9084 spa_*_ashift must ignore spare devices
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev.c
blob0df76e22a435b4a00215681fb113629729060ca0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
54 * Virtual device management.
57 static vdev_ops_t *vdev_ops_table[] = {
58 &vdev_root_ops,
59 &vdev_raidz_ops,
60 &vdev_mirror_ops,
61 &vdev_replacing_ops,
62 &vdev_spare_ops,
63 &vdev_disk_ops,
64 &vdev_file_ops,
65 &vdev_missing_ops,
66 &vdev_hole_ops,
67 &vdev_indirect_ops,
68 NULL
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
75 * When a vdev is added, it will be divided into approximately (but no
76 * more than) this number of metaslabs.
78 int metaslabs_per_vdev = 200;
80 boolean_t vdev_validate_skip = B_FALSE;
82 /*PRINTFLIKE2*/
83 void
84 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
86 va_list adx;
87 char buf[256];
89 va_start(adx, fmt);
90 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
91 va_end(adx);
93 if (vd->vdev_path != NULL) {
94 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
95 vd->vdev_path, buf);
96 } else {
97 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
98 vd->vdev_ops->vdev_op_type,
99 (u_longlong_t)vd->vdev_id,
100 (u_longlong_t)vd->vdev_guid, buf);
104 void
105 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
107 char state[20];
109 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
110 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
111 vd->vdev_ops->vdev_op_type);
112 return;
115 switch (vd->vdev_state) {
116 case VDEV_STATE_UNKNOWN:
117 (void) snprintf(state, sizeof (state), "unknown");
118 break;
119 case VDEV_STATE_CLOSED:
120 (void) snprintf(state, sizeof (state), "closed");
121 break;
122 case VDEV_STATE_OFFLINE:
123 (void) snprintf(state, sizeof (state), "offline");
124 break;
125 case VDEV_STATE_REMOVED:
126 (void) snprintf(state, sizeof (state), "removed");
127 break;
128 case VDEV_STATE_CANT_OPEN:
129 (void) snprintf(state, sizeof (state), "can't open");
130 break;
131 case VDEV_STATE_FAULTED:
132 (void) snprintf(state, sizeof (state), "faulted");
133 break;
134 case VDEV_STATE_DEGRADED:
135 (void) snprintf(state, sizeof (state), "degraded");
136 break;
137 case VDEV_STATE_HEALTHY:
138 (void) snprintf(state, sizeof (state), "healthy");
139 break;
140 default:
141 (void) snprintf(state, sizeof (state), "<state %u>",
142 (uint_t)vd->vdev_state);
145 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
146 "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
147 vd->vdev_islog ? " (log)" : "",
148 (u_longlong_t)vd->vdev_guid,
149 vd->vdev_path ? vd->vdev_path : "N/A", state);
151 for (uint64_t i = 0; i < vd->vdev_children; i++)
152 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
156 * Given a vdev type, return the appropriate ops vector.
158 static vdev_ops_t *
159 vdev_getops(const char *type)
161 vdev_ops_t *ops, **opspp;
163 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
164 if (strcmp(ops->vdev_op_type, type) == 0)
165 break;
167 return (ops);
171 * Default asize function: return the MAX of psize with the asize of
172 * all children. This is what's used by anything other than RAID-Z.
174 uint64_t
175 vdev_default_asize(vdev_t *vd, uint64_t psize)
177 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
178 uint64_t csize;
180 for (int c = 0; c < vd->vdev_children; c++) {
181 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
182 asize = MAX(asize, csize);
185 return (asize);
189 * Get the minimum allocatable size. We define the allocatable size as
190 * the vdev's asize rounded to the nearest metaslab. This allows us to
191 * replace or attach devices which don't have the same physical size but
192 * can still satisfy the same number of allocations.
194 uint64_t
195 vdev_get_min_asize(vdev_t *vd)
197 vdev_t *pvd = vd->vdev_parent;
200 * If our parent is NULL (inactive spare or cache) or is the root,
201 * just return our own asize.
203 if (pvd == NULL)
204 return (vd->vdev_asize);
207 * The top-level vdev just returns the allocatable size rounded
208 * to the nearest metaslab.
210 if (vd == vd->vdev_top)
211 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
214 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
215 * so each child must provide at least 1/Nth of its asize.
217 if (pvd->vdev_ops == &vdev_raidz_ops)
218 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
219 pvd->vdev_children);
221 return (pvd->vdev_min_asize);
224 void
225 vdev_set_min_asize(vdev_t *vd)
227 vd->vdev_min_asize = vdev_get_min_asize(vd);
229 for (int c = 0; c < vd->vdev_children; c++)
230 vdev_set_min_asize(vd->vdev_child[c]);
233 vdev_t *
234 vdev_lookup_top(spa_t *spa, uint64_t vdev)
236 vdev_t *rvd = spa->spa_root_vdev;
238 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
240 if (vdev < rvd->vdev_children) {
241 ASSERT(rvd->vdev_child[vdev] != NULL);
242 return (rvd->vdev_child[vdev]);
245 return (NULL);
248 vdev_t *
249 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
251 vdev_t *mvd;
253 if (vd->vdev_guid == guid)
254 return (vd);
256 for (int c = 0; c < vd->vdev_children; c++)
257 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
258 NULL)
259 return (mvd);
261 return (NULL);
264 static int
265 vdev_count_leaves_impl(vdev_t *vd)
267 int n = 0;
269 if (vd->vdev_ops->vdev_op_leaf)
270 return (1);
272 for (int c = 0; c < vd->vdev_children; c++)
273 n += vdev_count_leaves_impl(vd->vdev_child[c]);
275 return (n);
279 vdev_count_leaves(spa_t *spa)
281 return (vdev_count_leaves_impl(spa->spa_root_vdev));
284 void
285 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
287 size_t oldsize, newsize;
288 uint64_t id = cvd->vdev_id;
289 vdev_t **newchild;
290 spa_t *spa = cvd->vdev_spa;
292 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
293 ASSERT(cvd->vdev_parent == NULL);
295 cvd->vdev_parent = pvd;
297 if (pvd == NULL)
298 return;
300 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
302 oldsize = pvd->vdev_children * sizeof (vdev_t *);
303 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
304 newsize = pvd->vdev_children * sizeof (vdev_t *);
306 newchild = kmem_zalloc(newsize, KM_SLEEP);
307 if (pvd->vdev_child != NULL) {
308 bcopy(pvd->vdev_child, newchild, oldsize);
309 kmem_free(pvd->vdev_child, oldsize);
312 pvd->vdev_child = newchild;
313 pvd->vdev_child[id] = cvd;
315 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
316 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
319 * Walk up all ancestors to update guid sum.
321 for (; pvd != NULL; pvd = pvd->vdev_parent)
322 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
325 void
326 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
328 int c;
329 uint_t id = cvd->vdev_id;
331 ASSERT(cvd->vdev_parent == pvd);
333 if (pvd == NULL)
334 return;
336 ASSERT(id < pvd->vdev_children);
337 ASSERT(pvd->vdev_child[id] == cvd);
339 pvd->vdev_child[id] = NULL;
340 cvd->vdev_parent = NULL;
342 for (c = 0; c < pvd->vdev_children; c++)
343 if (pvd->vdev_child[c])
344 break;
346 if (c == pvd->vdev_children) {
347 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
348 pvd->vdev_child = NULL;
349 pvd->vdev_children = 0;
353 * Walk up all ancestors to update guid sum.
355 for (; pvd != NULL; pvd = pvd->vdev_parent)
356 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
360 * Remove any holes in the child array.
362 void
363 vdev_compact_children(vdev_t *pvd)
365 vdev_t **newchild, *cvd;
366 int oldc = pvd->vdev_children;
367 int newc;
369 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
371 for (int c = newc = 0; c < oldc; c++)
372 if (pvd->vdev_child[c])
373 newc++;
375 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
377 for (int c = newc = 0; c < oldc; c++) {
378 if ((cvd = pvd->vdev_child[c]) != NULL) {
379 newchild[newc] = cvd;
380 cvd->vdev_id = newc++;
384 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
385 pvd->vdev_child = newchild;
386 pvd->vdev_children = newc;
390 * Allocate and minimally initialize a vdev_t.
392 vdev_t *
393 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
395 vdev_t *vd;
396 vdev_indirect_config_t *vic;
398 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
399 vic = &vd->vdev_indirect_config;
401 if (spa->spa_root_vdev == NULL) {
402 ASSERT(ops == &vdev_root_ops);
403 spa->spa_root_vdev = vd;
404 spa->spa_load_guid = spa_generate_guid(NULL);
407 if (guid == 0 && ops != &vdev_hole_ops) {
408 if (spa->spa_root_vdev == vd) {
410 * The root vdev's guid will also be the pool guid,
411 * which must be unique among all pools.
413 guid = spa_generate_guid(NULL);
414 } else {
416 * Any other vdev's guid must be unique within the pool.
418 guid = spa_generate_guid(spa);
420 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
423 vd->vdev_spa = spa;
424 vd->vdev_id = id;
425 vd->vdev_guid = guid;
426 vd->vdev_guid_sum = guid;
427 vd->vdev_ops = ops;
428 vd->vdev_state = VDEV_STATE_CLOSED;
429 vd->vdev_ishole = (ops == &vdev_hole_ops);
430 vic->vic_prev_indirect_vdev = UINT64_MAX;
432 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
433 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
434 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
436 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
437 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
438 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
439 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
440 for (int t = 0; t < DTL_TYPES; t++) {
441 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
443 txg_list_create(&vd->vdev_ms_list, spa,
444 offsetof(struct metaslab, ms_txg_node));
445 txg_list_create(&vd->vdev_dtl_list, spa,
446 offsetof(struct vdev, vdev_dtl_node));
447 vd->vdev_stat.vs_timestamp = gethrtime();
448 vdev_queue_init(vd);
449 vdev_cache_init(vd);
451 return (vd);
455 * Allocate a new vdev. The 'alloctype' is used to control whether we are
456 * creating a new vdev or loading an existing one - the behavior is slightly
457 * different for each case.
460 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
461 int alloctype)
463 vdev_ops_t *ops;
464 char *type;
465 uint64_t guid = 0, islog, nparity;
466 vdev_t *vd;
467 vdev_indirect_config_t *vic;
469 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
472 return (SET_ERROR(EINVAL));
474 if ((ops = vdev_getops(type)) == NULL)
475 return (SET_ERROR(EINVAL));
478 * If this is a load, get the vdev guid from the nvlist.
479 * Otherwise, vdev_alloc_common() will generate one for us.
481 if (alloctype == VDEV_ALLOC_LOAD) {
482 uint64_t label_id;
484 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
485 label_id != id)
486 return (SET_ERROR(EINVAL));
488 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
489 return (SET_ERROR(EINVAL));
490 } else if (alloctype == VDEV_ALLOC_SPARE) {
491 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
492 return (SET_ERROR(EINVAL));
493 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
494 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
495 return (SET_ERROR(EINVAL));
496 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
497 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
498 return (SET_ERROR(EINVAL));
502 * The first allocated vdev must be of type 'root'.
504 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
505 return (SET_ERROR(EINVAL));
508 * Determine whether we're a log vdev.
510 islog = 0;
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
512 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
513 return (SET_ERROR(ENOTSUP));
515 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
516 return (SET_ERROR(ENOTSUP));
519 * Set the nparity property for RAID-Z vdevs.
521 nparity = -1ULL;
522 if (ops == &vdev_raidz_ops) {
523 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
524 &nparity) == 0) {
525 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
526 return (SET_ERROR(EINVAL));
528 * Previous versions could only support 1 or 2 parity
529 * device.
531 if (nparity > 1 &&
532 spa_version(spa) < SPA_VERSION_RAIDZ2)
533 return (SET_ERROR(ENOTSUP));
534 if (nparity > 2 &&
535 spa_version(spa) < SPA_VERSION_RAIDZ3)
536 return (SET_ERROR(ENOTSUP));
537 } else {
539 * We require the parity to be specified for SPAs that
540 * support multiple parity levels.
542 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
543 return (SET_ERROR(EINVAL));
545 * Otherwise, we default to 1 parity device for RAID-Z.
547 nparity = 1;
549 } else {
550 nparity = 0;
552 ASSERT(nparity != -1ULL);
554 vd = vdev_alloc_common(spa, id, guid, ops);
555 vic = &vd->vdev_indirect_config;
557 vd->vdev_islog = islog;
558 vd->vdev_nparity = nparity;
560 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
561 vd->vdev_path = spa_strdup(vd->vdev_path);
562 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
563 vd->vdev_devid = spa_strdup(vd->vdev_devid);
564 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
565 &vd->vdev_physpath) == 0)
566 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
567 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
568 vd->vdev_fru = spa_strdup(vd->vdev_fru);
571 * Set the whole_disk property. If it's not specified, leave the value
572 * as -1.
