9337 zfs get all is slow due to uncached metadata
[unleashed.git] / usr / src / uts / common / fs / zfs / dbuf.c
blob8600df4c0aca19711336f9fd25a658e0894b0244
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
54 uint_t zfs_dbuf_evict_key;
56 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
57 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
59 #ifndef __lint
60 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
61 dmu_buf_evict_func_t *evict_func_sync,
62 dmu_buf_evict_func_t *evict_func_async,
63 dmu_buf_t **clear_on_evict_dbufp);
64 #endif /* ! __lint */
67 * Global data structures and functions for the dbuf cache.
69 static kmem_cache_t *dbuf_kmem_cache;
70 static taskq_t *dbu_evict_taskq;
72 static kthread_t *dbuf_cache_evict_thread;
73 static kmutex_t dbuf_evict_lock;
74 static kcondvar_t dbuf_evict_cv;
75 static boolean_t dbuf_evict_thread_exit;
78 * There are two dbuf caches; each dbuf can only be in one of them at a time.
80 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
81 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
82 * that represent the metadata that describes filesystems/snapshots/
83 * bookmarks/properties/etc. We only evict from this cache when we export a
84 * pool, to short-circuit as much I/O as possible for all administrative
85 * commands that need the metadata. There is no eviction policy for this
86 * cache, because we try to only include types in it which would occupy a
87 * very small amount of space per object but create a large impact on the
88 * performance of these commands. Instead, after it reaches a maximum size
89 * (which should only happen on very small memory systems with a very large
90 * number of filesystem objects), we stop taking new dbufs into the
91 * metadata cache, instead putting them in the normal dbuf cache.
93 * 2. LRU cache of dbufs. The "dbuf cache" maintains a list of dbufs that
94 * are not currently held but have been recently released. These dbufs
95 * are not eligible for arc eviction until they are aged out of the cache.
96 * Dbufs that are aged out of the cache will be immediately destroyed and
97 * become eligible for arc eviction.
99 * Dbufs are added to these caches once the last hold is released. If a dbuf is
100 * later accessed and still exists in the dbuf cache, then it will be removed
101 * from the cache and later re-added to the head of the cache.
103 * If a given dbuf meets the requirements for the metadata cache, it will go
104 * there, otherwise it will be considered for the generic LRU dbuf cache. The
105 * caches and the refcounts tracking their sizes are stored in an array indexed
106 * by those caches' matching enum values (from dbuf_cached_state_t).
108 typedef struct dbuf_cache {
109 multilist_t *cache;
110 refcount_t size;
111 } dbuf_cache_t;
112 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
114 /* Size limits for the caches */
115 uint64_t dbuf_cache_max_bytes = 0;
116 uint64_t dbuf_metadata_cache_max_bytes = 0;
117 /* Set the default sizes of the caches to log2 fraction of arc size */
118 int dbuf_cache_shift = 5;
119 int dbuf_metadata_cache_shift = 6;
122 * For diagnostic purposes, this is incremented whenever we can't add
123 * something to the metadata cache because it's full, and instead put
124 * the data in the regular dbuf cache.
126 uint64_t dbuf_metadata_cache_overflow;
129 * The LRU dbuf cache uses a three-stage eviction policy:
130 * - A low water marker designates when the dbuf eviction thread
131 * should stop evicting from the dbuf cache.
132 * - When we reach the maximum size (aka mid water mark), we
133 * signal the eviction thread to run.
134 * - The high water mark indicates when the eviction thread
135 * is unable to keep up with the incoming load and eviction must
136 * happen in the context of the calling thread.
138 * The dbuf cache:
139 * (max size)
140 * low water mid water hi water
141 * +----------------------------------------+----------+----------+
142 * | | | |
143 * | | | |
144 * | | | |
145 * | | | |
146 * +----------------------------------------+----------+----------+
147 * stop signal evict
148 * evicting eviction directly
149 * thread
151 * The high and low water marks indicate the operating range for the eviction
152 * thread. The low water mark is, by default, 90% of the total size of the
153 * cache and the high water mark is at 110% (both of these percentages can be
154 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
155 * respectively). The eviction thread will try to ensure that the cache remains
156 * within this range by waking up every second and checking if the cache is
157 * above the low water mark. The thread can also be woken up by callers adding
158 * elements into the cache if the cache is larger than the mid water (i.e max
159 * cache size). Once the eviction thread is woken up and eviction is required,
160 * it will continue evicting buffers until it's able to reduce the cache size
161 * to the low water mark. If the cache size continues to grow and hits the high
162 * water mark, then callers adding elments to the cache will begin to evict
163 * directly from the cache until the cache is no longer above the high water
164 * mark.
168 * The percentage above and below the maximum cache size.
170 uint_t dbuf_cache_hiwater_pct = 10;
171 uint_t dbuf_cache_lowater_pct = 10;
173 /* ARGSUSED */
174 static int
175 dbuf_cons(void *vdb, void *unused, int kmflag)
177 dmu_buf_impl_t *db = vdb;
178 bzero(db, sizeof (dmu_buf_impl_t));
180 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
181 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
182 multilist_link_init(&db->db_cache_link);
183 refcount_create(&db->db_holds);
185 return (0);
188 /* ARGSUSED */
189 static void
190 dbuf_dest(void *vdb, void *unused)
192 dmu_buf_impl_t *db = vdb;
193 mutex_destroy(&db->db_mtx);
194 cv_destroy(&db->db_changed);
195 ASSERT(!multilist_link_active(&db->db_cache_link));
196 refcount_destroy(&db->db_holds);
200 * dbuf hash table routines
202 static dbuf_hash_table_t dbuf_hash_table;
204 static uint64_t dbuf_hash_count;
207 * We use Cityhash for this. It's fast, and has good hash properties without
208 * requiring any large static buffers.
210 static uint64_t
211 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
213 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
216 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
217 ((dbuf)->db.db_object == (obj) && \
218 (dbuf)->db_objset == (os) && \
219 (dbuf)->db_level == (level) && \
220 (dbuf)->db_blkid == (blkid))
222 dmu_buf_impl_t *
223 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
225 dbuf_hash_table_t *h = &dbuf_hash_table;
226 uint64_t hv = dbuf_hash(os, obj, level, blkid);
227 uint64_t idx = hv & h->hash_table_mask;
228 dmu_buf_impl_t *db;
230 mutex_enter(DBUF_HASH_MUTEX(h, idx));
231 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
232 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
233 mutex_enter(&db->db_mtx);
234 if (db->db_state != DB_EVICTING) {
235 mutex_exit(DBUF_HASH_MUTEX(h, idx));
236 return (db);
238 mutex_exit(&db->db_mtx);
241 mutex_exit(DBUF_HASH_MUTEX(h, idx));
242 return (NULL);
245 static dmu_buf_impl_t *
246 dbuf_find_bonus(objset_t *os, uint64_t object)
248 dnode_t *dn;
249 dmu_buf_impl_t *db = NULL;
251 if (dnode_hold(os, object, FTAG, &dn) == 0) {
252 rw_enter(&dn->dn_struct_rwlock, RW_READER);
253 if (dn->dn_bonus != NULL) {
254 db = dn->dn_bonus;
255 mutex_enter(&db->db_mtx);
257 rw_exit(&dn->dn_struct_rwlock);
258 dnode_rele(dn, FTAG);
260 return (db);
264 * Insert an entry into the hash table. If there is already an element
265 * equal to elem in the hash table, then the already existing element
266 * will be returned and the new element will not be inserted.
