range has refcnt -1 or 0.
2256 * We then add DTL_SCRUB with a refcnt of 2, so that
2257 * entries in the range [0, scrub_txg) will have a
2258 * positive refcnt -- either 1 or 2. We then convert
2259 * the reference tree into the new DTL_MISSING map.
2261 space_reftree_create(&reftree);
2262 space_reftree_add_map(&reftree,
2263 vd->vdev_dtl[DTL_MISSING], 1);
2264 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2265 space_reftree_add_map(&reftree,
2266 vd->vdev_dtl[DTL_SCRUB], 2);
2267 space_reftree_generate_map(&reftree,
2268 vd->vdev_dtl[DTL_MISSING], 1);
2269 space_reftree_destroy(&reftree);
2271 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2272 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2273 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2274 if (scrub_done)
2275 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2276 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2277 if (!vdev_readable(vd))
2278 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2279 else
2280 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2281 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2284 * If the vdev was resilvering and no longer has any
2285 * DTLs then reset its resilvering flag.
2287 if (vd->vdev_resilver_txg != 0 &&
2288 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2289 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2290 vd->vdev_resilver_txg = 0;
2292 mutex_exit(&vd->vdev_dtl_lock);
2294 if (txg != 0)
2295 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2296 return;
2299 mutex_enter(&vd->vdev_dtl_lock);
2300 for (int t = 0; t < DTL_TYPES; t++) {
2301 /* account for child's outage in parent's missing map */
2302 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2303 if (t == DTL_SCRUB)
2304 continue; /* leaf vdevs only */
2305 if (t == DTL_PARTIAL)
2306 minref = 1; /* i.e. non-zero */
2307 else if (vd->vdev_nparity != 0)
2308 minref = vd->vdev_nparity + 1; /* RAID-Z */
2309 else
2310 minref = vd->vdev_children; /* any kind of mirror */
2311 space_reftree_create(&reftree);
2312 for (int c = 0; c < vd->vdev_children; c++) {
2313 vdev_t *cvd = vd->vdev_child[c];
2314 mutex_enter(&cvd->vdev_dtl_lock);
2315 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2316 mutex_exit(&cvd->vdev_dtl_lock);
2318 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2319 space_reftree_destroy(&reftree);
2321 mutex_exit(&vd->vdev_dtl_lock);
2325 vdev_dtl_load(vdev_t *vd)
2327 spa_t *spa = vd->vdev_spa;
2328 objset_t *mos = spa->spa_meta_objset;
2329 int error = 0;
2331 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2332 ASSERT(vdev_is_concrete(vd));
2334 error = space_map_open(&vd->vdev_dtl_sm, mos,
2335 vd->vdev_dtl_object, 0, -1ULL, 0);
2336 if (error)
2337 return (error);
2338 ASSERT(vd->vdev_dtl_sm != NULL);
2340 mutex_enter(&vd->vdev_dtl_lock);
2343 * Now that we've opened the space_map we need to update
2344 * the in-core DTL.
2346 space_map_update(vd->vdev_dtl_sm);
2348 error = space_map_load(vd->vdev_dtl_sm,
2349 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2350 mutex_exit(&vd->vdev_dtl_lock);
2352 return (error);
2355 for (int c = 0; c < vd->vdev_children; c++) {
2356 error = vdev_dtl_load(vd->vdev_child[c]);
2357 if (error != 0)
2358 break;
2361 return (error);
2364 void
2365 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2367 spa_t *spa = vd->vdev_spa;
2369 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2370 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2371 zapobj, tx));
2374 uint64_t
2375 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2377 spa_t *spa = vd->vdev_spa;
2378 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2379 DMU_OT_NONE, 0, tx);
2381 ASSERT(zap != 0);
2382 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2383 zap, tx));
2385 return (zap);
2388 void
2389 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2391 if (vd->vdev_ops != &vdev_hole_ops &&
2392 vd->vdev_ops != &vdev_missing_ops &&
2393 vd->vdev_ops != &vdev_root_ops &&
2394 !vd->vdev_top->vdev_removing) {
2395 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2396 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2398 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2399 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2402 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2403 vdev_construct_zaps(vd->vdev_child[i], tx);
2407 void
2408 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2410 spa_t *spa = vd->vdev_spa;
2411 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2412 objset_t *mos = spa->spa_meta_objset;
2413 range_tree_t *rtsync;
2414 dmu_tx_t *tx;
2415 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2417 ASSERT(vdev_is_concrete(vd));
2418 ASSERT(vd->vdev_ops->vdev_op_leaf);
2420 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2422 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2423 mutex_enter(&vd->vdev_dtl_lock);
2424 space_map_free(vd->vdev_dtl_sm, tx);
2425 space_map_close(vd->vdev_dtl_sm);
2426 vd->vdev_dtl_sm = NULL;
2427 mutex_exit(&vd->vdev_dtl_lock);
2430 * We only destroy the leaf ZAP for detached leaves or for
2431 * removed log devices. Removed data devices handle leaf ZAP
2432 * cleanup later, once cancellation is no longer possible.
2434 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2435 vd->vdev_top->vdev_islog)) {
2436 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2437 vd->vdev_leaf_zap = 0;
2440 dmu_tx_commit(tx);
2441 return;
2444 if (vd->vdev_dtl_sm == NULL) {
2445 uint64_t new_object;
2447 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2448 VERIFY3U(new_object, !=, 0);
2450 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2451 0, -1ULL, 0));
2452 ASSERT(vd->vdev_dtl_sm != NULL);
2455 rtsync = range_tree_create(NULL, NULL);
2457 mutex_enter(&vd->vdev_dtl_lock);
2458 range_tree_walk(rt, range_tree_add, rtsync);
2459 mutex_exit(&vd->vdev_dtl_lock);
2461 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2462 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2463 range_tree_vacate(rtsync, NULL, NULL);
2465 range_tree_destroy(rtsync);
2468 * If the object for the space map has changed then dirty
2469 * the top level so that we update the config.