574 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
575 &vd->vdev_wholedisk) != 0)
576 vd->vdev_wholedisk = -1ULL;
578 ASSERT0(vic->vic_mapping_object);
579 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
580 &vic->vic_mapping_object);
581 ASSERT0(vic->vic_births_object);
582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
583 &vic->vic_births_object);
584 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
585 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
586 &vic->vic_prev_indirect_vdev);
589 * Look for the 'not present' flag. This will only be set if the device
590 * was not present at the time of import.
592 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
593 &vd->vdev_not_present);
596 * Get the alignment requirement.
598 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
601 * Retrieve the vdev creation time.
603 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
604 &vd->vdev_crtxg);
607 * If we're a top-level vdev, try to load the allocation parameters.
609 if (parent && !parent->vdev_parent &&
610 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
611 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
612 &vd->vdev_ms_array);
613 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
614 &vd->vdev_ms_shift);
615 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
616 &vd->vdev_asize);
617 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
618 &vd->vdev_removing);
619 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
620 &vd->vdev_top_zap);
621 } else {
622 ASSERT0(vd->vdev_top_zap);
625 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
626 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
627 alloctype == VDEV_ALLOC_ADD ||
628 alloctype == VDEV_ALLOC_SPLIT ||
629 alloctype == VDEV_ALLOC_ROOTPOOL);
630 vd->vdev_mg = metaslab_group_create(islog ?
631 spa_log_class(spa) : spa_normal_class(spa), vd);
634 if (vd->vdev_ops->vdev_op_leaf &&
635 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
636 (void) nvlist_lookup_uint64(nv,
637 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
638 } else {
639 ASSERT0(vd->vdev_leaf_zap);
643 * If we're a leaf vdev, try to load the DTL object and other state.
646 if (vd->vdev_ops->vdev_op_leaf &&
647 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
648 alloctype == VDEV_ALLOC_ROOTPOOL)) {
649 if (alloctype == VDEV_ALLOC_LOAD) {
650 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
651 &vd->vdev_dtl_object);
652 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
653 &vd->vdev_unspare);
656 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
657 uint64_t spare = 0;
659 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
660 &spare) == 0 && spare)
661 spa_spare_add(vd);
664 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
665 &vd->vdev_offline);
667 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
668 &vd->vdev_resilver_txg);
671 * When importing a pool, we want to ignore the persistent fault
672 * state, as the diagnosis made on another system may not be
673 * valid in the current context. Local vdevs will
674 * remain in the faulted state.
676 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
677 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
678 &vd->vdev_faulted);
679 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
680 &vd->vdev_degraded);
681 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
682 &vd->vdev_removed);
684 if (vd->vdev_faulted || vd->vdev_degraded) {
685 char *aux;
687 vd->vdev_label_aux =
688 VDEV_AUX_ERR_EXCEEDED;
689 if (nvlist_lookup_string(nv,
690 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
691 strcmp(aux, "external") == 0)
692 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
698 * Add ourselves to the parent's list of children.
700 vdev_add_child(parent, vd);
702 *vdp = vd;
704 return (0);
707 void
708 vdev_free(vdev_t *vd)
710 spa_t *spa = vd->vdev_spa;
713 * vdev_free() implies closing the vdev first. This is simpler than
714 * trying to ensure complicated semantics for all callers.
716 vdev_close(vd);
718 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
719 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
722 * Free all children.
724 for (int c = 0; c < vd->vdev_children; c++)
725 vdev_free(vd->vdev_child[c]);
727 ASSERT(vd->vdev_child == NULL);
728 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
731 * Discard allocation state.
733 if (vd->vdev_mg != NULL) {
734 vdev_metaslab_fini(vd);
735 metaslab_group_destroy(vd->vdev_mg);
738 ASSERT0(vd->vdev_stat.vs_space);
739 ASSERT0(vd->vdev_stat.vs_dspace);
740 ASSERT0(vd->vdev_stat.vs_alloc);
743 * Remove this vdev from its parent's child list.
745 vdev_remove_child(vd->vdev_parent, vd);
747 ASSERT(vd->vdev_parent == NULL);
750 * Clean up vdev structure.
752 vdev_queue_fini(vd);
753 vdev_cache_fini(vd);
755 if (vd->vdev_path)
756 spa_strfree(vd->vdev_path);
757 if (vd->vdev_devid)
758 spa_strfree(vd->vdev_devid);
759 if (vd->vdev_physpath)
760 spa_strfree(vd->vdev_physpath);
761 if (vd->vdev_fru)
762 spa_strfree(vd->vdev_fru);
764 if (vd->vdev_isspare)
765 spa_spare_remove(vd);
766 if (vd->vdev_isl2cache)
767 spa_l2cache_remove(vd);
769 txg_list_destroy(&vd->vdev_ms_list);
770 txg_list_destroy(&vd->vdev_dtl_list);
772 mutex_enter(&vd->vdev_dtl_lock);
773 space_map_close(vd->vdev_dtl_sm);
774 for (int t = 0; t < DTL_TYPES; t++) {
775 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
776 range_tree_destroy(vd->vdev_dtl[t]);
778 mutex_exit(&vd->vdev_dtl_lock);
780 EQUIV(vd->vdev_indirect_births != NULL,
781 vd->vdev_indirect_mapping != NULL);
782 if (vd->vdev_indirect_births != NULL) {
783 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
784 vdev_indirect_births_close(vd->vdev_indirect_births);
787 if (vd->vdev_obsolete_sm != NULL) {
788 ASSERT(vd->vdev_removing ||
789 vd->vdev_ops == &vdev_indirect_ops);
790 space_map_close(vd->vdev_obsolete_sm);
791 vd->vdev_obsolete_sm = NULL;
793 range_tree_destroy(vd->vdev_obsolete_segments);
794 rw_destroy(&vd->vdev_indirect_rwlock);
795 mutex_destroy(&vd->vdev_obsolete_lock);
797 mutex_destroy(&vd->vdev_queue_lock);
798 mutex_destroy(&vd->vdev_dtl_lock);
799 mutex_destroy(&vd->vdev_stat_lock);
800 mutex_destroy(&vd->vdev_probe_lock);
802 if (vd == spa->spa_root_vdev)
803 spa->spa_root_vdev = NULL;
805 kmem_free(vd, sizeof (vdev_t));
809 * Transfer top-level vdev state from svd to tvd.
811 static void
812 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
814 spa_t *spa = svd->vdev_spa;
815 metaslab_t *msp;
816 vdev_t *vd;
817 int t;
819 ASSERT(tvd == tvd->vdev_top);
821 tvd->vdev_ms_array = svd->vdev_ms_array;
822 tvd->vdev_ms_shift = svd->vdev_ms_shift;
823 tvd->vdev_ms_count = svd->vdev_ms_count;
824 tvd->vdev_top_zap = svd->vdev_top_zap;
826 svd->vdev_ms_array = 0;
827 svd->vdev_ms_shift = 0;
828 svd->vdev_ms_count = 0;
829 svd->vdev_top_zap = 0;
831 if (tvd->vdev_mg)
832 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
833 tvd->vdev_mg = svd->vdev_mg;
834 tvd->vdev_ms = svd->vdev_ms;
836 svd->vdev_mg = NULL;
837 svd->vdev_ms = NULL;
839 if (tvd->vdev_mg != NULL)
840 tvd->vdev_mg->mg_vd = tvd;
842 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
843 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
844 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
846 svd->vdev_stat.vs_alloc = 0;
847 svd->vdev_stat.vs_space = 0;
848 svd->vdev_stat.vs_dspace = 0;
850 for (t = 0; t < TXG_SIZE; t++) {
851 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
852 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
853 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
854 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
855 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
856 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
859 if (list_link_active(&svd->vdev_config_dirty_node)) {
860 vdev_config_clean(svd);
861 vdev_config_dirty(tvd);
864 if (list_link_active(&svd->vdev_state_dirty_node)) {
865 vdev_state_clean(svd);
866 vdev_state_dirty(tvd);
869 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
870 svd->vdev_deflate_ratio = 0;
872 tvd->vdev_islog = svd->vdev_islog;
873 svd->vdev_islog = 0;
876 static void
877 vdev_top_update(vdev_t *tvd, vdev_t *vd)
879 if (vd == NULL)
880 return;
882 vd->vdev_top = tvd;
884 for (int c = 0; c < vd->vdev_children; c++)
885 vdev_top_update(tvd, vd->vdev_child[c]);
889 * Add a mirror/replacing vdev above an existing vdev.
891 vdev_t *
892 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
894 spa_t *spa = cvd->vdev_spa;
895 vdev_t *pvd = cvd->vdev_parent;
896 vdev_t *mvd;
898 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
900 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
902 mvd->vdev_asize = cvd->vdev_asize;
903 mvd->vdev_min_asize = cvd->vdev_min_asize;
904 mvd->vdev_max_asize = cvd->vdev_max_asize;
905 mvd->vdev_psize = cvd->vdev_psize;
906 mvd->vdev_ashift = cvd->vdev_ashift;
907 mvd->vdev_state = cvd->vdev_state;
908 mvd->vdev_crtxg = cvd->vdev_crtxg;
910 vdev_remove_child(pvd, cvd);
911 vdev_add_child(pvd, mvd);
912 cvd->vdev_id = mvd->vdev_children;
913 vdev_add_child(mvd, cvd);
914 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
916 if (mvd == mvd->vdev_top)
917 vdev_top_transfer(cvd, mvd);
919 return (mvd);
923 * Remove a 1-way mirror/replacing vdev from the tree.
925 void
926 vdev_remove_parent(vdev_t *cvd)
928 vdev_t *mvd = cvd->vdev_parent;
929 vdev_t *pvd = mvd->vdev_parent;
931 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
933 ASSERT(mvd->vdev_children == 1);
934 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
935 mvd->vdev_ops == &vdev_replacing_ops ||
936 mvd->vdev_ops == &vdev_spare_ops);
937 cvd->vdev_ashift = mvd->vdev_ashift;
939 vdev_remove_child(mvd, cvd);
940 vdev_remove_child(pvd, mvd);
943 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
944 * Otherwise, we could have detached an offline device, and when we
945 * go to import the pool we'll think we have two top-level vdevs,
946 * instead of a different version of the same top-level vdev.
948 if (mvd->vdev_top == mvd) {
949 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
950 cvd->vdev_orig_guid = cvd->vdev_guid;
951 cvd->vdev_guid += guid_delta;
952 cvd->vdev_guid_sum += guid_delta;
954 cvd->vdev_id = mvd->vdev_id;
955 vdev_add_child(pvd, cvd);
956 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
958 if (cvd == cvd->vdev_top)
959 vdev_top_transfer(mvd, cvd);
961 ASSERT(mvd->vdev_children == 0);
962 vdev_free(mvd);
966 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
968 spa_t *spa = vd->vdev_spa;
969 objset_t *mos = spa->spa_meta_objset;
970 uint64_t m;
971 uint64_t oldc = vd->vdev_ms_count;
972 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
973 metaslab_t **mspp;
974 int error;
976 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
979 * This vdev is not being allocated from yet or is a hole.
981 if (vd->vdev_ms_shift == 0)
982 return (0);
984 ASSERT(!vd->vdev_ishole);
986 ASSERT(oldc <= newc);
988 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
990 if (oldc != 0) {
991 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
992 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
995 vd->vdev_ms = mspp;
996 vd->vdev_ms_count = newc;
998 for (m = oldc; m < newc; m++) {
999 uint64_t object = 0;
1002 * vdev_ms_array may be 0 if we are creating the "fake"
1003 * metaslabs for an indirect vdev for zdb's leak detection.
1004 * See zdb_leak_init().
1006 if (txg == 0 && vd->vdev_ms_array != 0) {
1007 error = dmu_read(mos, vd->vdev_ms_array,
1008 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1009 DMU_READ_PREFETCH);
1010 if (error != 0) {
1011 vdev_dbgmsg(vd, "unable to read the metaslab "
1012 "array [error=%d]", error);
1013 return (error);
1017 error = metaslab_init(vd->vdev_mg, m, object, txg,
1018 &(vd->vdev_ms[m]));
1019 if (error != 0) {
1020 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1021 error);
1022 return (error);
1026 if (txg == 0)
1027 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1030 * If the vdev is being removed we don't activate
1031 * the metaslabs since we want to ensure that no new
1032 * allocations are performed on this device.