267 * Otherwise returns NULL.
269 static dmu_buf_impl_t *
270 dbuf_hash_insert(dmu_buf_impl_t *db)
272 dbuf_hash_table_t *h = &dbuf_hash_table;
273 objset_t *os = db->db_objset;
274 uint64_t obj = db->db.db_object;
275 int level = db->db_level;
276 uint64_t blkid = db->db_blkid;
277 uint64_t hv = dbuf_hash(os, obj, level, blkid);
278 uint64_t idx = hv & h->hash_table_mask;
279 dmu_buf_impl_t *dbf;
281 mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 mutex_enter(&dbf->db_mtx);
285 if (dbf->db_state != DB_EVICTING) {
286 mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 return (dbf);
289 mutex_exit(&dbf->db_mtx);
293 mutex_enter(&db->db_mtx);
294 db->db_hash_next = h->hash_table[idx];
295 h->hash_table[idx] = db;
296 mutex_exit(DBUF_HASH_MUTEX(h, idx));
297 atomic_inc_64(&dbuf_hash_count);
299 return (NULL);
303 * Remove an entry from the hash table. It must be in the EVICTING state.
305 static void
306 dbuf_hash_remove(dmu_buf_impl_t *db)
308 dbuf_hash_table_t *h = &dbuf_hash_table;
309 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
310 db->db_level, db->db_blkid);
311 uint64_t idx = hv & h->hash_table_mask;
312 dmu_buf_impl_t *dbf, **dbp;
315 * We musn't hold db_mtx to maintain lock ordering:
316 * DBUF_HASH_MUTEX > db_mtx.
318 ASSERT(refcount_is_zero(&db->db_holds));
319 ASSERT(db->db_state == DB_EVICTING);
320 ASSERT(!MUTEX_HELD(&db->db_mtx));
322 mutex_enter(DBUF_HASH_MUTEX(h, idx));
323 dbp = &h->hash_table[idx];
324 while ((dbf = *dbp) != db) {
325 dbp = &dbf->db_hash_next;
326 ASSERT(dbf != NULL);
328 *dbp = db->db_hash_next;
329 db->db_hash_next = NULL;
330 mutex_exit(DBUF_HASH_MUTEX(h, idx));
331 atomic_dec_64(&dbuf_hash_count);
334 typedef enum {
335 DBVU_EVICTING,
336 DBVU_NOT_EVICTING
337 } dbvu_verify_type_t;
339 static void
340 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
342 #ifdef ZFS_DEBUG
343 int64_t holds;
345 if (db->db_user == NULL)
346 return;
348 /* Only data blocks support the attachment of user data. */
349 ASSERT(db->db_level == 0);
351 /* Clients must resolve a dbuf before attaching user data. */
352 ASSERT(db->db.db_data != NULL);
353 ASSERT3U(db->db_state, ==, DB_CACHED);
355 holds = refcount_count(&db->db_holds);
356 if (verify_type == DBVU_EVICTING) {
358 * Immediate eviction occurs when holds == dirtycnt.
359 * For normal eviction buffers, holds is zero on
360 * eviction, except when dbuf_fix_old_data() calls
361 * dbuf_clear_data(). However, the hold count can grow
362 * during eviction even though db_mtx is held (see
363 * dmu_bonus_hold() for an example), so we can only
364 * test the generic invariant that holds >= dirtycnt.
366 ASSERT3U(holds, >=, db->db_dirtycnt);
367 } else {
368 if (db->db_user_immediate_evict == TRUE)
369 ASSERT3U(holds, >=, db->db_dirtycnt);
370 else
371 ASSERT3U(holds, >, 0);
373 #endif
376 static void
377 dbuf_evict_user(dmu_buf_impl_t *db)
379 dmu_buf_user_t *dbu = db->db_user;
381 ASSERT(MUTEX_HELD(&db->db_mtx));
383 if (dbu == NULL)
384 return;
386 dbuf_verify_user(db, DBVU_EVICTING);
387 db->db_user = NULL;
389 #ifdef ZFS_DEBUG
390 if (dbu->dbu_clear_on_evict_dbufp != NULL)
391 *dbu->dbu_clear_on_evict_dbufp = NULL;
392 #endif
395 * There are two eviction callbacks - one that we call synchronously
396 * and one that we invoke via a taskq. The async one is useful for
397 * avoiding lock order reversals and limiting stack depth.
399 * Note that if we have a sync callback but no async callback,
400 * it's likely that the sync callback will free the structure
401 * containing the dbu. In that case we need to take care to not
402 * dereference dbu after calling the sync evict func.
404 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
406 if (dbu->dbu_evict_func_sync != NULL)
407 dbu->dbu_evict_func_sync(dbu);
409 if (has_async) {
410 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
411 dbu, 0, &dbu->dbu_tqent);
415 boolean_t
416 dbuf_is_metadata(dmu_buf_impl_t *db)
418 if (db->db_level > 0) {
419 return (B_TRUE);
420 } else {
421 boolean_t is_metadata;
423 DB_DNODE_ENTER(db);
424 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
425 DB_DNODE_EXIT(db);
427 return (is_metadata);
432 * This returns whether this dbuf should be stored in the metadata cache, which
433 * is based on whether it's from one of the dnode types that store data related
434 * to traversing dataset hierarchies.
436 static boolean_t
437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
439 DB_DNODE_ENTER(db);
440 dmu_object_type_t type = DB_DNODE(db)->dn_type;
441 DB_DNODE_EXIT(db);
443 /* Check if this dbuf is one of the types we care about */
444 if (DMU_OT_IS_METADATA_CACHED(type)) {
445 /* If we hit this, then we set something up wrong in dmu_ot */
446 ASSERT(DMU_OT_IS_METADATA(type));
449 * Sanity check for small-memory systems: don't allocate too
450 * much memory for this purpose.
452 if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
453 dbuf_metadata_cache_max_bytes) {
454 dbuf_metadata_cache_overflow++;
455 DTRACE_PROBE1(dbuf__metadata__cache__overflow,
456 dmu_buf_impl_t *, db);
457 return (B_FALSE);
460 return (B_TRUE);
463 return (B_FALSE);
467 * This function *must* return indices evenly distributed between all
468 * sublists of the multilist. This is needed due to how the dbuf eviction
469 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
470 * distributed between all sublists and uses this assumption when
471 * deciding which sublist to evict from and how much to evict from it.
473 unsigned int
474 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
476 dmu_buf_impl_t *db = obj;
479 * The assumption here, is the hash value for a given
480 * dmu_buf_impl_t will remain constant throughout it's lifetime
481 * (i.e. it's objset, object, level and blkid fields don't change).
482 * Thus, we don't need to store the dbuf's sublist index
483 * on insertion, as this index can be recalculated on removal.
485 * Also, the low order bits of the hash value are thought to be
486 * distributed evenly. Otherwise, in the case that the multilist
487 * has a power of two number of sublists, each sublists' usage
488 * would not be evenly distributed.