2471 if (object != space_map_object(vd->vdev_dtl_sm)) {
2472 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2473 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2474 (u_longlong_t)object,
2475 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2476 vdev_config_dirty(vd->vdev_top);
2479 dmu_tx_commit(tx);
2481 mutex_enter(&vd->vdev_dtl_lock);
2482 space_map_update(vd->vdev_dtl_sm);
2483 mutex_exit(&vd->vdev_dtl_lock);
2487 * Determine whether the specified vdev can be offlined/detached/removed
2488 * without losing data.
2490 boolean_t
2491 vdev_dtl_required(vdev_t *vd)
2493 spa_t *spa = vd->vdev_spa;
2494 vdev_t *tvd = vd->vdev_top;
2495 uint8_t cant_read = vd->vdev_cant_read;
2496 boolean_t required;
2498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2500 if (vd == spa->spa_root_vdev || vd == tvd)
2501 return (B_TRUE);
2504 * Temporarily mark the device as unreadable, and then determine
2505 * whether this results in any DTL outages in the top-level vdev.
2506 * If not, we can safely offline/detach/remove the device.
2508 vd->vdev_cant_read = B_TRUE;
2509 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2510 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2511 vd->vdev_cant_read = cant_read;
2512 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2514 if (!required && zio_injection_enabled)
2515 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2517 return (required);
2521 * Determine if resilver is needed, and if so the txg range.
2523 boolean_t
2524 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2526 boolean_t needed = B_FALSE;
2527 uint64_t thismin = UINT64_MAX;
2528 uint64_t thismax = 0;
2530 if (vd->vdev_children == 0) {
2531 mutex_enter(&vd->vdev_dtl_lock);
2532 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2533 vdev_writeable(vd)) {
2535 thismin = vdev_dtl_min(vd);
2536 thismax = vdev_dtl_max(vd);
2537 needed = B_TRUE;
2539 mutex_exit(&vd->vdev_dtl_lock);
2540 } else {
2541 for (int c = 0; c < vd->vdev_children; c++) {
2542 vdev_t *cvd = vd->vdev_child[c];
2543 uint64_t cmin, cmax;
2545 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2546 thismin = MIN(thismin, cmin);
2547 thismax = MAX(thismax, cmax);
2548 needed = B_TRUE;
2553 if (needed && minp) {
2554 *minp = thismin;
2555 *maxp = thismax;
2557 return (needed);
2561 * Gets the checkpoint space map object from the vdev's ZAP.
2562 * Returns the spacemap object, or 0 if it wasn't in the ZAP
2563 * or the ZAP doesn't exist yet.
2566 vdev_checkpoint_sm_object(vdev_t *vd)
2568 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2569 if (vd->vdev_top_zap == 0) {
2570 return (0);
2573 uint64_t sm_obj = 0;
2574 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2575 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2577 ASSERT(err == 0 || err == ENOENT);
2579 return (sm_obj);
2583 vdev_load(vdev_t *vd)
2585 int error = 0;
2587 * Recursively load all children.
2589 for (int c = 0; c < vd->vdev_children; c++) {
2590 error = vdev_load(vd->vdev_child[c]);
2591 if (error != 0) {
2592 return (error);
2596 vdev_set_deflate_ratio(vd);
2599 * If this is a top-level vdev, initialize its metaslabs.
2601 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2602 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2603 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2604 VDEV_AUX_CORRUPT_DATA);
2605 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2606 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2607 (u_longlong_t)vd->vdev_asize);
2608 return (SET_ERROR(ENXIO));
2609 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2610 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2611 "[error=%d]", error);
2612 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2613 VDEV_AUX_CORRUPT_DATA);
2614 return (error);
2617 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2618 if (checkpoint_sm_obj != 0) {
2619 objset_t *mos = spa_meta_objset(vd->vdev_spa);
2620 ASSERT(vd->vdev_asize != 0);
2621 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2623 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2624 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2625 vd->vdev_ashift))) {
2626 vdev_dbgmsg(vd, "vdev_load: space_map_open "
2627 "failed for checkpoint spacemap (obj %llu) "
2628 "[error=%d]",
2629 (u_longlong_t)checkpoint_sm_obj, error);
2630 return (error);
2632 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2633 space_map_update(vd->vdev_checkpoint_sm);
2636 * Since the checkpoint_sm contains free entries
2637 * exclusively we can use sm_alloc to indicate the
2638 * culmulative checkpointed space that has been freed.
2640 vd->vdev_stat.vs_checkpoint_space =
2641 -vd->vdev_checkpoint_sm->sm_alloc;
2642 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2643 vd->vdev_stat.vs_checkpoint_space;
2648 * If this is a leaf vdev, load its DTL.
2650 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2651 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2652 VDEV_AUX_CORRUPT_DATA);
2653 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2654 "[error=%d]", error);
2655 return (error);
2658 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2659 if (obsolete_sm_object != 0) {
2660 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2661 ASSERT(vd->vdev_asize != 0);
2662 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2664 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2665 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2666 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2667 VDEV_AUX_CORRUPT_DATA);
2668 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2669 "obsolete spacemap (obj %llu) [error=%d]",
2670 (u_longlong_t)obsolete_sm_object, error);
2671 return (error);
2673 space_map_update(vd->vdev_obsolete_sm);
2676 return (0);
2680 * The special vdev case is used for hot spares and l2cache devices. Its
2681 * sole purpose it to set the vdev state for the associated vdev. To do this,
2682 * we make sure that we can open the underlying device, then try to read the
2683 * label, and make sure that the label is sane and that it hasn't been
2684 * repurposed to another pool.
2687 vdev_validate_aux(vdev_t *vd)
2689 nvlist_t *label;
2690 uint64_t guid, version;
2691 uint64_t state;
2693 if (!vdev_readable(vd))
2694 return (0);
2696 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2697 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2698 VDEV_AUX_CORRUPT_DATA);
2699 return (-1);
2702 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2703 !SPA_VERSION_IS_SUPPORTED(version) ||
2704 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2705 guid != vd->vdev_guid ||
2706 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2707 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2708 VDEV_AUX_CORRUPT_DATA);
2709 nvlist_free(label);
2710 return (-1);
2714 * We don't actually check the pool state here. If it's in fact in
2715 * use by another pool, we update this fact on the fly when requested.
2717 nvlist_free(label);
2718 return (0);
2722 * Free the objects used to store this vdev's spacemaps, and the array
2723 * that points to them.