1034 if (oldc == 0 && !vd->vdev_removing)
1035 metaslab_group_activate(vd->vdev_mg);
1037 if (txg == 0)
1038 spa_config_exit(spa, SCL_ALLOC, FTAG);
1040 return (0);
1043 void
1044 vdev_metaslab_fini(vdev_t *vd)
1046 if (vd->vdev_ms != NULL) {
1047 uint64_t count = vd->vdev_ms_count;
1049 metaslab_group_passivate(vd->vdev_mg);
1050 for (uint64_t m = 0; m < count; m++) {
1051 metaslab_t *msp = vd->vdev_ms[m];
1053 if (msp != NULL)
1054 metaslab_fini(msp);
1056 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1057 vd->vdev_ms = NULL;
1059 vd->vdev_ms_count = 0;
1061 ASSERT0(vd->vdev_ms_count);
1064 typedef struct vdev_probe_stats {
1065 boolean_t vps_readable;
1066 boolean_t vps_writeable;
1067 int vps_flags;
1068 } vdev_probe_stats_t;
1070 static void
1071 vdev_probe_done(zio_t *zio)
1073 spa_t *spa = zio->io_spa;
1074 vdev_t *vd = zio->io_vd;
1075 vdev_probe_stats_t *vps = zio->io_private;
1077 ASSERT(vd->vdev_probe_zio != NULL);
1079 if (zio->io_type == ZIO_TYPE_READ) {
1080 if (zio->io_error == 0)
1081 vps->vps_readable = 1;
1082 if (zio->io_error == 0 && spa_writeable(spa)) {
1083 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1084 zio->io_offset, zio->io_size, zio->io_abd,
1085 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1086 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1087 } else {
1088 abd_free(zio->io_abd);
1090 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1091 if (zio->io_error == 0)
1092 vps->vps_writeable = 1;
1093 abd_free(zio->io_abd);
1094 } else if (zio->io_type == ZIO_TYPE_NULL) {
1095 zio_t *pio;
1097 vd->vdev_cant_read |= !vps->vps_readable;
1098 vd->vdev_cant_write |= !vps->vps_writeable;
1100 if (vdev_readable(vd) &&
1101 (vdev_writeable(vd) || !spa_writeable(spa))) {
1102 zio->io_error = 0;
1103 } else {
1104 ASSERT(zio->io_error != 0);
1105 vdev_dbgmsg(vd, "failed probe");
1106 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1107 spa, vd, NULL, 0, 0);
1108 zio->io_error = SET_ERROR(ENXIO);
1111 mutex_enter(&vd->vdev_probe_lock);
1112 ASSERT(vd->vdev_probe_zio == zio);
1113 vd->vdev_probe_zio = NULL;
1114 mutex_exit(&vd->vdev_probe_lock);
1116 zio_link_t *zl = NULL;
1117 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1118 if (!vdev_accessible(vd, pio))
1119 pio->io_error = SET_ERROR(ENXIO);
1121 kmem_free(vps, sizeof (*vps));
1126 * Determine whether this device is accessible.
1128 * Read and write to several known locations: the pad regions of each
1129 * vdev label but the first, which we leave alone in case it contains
1130 * a VTOC.
1132 zio_t *
1133 vdev_probe(vdev_t *vd, zio_t *zio)
1135 spa_t *spa = vd->vdev_spa;
1136 vdev_probe_stats_t *vps = NULL;
1137 zio_t *pio;
1139 ASSERT(vd->vdev_ops->vdev_op_leaf);
1142 * Don't probe the probe.
1144 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1145 return (NULL);
1148 * To prevent 'probe storms' when a device fails, we create
1149 * just one probe i/o at a time. All zios that want to probe
1150 * this vdev will become parents of the probe io.
1152 mutex_enter(&vd->vdev_probe_lock);
1154 if ((pio = vd->vdev_probe_zio) == NULL) {
1155 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1157 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1158 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1159 ZIO_FLAG_TRYHARD;
1161 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1163 * vdev_cant_read and vdev_cant_write can only
1164 * transition from TRUE to FALSE when we have the
1165 * SCL_ZIO lock as writer; otherwise they can only
1166 * transition from FALSE to TRUE. This ensures that
1167 * any zio looking at these values can assume that
1168 * failures persist for the life of the I/O. That's
1169 * important because when a device has intermittent
1170 * connectivity problems, we want to ensure that
1171 * they're ascribed to the device (ENXIO) and not
1172 * the zio (EIO).
1174 * Since we hold SCL_ZIO as writer here, clear both
1175 * values so the probe can reevaluate from first
1176 * principles.
1178 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1179 vd->vdev_cant_read = B_FALSE;
1180 vd->vdev_cant_write = B_FALSE;
1183 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1184 vdev_probe_done, vps,
1185 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1188 * We can't change the vdev state in this context, so we
1189 * kick off an async task to do it on our behalf.
1191 if (zio != NULL) {
1192 vd->vdev_probe_wanted = B_TRUE;
1193 spa_async_request(spa, SPA_ASYNC_PROBE);
1197 if (zio != NULL)
1198 zio_add_child(zio, pio);
1200 mutex_exit(&vd->vdev_probe_lock);
1202 if (vps == NULL) {
1203 ASSERT(zio != NULL);
1204 return (NULL);
1207 for (int l = 1; l < VDEV_LABELS; l++) {
1208 zio_nowait(zio_read_phys(pio, vd,
1209 vdev_label_offset(vd->vdev_psize, l,
1210 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1211 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1212 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1213 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1216 if (zio == NULL)
1217 return (pio);
1219 zio_nowait(pio);
1220 return (NULL);
1223 static void
1224 vdev_open_child(void *arg)
1226 vdev_t *vd = arg;
1228 vd->vdev_open_thread = curthread;
1229 vd->vdev_open_error = vdev_open(vd);
1230 vd->vdev_open_thread = NULL;
1233 boolean_t
1234 vdev_uses_zvols(vdev_t *vd)
1236 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1237 strlen(ZVOL_DIR)) == 0)
1238 return (B_TRUE);
1239 for (int c = 0; c < vd->vdev_children; c++)
1240 if (vdev_uses_zvols(vd->vdev_child[c]))
1241 return (B_TRUE);
1242 return (B_FALSE);
1245 void
1246 vdev_open_children(vdev_t *vd)
1248 taskq_t *tq;
1249 int children = vd->vdev_children;
1252 * in order to handle pools on top of zvols, do the opens
1253 * in a single thread so that the same thread holds the
1254 * spa_namespace_lock
1256 if (vdev_uses_zvols(vd)) {
1257 for (int c = 0; c < children; c++)
1258 vd->vdev_child[c]->vdev_open_error =
1259 vdev_open(vd->vdev_child[c]);
1260 return;
1262 tq = taskq_create("vdev_open", children, minclsyspri,
1263 children, children, TASKQ_PREPOPULATE);
1265 for (int c = 0; c < children; c++)
1266 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1267 TQ_SLEEP) != NULL);
1269 taskq_destroy(tq);
1273 * Compute the raidz-deflation ratio. Note, we hard-code
1274 * in 128k (1 << 17) because it is the "typical" blocksize.
1275 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1276 * otherwise it would inconsistently account for existing bp's.
1278 static void
1279 vdev_set_deflate_ratio(vdev_t *vd)
1281 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1282 vd->vdev_deflate_ratio = (1 << 17) /
1283 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1288 * Prepare a virtual device for access.
1291 vdev_open(vdev_t *vd)
1293 spa_t *spa = vd->vdev_spa;
1294 int error;
1295 uint64_t osize = 0;
1296 uint64_t max_osize = 0;
1297 uint64_t asize, max_asize, psize;
1298 uint64_t ashift = 0;
1300 ASSERT(vd->vdev_open_thread == curthread ||
1301 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1302 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1303 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1304 vd->vdev_state == VDEV_STATE_OFFLINE);
1306 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1307 vd->vdev_cant_read = B_FALSE;
1308 vd->vdev_cant_write = B_FALSE;
1309 vd->vdev_min_asize = vdev_get_min_asize(vd);
1312 * If this vdev is not removed, check its fault status. If it's
1313 * faulted, bail out of the open.
1315 if (!vd->vdev_removed && vd->vdev_faulted) {
1316 ASSERT(vd->vdev_children == 0);
1317 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1318 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1319 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1320 vd->vdev_label_aux);
1321 return (SET_ERROR(ENXIO));
1322 } else if (vd->vdev_offline) {
1323 ASSERT(vd->vdev_children == 0);
1324 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1325 return (SET_ERROR(ENXIO));
1328 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1331 * Reset the vdev_reopening flag so that we actually close
1332 * the vdev on error.
1334 vd->vdev_reopening = B_FALSE;
1335 if (zio_injection_enabled && error == 0)
1336 error = zio_handle_device_injection(vd, NULL, ENXIO);
1338 if (error) {
1339 if (vd->vdev_removed &&
1340 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1341 vd->vdev_removed = B_FALSE;
1343 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1344 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1345 vd->vdev_stat.vs_aux);
1346 } else {
1347 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348 vd->vdev_stat.vs_aux);
1350 return (error);
1353 vd->vdev_removed = B_FALSE;
1356 * Recheck the faulted flag now that we have confirmed that
1357 * the vdev is accessible. If we're faulted, bail.
1359 if (vd->vdev_faulted) {
1360 ASSERT(vd->vdev_children == 0);
1361 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1362 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1363 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1364 vd->vdev_label_aux);
1365 return (SET_ERROR(ENXIO));
1368 if (vd->vdev_degraded) {
1369 ASSERT(vd->vdev_children == 0);
1370 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1371 VDEV_AUX_ERR_EXCEEDED);
1372 } else {
1373 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1377 * For hole or missing vdevs we just return success.
1379 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1380 return (0);
1382 for (int c = 0; c < vd->vdev_children; c++) {
1383 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1384 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1385 VDEV_AUX_NONE);
1386 break;
1390 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1391 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1393 if (vd->vdev_children == 0) {
1394 if (osize < SPA_MINDEVSIZE) {
1395 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396 VDEV_AUX_TOO_SMALL);
1397 return (SET_ERROR(EOVERFLOW));
1399 psize = osize;
1400 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1401 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1402 VDEV_LABEL_END_SIZE);
1403 } else {
1404 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1405 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1406 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1407 VDEV_AUX_TOO_SMALL);
1408 return (SET_ERROR(EOVERFLOW));
1410 psize = 0;
1411 asize = osize;
1412 max_asize = max_osize;
1415 vd->vdev_psize = psize;
1418 * Make sure the allocatable size hasn't shrunk too much.
1420 if (asize < vd->vdev_min_asize) {
1421 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1422 VDEV_AUX_BAD_LABEL);
1423 return (SET_ERROR(EINVAL));
1426 if (vd->vdev_asize == 0) {
1428 * This is the first-ever open, so use the computed values.
1429 * For testing purposes, a higher ashift can be requested.
1431 vd->vdev_asize = asize;
1432 vd->vdev_max_asize = max_asize;
1433 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1434 } else {
1436 * Detect if the alignment requirement has increased.
1437 * We don't want to make the pool unavailable, just
1438 * issue a warning instead.
1440 if (ashift > vd->vdev_top->vdev_ashift &&
1441 vd->vdev_ops->vdev_op_leaf) {
1442 cmn_err(CE_WARN,
1443 "Disk, '%s', has a block alignment that is "
1444 "larger than the pool's alignment\n",
1445 vd->vdev_path);
1447 vd->vdev_max_asize = max_asize;
1451 * If all children are healthy we update asize if either:
1452 * The asize has increased, due to a device expansion caused by dynamic
1453 * LUN growth or vdev replacement, and automatic expansion is enabled;
1454 * making the additional space available.
1456 * The asize has decreased, due to a device shrink usually caused by a
1457 * vdev replace with a smaller device. This ensures that calculations
1458 * based of max_asize and asize e.g. esize are always valid. It's safe
1459 * to do this as we've already validated that asize is greater than
1460 * vdev_min_asize.
1462 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1463 ((asize > vd->vdev_asize &&
1464 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1465 (asize < vd->vdev_asize)))
1466 vd->vdev_asize = asize;
1468 vdev_set_min_asize(vd);
1471 * Ensure we can issue some IO before declaring the
1472 * vdev open for business.
1474 if (vd->vdev_ops->vdev_op_leaf &&
1475 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1476 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1477 VDEV_AUX_ERR_EXCEEDED);
1478 return (error);
1482 * Track the min and max ashift values for normal data devices.
1484 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1485 !vd->vdev_islog && vd->vdev_aux == NULL) {
1486 if (vd->vdev_ashift > spa->spa_max_ashift)
1487 spa->spa_max_ashift = vd->vdev_ashift;
1488 if (vd->vdev_ashift < spa->spa_min_ashift)
1489 spa->spa_min_ashift = vd->vdev_ashift;
1493 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1494 * resilver. But don't do this if we are doing a reopen for a scrub,
1495 * since this would just restart the scrub we are already doing.
1497 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1498 vdev_resilver_needed(vd, NULL, NULL))
1499 spa_async_request(spa, SPA_ASYNC_RESILVER);
1501 return (0);
1505 * Called once the vdevs are all opened, this routine validates the label
1506 * contents. This needs to be done before vdev_load() so that we don't
1507 * inadvertently do repair I/Os to the wrong device.