490 return (dbuf_hash(db->db_objset, db->db.db_object,
491 db->db_level, db->db_blkid) %
492 multilist_get_num_sublists(ml));
495 static inline boolean_t
496 dbuf_cache_above_hiwater(void)
498 uint64_t dbuf_cache_hiwater_bytes =
499 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
501 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
502 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
505 static inline boolean_t
506 dbuf_cache_above_lowater(void)
508 uint64_t dbuf_cache_lowater_bytes =
509 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
511 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
512 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
516 * Evict the oldest eligible dbuf from the dbuf cache.
518 static void
519 dbuf_evict_one(void)
521 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
522 multilist_sublist_t *mls = multilist_sublist_lock(
523 dbuf_caches[DB_DBUF_CACHE].cache, idx);
525 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
528 * Set the thread's tsd to indicate that it's processing evictions.
529 * Once a thread stops evicting from the dbuf cache it will
530 * reset its tsd to NULL.
532 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
533 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
535 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
536 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
537 db = multilist_sublist_prev(mls, db);
540 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
541 multilist_sublist_t *, mls);
543 if (db != NULL) {
544 multilist_sublist_remove(mls, db);
545 multilist_sublist_unlock(mls);
546 (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
547 db->db.db_size, db);
548 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
549 db->db_caching_status = DB_NO_CACHE;
550 dbuf_destroy(db);
551 } else {
552 multilist_sublist_unlock(mls);
554 (void) tsd_set(zfs_dbuf_evict_key, NULL);
558 * The dbuf evict thread is responsible for aging out dbufs from the
559 * cache. Once the cache has reached it's maximum size, dbufs are removed
560 * and destroyed. The eviction thread will continue running until the size
561 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
562 * out of the cache it is destroyed and becomes eligible for arc eviction.
564 /* ARGSUSED */
565 static void
566 dbuf_evict_thread(void *unused)
568 callb_cpr_t cpr;
570 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
572 mutex_enter(&dbuf_evict_lock);
573 while (!dbuf_evict_thread_exit) {
574 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
575 CALLB_CPR_SAFE_BEGIN(&cpr);
576 (void) cv_timedwait_hires(&dbuf_evict_cv,
577 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
578 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
580 mutex_exit(&dbuf_evict_lock);
583 * Keep evicting as long as we're above the low water mark
584 * for the cache. We do this without holding the locks to
585 * minimize lock contention.
587 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
588 dbuf_evict_one();
591 mutex_enter(&dbuf_evict_lock);
594 dbuf_evict_thread_exit = B_FALSE;
595 cv_broadcast(&dbuf_evict_cv);
596 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
597 thread_exit();
601 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
602 * If the dbuf cache is at its high water mark, then evict a dbuf from the
603 * dbuf cache using the callers context.
605 static void
606 dbuf_evict_notify(void)
610 * We use thread specific data to track when a thread has
611 * started processing evictions. This allows us to avoid deeply
612 * nested stacks that would have a call flow similar to this:
614 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
615 * ^ |
616 * | |
617 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
619 * The dbuf_eviction_thread will always have its tsd set until
620 * that thread exits. All other threads will only set their tsd
621 * if they are participating in the eviction process. This only
622 * happens if the eviction thread is unable to process evictions
623 * fast enough. To keep the dbuf cache size in check, other threads
624 * can evict from the dbuf cache directly. Those threads will set
625 * their tsd values so that we ensure that they only evict one dbuf
626 * from the dbuf cache.
628 if (tsd_get(zfs_dbuf_evict_key) != NULL)
629 return;
632 * We check if we should evict without holding the dbuf_evict_lock,
633 * because it's OK to occasionally make the wrong decision here,
634 * and grabbing the lock results in massive lock contention.
636 if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
637 dbuf_cache_max_bytes) {
638 if (dbuf_cache_above_hiwater())
639 dbuf_evict_one();
640 cv_signal(&dbuf_evict_cv);
644 void
645 dbuf_init(void)
647 uint64_t hsize = 1ULL << 16;
648 dbuf_hash_table_t *h = &dbuf_hash_table;
649 int i;
652 * The hash table is big enough to fill all of physical memory
653 * with an average 4K block size. The table will take up
654 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
656 while (hsize * 4096 < physmem * PAGESIZE)
657 hsize <<= 1;
659 retry:
660 h->hash_table_mask = hsize - 1;
661 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
662 if (h->hash_table == NULL) {
663 /* XXX - we should really return an error instead of assert */
664 ASSERT(hsize > (1ULL << 10));
665 hsize >>= 1;
666 goto retry;
669 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
670 sizeof (dmu_buf_impl_t),
671 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
673 for (i = 0; i < DBUF_MUTEXES; i++)
674 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
677 * Setup the parameters for the dbuf caches. We set the sizes of the
678 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
679 * of the size of the ARC, respectively. If the values are set in
680 * /etc/system and they're not greater than the size of the ARC, then
681 * we honor that value.
683 if (dbuf_cache_max_bytes == 0 ||
684 dbuf_cache_max_bytes >= arc_max_bytes()) {
685 dbuf_cache_max_bytes = arc_max_bytes() >> dbuf_cache_shift;
687 if (dbuf_metadata_cache_max_bytes == 0 ||
688 dbuf_metadata_cache_max_bytes >= arc_max_bytes()) {
689 dbuf_metadata_cache_max_bytes =
690 arc_max_bytes() >> dbuf_metadata_cache_shift;
694 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
695 * configuration is not required.
697 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
699 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
700 dbuf_caches[dcs].cache =
701 multilist_create(sizeof (dmu_buf_impl_t),
702 offsetof(dmu_buf_impl_t, db_cache_link),
703 dbuf_cache_multilist_index_func);
704 refcount_create(&dbuf_caches[dcs].size);
707 tsd_create(&zfs_dbuf_evict_key, NULL);
708 dbuf_evict_thread_exit = B_FALSE;
709 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
710 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
711 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
712 NULL, 0, &p0, TS_RUN, minclsyspri);
715 void
716 dbuf_fini(void)
718 dbuf_hash_table_t *h = &dbuf_hash_table;
719 int i;
721 for (i = 0; i < DBUF_MUTEXES; i++)
722 mutex_destroy(&h->hash_mutexes[i]);
723 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
724 kmem_cache_destroy(dbuf_kmem_cache);
725 taskq_destroy(dbu_evict_taskq);
727 mutex_enter(&dbuf_evict_lock);
728 dbuf_evict_thread_exit = B_TRUE;
729 while (dbuf_evict_thread_exit) {
730 cv_signal(&dbuf_evict_cv);
731 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
733 mutex_exit(&dbuf_evict_lock);
734 tsd_destroy(&zfs_dbuf_evict_key);
736 mutex_destroy(&dbuf_evict_lock);
737 cv_destroy(&dbuf_evict_cv);
739 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
740 refcount_destroy(&dbuf_caches[dcs].size);
741 multilist_destroy(dbuf_caches[dcs].cache);
746 * Other stuff.