2725 void
2726 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2728 if (vd->vdev_ms_array == 0)
2729 return;
2731 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2732 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2733 size_t array_bytes = array_count * sizeof (uint64_t);
2734 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2735 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2736 array_bytes, smobj_array, 0));
2738 for (uint64_t i = 0; i < array_count; i++) {
2739 uint64_t smobj = smobj_array[i];
2740 if (smobj == 0)
2741 continue;
2743 space_map_free_obj(mos, smobj, tx);
2746 kmem_free(smobj_array, array_bytes);
2747 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2748 vd->vdev_ms_array = 0;
2751 static void
2752 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2754 spa_t *spa = vd->vdev_spa;
2755 dmu_tx_t *tx;
2757 ASSERT(vd == vd->vdev_top);
2758 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2760 if (vd->vdev_ms != NULL) {
2761 metaslab_group_t *mg = vd->vdev_mg;
2763 metaslab_group_histogram_verify(mg);
2764 metaslab_class_histogram_verify(mg->mg_class);
2766 for (int m = 0; m < vd->vdev_ms_count; m++) {
2767 metaslab_t *msp = vd->vdev_ms[m];
2769 if (msp == NULL || msp->ms_sm == NULL)
2770 continue;
2772 mutex_enter(&msp->ms_lock);
2774 * If the metaslab was not loaded when the vdev
2775 * was removed then the histogram accounting may
2776 * not be accurate. Update the histogram information
2777 * here so that we ensure that the metaslab group
2778 * and metaslab class are up-to-date.
2780 metaslab_group_histogram_remove(mg, msp);
2782 VERIFY0(space_map_allocated(msp->ms_sm));
2783 space_map_close(msp->ms_sm);
2784 msp->ms_sm = NULL;
2785 mutex_exit(&msp->ms_lock);
2788 if (vd->vdev_checkpoint_sm != NULL) {
2789 ASSERT(spa_has_checkpoint(spa));
2790 space_map_close(vd->vdev_checkpoint_sm);
2791 vd->vdev_checkpoint_sm = NULL;
2794 metaslab_group_histogram_verify(mg);
2795 metaslab_class_histogram_verify(mg->mg_class);
2796 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2797 ASSERT0(mg->mg_histogram[i]);
2800 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2801 vdev_destroy_spacemaps(vd, tx);
2803 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2804 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2805 vd->vdev_top_zap = 0;
2807 dmu_tx_commit(tx);
2810 void
2811 vdev_sync_done(vdev_t *vd, uint64_t txg)
2813 metaslab_t *msp;
2814 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2816 ASSERT(vdev_is_concrete(vd));
2818 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2819 metaslab_sync_done(msp, txg);
2821 if (reassess)
2822 metaslab_sync_reassess(vd->vdev_mg);
2825 void
2826 vdev_sync(vdev_t *vd, uint64_t txg)
2828 spa_t *spa = vd->vdev_spa;
2829 vdev_t *lvd;
2830 metaslab_t *msp;
2831 dmu_tx_t *tx;
2833 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2834 dmu_tx_t *tx;
2836 ASSERT(vd->vdev_removing ||
2837 vd->vdev_ops == &vdev_indirect_ops);
2839 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2840 vdev_indirect_sync_obsolete(vd, tx);
2841 dmu_tx_commit(tx);
2844 * If the vdev is indirect, it can't have dirty
2845 * metaslabs or DTLs.
2847 if (vd->vdev_ops == &vdev_indirect_ops) {
2848 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2849 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2850 return;
2854 ASSERT(vdev_is_concrete(vd));
2856 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2857 !vd->vdev_removing) {
2858 ASSERT(vd == vd->vdev_top);
2859 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2860 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2861 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2862 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2863 ASSERT(vd->vdev_ms_array != 0);
2864 vdev_config_dirty(vd);
2865 dmu_tx_commit(tx);
2868 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2869 metaslab_sync(msp, txg);
2870 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2873 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2874 vdev_dtl_sync(lvd, txg);
2877 * Remove the metadata associated with this vdev once it's empty.
2878 * Note that this is typically used for log/cache device removal;
2879 * we don't empty toplevel vdevs when removing them. But if
2880 * a toplevel happens to be emptied, this is not harmful.
2882 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2883 vdev_remove_empty(vd, txg);
2886 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2889 uint64_t
2890 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2892 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2896 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2897 * not be opened, and no I/O is attempted.
2900 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2902 vdev_t *vd, *tvd;
2904 spa_vdev_state_enter(spa, SCL_NONE);
2906 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2907 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2909 if (!vd->vdev_ops->vdev_op_leaf)
2910 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2912 tvd = vd->vdev_top;
2915 * We don't directly use the aux state here, but if we do a
2916 * vdev_reopen(), we need this value to be present to remember why we
2917 * were faulted.
2919 vd->vdev_label_aux = aux;
2922 * Faulted state takes precedence over degraded.
2924 vd->vdev_delayed_close = B_FALSE;
2925 vd->vdev_faulted = 1ULL;
2926 vd->vdev_degraded = 0ULL;
2927 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2930 * If this device has the only valid copy of the data, then
2931 * back off and simply mark the vdev as degraded instead.
2933 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2934 vd->vdev_degraded = 1ULL;
2935 vd->vdev_faulted = 0ULL;
2938 * If we reopen the device and it's not dead, only then do we
2939 * mark it degraded.
2941 vdev_reopen(tvd);
2943 if (vdev_readable(vd))
2944 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2947 return (spa_vdev_state_exit(spa, vd, 0));
2951 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2952 * user that something is wrong. The vdev continues to operate as normal as far
2953 * as I/O is concerned.
2956 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2958 vdev_t *vd;
2960 spa_vdev_state_enter(spa, SCL_NONE);
2962 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2963 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2965 if (!vd->vdev_ops->vdev_op_leaf)
2966 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2969 * If the vdev is already faulted, then don't do anything.
2971 if (vd->vdev_faulted || vd->vdev_degraded)
2972 return (spa_vdev_state_exit(spa, NULL, 0));
2974 vd->vdev_degraded = 1ULL;
2975 if (!vdev_is_dead(vd))
2976 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2977 aux);
2979 return (spa_vdev_state_exit(spa, vd, 0));
2983 * Online the given vdev.