1509 * This function will only return failure if one of the vdevs indicates that it
1510 * has since been destroyed or exported. This is only possible if
1511 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1512 * will be updated but the function will return 0.
1515 vdev_validate(vdev_t *vd)
1517 spa_t *spa = vd->vdev_spa;
1518 nvlist_t *label;
1519 uint64_t guid = 0, aux_guid = 0, top_guid;
1520 uint64_t state;
1521 nvlist_t *nvl;
1522 uint64_t txg;
1524 if (vdev_validate_skip)
1525 return (0);
1527 for (uint64_t c = 0; c < vd->vdev_children; c++)
1528 if (vdev_validate(vd->vdev_child[c]) != 0)
1529 return (SET_ERROR(EBADF));
1532 * If the device has already failed, or was marked offline, don't do
1533 * any further validation. Otherwise, label I/O will fail and we will
1534 * overwrite the previous state.
1536 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1537 return (0);
1540 * If we are performing an extreme rewind, we allow for a label that
1541 * was modified at a point after the current txg.
1543 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0)
1544 txg = UINT64_MAX;
1545 else
1546 txg = spa_last_synced_txg(spa);
1548 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1549 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1550 VDEV_AUX_BAD_LABEL);
1551 vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1552 return (0);
1556 * Determine if this vdev has been split off into another
1557 * pool. If so, then refuse to open it.
1559 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1560 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1561 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1562 VDEV_AUX_SPLIT_POOL);
1563 nvlist_free(label);
1564 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1565 return (0);
1568 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1569 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1570 VDEV_AUX_CORRUPT_DATA);
1571 nvlist_free(label);
1572 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1573 ZPOOL_CONFIG_POOL_GUID);
1574 return (0);
1578 * If config is not trusted then ignore the spa guid check. This is
1579 * necessary because if the machine crashed during a re-guid the new
1580 * guid might have been written to all of the vdev labels, but not the
1581 * cached config. The check will be performed again once we have the
1582 * trusted config from the MOS.
1584 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1585 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1586 VDEV_AUX_CORRUPT_DATA);
1587 nvlist_free(label);
1588 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1589 "match config (%llu != %llu)", (u_longlong_t)guid,
1590 (u_longlong_t)spa_guid(spa));
1591 return (0);
1594 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1595 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1596 &aux_guid) != 0)
1597 aux_guid = 0;
1599 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1600 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1601 VDEV_AUX_CORRUPT_DATA);
1602 nvlist_free(label);
1603 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1604 ZPOOL_CONFIG_GUID);
1605 return (0);
1608 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1609 != 0) {
1610 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1611 VDEV_AUX_CORRUPT_DATA);
1612 nvlist_free(label);
1613 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1614 ZPOOL_CONFIG_TOP_GUID);
1615 return (0);
1619 * If this vdev just became a top-level vdev because its sibling was
1620 * detached, it will have adopted the parent's vdev guid -- but the
1621 * label may or may not be on disk yet. Fortunately, either version
1622 * of the label will have the same top guid, so if we're a top-level
1623 * vdev, we can safely compare to that instead.
1624 * However, if the config comes from a cachefile that failed to update
1625 * after the detach, a top-level vdev will appear as a non top-level
1626 * vdev in the config. Also relax the constraints if we perform an
1627 * extreme rewind.
1629 * If we split this vdev off instead, then we also check the
1630 * original pool's guid. We don't want to consider the vdev
1631 * corrupt if it is partway through a split operation.
1633 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1634 boolean_t mismatch = B_FALSE;
1635 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1636 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1637 mismatch = B_TRUE;
1638 } else {
1639 if (vd->vdev_guid != top_guid &&
1640 vd->vdev_top->vdev_guid != guid)
1641 mismatch = B_TRUE;
1644 if (mismatch) {
1645 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1646 VDEV_AUX_CORRUPT_DATA);
1647 nvlist_free(label);
1648 vdev_dbgmsg(vd, "vdev_validate: config guid "
1649 "doesn't match label guid");
1650 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1651 (u_longlong_t)vd->vdev_guid,
1652 (u_longlong_t)vd->vdev_top->vdev_guid);
1653 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1654 "aux_guid %llu", (u_longlong_t)guid,
1655 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1656 return (0);
1660 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1661 &state) != 0) {
1662 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1663 VDEV_AUX_CORRUPT_DATA);
1664 nvlist_free(label);
1665 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1666 ZPOOL_CONFIG_POOL_STATE);
1667 return (0);
1670 nvlist_free(label);
1673 * If this is a verbatim import, no need to check the
1674 * state of the pool.
1676 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1677 spa_load_state(spa) == SPA_LOAD_OPEN &&
1678 state != POOL_STATE_ACTIVE) {
1679 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1680 "for spa %s", (u_longlong_t)state, spa->spa_name);
1681 return (SET_ERROR(EBADF));
1685 * If we were able to open and validate a vdev that was
1686 * previously marked permanently unavailable, clear that state
1687 * now.
1689 if (vd->vdev_not_present)
1690 vd->vdev_not_present = 0;
1692 return (0);
1695 static void
1696 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1698 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1699 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1700 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1701 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1702 dvd->vdev_path, svd->vdev_path);
1703 spa_strfree(dvd->vdev_path);
1704 dvd->vdev_path = spa_strdup(svd->vdev_path);
1706 } else if (svd->vdev_path != NULL) {
1707 dvd->vdev_path = spa_strdup(svd->vdev_path);
1708 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1709 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1714 * Recursively copy vdev paths from one vdev to another. Source and destination
1715 * vdev trees must have same geometry otherwise return error. Intended to copy
1716 * paths from userland config into MOS config.
1719 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1721 if ((svd->vdev_ops == &vdev_missing_ops) ||
1722 (svd->vdev_ishole && dvd->vdev_ishole) ||
1723 (dvd->vdev_ops == &vdev_indirect_ops))
1724 return (0);
1726 if (svd->vdev_ops != dvd->vdev_ops) {
1727 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1728 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1729 return (SET_ERROR(EINVAL));
1732 if (svd->vdev_guid != dvd->vdev_guid) {
1733 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1734 "%llu)", (u_longlong_t)svd->vdev_guid,
1735 (u_longlong_t)dvd->vdev_guid);
1736 return (SET_ERROR(EINVAL));
1739 if (svd->vdev_children != dvd->vdev_children) {
1740 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1741 "%llu != %llu", (u_longlong_t)svd->vdev_children,
1742 (u_longlong_t)dvd->vdev_children);
1743 return (SET_ERROR(EINVAL));
1746 for (uint64_t i = 0; i < svd->vdev_children; i++) {
1747 int error = vdev_copy_path_strict(svd->vdev_child[i],
1748 dvd->vdev_child[i]);
1749 if (error != 0)
1750 return (error);
1753 if (svd->vdev_ops->vdev_op_leaf)
1754 vdev_copy_path_impl(svd, dvd);
1756 return (0);
1759 static void
1760 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1762 ASSERT(stvd->vdev_top == stvd);
1763 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1765 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1766 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1769 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1770 return;
1773 * The idea here is that while a vdev can shift positions within
1774 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1775 * step outside of it.
1777 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1779 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1780 return;
1782 ASSERT(vd->vdev_ops->vdev_op_leaf);
1784 vdev_copy_path_impl(vd, dvd);
1788 * Recursively copy vdev paths from one root vdev to another. Source and
1789 * destination vdev trees may differ in geometry. For each destination leaf
1790 * vdev, search a vdev with the same guid and top vdev id in the source.
1791 * Intended to copy paths from userland config into MOS config.
1793 void
1794 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1796 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1797 ASSERT(srvd->vdev_ops == &vdev_root_ops);
1798 ASSERT(drvd->vdev_ops == &vdev_root_ops);
1800 for (uint64_t i = 0; i < children; i++) {
1801 vdev_copy_path_search(srvd->vdev_child[i],
1802 drvd->vdev_child[i]);
1807 * Close a virtual device.
1809 void
1810 vdev_close(vdev_t *vd)
1812 spa_t *spa = vd->vdev_spa;
1813 vdev_t *pvd = vd->vdev_parent;
1815 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1818 * If our parent is reopening, then we are as well, unless we are
1819 * going offline.
1821 if (pvd != NULL && pvd->vdev_reopening)
1822 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1824 vd->vdev_ops->vdev_op_close(vd);
1826 vdev_cache_purge(vd);
1829 * We record the previous state before we close it, so that if we are
1830 * doing a reopen(), we don't generate FMA ereports if we notice that
1831 * it's still faulted.
1833 vd->vdev_prevstate = vd->vdev_state;
1835 if (vd->vdev_offline)
1836 vd->vdev_state = VDEV_STATE_OFFLINE;
1837 else
1838 vd->vdev_state = VDEV_STATE_CLOSED;
1839 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1842 void
1843 vdev_hold(vdev_t *vd)
1845 spa_t *spa = vd->vdev_spa;
1847 ASSERT(spa_is_root(spa));
1848 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1849 return;
1851 for (int c = 0; c < vd->vdev_children; c++)
1852 vdev_hold(vd->vdev_child[c]);
1854 if (vd->vdev_ops->vdev_op_leaf)
1855 vd->vdev_ops->vdev_op_hold(vd);
1858 void
1859 vdev_rele(vdev_t *vd)
1861 spa_t *spa = vd->vdev_spa;
1863 ASSERT(spa_is_root(spa));
1864 for (int c = 0; c < vd->vdev_children; c++)
1865 vdev_rele(vd->vdev_child[c]);
1867 if (vd->vdev_ops->vdev_op_leaf)
1868 vd->vdev_ops->vdev_op_rele(vd);
1872 * Reopen all interior vdevs and any unopened leaves. We don't actually
1873 * reopen leaf vdevs which had previously been opened as they might deadlock
1874 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1875 * If the leaf has never been opened then open it, as usual.
1877 void
1878 vdev_reopen(vdev_t *vd)
1880 spa_t *spa = vd->vdev_spa;
1882 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1884 /* set the reopening flag unless we're taking the vdev offline */
1885 vd->vdev_reopening = !vd->vdev_offline;
1886 vdev_close(vd);
1887 (void) vdev_open(vd);
1890 * Call vdev_validate() here to make sure we have the same device.
1891 * Otherwise, a device with an invalid label could be successfully
1892 * opened in response to vdev_reopen().
1894 if (vd->vdev_aux) {
1895 (void) vdev_validate_aux(vd);
1896 if (vdev_readable(vd) && vdev_writeable(vd) &&
1897 vd->vdev_aux == &spa->spa_l2cache &&
1898 !l2arc_vdev_present(vd))
1899 l2arc_add_vdev(spa, vd);
1900 } else {
1901 (void) vdev_validate(vd);
1905 * Reassess parent vdev's health.
1907 vdev_propagate_state(vd);
1911 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1913 int error;
1916 * Normally, partial opens (e.g. of a mirror) are allowed.
1917 * For a create, however, we want to fail the request if
1918 * there are any components we can't open.
1920 error = vdev_open(vd);
1922 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1923 vdev_close(vd);
1924 return (error ? error : ENXIO);
1928 * Recursively load DTLs and initialize all labels.
1930 if ((error = vdev_dtl_load(vd)) != 0 ||
1931 (error = vdev_label_init(vd, txg, isreplacing ?
1932 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1933 vdev_close(vd);
1934 return (error);
1937 return (0);
1940 void
1941 vdev_metaslab_set_size(vdev_t *vd)
1944 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1946 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1947 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1950 void
1951 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1953 ASSERT(vd == vd->vdev_top);
1954 /* indirect vdevs don't have metaslabs or dtls */
1955 ASSERT(vdev_is_concrete(vd) || flags == 0);
1956 ASSERT(ISP2(flags));
1957 ASSERT(spa_writeable(vd->vdev_spa));
1959 if (flags & VDD_METASLAB)
1960 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1962 if (flags & VDD_DTL)
1963 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1965 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1968 void
1969 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1971 for (int c = 0; c < vd->vdev_children; c++)
1972 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1974 if (vd->vdev_ops->vdev_op_leaf)
1975 vdev_dirty(vd->vdev_top, flags, vd, txg);
1979 * DTLs.
1981 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1982 * the vdev has less than perfect replication. There are four kinds of DTL:
1984 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1986 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1988 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1989 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1990 * txgs that was scrubbed.
1992 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1993 * persistent errors or just some device being offline.
1994 * Unlike the other three, the DTL_OUTAGE map is not generally
1995 * maintained; it's only computed when needed, typically to
1996 * determine whether a device can be detached.
1998 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1999 * either has the data or it doesn't.
2001 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2002 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2003 * if any child is less than fully replicated, then so is its parent.
2004 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2005 * comprising only those txgs which appear in 'maxfaults' or more children;
2006 * those are the txgs we don't have enough replication to read. For example,
2007 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2008 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2009 * two child DTL_MISSING maps.