749 #ifdef ZFS_DEBUG
750 static void
751 dbuf_verify(dmu_buf_impl_t *db)
753 dnode_t *dn;
754 dbuf_dirty_record_t *dr;
756 ASSERT(MUTEX_HELD(&db->db_mtx));
758 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
759 return;
761 ASSERT(db->db_objset != NULL);
762 DB_DNODE_ENTER(db);
763 dn = DB_DNODE(db);
764 if (dn == NULL) {
765 ASSERT(db->db_parent == NULL);
766 ASSERT(db->db_blkptr == NULL);
767 } else {
768 ASSERT3U(db->db.db_object, ==, dn->dn_object);
769 ASSERT3P(db->db_objset, ==, dn->dn_objset);
770 ASSERT3U(db->db_level, <, dn->dn_nlevels);
771 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
772 db->db_blkid == DMU_SPILL_BLKID ||
773 !avl_is_empty(&dn->dn_dbufs));
775 if (db->db_blkid == DMU_BONUS_BLKID) {
776 ASSERT(dn != NULL);
777 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
778 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
779 } else if (db->db_blkid == DMU_SPILL_BLKID) {
780 ASSERT(dn != NULL);
781 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
782 ASSERT0(db->db.db_offset);
783 } else {
784 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
787 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
788 ASSERT(dr->dr_dbuf == db);
790 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
791 ASSERT(dr->dr_dbuf == db);
794 * We can't assert that db_size matches dn_datablksz because it
795 * can be momentarily different when another thread is doing
796 * dnode_set_blksz().
798 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
799 dr = db->db_data_pending;
801 * It should only be modified in syncing context, so
802 * make sure we only have one copy of the data.
804 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
807 /* verify db->db_blkptr */
808 if (db->db_blkptr) {
809 if (db->db_parent == dn->dn_dbuf) {
810 /* db is pointed to by the dnode */
811 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
812 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
813 ASSERT(db->db_parent == NULL);
814 else
815 ASSERT(db->db_parent != NULL);
816 if (db->db_blkid != DMU_SPILL_BLKID)
817 ASSERT3P(db->db_blkptr, ==,
818 &dn->dn_phys->dn_blkptr[db->db_blkid]);
819 } else {
820 /* db is pointed to by an indirect block */
821 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
822 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
823 ASSERT3U(db->db_parent->db.db_object, ==,
824 db->db.db_object);
826 * dnode_grow_indblksz() can make this fail if we don't
827 * have the struct_rwlock. XXX indblksz no longer
828 * grows. safe to do this now?
830 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
831 ASSERT3P(db->db_blkptr, ==,
832 ((blkptr_t *)db->db_parent->db.db_data +
833 db->db_blkid % epb));
837 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
838 (db->db_buf == NULL || db->db_buf->b_data) &&
839 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
840 db->db_state != DB_FILL && !dn->dn_free_txg) {
842 * If the blkptr isn't set but they have nonzero data,
843 * it had better be dirty, otherwise we'll lose that
844 * data when we evict this buffer.
846 * There is an exception to this rule for indirect blocks; in
847 * this case, if the indirect block is a hole, we fill in a few
848 * fields on each of the child blocks (importantly, birth time)
849 * to prevent hole birth times from being lost when you
850 * partially fill in a hole.
852 if (db->db_dirtycnt == 0) {
853 if (db->db_level == 0) {
854 uint64_t *buf = db->db.db_data;
855 int i;
857 for (i = 0; i < db->db.db_size >> 3; i++) {
858 ASSERT(buf[i] == 0);
860 } else {
861 blkptr_t *bps = db->db.db_data;
862 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
863 db->db.db_size);
865 * We want to verify that all the blkptrs in the
866 * indirect block are holes, but we may have
867 * automatically set up a few fields for them.
868 * We iterate through each blkptr and verify
869 * they only have those fields set.
871 for (int i = 0;
872 i < db->db.db_size / sizeof (blkptr_t);
873 i++) {
874 blkptr_t *bp = &bps[i];
875 ASSERT(ZIO_CHECKSUM_IS_ZERO(
876 &bp->blk_cksum));
877 ASSERT(
878 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
879 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
880 DVA_IS_EMPTY(&bp->blk_dva[2]));
881 ASSERT0(bp->blk_fill);
882 ASSERT0(bp->blk_pad[0]);
883 ASSERT0(bp->blk_pad[1]);
884 ASSERT(!BP_IS_EMBEDDED(bp));
885 ASSERT(BP_IS_HOLE(bp));
886 ASSERT0(bp->blk_phys_birth);
891 DB_DNODE_EXIT(db);
893 #endif
895 static void
896 dbuf_clear_data(dmu_buf_impl_t *db)
898 ASSERT(MUTEX_HELD(&db->db_mtx));
899 dbuf_evict_user(db);
900 ASSERT3P(db->db_buf, ==, NULL);
901 db->db.db_data = NULL;
902 if (db->db_state != DB_NOFILL)
903 db->db_state = DB_UNCACHED;
906 static void
907 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
909 ASSERT(MUTEX_HELD(&db->db_mtx));
910 ASSERT(buf != NULL);
912 db->db_buf = buf;
913 ASSERT(buf->b_data != NULL);
914 db->db.db_data = buf->b_data;
918 * Loan out an arc_buf for read. Return the loaned arc_buf.
920 arc_buf_t *
921 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
923 arc_buf_t *abuf;
925 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
926 mutex_enter(&db->db_mtx);
927 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
928 int blksz = db->db.db_size;
929 spa_t *spa = db->db_objset->os_spa;
931 mutex_exit(&db->db_mtx);
932 abuf = arc_loan_buf(spa, B_FALSE, blksz);
933 bcopy(db->db.db_data, abuf->b_data, blksz);
934 } else {
935 abuf = db->db_buf;
936 arc_loan_inuse_buf(abuf, db);
937 db->db_buf = NULL;
938 dbuf_clear_data(db);
939 mutex_exit(&db->db_mtx);
941 return (abuf);
945 * Calculate which level n block references the data at the level 0 offset
946 * provided.
948 uint64_t
949 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
951 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
953 * The level n blkid is equal to the level 0 blkid divided by
954 * the number of level 0s in a level n block.
956 * The level 0 blkid is offset >> datablkshift =
957 * offset / 2^datablkshift.
959 * The number of level 0s in a level n is the number of block
960 * pointers in an indirect block, raised to the power of level.