2985 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2986 * spare device should be detached when the device finishes resilvering.
2987 * Second, the online should be treated like a 'test' online case, so no FMA
2988 * events are generated if the device fails to open.
2991 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2993 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2994 boolean_t wasoffline;
2995 vdev_state_t oldstate;
2997 spa_vdev_state_enter(spa, SCL_NONE);
2999 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3000 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3002 if (!vd->vdev_ops->vdev_op_leaf)
3003 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3005 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3006 oldstate = vd->vdev_state;
3008 tvd = vd->vdev_top;
3009 vd->vdev_offline = B_FALSE;
3010 vd->vdev_tmpoffline = B_FALSE;
3011 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3012 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3014 /* XXX - L2ARC 1.0 does not support expansion */
3015 if (!vd->vdev_aux) {
3016 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3017 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3020 vdev_reopen(tvd);
3021 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3023 if (!vd->vdev_aux) {
3024 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3025 pvd->vdev_expanding = B_FALSE;
3028 if (newstate)
3029 *newstate = vd->vdev_state;
3030 if ((flags & ZFS_ONLINE_UNSPARE) &&
3031 !vdev_is_dead(vd) && vd->vdev_parent &&
3032 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3033 vd->vdev_parent->vdev_child[0] == vd)
3034 vd->vdev_unspare = B_TRUE;
3036 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3038 /* XXX - L2ARC 1.0 does not support expansion */
3039 if (vd->vdev_aux)
3040 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3041 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3044 if (wasoffline ||
3045 (oldstate < VDEV_STATE_DEGRADED &&
3046 vd->vdev_state >= VDEV_STATE_DEGRADED))
3047 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3049 return (spa_vdev_state_exit(spa, vd, 0));
3052 static int
3053 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3055 vdev_t *vd, *tvd;
3056 int error = 0;
3057 uint64_t generation;
3058 metaslab_group_t *mg;
3060 top:
3061 spa_vdev_state_enter(spa, SCL_ALLOC);
3063 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3064 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3066 if (!vd->vdev_ops->vdev_op_leaf)
3067 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3069 tvd = vd->vdev_top;
3070 mg = tvd->vdev_mg;
3071 generation = spa->spa_config_generation + 1;
3074 * If the device isn't already offline, try to offline it.
3076 if (!vd->vdev_offline) {
3078 * If this device has the only valid copy of some data,
3079 * don't allow it to be offlined. Log devices are always
3080 * expendable.
3082 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3083 vdev_dtl_required(vd))
3084 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3087 * If the top-level is a slog and it has had allocations
3088 * then proceed. We check that the vdev's metaslab group
3089 * is not NULL since it's possible that we may have just
3090 * added this vdev but not yet initialized its metaslabs.
3092 if (tvd->vdev_islog && mg != NULL) {
3094 * Prevent any future allocations.
3096 metaslab_group_passivate(mg);
3097 (void) spa_vdev_state_exit(spa, vd, 0);
3099 error = spa_reset_logs(spa);
3102 * If the log device was successfully reset but has
3103 * checkpointed data, do not offline it.
3105 if (error == 0 &&
3106 tvd->vdev_checkpoint_sm != NULL) {
3107 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3108 !=, 0);
3109 error = ZFS_ERR_CHECKPOINT_EXISTS;
3112 spa_vdev_state_enter(spa, SCL_ALLOC);
3115 * Check to see if the config has changed.
3117 if (error || generation != spa->spa_config_generation) {
3118 metaslab_group_activate(mg);
3119 if (error)
3120 return (spa_vdev_state_exit(spa,
3121 vd, error));
3122 (void) spa_vdev_state_exit(spa, vd, 0);
3123 goto top;
3125 ASSERT0(tvd->vdev_stat.vs_alloc);
3129 * Offline this device and reopen its top-level vdev.
3130 * If the top-level vdev is a log device then just offline
3131 * it. Otherwise, if this action results in the top-level
3132 * vdev becoming unusable, undo it and fail the request.
3134 vd->vdev_offline = B_TRUE;
3135 vdev_reopen(tvd);
3137 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3138 vdev_is_dead(tvd)) {
3139 vd->vdev_offline = B_FALSE;
3140 vdev_reopen(tvd);
3141 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3145 * Add the device back into the metaslab rotor so that
3146 * once we online the device it's open for business.
3148 if (tvd->vdev_islog && mg != NULL)
3149 metaslab_group_activate(mg);
3152 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3154 return (spa_vdev_state_exit(spa, vd, 0));
3158 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3160 int error;
3162 mutex_enter(&spa->spa_vdev_top_lock);
3163 error = vdev_offline_locked(spa, guid, flags);
3164 mutex_exit(&spa->spa_vdev_top_lock);
3166 return (error);
3170 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3171 * vdev_offline(), we assume the spa config is locked. We also clear all
3172 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3174 void
3175 vdev_clear(spa_t *spa, vdev_t *vd)
3177 vdev_t *rvd = spa->spa_root_vdev;
3179 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3181 if (vd == NULL)
3182 vd = rvd;
3184 vd->vdev_stat.vs_read_errors = 0;
3185 vd->vdev_stat.vs_write_errors = 0;
3186 vd->vdev_stat.vs_checksum_errors = 0;
3188 for (int c = 0; c < vd->vdev_children; c++)
3189 vdev_clear(spa, vd->vdev_child[c]);
3192 * It makes no sense to "clear" an indirect vdev.
3194 if (!vdev_is_concrete(vd))
3195 return;
3198 * If we're in the FAULTED state or have experienced failed I/O, then
3199 * clear the persistent state and attempt to reopen the device. We
3200 * also mark the vdev config dirty, so that the new faulted state is
3201 * written out to disk.
3203 if (vd->vdev_faulted || vd->vdev_degraded ||
3204 !vdev_readable(vd) || !vdev_writeable(vd)) {
3207 * When reopening in reponse to a clear event, it may be due to
3208 * a fmadm repair request. In this case, if the device is
3209 * still broken, we want to still post the ereport again.