2011 * It should be clear from the above that to compute the DTLs and outage maps
2012 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2013 * Therefore, that is all we keep on disk. When loading the pool, or after
2014 * a configuration change, we generate all other DTLs from first principles.
2016 void
2017 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2019 range_tree_t *rt = vd->vdev_dtl[t];
2021 ASSERT(t < DTL_TYPES);
2022 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2023 ASSERT(spa_writeable(vd->vdev_spa));
2025 mutex_enter(&vd->vdev_dtl_lock);
2026 if (!range_tree_contains(rt, txg, size))
2027 range_tree_add(rt, txg, size);
2028 mutex_exit(&vd->vdev_dtl_lock);
2031 boolean_t
2032 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2034 range_tree_t *rt = vd->vdev_dtl[t];
2035 boolean_t dirty = B_FALSE;
2037 ASSERT(t < DTL_TYPES);
2038 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2041 * While we are loading the pool, the DTLs have not been loaded yet.
2042 * Ignore the DTLs and try all devices. This avoids a recursive
2043 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2044 * when loading the pool (relying on the checksum to ensure that
2045 * we get the right data -- note that we while loading, we are
2046 * only reading the MOS, which is always checksummed).
2048 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2049 return (B_FALSE);
2051 mutex_enter(&vd->vdev_dtl_lock);
2052 if (range_tree_space(rt) != 0)
2053 dirty = range_tree_contains(rt, txg, size);
2054 mutex_exit(&vd->vdev_dtl_lock);
2056 return (dirty);
2059 boolean_t
2060 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2062 range_tree_t *rt = vd->vdev_dtl[t];
2063 boolean_t empty;
2065 mutex_enter(&vd->vdev_dtl_lock);
2066 empty = (range_tree_space(rt) == 0);
2067 mutex_exit(&vd->vdev_dtl_lock);
2069 return (empty);
2073 * Returns the lowest txg in the DTL range.
2075 static uint64_t
2076 vdev_dtl_min(vdev_t *vd)
2078 range_seg_t *rs;
2080 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2081 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2082 ASSERT0(vd->vdev_children);
2084 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2085 return (rs->rs_start - 1);
2089 * Returns the highest txg in the DTL.
2091 static uint64_t
2092 vdev_dtl_max(vdev_t *vd)
2094 range_seg_t *rs;
2096 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2097 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2098 ASSERT0(vd->vdev_children);
2100 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2101 return (rs->rs_end);
2105 * Determine if a resilvering vdev should remove any DTL entries from
2106 * its range. If the vdev was resilvering for the entire duration of the
2107 * scan then it should excise that range from its DTLs. Otherwise, this
2108 * vdev is considered partially resilvered and should leave its DTL
2109 * entries intact. The comment in vdev_dtl_reassess() describes how we
2110 * excise the DTLs.
2112 static boolean_t
2113 vdev_dtl_should_excise(vdev_t *vd)
2115 spa_t *spa = vd->vdev_spa;
2116 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2118 ASSERT0(scn->scn_phys.scn_errors);
2119 ASSERT0(vd->vdev_children);
2121 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2122 return (B_FALSE);
2124 if (vd->vdev_resilver_txg == 0 ||
2125 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2126 return (B_TRUE);
2129 * When a resilver is initiated the scan will assign the scn_max_txg
2130 * value to the highest txg value that exists in all DTLs. If this
2131 * device's max DTL is not part of this scan (i.e. it is not in
2132 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2133 * for excision.
2135 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2136 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2137 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2138 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2139 return (B_TRUE);
2141 return (B_FALSE);
2145 * Reassess DTLs after a config change or scrub completion.
2147 void
2148 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2150 spa_t *spa = vd->vdev_spa;
2151 avl_tree_t reftree;
2152 int minref;
2154 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2156 for (int c = 0; c < vd->vdev_children; c++)
2157 vdev_dtl_reassess(vd->vdev_child[c], txg,
2158 scrub_txg, scrub_done);
2160 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2161 return;
2163 if (vd->vdev_ops->vdev_op_leaf) {
2164 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2166 mutex_enter(&vd->vdev_dtl_lock);
2169 * If we've completed a scan cleanly then determine
2170 * if this vdev should remove any DTLs. We only want to
2171 * excise regions on vdevs that were available during
2172 * the entire duration of this scan.
2174 if (scrub_txg != 0 &&
2175 (spa->spa_scrub_started ||
2176 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2177 vdev_dtl_should_excise(vd)) {
2179 * We completed a scrub up to scrub_txg. If we
2180 * did it without rebooting, then the scrub dtl
2181 * will be valid, so excise the old region and
2182 * fold in the scrub dtl. Otherwise, leave the
2183 * dtl as-is if there was an error.
2185 * There's little trick here: to excise the beginning
2186 * of the DTL_MISSING map, we put it into a reference
2187 * tree and then add a segment with refcnt -1 that
2188 * covers the range [0, scrub_txg). This means
2189 * that each txg in that range has refcnt -1 or 0.
2190 * We then add DTL_SCRUB with a refcnt of 2, so that
2191 * entries in the range [0, scrub_txg) will have a
2192 * positive refcnt -- either 1 or 2. We then convert
2193 * the reference tree into the new DTL_MISSING map.
2195 space_reftree_create(&reftree);
2196 space_reftree_add_map(&reftree,
2197 vd->vdev_dtl[DTL_MISSING], 1);
2198 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2199 space_reftree_add_map(&reftree,
2200 vd->vdev_dtl[DTL_SCRUB], 2);
2201 space_reftree_generate_map(&reftree,
2202 vd->vdev_dtl[DTL_MISSING], 1);
2203 space_reftree_destroy(&reftree);
2205 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2206 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2207 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2208 if (scrub_done)
2209 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2210 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2211 if (!vdev_readable(vd))
2212 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2213 else
2214 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2215 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2218 * If the vdev was resilvering and no longer has any
2219 * DTLs then reset its resilvering flag.
2221 if (vd->vdev_resilver_txg != 0 &&
2222 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2223 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
2224 vd->vdev_resilver_txg = 0;
2226 mutex_exit(&vd->vdev_dtl_lock);
2228 if (txg != 0)
2229 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2230 return;
2233 mutex_enter(&vd->vdev_dtl_lock);
2234 for (int t = 0; t < DTL_TYPES; t++) {
2235 /* account for child's outage in parent's missing map */
2236 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2237 if (t == DTL_SCRUB)
2238 continue; /* leaf vdevs only */
2239 if (t == DTL_PARTIAL)
2240 minref = 1; /* i.e. non-zero */
2241 else if (vd->vdev_nparity != 0)
2242 minref = vd->vdev_nparity + 1; /* RAID-Z */
2243 else
2244 minref = vd->vdev_children; /* any kind of mirror */
2245 space_reftree_create(&reftree);
2246 for (int c = 0; c < vd->vdev_children; c++) {
2247 vdev_t *cvd = vd->vdev_child[c];
2248 mutex_enter(&cvd->vdev_dtl_lock);
2249 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2250 mutex_exit(&cvd->vdev_dtl_lock);
2252 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2253 space_reftree_destroy(&reftree);
2255 mutex_exit(&vd->vdev_dtl_lock);
2259 vdev_dtl_load(vdev_t *vd)
2261 spa_t *spa = vd->vdev_spa;
2262 objset_t *mos = spa->spa_meta_objset;
2263 int error = 0;
2265 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2266 ASSERT(vdev_is_concrete(vd));
2268 error = space_map_open(&vd->vdev_dtl_sm, mos,
2269 vd->vdev_dtl_object, 0, -1ULL, 0);
2270 if (error)
2271 return (error);
2272 ASSERT(vd->vdev_dtl_sm != NULL);
2274 mutex_enter(&vd->vdev_dtl_lock);
2277 * Now that we've opened the space_map we need to update
2278 * the in-core DTL.
2280 space_map_update(vd->vdev_dtl_sm);
2282 error = space_map_load(vd->vdev_dtl_sm,
2283 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2284 mutex_exit(&vd->vdev_dtl_lock);
2286 return (error);
2289 for (int c = 0; c < vd->vdev_children; c++) {
2290 error = vdev_dtl_load(vd->vdev_child[c]);
2291 if (error != 0)
2292 break;
2295 return (error);
2298 void
2299 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2301 spa_t *spa = vd->vdev_spa;
2303 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2304 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2305 zapobj, tx));
2308 uint64_t
2309 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2311 spa_t *spa = vd->vdev_spa;
2312 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2313 DMU_OT_NONE, 0, tx);
2315 ASSERT(zap != 0);
2316 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2317 zap, tx));
2319 return (zap);
2322 void
2323 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2325 if (vd->vdev_ops != &vdev_hole_ops &&
2326 vd->vdev_ops != &vdev_missing_ops &&
2327 vd->vdev_ops != &vdev_root_ops &&
2328 !vd->vdev_top->vdev_removing) {
2329 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2330 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2332 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2333 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2336 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2337 vdev_construct_zaps(vd->vdev_child[i], tx);
2341 void
2342 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2344 spa_t *spa = vd->vdev_spa;
2345 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2346 objset_t *mos = spa->spa_meta_objset;
2347 range_tree_t *rtsync;
2348 dmu_tx_t *tx;
2349 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2351 ASSERT(vdev_is_concrete(vd));
2352 ASSERT(vd->vdev_ops->vdev_op_leaf);
2354 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2356 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2357 mutex_enter(&vd->vdev_dtl_lock);
2358 space_map_free(vd->vdev_dtl_sm, tx);
2359 space_map_close(vd->vdev_dtl_sm);
2360 vd->vdev_dtl_sm = NULL;
2361 mutex_exit(&vd->vdev_dtl_lock);
2364 * We only destroy the leaf ZAP for detached leaves or for
2365 * removed log devices. Removed data devices handle leaf ZAP
2366 * cleanup later, once cancellation is no longer possible.
2368 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2369 vd->vdev_top->vdev_islog)) {
2370 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2371 vd->vdev_leaf_zap = 0;
2374 dmu_tx_commit(tx);
2375 return;
2378 if (vd->vdev_dtl_sm == NULL) {
2379 uint64_t new_object;
2381 new_object = space_map_alloc(mos, tx);
2382 VERIFY3U(new_object, !=, 0);
2384 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2385 0, -1ULL, 0));
2386 ASSERT(vd->vdev_dtl_sm != NULL);
2389 rtsync = range_tree_create(NULL, NULL);
2391 mutex_enter(&vd->vdev_dtl_lock);
2392 range_tree_walk(rt, range_tree_add, rtsync);
2393 mutex_exit(&vd->vdev_dtl_lock);
2395 space_map_truncate(vd->vdev_dtl_sm, tx);
2396 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2397 range_tree_vacate(rtsync, NULL, NULL);
2399 range_tree_destroy(rtsync);
2402 * If the object for the space map has changed then dirty
2403 * the top level so that we update the config.
2405 if (object != space_map_object(vd->vdev_dtl_sm)) {
2406 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2407 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2408 (u_longlong_t)object,
2409 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2410 vdev_config_dirty(vd->vdev_top);
2413 dmu_tx_commit(tx);
2415 mutex_enter(&vd->vdev_dtl_lock);
2416 space_map_update(vd->vdev_dtl_sm);
2417 mutex_exit(&vd->vdev_dtl_lock);
2421 * Determine whether the specified vdev can be offlined/detached/removed
2422 * without losing data.
2424 boolean_t
2425 vdev_dtl_required(vdev_t *vd)
2427 spa_t *spa = vd->vdev_spa;
2428 vdev_t *tvd = vd->vdev_top;
2429 uint8_t cant_read = vd->vdev_cant_read;
2430 boolean_t required;
2432 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2434 if (vd == spa->spa_root_vdev || vd == tvd)
2435 return (B_TRUE);
2438 * Temporarily mark the device as unreadable, and then determine
2439 * whether this results in any DTL outages in the top-level vdev.
2440 * If not, we can safely offline/detach/remove the device.
2442 vd->vdev_cant_read = B_TRUE;
2443 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2444 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2445 vd->vdev_cant_read = cant_read;
2446 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2448 if (!required && zio_injection_enabled)
2449 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2451 return (required);
2455 * Determine if resilver is needed, and if so the txg range.
2457 boolean_t
2458 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2460 boolean_t needed = B_FALSE;
2461 uint64_t thismin = UINT64_MAX;
2462 uint64_t thismax = 0;
2464 if (vd->vdev_children == 0) {
2465 mutex_enter(&vd->vdev_dtl_lock);
2466 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2467 vdev_writeable(vd)) {
2469 thismin = vdev_dtl_min(vd);
2470 thismax = vdev_dtl_max(vd);
2471 needed = B_TRUE;
2473 mutex_exit(&vd->vdev_dtl_lock);
2474 } else {
2475 for (int c = 0; c < vd->vdev_children; c++) {
2476 vdev_t *cvd = vd->vdev_child[c];
2477 uint64_t cmin, cmax;
2479 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2480 thismin = MIN(thismin, cmin);
2481 thismax = MAX(thismax, cmax);
2482 needed = B_TRUE;
2487 if (needed && minp) {
2488 *minp = thismin;
2489 *maxp = thismax;
2491 return (needed);
2495 vdev_load(vdev_t *vd)
2497 int error = 0;
2499 * Recursively load all children.