961 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
962 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
964 * Thus, the level n blkid is: offset /
965 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
966 * = offset / 2^(datablkshift + level *
967 * (indblkshift - SPA_BLKPTRSHIFT))
968 * = offset >> (datablkshift + level *
969 * (indblkshift - SPA_BLKPTRSHIFT))
971 return (offset >> (dn->dn_datablkshift + level *
972 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
973 } else {
974 ASSERT3U(offset, <, dn->dn_datablksz);
975 return (0);
979 static void
980 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
982 dmu_buf_impl_t *db = vdb;
984 mutex_enter(&db->db_mtx);
985 ASSERT3U(db->db_state, ==, DB_READ);
987 * All reads are synchronous, so we must have a hold on the dbuf
989 ASSERT(refcount_count(&db->db_holds) > 0);
990 ASSERT(db->db_buf == NULL);
991 ASSERT(db->db.db_data == NULL);
992 if (db->db_level == 0 && db->db_freed_in_flight) {
993 /* we were freed in flight; disregard any error */
994 arc_release(buf, db);
995 bzero(buf->b_data, db->db.db_size);
996 arc_buf_freeze(buf);
997 db->db_freed_in_flight = FALSE;
998 dbuf_set_data(db, buf);
999 db->db_state = DB_CACHED;
1000 } else if (zio == NULL || zio->io_error == 0) {
1001 dbuf_set_data(db, buf);
1002 db->db_state = DB_CACHED;
1003 } else {
1004 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1005 ASSERT3P(db->db_buf, ==, NULL);
1006 arc_buf_destroy(buf, db);
1007 db->db_state = DB_UNCACHED;
1009 cv_broadcast(&db->db_changed);
1010 dbuf_rele_and_unlock(db, NULL);
1013 static void
1014 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1016 dnode_t *dn;
1017 zbookmark_phys_t zb;
1018 arc_flags_t aflags = ARC_FLAG_NOWAIT;
1020 DB_DNODE_ENTER(db);
1021 dn = DB_DNODE(db);
1022 ASSERT(!refcount_is_zero(&db->db_holds));
1023 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1024 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1025 ASSERT(MUTEX_HELD(&db->db_mtx));
1026 ASSERT(db->db_state == DB_UNCACHED);
1027 ASSERT(db->db_buf == NULL);
1029 if (db->db_blkid == DMU_BONUS_BLKID) {
1030 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1032 ASSERT3U(bonuslen, <=, db->db.db_size);
1033 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1034 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1035 if (bonuslen < DN_MAX_BONUSLEN)
1036 bzero(db->db.db_data, DN_MAX_BONUSLEN);
1037 if (bonuslen)
1038 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1039 DB_DNODE_EXIT(db);
1040 db->db_state = DB_CACHED;
1041 mutex_exit(&db->db_mtx);
1042 return;
1046 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1047 * processes the delete record and clears the bp while we are waiting
1048 * for the dn_mtx (resulting in a "no" from block_freed).
1050 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1051 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1052 BP_IS_HOLE(db->db_blkptr)))) {
1053 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1055 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1056 db->db.db_size));
1057 bzero(db->db.db_data, db->db.db_size);
1059 if (db->db_blkptr != NULL && db->db_level > 0 &&
1060 BP_IS_HOLE(db->db_blkptr) &&
1061 db->db_blkptr->blk_birth != 0) {
1062 blkptr_t *bps = db->db.db_data;
1063 for (int i = 0; i < ((1 <<
1064 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1065 i++) {
1066 blkptr_t *bp = &bps[i];
1067 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1068 1 << dn->dn_indblkshift);
1069 BP_SET_LSIZE(bp,
1070 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1071 dn->dn_datablksz :
1072 BP_GET_LSIZE(db->db_blkptr));
1073 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1074 BP_SET_LEVEL(bp,
1075 BP_GET_LEVEL(db->db_blkptr) - 1);
1076 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1079 DB_DNODE_EXIT(db);
1080 db->db_state = DB_CACHED;
1081 mutex_exit(&db->db_mtx);
1082 return;
1085 DB_DNODE_EXIT(db);
1087 db->db_state = DB_READ;
1088 mutex_exit(&db->db_mtx);
1090 if (DBUF_IS_L2CACHEABLE(db))
1091 aflags |= ARC_FLAG_L2CACHE;
1093 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1094 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1095 db->db.db_object, db->db_level, db->db_blkid);
1097 dbuf_add_ref(db, NULL);
1099 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1100 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1101 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1102 &aflags, &zb);
1106 * This is our just-in-time copy function. It makes a copy of buffers that
1107 * have been modified in a previous transaction group before we access them in
1108 * the current active group.
1110 * This function is used in three places: when we are dirtying a buffer for the
1111 * first time in a txg, when we are freeing a range in a dnode that includes
1112 * this buffer, and when we are accessing a buffer which was received compressed
1113 * and later referenced in a WRITE_BYREF record.
1115 * Note that when we are called from dbuf_free_range() we do not put a hold on
1116 * the buffer, we just traverse the active dbuf list for the dnode.
1118 static void
1119 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1121 dbuf_dirty_record_t *dr = db->db_last_dirty;
1123 ASSERT(MUTEX_HELD(&db->db_mtx));
1124 ASSERT(db->db.db_data != NULL);
1125 ASSERT(db->db_level == 0);
1126 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1128 if (dr == NULL ||
1129 (dr->dt.dl.dr_data !=
1130 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1131 return;
1134 * If the last dirty record for this dbuf has not yet synced
1135 * and its referencing the dbuf data, either:
1136 * reset the reference to point to a new copy,
1137 * or (if there a no active holders)
1138 * just null out the current db_data pointer.
1140 ASSERT(dr->dr_txg >= txg - 2);
1141 if (db->db_blkid == DMU_BONUS_BLKID) {
1142 /* Note that the data bufs here are zio_bufs */
1143 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1144 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1145 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1146 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1147 int size = arc_buf_size(db->db_buf);
1148 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1149 spa_t *spa = db->db_objset->os_spa;
1150 enum zio_compress compress_type =
1151 arc_get_compression(db->db_buf);
1153 if (compress_type == ZIO_COMPRESS_OFF) {
1154 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1155 } else {
1156 ASSERT3U(type, ==, ARC_BUFC_DATA);
1157 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1158 size, arc_buf_lsize(db->db_buf), compress_type);
1160 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1161 } else {
1162 db->db_buf = NULL;
1163 dbuf_clear_data(db);
1168 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1170 int err = 0;
1171 boolean_t prefetch;
1172 dnode_t *dn;
1175 * We don't have to hold the mutex to check db_state because it
1176 * can't be freed while we have a hold on the buffer.
1178 ASSERT(!refcount_is_zero(&db->db_holds));
1180 if (db->db_state == DB_NOFILL)
1181 return (SET_ERROR(EIO));
1183 DB_DNODE_ENTER(db);
1184 dn = DB_DNODE(db);
1185 if ((flags & DB_RF_HAVESTRUCT) == 0)
1186 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1188 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1189 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1190 DBUF_IS_CACHEABLE(db);
1192 mutex_enter(&db->db_mtx);
1193 if (db->db_state == DB_CACHED) {
1195 * If the arc buf is compressed, we need to decompress it to
1196 * read the data. This could happen during the "zfs receive" of
1197 * a stream which is compressed and deduplicated.
1199 if (db->db_buf != NULL &&
1200 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1201 dbuf_fix_old_data(db,
1202 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1203 err = arc_decompress(db->db_buf);
1204 dbuf_set_data(db, db->db_buf);
1206 mutex_exit(&db->db_mtx);
1207 if (prefetch)
1208 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1209 if ((flags & DB_RF_HAVESTRUCT) == 0)
1210 rw_exit(&dn->dn_struct_rwlock);
1211 DB_DNODE_EXIT(db);
1212 } else if (db->db_state == DB_UNCACHED) {
1213 spa_t *spa = dn->dn_objset->os_spa;
1214 boolean_t need_wait = B_FALSE;
1216 if (zio == NULL &&
1217 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1218 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1219 need_wait = B_TRUE;
1221 dbuf_read_impl(db, zio, flags);
1223 /* dbuf_read_impl has dropped db_mtx for us */
1225 if (prefetch)
1226 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1228 if ((flags & DB_RF_HAVESTRUCT) == 0)
1229 rw_exit(&dn->dn_struct_rwlock);
1230 DB_DNODE_EXIT(db);
1232 if (need_wait)
1233 err = zio_wait(zio);
1234 } else {
1236 * Another reader came in while the dbuf was in flight
1237 * between UNCACHED and CACHED. Either a writer will finish
1238 * writing the buffer (sending the dbuf to CACHED) or the
1239 * first reader's request will reach the read_done callback
1240 * and send the dbuf to CACHED. Otherwise, a failure
1241 * occurred and the dbuf went to UNCACHED.