3211 vd->vdev_forcefault = B_TRUE;
3213 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3214 vd->vdev_cant_read = B_FALSE;
3215 vd->vdev_cant_write = B_FALSE;
3217 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3219 vd->vdev_forcefault = B_FALSE;
3221 if (vd != rvd && vdev_writeable(vd->vdev_top))
3222 vdev_state_dirty(vd->vdev_top);
3224 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3225 spa_async_request(spa, SPA_ASYNC_RESILVER);
3227 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3231 * When clearing a FMA-diagnosed fault, we always want to
3232 * unspare the device, as we assume that the original spare was
3233 * done in response to the FMA fault.
3235 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3236 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3237 vd->vdev_parent->vdev_child[0] == vd)
3238 vd->vdev_unspare = B_TRUE;
3241 boolean_t
3242 vdev_is_dead(vdev_t *vd)
3245 * Holes and missing devices are always considered "dead".
3246 * This simplifies the code since we don't have to check for
3247 * these types of devices in the various code paths.
3248 * Instead we rely on the fact that we skip over dead devices
3249 * before issuing I/O to them.
3251 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3252 vd->vdev_ops == &vdev_hole_ops ||
3253 vd->vdev_ops == &vdev_missing_ops);
3256 boolean_t
3257 vdev_readable(vdev_t *vd)
3259 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3262 boolean_t
3263 vdev_writeable(vdev_t *vd)
3265 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3266 vdev_is_concrete(vd));
3269 boolean_t
3270 vdev_allocatable(vdev_t *vd)
3272 uint64_t state = vd->vdev_state;
3275 * We currently allow allocations from vdevs which may be in the
3276 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3277 * fails to reopen then we'll catch it later when we're holding
3278 * the proper locks. Note that we have to get the vdev state
3279 * in a local variable because although it changes atomically,
3280 * we're asking two separate questions about it.
3282 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3283 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3284 vd->vdev_mg->mg_initialized);
3287 boolean_t
3288 vdev_accessible(vdev_t *vd, zio_t *zio)
3290 ASSERT(zio->io_vd == vd);
3292 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3293 return (B_FALSE);
3295 if (zio->io_type == ZIO_TYPE_READ)
3296 return (!vd->vdev_cant_read);
3298 if (zio->io_type == ZIO_TYPE_WRITE)
3299 return (!vd->vdev_cant_write);
3301 return (B_TRUE);
3304 boolean_t
3305 vdev_is_spacemap_addressable(vdev_t *vd)
3308 * Assuming 47 bits of the space map entry dedicated for the entry's
3309 * offset (see description in space_map.h), we calculate the maximum
3310 * address that can be described by a space map entry for the given
3311 * device.
3313 uint64_t shift = vd->vdev_ashift + 47;
3315 if (shift >= 63) /* detect potential overflow */
3316 return (B_TRUE);
3318 return (vd->vdev_asize < (1ULL << shift));
3322 * Get statistics for the given vdev.
3324 void
3325 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3327 spa_t *spa = vd->vdev_spa;
3328 vdev_t *rvd = spa->spa_root_vdev;
3329 vdev_t *tvd = vd->vdev_top;
3331 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3333 mutex_enter(&vd->vdev_stat_lock);
3334 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3335 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3336 vs->vs_state = vd->vdev_state;
3337 vs->vs_rsize = vdev_get_min_asize(vd);
3338 if (vd->vdev_ops->vdev_op_leaf)
3339 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3341 * Report expandable space on top-level, non-auxillary devices only.
3342 * The expandable space is reported in terms of metaslab sized units
3343 * since that determines how much space the pool can expand.
3345 if (vd->vdev_aux == NULL && tvd != NULL) {
3346 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3347 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3349 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3350 vdev_is_concrete(vd)) {
3351 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3355 * If we're getting stats on the root vdev, aggregate the I/O counts
3356 * over all top-level vdevs (i.e. the direct children of the root).
3358 if (vd == rvd) {
3359 for (int c = 0; c < rvd->vdev_children; c++) {
3360 vdev_t *cvd = rvd->vdev_child[c];
3361 vdev_stat_t *cvs = &cvd->vdev_stat;
3363 for (int t = 0; t < ZIO_TYPES; t++) {
3364 vs->vs_ops[t] += cvs->vs_ops[t];
3365 vs->vs_bytes[t] += cvs->vs_bytes[t];
3367 cvs->vs_scan_removing = cvd->vdev_removing;
3370 mutex_exit(&vd->vdev_stat_lock);
3373 void
3374 vdev_clear_stats(vdev_t *vd)
3376 mutex_enter(&vd->vdev_stat_lock);
3377 vd->vdev_stat.vs_space = 0;
3378 vd->vdev_stat.vs_dspace = 0;
3379 vd->vdev_stat.vs_alloc = 0;
3380 mutex_exit(&vd->vdev_stat_lock);
3383 void
3384 vdev_scan_stat_init(vdev_t *vd)
3386 vdev_stat_t *vs = &vd->vdev_stat;
3388 for (int c = 0; c < vd->vdev_children; c++)
3389 vdev_scan_stat_init(vd->vdev_child[c]);
3391 mutex_enter(&vd->vdev_stat_lock);
3392 vs->vs_scan_processed = 0;
3393 mutex_exit(&vd->vdev_stat_lock);
3396 void
3397 vdev_stat_update(zio_t *zio, uint64_t psize)
3399 spa_t *spa = zio->io_spa;
3400 vdev_t *rvd = spa->spa_root_vdev;
3401 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3402 vdev_t *pvd;
3403 uint64_t txg = zio->io_txg;
3404 vdev_stat_t *vs = &vd->vdev_stat;
3405 zio_type_t type = zio->io_type;
3406 int flags = zio->io_flags;
3409 * If this i/o is a gang leader, it didn't do any actual work.
3411 if (zio->io_gang_tree)
3412 return;
3414 if (zio->io_error == 0) {
3416 * If this is a root i/o, don't count it -- we've already
3417 * counted the top-level vdevs, and vdev_get_stats() will
3418 * aggregate them when asked. This reduces contention on
3419 * the root vdev_stat_lock and implicitly handles blocks
3420 * that compress away to holes, for which there is no i/o.
3421 * (Holes never create vdev children, so all the counters
3422 * remain zero, which is what we want.)