2501 for (int c = 0; c < vd->vdev_children; c++) {
2502 error = vdev_load(vd->vdev_child[c]);
2503 if (error != 0) {
2504 return (error);
2508 vdev_set_deflate_ratio(vd);
2511 * If this is a top-level vdev, initialize its metaslabs.
2513 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2514 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2515 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2516 VDEV_AUX_CORRUPT_DATA);
2517 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2518 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2519 (u_longlong_t)vd->vdev_asize);
2520 return (SET_ERROR(ENXIO));
2521 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2522 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2523 "[error=%d]", error);
2524 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2525 VDEV_AUX_CORRUPT_DATA);
2526 return (error);
2531 * If this is a leaf vdev, load its DTL.
2533 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2534 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2535 VDEV_AUX_CORRUPT_DATA);
2536 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2537 "[error=%d]", error);
2538 return (error);
2541 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2542 if (obsolete_sm_object != 0) {
2543 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2544 ASSERT(vd->vdev_asize != 0);
2545 ASSERT(vd->vdev_obsolete_sm == NULL);
2547 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2548 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2549 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2550 VDEV_AUX_CORRUPT_DATA);
2551 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2552 "obsolete spacemap (obj %llu) [error=%d]",
2553 (u_longlong_t)obsolete_sm_object, error);
2554 return (error);
2556 space_map_update(vd->vdev_obsolete_sm);
2559 return (0);
2563 * The special vdev case is used for hot spares and l2cache devices. Its
2564 * sole purpose it to set the vdev state for the associated vdev. To do this,
2565 * we make sure that we can open the underlying device, then try to read the
2566 * label, and make sure that the label is sane and that it hasn't been
2567 * repurposed to another pool.
2570 vdev_validate_aux(vdev_t *vd)
2572 nvlist_t *label;
2573 uint64_t guid, version;
2574 uint64_t state;
2576 if (!vdev_readable(vd))
2577 return (0);
2579 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2580 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2581 VDEV_AUX_CORRUPT_DATA);
2582 return (-1);
2585 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2586 !SPA_VERSION_IS_SUPPORTED(version) ||
2587 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2588 guid != vd->vdev_guid ||
2589 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2590 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2591 VDEV_AUX_CORRUPT_DATA);
2592 nvlist_free(label);
2593 return (-1);
2597 * We don't actually check the pool state here. If it's in fact in
2598 * use by another pool, we update this fact on the fly when requested.
2600 nvlist_free(label);
2601 return (0);
2605 * Free the objects used to store this vdev's spacemaps, and the array
2606 * that points to them.
2608 void
2609 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2611 if (vd->vdev_ms_array == 0)
2612 return;
2614 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2615 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2616 size_t array_bytes = array_count * sizeof (uint64_t);
2617 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2618 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2619 array_bytes, smobj_array, 0));
2621 for (uint64_t i = 0; i < array_count; i++) {
2622 uint64_t smobj = smobj_array[i];
2623 if (smobj == 0)
2624 continue;
2626 space_map_free_obj(mos, smobj, tx);
2629 kmem_free(smobj_array, array_bytes);
2630 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2631 vd->vdev_ms_array = 0;
2634 static void
2635 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2637 spa_t *spa = vd->vdev_spa;
2638 dmu_tx_t *tx;
2640 ASSERT(vd == vd->vdev_top);
2641 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2643 if (vd->vdev_ms != NULL) {
2644 metaslab_group_t *mg = vd->vdev_mg;
2646 metaslab_group_histogram_verify(mg);
2647 metaslab_class_histogram_verify(mg->mg_class);
2649 for (int m = 0; m < vd->vdev_ms_count; m++) {
2650 metaslab_t *msp = vd->vdev_ms[m];
2652 if (msp == NULL || msp->ms_sm == NULL)
2653 continue;
2655 mutex_enter(&msp->ms_lock);
2657 * If the metaslab was not loaded when the vdev
2658 * was removed then the histogram accounting may
2659 * not be accurate. Update the histogram information
2660 * here so that we ensure that the metaslab group
2661 * and metaslab class are up-to-date.
2663 metaslab_group_histogram_remove(mg, msp);
2665 VERIFY0(space_map_allocated(msp->ms_sm));
2666 space_map_close(msp->ms_sm);
2667 msp->ms_sm = NULL;
2668 mutex_exit(&msp->ms_lock);
2671 metaslab_group_histogram_verify(mg);
2672 metaslab_class_histogram_verify(mg->mg_class);
2673 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2674 ASSERT0(mg->mg_histogram[i]);
2677 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2678 vdev_destroy_spacemaps(vd, tx);
2680 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2681 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2682 vd->vdev_top_zap = 0;
2684 dmu_tx_commit(tx);
2687 void
2688 vdev_sync_done(vdev_t *vd, uint64_t txg)
2690 metaslab_t *msp;
2691 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2693 ASSERT(vdev_is_concrete(vd));
2695 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2696 metaslab_sync_done(msp, txg);
2698 if (reassess)
2699 metaslab_sync_reassess(vd->vdev_mg);
2702 void
2703 vdev_sync(vdev_t *vd, uint64_t txg)
2705 spa_t *spa = vd->vdev_spa;
2706 vdev_t *lvd;
2707 metaslab_t *msp;
2708 dmu_tx_t *tx;
2710 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2711 dmu_tx_t *tx;
2713 ASSERT(vd->vdev_removing ||
2714 vd->vdev_ops == &vdev_indirect_ops);
2716 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2717 vdev_indirect_sync_obsolete(vd, tx);
2718 dmu_tx_commit(tx);
2721 * If the vdev is indirect, it can't have dirty
2722 * metaslabs or DTLs.
2724 if (vd->vdev_ops == &vdev_indirect_ops) {
2725 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2726 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2727 return;
2731 ASSERT(vdev_is_concrete(vd));
2733 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2734 !vd->vdev_removing) {
2735 ASSERT(vd == vd->vdev_top);
2736 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2737 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2738 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2739 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2740 ASSERT(vd->vdev_ms_array != 0);
2741 vdev_config_dirty(vd);
2742 dmu_tx_commit(tx);
2745 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2746 metaslab_sync(msp, txg);
2747 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2750 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2751 vdev_dtl_sync(lvd, txg);
2754 * Remove the metadata associated with this vdev once it's empty.
2755 * Note that this is typically used for log/cache device removal;
2756 * we don't empty toplevel vdevs when removing them. But if
2757 * a toplevel happens to be emptied, this is not harmful.
2759 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2760 vdev_remove_empty(vd, txg);
2763 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2766 uint64_t
2767 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2769 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2773 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2774 * not be opened, and no I/O is attempted.
2777 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2779 vdev_t *vd, *tvd;
2781 spa_vdev_state_enter(spa, SCL_NONE);
2783 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2784 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2786 if (!vd->vdev_ops->vdev_op_leaf)
2787 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2789 tvd = vd->vdev_top;
2792 * We don't directly use the aux state here, but if we do a
2793 * vdev_reopen(), we need this value to be present to remember why we
2794 * were faulted.
2796 vd->vdev_label_aux = aux;
2799 * Faulted state takes precedence over degraded.
2801 vd->vdev_delayed_close = B_FALSE;
2802 vd->vdev_faulted = 1ULL;
2803 vd->vdev_degraded = 0ULL;
2804 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2807 * If this device has the only valid copy of the data, then
2808 * back off and simply mark the vdev as degraded instead.
2810 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2811 vd->vdev_degraded = 1ULL;
2812 vd->vdev_faulted = 0ULL;
2815 * If we reopen the device and it's not dead, only then do we
2816 * mark it degraded.
2818 vdev_reopen(tvd);
2820 if (vdev_readable(vd))
2821 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2824 return (spa_vdev_state_exit(spa, vd, 0));
2828 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2829 * user that something is wrong. The vdev continues to operate as normal as far
2830 * as I/O is concerned.
2833 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2835 vdev_t *vd;
2837 spa_vdev_state_enter(spa, SCL_NONE);
2839 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2840 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2842 if (!vd->vdev_ops->vdev_op_leaf)
2843 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2846 * If the vdev is already faulted, then don't do anything.
2848 if (vd->vdev_faulted || vd->vdev_degraded)
2849 return (spa_vdev_state_exit(spa, NULL, 0));
2851 vd->vdev_degraded = 1ULL;
2852 if (!vdev_is_dead(vd))
2853 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2854 aux);
2856 return (spa_vdev_state_exit(spa, vd, 0));
2860 * Online the given vdev.
2862 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2863 * spare device should be detached when the device finishes resilvering.
2864 * Second, the online should be treated like a 'test' online case, so no FMA
2865 * events are generated if the device fails to open.
2868 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2870 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2871 boolean_t wasoffline;
2872 vdev_state_t oldstate;
2874 spa_vdev_state_enter(spa, SCL_NONE);
2876 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2877 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2879 if (!vd->vdev_ops->vdev_op_leaf)
2880 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2882 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2883 oldstate = vd->vdev_state;
2885 tvd = vd->vdev_top;
2886 vd->vdev_offline = B_FALSE;
2887 vd->vdev_tmpoffline = B_FALSE;
2888 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2889 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2891 /* XXX - L2ARC 1.0 does not support expansion */
2892 if (!vd->vdev_aux) {
2893 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2894 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2897 vdev_reopen(tvd);
2898 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2900 if (!vd->vdev_aux) {
2901 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2902 pvd->vdev_expanding = B_FALSE;
2905 if (newstate)
2906 *newstate = vd->vdev_state;
2907 if ((flags & ZFS_ONLINE_UNSPARE) &&
2908 !vdev_is_dead(vd) && vd->vdev_parent &&
2909 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2910 vd->vdev_parent->vdev_child[0] == vd)
2911 vd->vdev_unspare = B_TRUE;
2913 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2915 /* XXX - L2ARC 1.0 does not support expansion */
2916 if (vd->vdev_aux)
2917 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2918 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2921 if (wasoffline ||
2922 (oldstate < VDEV_STATE_DEGRADED &&
2923 vd->vdev_state >= VDEV_STATE_DEGRADED))
2924 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2926 return (spa_vdev_state_exit(spa, vd, 0));
2929 static int
2930 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2932 vdev_t *vd, *tvd;
2933 int error = 0;
2934 uint64_t generation;
2935 metaslab_group_t *mg;
2937 top:
2938 spa_vdev_state_enter(spa, SCL_ALLOC);
2940 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2941 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2943 if (!vd->vdev_ops->vdev_op_leaf)
2944 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2946 tvd = vd->vdev_top;
2947 mg = tvd->vdev_mg;
2948 generation = spa->spa_config_generation + 1;
2951 * If the device isn't already offline, try to offline it.
2953 if (!vd->vdev_offline) {
2955 * If this device has the only valid copy of some data,
2956 * don't allow it to be offlined. Log devices are always
2957 * expendable.
2959 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2960 vdev_dtl_required(vd))
2961 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2964 * If the top-level is a slog and it has had allocations
2965 * then proceed. We check that the vdev's metaslab group
2966 * is not NULL since it's possible that we may have just
2967 * added this vdev but not yet initialized its metaslabs.
2969 if (tvd->vdev_islog && mg != NULL) {
2971 * Prevent any future allocations.
2973 metaslab_group_passivate(mg);
2974 (void) spa_vdev_state_exit(spa, vd, 0);
2976 error = spa_reset_logs(spa);
2978 spa_vdev_state_enter(spa, SCL_ALLOC);
2981 * Check to see if the config has changed.
2983 if (error || generation != spa->spa_config_generation) {
2984 metaslab_group_activate(mg);
2985 if (error)
2986 return (spa_vdev_state_exit(spa,
2987 vd, error));
2988 (void) spa_vdev_state_exit(spa, vd, 0);
2989 goto top;
2991 ASSERT0(tvd->vdev_stat.vs_alloc);
2995 * Offline this device and reopen its top-level vdev.
2996 * If the top-level vdev is a log device then just offline
2997 * it. Otherwise, if this action results in the top-level
2998 * vdev becoming unusable, undo it and fail the request.
3000 vd->vdev_offline = B_TRUE;
3001 vdev_reopen(tvd);
3003 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3004 vdev_is_dead(tvd)) {
3005 vd->vdev_offline = B_FALSE;
3006 vdev_reopen(tvd);
3007 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3011 * Add the device back into the metaslab rotor so that
3012 * once we online the device it's open for business.