1243 mutex_exit(&db->db_mtx);
1244 if (prefetch)
1245 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1246 if ((flags & DB_RF_HAVESTRUCT) == 0)
1247 rw_exit(&dn->dn_struct_rwlock);
1248 DB_DNODE_EXIT(db);
1250 /* Skip the wait per the caller's request. */
1251 mutex_enter(&db->db_mtx);
1252 if ((flags & DB_RF_NEVERWAIT) == 0) {
1253 while (db->db_state == DB_READ ||
1254 db->db_state == DB_FILL) {
1255 ASSERT(db->db_state == DB_READ ||
1256 (flags & DB_RF_HAVESTRUCT) == 0);
1257 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1258 db, zio_t *, zio);
1259 cv_wait(&db->db_changed, &db->db_mtx);
1261 if (db->db_state == DB_UNCACHED)
1262 err = SET_ERROR(EIO);
1264 mutex_exit(&db->db_mtx);
1267 return (err);
1270 static void
1271 dbuf_noread(dmu_buf_impl_t *db)
1273 ASSERT(!refcount_is_zero(&db->db_holds));
1274 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1275 mutex_enter(&db->db_mtx);
1276 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1277 cv_wait(&db->db_changed, &db->db_mtx);
1278 if (db->db_state == DB_UNCACHED) {
1279 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1280 spa_t *spa = db->db_objset->os_spa;
1282 ASSERT(db->db_buf == NULL);
1283 ASSERT(db->db.db_data == NULL);
1284 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1285 db->db_state = DB_FILL;
1286 } else if (db->db_state == DB_NOFILL) {
1287 dbuf_clear_data(db);
1288 } else {
1289 ASSERT3U(db->db_state, ==, DB_CACHED);
1291 mutex_exit(&db->db_mtx);
1294 void
1295 dbuf_unoverride(dbuf_dirty_record_t *dr)
1297 dmu_buf_impl_t *db = dr->dr_dbuf;
1298 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1299 uint64_t txg = dr->dr_txg;
1301 ASSERT(MUTEX_HELD(&db->db_mtx));
1303 * This assert is valid because dmu_sync() expects to be called by
1304 * a zilog's get_data while holding a range lock. This call only
1305 * comes from dbuf_dirty() callers who must also hold a range lock.
1307 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1308 ASSERT(db->db_level == 0);
1310 if (db->db_blkid == DMU_BONUS_BLKID ||
1311 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1312 return;
1314 ASSERT(db->db_data_pending != dr);
1316 /* free this block */
1317 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1318 zio_free(db->db_objset->os_spa, txg, bp);
1320 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1321 dr->dt.dl.dr_nopwrite = B_FALSE;
1324 * Release the already-written buffer, so we leave it in
1325 * a consistent dirty state. Note that all callers are
1326 * modifying the buffer, so they will immediately do
1327 * another (redundant) arc_release(). Therefore, leave
1328 * the buf thawed to save the effort of freezing &
1329 * immediately re-thawing it.
1331 arc_release(dr->dt.dl.dr_data, db);
1335 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1336 * data blocks in the free range, so that any future readers will find
1337 * empty blocks.
1339 void
1340 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1341 dmu_tx_t *tx)
1343 dmu_buf_impl_t db_search;
1344 dmu_buf_impl_t *db, *db_next;
1345 uint64_t txg = tx->tx_txg;
1346 avl_index_t where;
1348 if (end_blkid > dn->dn_maxblkid &&
1349 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1350 end_blkid = dn->dn_maxblkid;
1351 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1353 db_search.db_level = 0;
1354 db_search.db_blkid = start_blkid;
1355 db_search.db_state = DB_SEARCH;
1357 mutex_enter(&dn->dn_dbufs_mtx);
1358 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1359 ASSERT3P(db, ==, NULL);
1361 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1363 for (; db != NULL; db = db_next) {
1364 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1365 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1367 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1368 break;
1370 ASSERT3U(db->db_blkid, >=, start_blkid);
1372 /* found a level 0 buffer in the range */
1373 mutex_enter(&db->db_mtx);
1374 if (dbuf_undirty(db, tx)) {
1375 /* mutex has been dropped and dbuf destroyed */
1376 continue;
1379 if (db->db_state == DB_UNCACHED ||
1380 db->db_state == DB_NOFILL ||
1381 db->db_state == DB_EVICTING) {
1382 ASSERT(db->db.db_data == NULL);
1383 mutex_exit(&db->db_mtx);
1384 continue;
1386 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1387 /* will be handled in dbuf_read_done or dbuf_rele */
1388 db->db_freed_in_flight = TRUE;
1389 mutex_exit(&db->db_mtx);
1390 continue;
1392 if (refcount_count(&db->db_holds) == 0) {
1393 ASSERT(db->db_buf);
1394 dbuf_destroy(db);
1395 continue;
1397 /* The dbuf is referenced */
1399 if (db->db_last_dirty != NULL) {
1400 dbuf_dirty_record_t *dr = db->db_last_dirty;
1402 if (dr->dr_txg == txg) {
1404 * This buffer is "in-use", re-adjust the file
1405 * size to reflect that this buffer may
1406 * contain new data when we sync.
1408 if (db->db_blkid != DMU_SPILL_BLKID &&
1409 db->db_blkid > dn->dn_maxblkid)
1410 dn->dn_maxblkid = db->db_blkid;
1411 dbuf_unoverride(dr);
1412 } else {
1414 * This dbuf is not dirty in the open context.
1415 * Either uncache it (if its not referenced in
1416 * the open context) or reset its contents to
1417 * empty.
1419 dbuf_fix_old_data(db, txg);
1422 /* clear the contents if its cached */
1423 if (db->db_state == DB_CACHED) {
1424 ASSERT(db->db.db_data != NULL);
1425 arc_release(db->db_buf, db);
1426 bzero(db->db.db_data, db->db.db_size);
1427 arc_buf_freeze(db->db_buf);
1430 mutex_exit(&db->db_mtx);
1432 mutex_exit(&dn->dn_dbufs_mtx);
1435 void
1436 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1438 arc_buf_t *buf, *obuf;
1439 int osize = db->db.db_size;
1440 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1441 dnode_t *dn;
1443 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1445 DB_DNODE_ENTER(db);
1446 dn = DB_DNODE(db);
1448 /* XXX does *this* func really need the lock? */
1449 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1452 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1453 * is OK, because there can be no other references to the db
1454 * when we are changing its size, so no concurrent DB_FILL can
1455 * be happening.