3424 * Note: this only applies to successful i/o (io_error == 0)
3425 * because unlike i/o counts, errors are not additive.
3426 * When reading a ditto block, for example, failure of
3427 * one top-level vdev does not imply a root-level error.
3429 if (vd == rvd)
3430 return;
3432 ASSERT(vd == zio->io_vd);
3434 if (flags & ZIO_FLAG_IO_BYPASS)
3435 return;
3437 mutex_enter(&vd->vdev_stat_lock);
3439 if (flags & ZIO_FLAG_IO_REPAIR) {
3440 if (flags & ZIO_FLAG_SCAN_THREAD) {
3441 dsl_scan_phys_t *scn_phys =
3442 &spa->spa_dsl_pool->dp_scan->scn_phys;
3443 uint64_t *processed = &scn_phys->scn_processed;
3445 /* XXX cleanup? */
3446 if (vd->vdev_ops->vdev_op_leaf)
3447 atomic_add_64(processed, psize);
3448 vs->vs_scan_processed += psize;
3451 if (flags & ZIO_FLAG_SELF_HEAL)
3452 vs->vs_self_healed += psize;
3455 vs->vs_ops[type]++;
3456 vs->vs_bytes[type] += psize;
3458 mutex_exit(&vd->vdev_stat_lock);
3459 return;
3462 if (flags & ZIO_FLAG_SPECULATIVE)
3463 return;
3466 * If this is an I/O error that is going to be retried, then ignore the
3467 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3468 * hard errors, when in reality they can happen for any number of
3469 * innocuous reasons (bus resets, MPxIO link failure, etc).
3471 if (zio->io_error == EIO &&
3472 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3473 return;
3476 * Intent logs writes won't propagate their error to the root
3477 * I/O so don't mark these types of failures as pool-level
3478 * errors.
3480 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3481 return;
3483 mutex_enter(&vd->vdev_stat_lock);
3484 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3485 if (zio->io_error == ECKSUM)
3486 vs->vs_checksum_errors++;
3487 else
3488 vs->vs_read_errors++;
3490 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3491 vs->vs_write_errors++;
3492 mutex_exit(&vd->vdev_stat_lock);
3494 if (spa->spa_load_state == SPA_LOAD_NONE &&
3495 type == ZIO_TYPE_WRITE && txg != 0 &&
3496 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3497 (flags & ZIO_FLAG_SCAN_THREAD) ||
3498 spa->spa_claiming)) {
3500 * This is either a normal write (not a repair), or it's
3501 * a repair induced by the scrub thread, or it's a repair
3502 * made by zil_claim() during spa_load() in the first txg.
3503 * In the normal case, we commit the DTL change in the same
3504 * txg as the block was born. In the scrub-induced repair
3505 * case, we know that scrubs run in first-pass syncing context,
3506 * so we commit the DTL change in spa_syncing_txg(spa).
3507 * In the zil_claim() case, we commit in spa_first_txg(spa).
3509 * We currently do not make DTL entries for failed spontaneous
3510 * self-healing writes triggered by normal (non-scrubbing)
3511 * reads, because we have no transactional context in which to
3512 * do so -- and it's not clear that it'd be desirable anyway.
3514 if (vd->vdev_ops->vdev_op_leaf) {
3515 uint64_t commit_txg = txg;
3516 if (flags & ZIO_FLAG_SCAN_THREAD) {
3517 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3518 ASSERT(spa_sync_pass(spa) == 1);
3519 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3520 commit_txg = spa_syncing_txg(spa);
3521 } else if (spa->spa_claiming) {
3522 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3523 commit_txg = spa_first_txg(spa);
3525 ASSERT(commit_txg >= spa_syncing_txg(spa));
3526 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3527 return;
3528 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3529 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3530 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3532 if (vd != rvd)
3533 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3538 * Update the in-core space usage stats for this vdev, its metaslab class,
3539 * and the root vdev.
3541 void
3542 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3543 int64_t space_delta)
3545 int64_t dspace_delta = space_delta;
3546 spa_t *spa = vd->vdev_spa;
3547 vdev_t *rvd = spa->spa_root_vdev;
3548 metaslab_group_t *mg = vd->vdev_mg;
3549 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3551 ASSERT(vd == vd->vdev_top);
3554 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3555 * factor. We must calculate this here and not at the root vdev
3556 * because the root vdev's psize-to-asize is simply the max of its
3557 * childrens', thus not accurate enough for us.
3559 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3560 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3561 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3562 vd->vdev_deflate_ratio;
3564 mutex_enter(&vd->vdev_stat_lock);
3565 vd->vdev_stat.vs_alloc += alloc_delta;
3566 vd->vdev_stat.vs_space += space_delta;
3567 vd->vdev_stat.vs_dspace += dspace_delta;
3568 mutex_exit(&vd->vdev_stat_lock);
3570 if (mc == spa_normal_class(spa)) {
3571 mutex_enter(&rvd->vdev_stat_lock);
3572 rvd->vdev_stat.vs_alloc += alloc_delta;
3573 rvd->vdev_stat.vs_space += space_delta;
3574 rvd->vdev_stat.vs_dspace += dspace_delta;
3575 mutex_exit(&rvd->vdev_stat_lock);
3578 if (mc != NULL) {
3579 ASSERT(rvd == vd->vdev_parent);
3580 ASSERT(vd->vdev_ms_count != 0);
3582 metaslab_class_space_update(mc,
3583 alloc_delta, defer_delta, space_delta, dspace_delta);
3588 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3589 * so that it will be written out next time the vdev configuration is synced.
3590 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3592 void
3593 vdev_config_dirty(vdev_t *vd)
3595 spa_t *spa = vd->vdev_spa;
3596 vdev_t *rvd = spa->spa_root_vdev;
3597 int c;
3599 ASSERT(spa_writeable(spa));
3602 * If this is an aux vdev (as with l2cache and spare devices), then we
3603 * update the vdev config manually and set the sync flag.
3605 if (vd->vdev_aux != NULL) {
3606 spa_aux_vdev_t *sav = vd->vdev_aux;
3607 nvlist_t **aux;
3608 uint_t naux;
3610 for (c = 0; c < sav->sav_count; c++) {
3611 if (sav->sav_vdevs[c] == vd)
3612 break;
3615 if (c == sav->sav_count) {
3617 * We're being removed. There's nothing more to do.