3014 if (tvd->vdev_islog && mg != NULL)
3015 metaslab_group_activate(mg);
3018 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3020 return (spa_vdev_state_exit(spa, vd, 0));
3024 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3026 int error;
3028 mutex_enter(&spa->spa_vdev_top_lock);
3029 error = vdev_offline_locked(spa, guid, flags);
3030 mutex_exit(&spa->spa_vdev_top_lock);
3032 return (error);
3036 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3037 * vdev_offline(), we assume the spa config is locked. We also clear all
3038 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3040 void
3041 vdev_clear(spa_t *spa, vdev_t *vd)
3043 vdev_t *rvd = spa->spa_root_vdev;
3045 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3047 if (vd == NULL)
3048 vd = rvd;
3050 vd->vdev_stat.vs_read_errors = 0;
3051 vd->vdev_stat.vs_write_errors = 0;
3052 vd->vdev_stat.vs_checksum_errors = 0;
3054 for (int c = 0; c < vd->vdev_children; c++)
3055 vdev_clear(spa, vd->vdev_child[c]);
3058 * It makes no sense to "clear" an indirect vdev.
3060 if (!vdev_is_concrete(vd))
3061 return;
3064 * If we're in the FAULTED state or have experienced failed I/O, then
3065 * clear the persistent state and attempt to reopen the device. We
3066 * also mark the vdev config dirty, so that the new faulted state is
3067 * written out to disk.
3069 if (vd->vdev_faulted || vd->vdev_degraded ||
3070 !vdev_readable(vd) || !vdev_writeable(vd)) {
3073 * When reopening in reponse to a clear event, it may be due to
3074 * a fmadm repair request. In this case, if the device is
3075 * still broken, we want to still post the ereport again.
3077 vd->vdev_forcefault = B_TRUE;
3079 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3080 vd->vdev_cant_read = B_FALSE;
3081 vd->vdev_cant_write = B_FALSE;
3083 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3085 vd->vdev_forcefault = B_FALSE;
3087 if (vd != rvd && vdev_writeable(vd->vdev_top))
3088 vdev_state_dirty(vd->vdev_top);
3090 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3091 spa_async_request(spa, SPA_ASYNC_RESILVER);
3093 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3097 * When clearing a FMA-diagnosed fault, we always want to
3098 * unspare the device, as we assume that the original spare was
3099 * done in response to the FMA fault.
3101 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3102 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3103 vd->vdev_parent->vdev_child[0] == vd)
3104 vd->vdev_unspare = B_TRUE;
3107 boolean_t
3108 vdev_is_dead(vdev_t *vd)
3111 * Holes and missing devices are always considered "dead".
3112 * This simplifies the code since we don't have to check for
3113 * these types of devices in the various code paths.
3114 * Instead we rely on the fact that we skip over dead devices
3115 * before issuing I/O to them.
3117 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3118 vd->vdev_ops == &vdev_hole_ops ||
3119 vd->vdev_ops == &vdev_missing_ops);
3122 boolean_t
3123 vdev_readable(vdev_t *vd)
3125 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3128 boolean_t
3129 vdev_writeable(vdev_t *vd)
3131 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3132 vdev_is_concrete(vd));
3135 boolean_t
3136 vdev_allocatable(vdev_t *vd)
3138 uint64_t state = vd->vdev_state;
3141 * We currently allow allocations from vdevs which may be in the
3142 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3143 * fails to reopen then we'll catch it later when we're holding
3144 * the proper locks. Note that we have to get the vdev state
3145 * in a local variable because although it changes atomically,
3146 * we're asking two separate questions about it.
3148 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3149 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3150 vd->vdev_mg->mg_initialized);
3153 boolean_t
3154 vdev_accessible(vdev_t *vd, zio_t *zio)
3156 ASSERT(zio->io_vd == vd);
3158 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3159 return (B_FALSE);
3161 if (zio->io_type == ZIO_TYPE_READ)
3162 return (!vd->vdev_cant_read);
3164 if (zio->io_type == ZIO_TYPE_WRITE)
3165 return (!vd->vdev_cant_write);
3167 return (B_TRUE);
3171 * Get statistics for the given vdev.
3173 void
3174 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3176 spa_t *spa = vd->vdev_spa;
3177 vdev_t *rvd = spa->spa_root_vdev;
3178 vdev_t *tvd = vd->vdev_top;
3180 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3182 mutex_enter(&vd->vdev_stat_lock);
3183 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3184 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3185 vs->vs_state = vd->vdev_state;
3186 vs->vs_rsize = vdev_get_min_asize(vd);
3187 if (vd->vdev_ops->vdev_op_leaf)
3188 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3190 * Report expandable space on top-level, non-auxillary devices only.
3191 * The expandable space is reported in terms of metaslab sized units
3192 * since that determines how much space the pool can expand.
3194 if (vd->vdev_aux == NULL && tvd != NULL) {
3195 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3196 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3198 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3199 vdev_is_concrete(vd)) {
3200 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3204 * If we're getting stats on the root vdev, aggregate the I/O counts
3205 * over all top-level vdevs (i.e. the direct children of the root).
3207 if (vd == rvd) {
3208 for (int c = 0; c < rvd->vdev_children; c++) {
3209 vdev_t *cvd = rvd->vdev_child[c];
3210 vdev_stat_t *cvs = &cvd->vdev_stat;
3212 for (int t = 0; t < ZIO_TYPES; t++) {
3213 vs->vs_ops[t] += cvs->vs_ops[t];
3214 vs->vs_bytes[t] += cvs->vs_bytes[t];
3216 cvs->vs_scan_removing = cvd->vdev_removing;
3219 mutex_exit(&vd->vdev_stat_lock);
3222 void
3223 vdev_clear_stats(vdev_t *vd)
3225 mutex_enter(&vd->vdev_stat_lock);
3226 vd->vdev_stat.vs_space = 0;
3227 vd->vdev_stat.vs_dspace = 0;
3228 vd->vdev_stat.vs_alloc = 0;
3229 mutex_exit(&vd->vdev_stat_lock);
3232 void
3233 vdev_scan_stat_init(vdev_t *vd)
3235 vdev_stat_t *vs = &vd->vdev_stat;
3237 for (int c = 0; c < vd->vdev_children; c++)
3238 vdev_scan_stat_init(vd->vdev_child[c]);
3240 mutex_enter(&vd->vdev_stat_lock);
3241 vs->vs_scan_processed = 0;
3242 mutex_exit(&vd->vdev_stat_lock);
3245 void
3246 vdev_stat_update(zio_t *zio, uint64_t psize)
3248 spa_t *spa = zio->io_spa;
3249 vdev_t *rvd = spa->spa_root_vdev;
3250 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3251 vdev_t *pvd;
3252 uint64_t txg = zio->io_txg;
3253 vdev_stat_t *vs = &vd->vdev_stat;
3254 zio_type_t type = zio->io_type;
3255 int flags = zio->io_flags;
3258 * If this i/o is a gang leader, it didn't do any actual work.
3260 if (zio->io_gang_tree)
3261 return;
3263 if (zio->io_error == 0) {
3265 * If this is a root i/o, don't count it -- we've already
3266 * counted the top-level vdevs, and vdev_get_stats() will
3267 * aggregate them when asked. This reduces contention on
3268 * the root vdev_stat_lock and implicitly handles blocks
3269 * that compress away to holes, for which there is no i/o.
3270 * (Holes never create vdev children, so all the counters
3271 * remain zero, which is what we want.)
3273 * Note: this only applies to successful i/o (io_error == 0)
3274 * because unlike i/o counts, errors are not additive.
3275 * When reading a ditto block, for example, failure of
3276 * one top-level vdev does not imply a root-level error.
3278 if (vd == rvd)
3279 return;
3281 ASSERT(vd == zio->io_vd);
3283 if (flags & ZIO_FLAG_IO_BYPASS)
3284 return;
3286 mutex_enter(&vd->vdev_stat_lock);
3288 if (flags & ZIO_FLAG_IO_REPAIR) {
3289 if (flags & ZIO_FLAG_SCAN_THREAD) {
3290 dsl_scan_phys_t *scn_phys =
3291 &spa->spa_dsl_pool->dp_scan->scn_phys;
3292 uint64_t *processed = &scn_phys->scn_processed;
3294 /* XXX cleanup? */
3295 if (vd->vdev_ops->vdev_op_leaf)
3296 atomic_add_64(processed, psize);
3297 vs->vs_scan_processed += psize;
3300 if (flags & ZIO_FLAG_SELF_HEAL)
3301 vs->vs_self_healed += psize;
3304 vs->vs_ops[type]++;
3305 vs->vs_bytes[type] += psize;
3307 mutex_exit(&vd->vdev_stat_lock);
3308 return;
3311 if (flags & ZIO_FLAG_SPECULATIVE)
3312 return;
3315 * If this is an I/O error that is going to be retried, then ignore the
3316 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3317 * hard errors, when in reality they can happen for any number of
3318 * innocuous reasons (bus resets, MPxIO link failure, etc).
3320 if (zio->io_error == EIO &&
3321 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3322 return;
3325 * Intent logs writes won't propagate their error to the root
3326 * I/O so don't mark these types of failures as pool-level
3327 * errors.
3329 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3330 return;
3332 mutex_enter(&vd->vdev_stat_lock);
3333 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3334 if (zio->io_error == ECKSUM)
3335 vs->vs_checksum_errors++;
3336 else
3337 vs->vs_read_errors++;
3339 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3340 vs->vs_write_errors++;
3341 mutex_exit(&vd->vdev_stat_lock);
3343 if (spa->spa_load_state == SPA_LOAD_NONE &&
3344 type == ZIO_TYPE_WRITE && txg != 0 &&
3345 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3346 (flags & ZIO_FLAG_SCAN_THREAD) ||
3347 spa->spa_claiming)) {
3349 * This is either a normal write (not a repair), or it's
3350 * a repair induced by the scrub thread, or it's a repair
3351 * made by zil_claim() during spa_load() in the first txg.
3352 * In the normal case, we commit the DTL change in the same
3353 * txg as the block was born. In the scrub-induced repair
3354 * case, we know that scrubs run in first-pass syncing context,
3355 * so we commit the DTL change in spa_syncing_txg(spa).
3356 * In the zil_claim() case, we commit in spa_first_txg(spa).
3358 * We currently do not make DTL entries for failed spontaneous
3359 * self-healing writes triggered by normal (non-scrubbing)
3360 * reads, because we have no transactional context in which to
3361 * do so -- and it's not clear that it'd be desirable anyway.
3363 if (vd->vdev_ops->vdev_op_leaf) {
3364 uint64_t commit_txg = txg;
3365 if (flags & ZIO_FLAG_SCAN_THREAD) {
3366 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3367 ASSERT(spa_sync_pass(spa) == 1);
3368 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3369 commit_txg = spa_syncing_txg(spa);
3370 } else if (spa->spa_claiming) {
3371 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3372 commit_txg = spa_first_txg(spa);
3374 ASSERT(commit_txg >= spa_syncing_txg(spa));
3375 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3376 return;
3377 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3378 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3379 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3381 if (vd != rvd)
3382 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3387 * Update the in-core space usage stats for this vdev, its metaslab class,
3388 * and the root vdev.
3390 void
3391 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3392 int64_t space_delta)
3394 int64_t dspace_delta = space_delta;
3395 spa_t *spa = vd->vdev_spa;
3396 vdev_t *rvd = spa->spa_root_vdev;
3397 metaslab_group_t *mg = vd->vdev_mg;
3398 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3400 ASSERT(vd == vd->vdev_top);
3403 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3404 * factor. We must calculate this here and not at the root vdev
3405 * because the root vdev's psize-to-asize is simply the max of its
3406 * childrens', thus not accurate enough for us.
3408 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3409 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3410 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3411 vd->vdev_deflate_ratio;
3413 mutex_enter(&vd->vdev_stat_lock);
3414 vd->vdev_stat.vs_alloc += alloc_delta;
3415 vd->vdev_stat.vs_space += space_delta;
3416 vd->vdev_stat.vs_dspace += dspace_delta;
3417 mutex_exit(&vd->vdev_stat_lock);
3419 if (mc == spa_normal_class(spa)) {
3420 mutex_enter(&rvd->vdev_stat_lock);
3421 rvd->vdev_stat.vs_alloc += alloc_delta;
3422 rvd->vdev_stat.vs_space += space_delta;
3423 rvd->vdev_stat.vs_dspace += dspace_delta;
3424 mutex_exit(&rvd->vdev_stat_lock);
3427 if (mc != NULL) {
3428 ASSERT(rvd == vd->vdev_parent);
3429 ASSERT(vd->vdev_ms_count != 0);
3431 metaslab_class_space_update(mc,
3432 alloc_delta, defer_delta, space_delta, dspace_delta);
3437 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3438 * so that it will be written out next time the vdev configuration is synced.