1458 * XXX we should be doing a dbuf_read, checking the return
1459 * value and returning that up to our callers
1461 dmu_buf_will_dirty(&db->db, tx);
1463 /* create the data buffer for the new block */
1464 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1466 /* copy old block data to the new block */
1467 obuf = db->db_buf;
1468 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1469 /* zero the remainder */
1470 if (size > osize)
1471 bzero((uint8_t *)buf->b_data + osize, size - osize);
1473 mutex_enter(&db->db_mtx);
1474 dbuf_set_data(db, buf);
1475 arc_buf_destroy(obuf, db);
1476 db->db.db_size = size;
1478 if (db->db_level == 0) {
1479 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1480 db->db_last_dirty->dt.dl.dr_data = buf;
1482 mutex_exit(&db->db_mtx);
1484 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1485 DB_DNODE_EXIT(db);
1488 void
1489 dbuf_release_bp(dmu_buf_impl_t *db)
1491 objset_t *os = db->db_objset;
1493 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1494 ASSERT(arc_released(os->os_phys_buf) ||
1495 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1496 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1498 (void) arc_release(db->db_buf, db);
1502 * We already have a dirty record for this TXG, and we are being
1503 * dirtied again.
1505 static void
1506 dbuf_redirty(dbuf_dirty_record_t *dr)
1508 dmu_buf_impl_t *db = dr->dr_dbuf;
1510 ASSERT(MUTEX_HELD(&db->db_mtx));
1512 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1514 * If this buffer has already been written out,
1515 * we now need to reset its state.
1517 dbuf_unoverride(dr);
1518 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1519 db->db_state != DB_NOFILL) {
1520 /* Already released on initial dirty, so just thaw. */
1521 ASSERT(arc_released(db->db_buf));
1522 arc_buf_thaw(db->db_buf);
1527 dbuf_dirty_record_t *
1528 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1530 dnode_t *dn;
1531 objset_t *os;
1532 dbuf_dirty_record_t **drp, *dr;
1533 int drop_struct_lock = FALSE;
1534 int txgoff = tx->tx_txg & TXG_MASK;
1536 ASSERT(tx->tx_txg != 0);
1537 ASSERT(!refcount_is_zero(&db->db_holds));
1538 DMU_TX_DIRTY_BUF(tx, db);
1540 DB_DNODE_ENTER(db);
1541 dn = DB_DNODE(db);
1543 * Shouldn't dirty a regular buffer in syncing context. Private
1544 * objects may be dirtied in syncing context, but only if they
1545 * were already pre-dirtied in open context.
1547 #ifdef DEBUG
1548 if (dn->dn_objset->os_dsl_dataset != NULL) {
1549 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1550 RW_READER, FTAG);
1552 ASSERT(!dmu_tx_is_syncing(tx) ||
1553 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1554 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1555 dn->dn_objset->os_dsl_dataset == NULL);
1556 if (dn->dn_objset->os_dsl_dataset != NULL)
1557 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1558 #endif
1560 * We make this assert for private objects as well, but after we
1561 * check if we're already dirty. They are allowed to re-dirty
1562 * in syncing context.
1564 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1565 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1566 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1568 mutex_enter(&db->db_mtx);
1570 * XXX make this true for indirects too? The problem is that
1571 * transactions created with dmu_tx_create_assigned() from
1572 * syncing context don't bother holding ahead.
1574 ASSERT(db->db_level != 0 ||
1575 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1576 db->db_state == DB_NOFILL);
1578 mutex_enter(&dn->dn_mtx);
1580 * Don't set dirtyctx to SYNC if we're just modifying this as we
1581 * initialize the objset.
1583 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1584 if (dn->dn_objset->os_dsl_dataset != NULL) {
1585 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1586 RW_READER, FTAG);
1588 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1589 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1590 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1591 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1592 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1594 if (dn->dn_objset->os_dsl_dataset != NULL) {
1595 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1596 FTAG);
1599 mutex_exit(&dn->dn_mtx);
1601 if (db->db_blkid == DMU_SPILL_BLKID)
1602 dn->dn_have_spill = B_TRUE;
1605 * If this buffer is already dirty, we're done.
1607 drp = &db->db_last_dirty;
1608 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1609 db->db.db_object == DMU_META_DNODE_OBJECT);
1610 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1611 drp = &dr->dr_next;
1612 if (dr && dr->dr_txg == tx->tx_txg) {
1613 DB_DNODE_EXIT(db);
1615 dbuf_redirty(dr);
1616 mutex_exit(&db->db_mtx);
1617 return (dr);
1621 * Only valid if not already dirty.
1623 ASSERT(dn->dn_object == 0 ||
1624 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1625 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1627 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1630 * We should only be dirtying in syncing context if it's the
1631 * mos or we're initializing the os or it's a special object.
1632 * However, we are allowed to dirty in syncing context provided
1633 * we already dirtied it in open context. Hence we must make
1634 * this assertion only if we're not already dirty.
1636 os = dn->dn_objset;
1637 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1638 #ifdef DEBUG
1639 if (dn->dn_objset->os_dsl_dataset != NULL)
1640 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1641 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1642 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1643 if (dn->dn_objset->os_dsl_dataset != NULL)
1644 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1645 #endif
1646 ASSERT(db->db.db_size != 0);
1648 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1650 if (db->db_blkid != DMU_BONUS_BLKID) {
1651 dmu_objset_willuse_space(os, db->db.db_size, tx);
1655 * If this buffer is dirty in an old transaction group we need
1656 * to make a copy of it so that the changes we make in this
1657 * transaction group won't leak out when we sync the older txg.
1659 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1660 if (db->db_level == 0) {
1661 void *data_old = db->db_buf;
1663 if (db->db_state != DB_NOFILL) {
1664 if (db->db_blkid == DMU_BONUS_BLKID) {
1665 dbuf_fix_old_data(db, tx->tx_txg);
1666 data_old = db->db.db_data;
1667 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1669 * Release the data buffer from the cache so
1670 * that we can modify it without impacting
1671 * possible other users of this cached data
1672 * block. Note that indirect blocks and
1673 * private objects are not released until the
1674 * syncing state (since they are only modified
1675 * then).
1677 arc_release(db->db_buf, db);
1678 dbuf_fix_old_data(db, tx->tx_txg);
1679 data_old = db->db_buf;
1681 ASSERT(data_old != NULL);
1683 dr->dt.dl.dr_data = data_old;
1684 } else {
1685 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1686 list_create(&dr->dt.di.dr_children,
1687 sizeof (dbuf_dirty_record_t),
1688 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1690 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1691 dr->dr_accounted = db->db.db_size;
1692 dr->dr_dbuf = db;
1693 dr->dr_txg = tx->tx_txg;
1694 dr->dr_next = *drp;
1695 *drp = dr;
1698 * We could have been freed_in_flight between the dbuf_noread
1699 * and dbuf_dirty. We win, as though the dbuf_noread() had
1700 * happened after the free.
1702 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1703 db->db_blkid != DMU_SPILL_BLKID) {
1704 mutex_enter(&dn->dn_mtx);
1705 if (dn->dn_free_ranges[txgoff] != NULL) {
1706 range_tree_clear(dn->dn_free_ranges[txgoff],
1707 db->db_blkid, 1);
1709 mutex_exit(&dn->dn_mtx);
1710 db->db_freed_in_flight = FALSE;
1714 * This buffer is now part of this txg
1716 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1717 db->db_dirtycnt += 1;
1718 ASSERT3U(db->db_dirtycnt, <=, 3);
1720 mutex_exit(&db->db_mtx);
1722 if (db->db_blkid == DMU_BONUS_BLKID ||
1723 db->db_blkid == DMU_SPILL_BLKID) {
1724 mutex_enter(&dn->dn_mtx);
1725 ASSERT(!list_link_active(&dr->dr_dirty_node));
1726 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1727 mutex_exit(&dn->dn_mtx);
1728 dnode_setdirty(dn, tx);
1729 DB_DNODE_EXIT(db);
1730 return (dr);
1734 * The dn_struct_rwlock prevents db_blkptr from changing
1735 * due to a write from syncing context completing
1736 * while we are running, so we want to acquire it before
1737 * looking at db_blkptr.