3619 ASSERT(sav->sav_sync == B_TRUE);
3620 return;
3623 sav->sav_sync = B_TRUE;
3625 if (nvlist_lookup_nvlist_array(sav->sav_config,
3626 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3627 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3628 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3631 ASSERT(c < naux);
3634 * Setting the nvlist in the middle if the array is a little
3635 * sketchy, but it will work.
3637 nvlist_free(aux[c]);
3638 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3640 return;
3644 * The dirty list is protected by the SCL_CONFIG lock. The caller
3645 * must either hold SCL_CONFIG as writer, or must be the sync thread
3646 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3647 * so this is sufficient to ensure mutual exclusion.
3649 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3650 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3651 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3653 if (vd == rvd) {
3654 for (c = 0; c < rvd->vdev_children; c++)
3655 vdev_config_dirty(rvd->vdev_child[c]);
3656 } else {
3657 ASSERT(vd == vd->vdev_top);
3659 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3660 vdev_is_concrete(vd)) {
3661 list_insert_head(&spa->spa_config_dirty_list, vd);
3666 void
3667 vdev_config_clean(vdev_t *vd)
3669 spa_t *spa = vd->vdev_spa;
3671 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3672 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3673 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3675 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3676 list_remove(&spa->spa_config_dirty_list, vd);
3680 * Mark a top-level vdev's state as dirty, so that the next pass of
3681 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3682 * the state changes from larger config changes because they require
3683 * much less locking, and are often needed for administrative actions.
3685 void
3686 vdev_state_dirty(vdev_t *vd)
3688 spa_t *spa = vd->vdev_spa;
3690 ASSERT(spa_writeable(spa));
3691 ASSERT(vd == vd->vdev_top);
3694 * The state list is protected by the SCL_STATE lock. The caller
3695 * must either hold SCL_STATE as writer, or must be the sync thread
3696 * (which holds SCL_STATE as reader). There's only one sync thread,
3697 * so this is sufficient to ensure mutual exclusion.
3699 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3700 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3701 spa_config_held(spa, SCL_STATE, RW_READER)));
3703 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3704 vdev_is_concrete(vd))
3705 list_insert_head(&spa->spa_state_dirty_list, vd);
3708 void
3709 vdev_state_clean(vdev_t *vd)
3711 spa_t *spa = vd->vdev_spa;
3713 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3714 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3715 spa_config_held(spa, SCL_STATE, RW_READER)));
3717 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3718 list_remove(&spa->spa_state_dirty_list, vd);
3722 * Propagate vdev state up from children to parent.
3724 void
3725 vdev_propagate_state(vdev_t *vd)
3727 spa_t *spa = vd->vdev_spa;
3728 vdev_t *rvd = spa->spa_root_vdev;
3729 int degraded = 0, faulted = 0;
3730 int corrupted = 0;
3731 vdev_t *child;
3733 if (vd->vdev_children > 0) {
3734 for (int c = 0; c < vd->vdev_children; c++) {
3735 child = vd->vdev_child[c];
3738 * Don't factor holes or indirect vdevs into the
3739 * decision.
3741 if (!vdev_is_concrete(child))
3742 continue;
3744 if (!vdev_readable(child) ||
3745 (!vdev_writeable(child) && spa_writeable(spa))) {
3747 * Root special: if there is a top-level log
3748 * device, treat the root vdev as if it were
3749 * degraded.
3751 if (child->vdev_islog && vd == rvd)
3752 degraded++;
3753 else
3754 faulted++;
3755 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3756 degraded++;
3759 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3760 corrupted++;
3763 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3766 * Root special: if there is a top-level vdev that cannot be
3767 * opened due to corrupted metadata, then propagate the root
3768 * vdev's aux state as 'corrupt' rather than 'insufficient
3769 * replicas'.
3771 if (corrupted && vd == rvd &&
3772 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3773 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3774 VDEV_AUX_CORRUPT_DATA);
3777 if (vd->vdev_parent)
3778 vdev_propagate_state(vd->vdev_parent);
3782 * Set a vdev's state. If this is during an open, we don't update the parent
3783 * state, because we're in the process of opening children depth-first.
3784 * Otherwise, we propagate the change to the parent.
3786 * If this routine places a device in a faulted state, an appropriate ereport is
3787 * generated.
3789 void
3790 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3792 uint64_t save_state;
3793 spa_t *spa = vd->vdev_spa;
3795 if (state == vd->vdev_state) {
3796 vd->vdev_stat.vs_aux = aux;
3797 return;
3800 save_state = vd->vdev_state;
3802 vd->vdev_state = state;
3803 vd->vdev_stat.vs_aux = aux;
3806 * If we are setting the vdev state to anything but an open state, then
3807 * always close the underlying device unless the device has requested
3808 * a delayed close (i.e. we're about to remove or fault the device).
3809 * Otherwise, we keep accessible but invalid devices open forever.
3810 * We don't call vdev_close() itself, because that implies some extra
3811 * checks (offline, etc) that we don't want here. This is limited to
3812 * leaf devices, because otherwise closing the device will affect other
3813 * children.
3815 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3816 vd->vdev_ops->vdev_op_leaf)
3817 vd->vdev_ops->vdev_op_close(vd);
3820 * If we have brought this vdev back into service, we need
3821 * to notify fmd so that it can gracefully repair any outstanding
3822 * cases due to a missing device. We do this in all cases, even those
3823 * that probably don't correlate to a repaired fault. This is sure to
3824 * catch all cases, and we let the zfs-retire agent sort it out. If
3825 * this is a transient state it's OK, as the retire agent will
3826 * double-check the state of the vdev before repairing it.
3828 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3829 vd->vdev_prevstate != state)
3830 zfs_post_state_change(spa, vd);
3832 if (vd->vdev_removed &&
3833 state == VDEV_STATE_CANT_OPEN &&
3834 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3836 * If the previous state is set to VDEV_STATE_REMOVED, then this
3837 * device was previously marked removed and someone attempted to
3838 * reopen it. If this failed due to a nonexistent device, then
3839 * keep the device in the REMOVED state. We also let this be if
3840 * it is one of our special test online cases, which is only
3841 * attempting to online the device and shouldn't generate an FMA
3842 * fault.