3439 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3441 void
3442 vdev_config_dirty(vdev_t *vd)
3444 spa_t *spa = vd->vdev_spa;
3445 vdev_t *rvd = spa->spa_root_vdev;
3446 int c;
3448 ASSERT(spa_writeable(spa));
3451 * If this is an aux vdev (as with l2cache and spare devices), then we
3452 * update the vdev config manually and set the sync flag.
3454 if (vd->vdev_aux != NULL) {
3455 spa_aux_vdev_t *sav = vd->vdev_aux;
3456 nvlist_t **aux;
3457 uint_t naux;
3459 for (c = 0; c < sav->sav_count; c++) {
3460 if (sav->sav_vdevs[c] == vd)
3461 break;
3464 if (c == sav->sav_count) {
3466 * We're being removed. There's nothing more to do.
3468 ASSERT(sav->sav_sync == B_TRUE);
3469 return;
3472 sav->sav_sync = B_TRUE;
3474 if (nvlist_lookup_nvlist_array(sav->sav_config,
3475 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3476 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3477 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3480 ASSERT(c < naux);
3483 * Setting the nvlist in the middle if the array is a little
3484 * sketchy, but it will work.
3486 nvlist_free(aux[c]);
3487 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3489 return;
3493 * The dirty list is protected by the SCL_CONFIG lock. The caller
3494 * must either hold SCL_CONFIG as writer, or must be the sync thread
3495 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3496 * so this is sufficient to ensure mutual exclusion.
3498 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3499 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3500 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3502 if (vd == rvd) {
3503 for (c = 0; c < rvd->vdev_children; c++)
3504 vdev_config_dirty(rvd->vdev_child[c]);
3505 } else {
3506 ASSERT(vd == vd->vdev_top);
3508 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3509 vdev_is_concrete(vd)) {
3510 list_insert_head(&spa->spa_config_dirty_list, vd);
3515 void
3516 vdev_config_clean(vdev_t *vd)
3518 spa_t *spa = vd->vdev_spa;
3520 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3521 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3522 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3524 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3525 list_remove(&spa->spa_config_dirty_list, vd);
3529 * Mark a top-level vdev's state as dirty, so that the next pass of
3530 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3531 * the state changes from larger config changes because they require
3532 * much less locking, and are often needed for administrative actions.
3534 void
3535 vdev_state_dirty(vdev_t *vd)
3537 spa_t *spa = vd->vdev_spa;
3539 ASSERT(spa_writeable(spa));
3540 ASSERT(vd == vd->vdev_top);
3543 * The state list is protected by the SCL_STATE lock. The caller
3544 * must either hold SCL_STATE as writer, or must be the sync thread
3545 * (which holds SCL_STATE as reader). There's only one sync thread,
3546 * so this is sufficient to ensure mutual exclusion.
3548 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3549 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3550 spa_config_held(spa, SCL_STATE, RW_READER)));
3552 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3553 vdev_is_concrete(vd))
3554 list_insert_head(&spa->spa_state_dirty_list, vd);
3557 void
3558 vdev_state_clean(vdev_t *vd)
3560 spa_t *spa = vd->vdev_spa;
3562 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3563 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3564 spa_config_held(spa, SCL_STATE, RW_READER)));
3566 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3567 list_remove(&spa->spa_state_dirty_list, vd);
3571 * Propagate vdev state up from children to parent.
3573 void
3574 vdev_propagate_state(vdev_t *vd)
3576 spa_t *spa = vd->vdev_spa;
3577 vdev_t *rvd = spa->spa_root_vdev;
3578 int degraded = 0, faulted = 0;
3579 int corrupted = 0;
3580 vdev_t *child;
3582 if (vd->vdev_children > 0) {
3583 for (int c = 0; c < vd->vdev_children; c++) {
3584 child = vd->vdev_child[c];
3587 * Don't factor holes or indirect vdevs into the
3588 * decision.
3590 if (!vdev_is_concrete(child))
3591 continue;
3593 if (!vdev_readable(child) ||
3594 (!vdev_writeable(child) && spa_writeable(spa))) {
3596 * Root special: if there is a top-level log
3597 * device, treat the root vdev as if it were
3598 * degraded.
3600 if (child->vdev_islog && vd == rvd)
3601 degraded++;
3602 else
3603 faulted++;
3604 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3605 degraded++;
3608 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3609 corrupted++;
3612 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3615 * Root special: if there is a top-level vdev that cannot be
3616 * opened due to corrupted metadata, then propagate the root
3617 * vdev's aux state as 'corrupt' rather than 'insufficient
3618 * replicas'.
3620 if (corrupted && vd == rvd &&
3621 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3622 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3623 VDEV_AUX_CORRUPT_DATA);
3626 if (vd->vdev_parent)
3627 vdev_propagate_state(vd->vdev_parent);
3631 * Set a vdev's state. If this is during an open, we don't update the parent
3632 * state, because we're in the process of opening children depth-first.
3633 * Otherwise, we propagate the change to the parent.
3635 * If this routine places a device in a faulted state, an appropriate ereport is
3636 * generated.
3638 void
3639 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3641 uint64_t save_state;
3642 spa_t *spa = vd->vdev_spa;
3644 if (state == vd->vdev_state) {
3645 vd->vdev_stat.vs_aux = aux;
3646 return;
3649 save_state = vd->vdev_state;
3651 vd->vdev_state = state;
3652 vd->vdev_stat.vs_aux = aux;
3655 * If we are setting the vdev state to anything but an open state, then
3656 * always close the underlying device unless the device has requested
3657 * a delayed close (i.e. we're about to remove or fault the device).
3658 * Otherwise, we keep accessible but invalid devices open forever.
3659 * We don't call vdev_close() itself, because that implies some extra
3660 * checks (offline, etc) that we don't want here. This is limited to
3661 * leaf devices, because otherwise closing the device will affect other
3662 * children.
3664 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3665 vd->vdev_ops->vdev_op_leaf)
3666 vd->vdev_ops->vdev_op_close(vd);
3669 * If we have brought this vdev back into service, we need
3670 * to notify fmd so that it can gracefully repair any outstanding
3671 * cases due to a missing device. We do this in all cases, even those
3672 * that probably don't correlate to a repaired fault. This is sure to
3673 * catch all cases, and we let the zfs-retire agent sort it out. If
3674 * this is a transient state it's OK, as the retire agent will
3675 * double-check the state of the vdev before repairing it.
3677 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3678 vd->vdev_prevstate != state)
3679 zfs_post_state_change(spa, vd);
3681 if (vd->vdev_removed &&
3682 state == VDEV_STATE_CANT_OPEN &&
3683 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3685 * If the previous state is set to VDEV_STATE_REMOVED, then this
3686 * device was previously marked removed and someone attempted to
3687 * reopen it. If this failed due to a nonexistent device, then
3688 * keep the device in the REMOVED state. We also let this be if
3689 * it is one of our special test online cases, which is only
3690 * attempting to online the device and shouldn't generate an FMA
3691 * fault.
3693 vd->vdev_state = VDEV_STATE_REMOVED;
3694 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3695 } else if (state == VDEV_STATE_REMOVED) {
3696 vd->vdev_removed = B_TRUE;
3697 } else if (state == VDEV_STATE_CANT_OPEN) {
3699 * If we fail to open a vdev during an import or recovery, we
3700 * mark it as "not available", which signifies that it was
3701 * never there to begin with. Failure to open such a device
3702 * is not considered an error.
3704 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3705 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3706 vd->vdev_ops->vdev_op_leaf)
3707 vd->vdev_not_present = 1;
3710 * Post the appropriate ereport. If the 'prevstate' field is
3711 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3712 * that this is part of a vdev_reopen(). In this case, we don't
3713 * want to post the ereport if the device was already in the
3714 * CANT_OPEN state beforehand.
3716 * If the 'checkremove' flag is set, then this is an attempt to
3717 * online the device in response to an insertion event. If we
3718 * hit this case, then we have detected an insertion event for a
3719 * faulted or offline device that wasn't in the removed state.
3720 * In this scenario, we don't post an ereport because we are
3721 * about to replace the device, or attempt an online with
3722 * vdev_forcefault, which will generate the fault for us.
3724 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3725 !vd->vdev_not_present && !vd->vdev_checkremove &&
3726 vd != spa->spa_root_vdev) {
3727 const char *class;
3729 switch (aux) {
3730 case VDEV_AUX_OPEN_FAILED:
3731 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3732 break;
3733 case VDEV_AUX_CORRUPT_DATA:
3734 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3735 break;
3736 case VDEV_AUX_NO_REPLICAS:
3737 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3738 break;
3739 case VDEV_AUX_BAD_GUID_SUM:
3740 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3741 break;
3742 case VDEV_AUX_TOO_SMALL:
3743 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3744 break;
3745 case VDEV_AUX_BAD_LABEL:
3746 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3747 break;
3748 default:
3749 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3752 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3755 /* Erase any notion of persistent removed state */
3756 vd->vdev_removed = B_FALSE;
3757 } else {
3758 vd->vdev_removed = B_FALSE;
3761 if (!isopen && vd->vdev_parent)
3762 vdev_propagate_state(vd->vdev_parent);
3765 boolean_t
3766 vdev_children_are_offline(vdev_t *vd)
3768 ASSERT(!vd->vdev_ops->vdev_op_leaf);
3770 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3771 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3772 return (B_FALSE);
3775 return (B_TRUE);
3779 * Check the vdev configuration to ensure that it's capable of supporting
3780 * a root pool. We do not support partial configuration.
3781 * In addition, only a single top-level vdev is allowed.
3783 boolean_t
3784 vdev_is_bootable(vdev_t *vd)
3786 if (!vd->vdev_ops->vdev_op_leaf) {
3787 char *vdev_type = vd->vdev_ops->vdev_op_type;
3789 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3790 vd->vdev_children > 1) {
3791 return (B_FALSE);
3792 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3793 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3794 return (B_FALSE);
3798 for (int c = 0; c < vd->vdev_children; c++) {
3799 if (!vdev_is_bootable(vd->vdev_child[c]))
3800 return (B_FALSE);
3802 return (B_TRUE);
3805 boolean_t
3806 vdev_is_concrete(vdev_t *vd)
3808 vdev_ops_t *ops = vd->vdev_ops;
3809 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3810 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3811 return (B_FALSE);
3812 } else {
3813 return (B_TRUE);
3818 * Determine if a log device has valid content. If the vdev was
3819 * removed or faulted in the MOS config then we know that
3820 * the content on the log device has already been written to the pool.
3822 boolean_t
3823 vdev_log_state_valid(vdev_t *vd)
3825 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3826 !vd->vdev_removed)
3827 return (B_TRUE);
3829 for (int c = 0; c < vd->vdev_children; c++)
3830 if (vdev_log_state_valid(vd->vdev_child[c]))
3831 return (B_TRUE);
3833 return (B_FALSE);
3837 * Expand a vdev if possible.
3839 void
3840 vdev_expand(vdev_t *vd, uint64_t txg)
3842 ASSERT(vd->vdev_top == vd);
3843 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3845 vdev_set_deflate_ratio(vd);
3847 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3848 vdev_is_concrete(vd)) {
3849 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3850 vdev_config_dirty(vd);
3855 * Split a vdev.
3857 void
3858 vdev_split(vdev_t *vd)
3860 vdev_t *cvd, *pvd = vd->vdev_parent;
3862 vdev_remove_child(pvd, vd);
3863 vdev_compact_children(pvd);
3865 cvd = pvd->vdev_child[0];
3866 if (pvd->vdev_children == 1) {
3867 vdev_remove_parent(cvd);
3868 cvd->vdev_splitting = B_TRUE;
3870 vdev_propagate_state(cvd);
3873 void
3874 vdev_deadman(vdev_t *vd)
3876 for (int c = 0; c < vd->vdev_children; c++) {
3877 vdev_t *cvd = vd->vdev_child[c];
3879 vdev_deadman(cvd);
3882 if (vd->vdev_ops->vdev_op_leaf) {
3883 vdev_queue_t *vq = &vd->vdev_queue;
3885 mutex_enter(&vq->vq_lock);
3886 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3887 spa_t *spa = vd->vdev_spa;
3888 zio_t *fio;
3889 uint64_t delta;
3892 * Look at the head of all the pending queues,
3893 * if any I/O has been outstanding for longer than
3894 * the spa_deadman_synctime we panic the system.
3896 fio = avl_first(&vq->vq_active_tree);
3897 delta = gethrtime() - fio->io_timestamp;
3898 if (delta > spa_deadman_synctime(spa)) {
3899 vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3900 "%lluns, delta %lluns, last io %lluns",
3901 fio->io_timestamp, (u_longlong_t)delta,
3902 vq->vq_io_complete_ts);
3903 fm_panic("I/O to pool '%s' appears to be "
3904 "hung.", spa_name(spa));
3907 mutex_exit(&vq->vq_lock);