3844 vd->vdev_state = VDEV_STATE_REMOVED;
3845 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3846 } else if (state == VDEV_STATE_REMOVED) {
3847 vd->vdev_removed = B_TRUE;
3848 } else if (state == VDEV_STATE_CANT_OPEN) {
3850 * If we fail to open a vdev during an import or recovery, we
3851 * mark it as "not available", which signifies that it was
3852 * never there to begin with. Failure to open such a device
3853 * is not considered an error.
3855 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3856 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3857 vd->vdev_ops->vdev_op_leaf)
3858 vd->vdev_not_present = 1;
3861 * Post the appropriate ereport. If the 'prevstate' field is
3862 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3863 * that this is part of a vdev_reopen(). In this case, we don't
3864 * want to post the ereport if the device was already in the
3865 * CANT_OPEN state beforehand.
3867 * If the 'checkremove' flag is set, then this is an attempt to
3868 * online the device in response to an insertion event. If we
3869 * hit this case, then we have detected an insertion event for a
3870 * faulted or offline device that wasn't in the removed state.
3871 * In this scenario, we don't post an ereport because we are
3872 * about to replace the device, or attempt an online with
3873 * vdev_forcefault, which will generate the fault for us.
3875 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3876 !vd->vdev_not_present && !vd->vdev_checkremove &&
3877 vd != spa->spa_root_vdev) {
3878 const char *class;
3880 switch (aux) {
3881 case VDEV_AUX_OPEN_FAILED:
3882 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3883 break;
3884 case VDEV_AUX_CORRUPT_DATA:
3885 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3886 break;
3887 case VDEV_AUX_NO_REPLICAS:
3888 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3889 break;
3890 case VDEV_AUX_BAD_GUID_SUM:
3891 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3892 break;
3893 case VDEV_AUX_TOO_SMALL:
3894 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3895 break;
3896 case VDEV_AUX_BAD_LABEL:
3897 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3898 break;
3899 default:
3900 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3903 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3906 /* Erase any notion of persistent removed state */
3907 vd->vdev_removed = B_FALSE;
3908 } else {
3909 vd->vdev_removed = B_FALSE;
3912 if (!isopen && vd->vdev_parent)
3913 vdev_propagate_state(vd->vdev_parent);
3916 boolean_t
3917 vdev_children_are_offline(vdev_t *vd)
3919 ASSERT(!vd->vdev_ops->vdev_op_leaf);
3921 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3922 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3923 return (B_FALSE);
3926 return (B_TRUE);
3930 * Check the vdev configuration to ensure that it's capable of supporting
3931 * a root pool. We do not support partial configuration.
3932 * In addition, only a single top-level vdev is allowed.
3934 boolean_t
3935 vdev_is_bootable(vdev_t *vd)
3937 if (!vd->vdev_ops->vdev_op_leaf) {
3938 char *vdev_type = vd->vdev_ops->vdev_op_type;
3940 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3941 vd->vdev_children > 1) {
3942 return (B_FALSE);
3943 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3944 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3945 return (B_FALSE);
3949 for (int c = 0; c < vd->vdev_children; c++) {
3950 if (!vdev_is_bootable(vd->vdev_child[c]))
3951 return (B_FALSE);
3953 return (B_TRUE);
3956 boolean_t
3957 vdev_is_concrete(vdev_t *vd)
3959 vdev_ops_t *ops = vd->vdev_ops;
3960 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3961 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3962 return (B_FALSE);
3963 } else {
3964 return (B_TRUE);
3969 * Determine if a log device has valid content. If the vdev was
3970 * removed or faulted in the MOS config then we know that
3971 * the content on the log device has already been written to the pool.
3973 boolean_t
3974 vdev_log_state_valid(vdev_t *vd)
3976 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3977 !vd->vdev_removed)
3978 return (B_TRUE);
3980 for (int c = 0; c < vd->vdev_children; c++)
3981 if (vdev_log_state_valid(vd->vdev_child[c]))
3982 return (B_TRUE);
3984 return (B_FALSE);
3988 * Expand a vdev if possible.
3990 void
3991 vdev_expand(vdev_t *vd, uint64_t txg)
3993 ASSERT(vd->vdev_top == vd);
3994 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3996 vdev_set_deflate_ratio(vd);
3998 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3999 vdev_is_concrete(vd)) {
4000 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4001 vdev_config_dirty(vd);
4006 * Split a vdev.
4008 void
4009 vdev_split(vdev_t *vd)
4011 vdev_t *cvd, *pvd = vd->vdev_parent;
4013 vdev_remove_child(pvd, vd);
4014 vdev_compact_children(pvd);
4016 cvd = pvd->vdev_child[0];
4017 if (pvd->vdev_children == 1) {
4018 vdev_remove_parent(cvd);
4019 cvd->vdev_splitting = B_TRUE;
4021 vdev_propagate_state(cvd);
4024 void
4025 vdev_deadman(vdev_t *vd)
4027 for (int c = 0; c < vd->vdev_children; c++) {
4028 vdev_t *cvd = vd->vdev_child[c];
4030 vdev_deadman(cvd);
4033 if (vd->vdev_ops->vdev_op_leaf) {
4034 vdev_queue_t *vq = &vd->vdev_queue;
4036 mutex_enter(&vq->vq_lock);
4037 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4038 spa_t *spa = vd->vdev_spa;
4039 zio_t *fio;
4040 uint64_t delta;
4043 * Look at the head of all the pending queues,
4044 * if any I/O has been outstanding for longer than
4045 * the spa_deadman_synctime we panic the system.
4047 fio = avl_first(&vq->vq_active_tree);
4048 delta = gethrtime() - fio->io_timestamp;
4049 if (delta > spa_deadman_synctime(spa)) {
4050 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4051 "%lluns, delta %lluns, last io %lluns",
4052 fio->io_timestamp, (u_longlong_t)delta,
4053 vq->vq_io_complete_ts);
4054 fm_panic("I/O to pool '%s' appears to be "
4055 "hung.", spa_name(spa));
4058 mutex_exit(&vq->vq_lock);