1739 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1740 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1741 drop_struct_lock = TRUE;
1745 * We need to hold the dn_struct_rwlock to make this assertion,
1746 * because it protects dn_phys / dn_next_nlevels from changing.
1748 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1749 dn->dn_phys->dn_nlevels > db->db_level ||
1750 dn->dn_next_nlevels[txgoff] > db->db_level ||
1751 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1752 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1755 * If we are overwriting a dedup BP, then unless it is snapshotted,
1756 * when we get to syncing context we will need to decrement its
1757 * refcount in the DDT. Prefetch the relevant DDT block so that
1758 * syncing context won't have to wait for the i/o.
1760 ddt_prefetch(os->os_spa, db->db_blkptr);
1762 if (db->db_level == 0) {
1763 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1764 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1767 if (db->db_level+1 < dn->dn_nlevels) {
1768 dmu_buf_impl_t *parent = db->db_parent;
1769 dbuf_dirty_record_t *di;
1770 int parent_held = FALSE;
1772 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1773 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1775 parent = dbuf_hold_level(dn, db->db_level+1,
1776 db->db_blkid >> epbs, FTAG);
1777 ASSERT(parent != NULL);
1778 parent_held = TRUE;
1780 if (drop_struct_lock)
1781 rw_exit(&dn->dn_struct_rwlock);
1782 ASSERT3U(db->db_level+1, ==, parent->db_level);
1783 di = dbuf_dirty(parent, tx);
1784 if (parent_held)
1785 dbuf_rele(parent, FTAG);
1787 mutex_enter(&db->db_mtx);
1789 * Since we've dropped the mutex, it's possible that
1790 * dbuf_undirty() might have changed this out from under us.
1792 if (db->db_last_dirty == dr ||
1793 dn->dn_object == DMU_META_DNODE_OBJECT) {
1794 mutex_enter(&di->dt.di.dr_mtx);
1795 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1796 ASSERT(!list_link_active(&dr->dr_dirty_node));
1797 list_insert_tail(&di->dt.di.dr_children, dr);
1798 mutex_exit(&di->dt.di.dr_mtx);
1799 dr->dr_parent = di;
1801 mutex_exit(&db->db_mtx);
1802 } else {
1803 ASSERT(db->db_level+1 == dn->dn_nlevels);
1804 ASSERT(db->db_blkid < dn->dn_nblkptr);
1805 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1806 mutex_enter(&dn->dn_mtx);
1807 ASSERT(!list_link_active(&dr->dr_dirty_node));
1808 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1809 mutex_exit(&dn->dn_mtx);
1810 if (drop_struct_lock)
1811 rw_exit(&dn->dn_struct_rwlock);
1814 dnode_setdirty(dn, tx);
1815 DB_DNODE_EXIT(db);
1816 return (dr);
1820 * Undirty a buffer in the transaction group referenced by the given
1821 * transaction. Return whether this evicted the dbuf.
1823 static boolean_t
1824 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1826 dnode_t *dn;
1827 uint64_t txg = tx->tx_txg;
1828 dbuf_dirty_record_t *dr, **drp;
1830 ASSERT(txg != 0);
1833 * Due to our use of dn_nlevels below, this can only be called
1834 * in open context, unless we are operating on the MOS.
1835 * From syncing context, dn_nlevels may be different from the
1836 * dn_nlevels used when dbuf was dirtied.
1838 ASSERT(db->db_objset ==
1839 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1840 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1841 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1842 ASSERT0(db->db_level);
1843 ASSERT(MUTEX_HELD(&db->db_mtx));
1846 * If this buffer is not dirty, we're done.
1848 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1849 if (dr->dr_txg <= txg)
1850 break;
1851 if (dr == NULL || dr->dr_txg < txg)
1852 return (B_FALSE);
1853 ASSERT(dr->dr_txg == txg);
1854 ASSERT(dr->dr_dbuf == db);
1856 DB_DNODE_ENTER(db);
1857 dn = DB_DNODE(db);
1859 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1861 ASSERT(db->db.db_size != 0);
1863 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1864 dr->dr_accounted, txg);
1866 *drp = dr->dr_next;
1869 * Note that there are three places in dbuf_dirty()
1870 * where this dirty record may be put on a list.
1871 * Make sure to do a list_remove corresponding to
1872 * every one of those list_insert calls.
1874 if (dr->dr_parent) {
1875 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1876 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1877 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1878 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1879 db->db_level + 1 == dn->dn_nlevels) {
1880 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1881 mutex_enter(&dn->dn_mtx);
1882 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1883 mutex_exit(&dn->dn_mtx);
1885 DB_DNODE_EXIT(db);
1887 if (db->db_state != DB_NOFILL) {
1888 dbuf_unoverride(dr);
1890 ASSERT(db->db_buf != NULL);
1891 ASSERT(dr->dt.dl.dr_data != NULL);
1892 if (dr->dt.dl.dr_data != db->db_buf)
1893 arc_buf_destroy(dr->dt.dl.dr_data, db);
1896 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1898 ASSERT(db->db_dirtycnt > 0);
1899 db->db_dirtycnt -= 1;
1901 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1902 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1903 dbuf_destroy(db);
1904 return (B_TRUE);
1907 return (B_FALSE);
1910 void
1911 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1913 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1914 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1916 ASSERT(tx->tx_txg != 0);
1917 ASSERT(!refcount_is_zero(&db->db_holds));
1920 * Quick check for dirtyness. For already dirty blocks, this
1921 * reduces runtime of this function by >90%, and overall performance
1922 * by 50% for some workloads (e.g. file deletion with indirect blocks
1923 * cached).
1925 mutex_enter(&db->db_mtx);
1926 dbuf_dirty_record_t *dr;
1927 for (dr = db->db_last_dirty;
1928 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1930 * It's possible that it is already dirty but not cached,
1931 * because there are some calls to dbuf_dirty() that don't
1932 * go through dmu_buf_will_dirty().
1934 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1935 /* This dbuf is already dirty and cached. */
1936 dbuf_redirty(dr);
1937 mutex_exit(&db->db_mtx);
1938 return;
1941 mutex_exit(&db->db_mtx);
1943 DB_DNODE_ENTER(db);
1944 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1945 rf |= DB_RF_HAVESTRUCT;
1946 DB_DNODE_EXIT(db);
1947 (void) dbuf_read(db, NULL, rf);
1948 (void) dbuf_dirty(db, tx);
1951 void
1952 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1954 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1956 db->db_state = DB_NOFILL;
1958 dmu_buf_will_fill(db_fake, tx);
1961 void
1962 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1964 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1966 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1967 ASSERT(tx->tx_txg != 0);
1968 ASSERT(db->db_level == 0);
1969 ASSERT(!refcount_is_zero(&db->db_holds));
1971 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1972 dmu_tx_private_ok(tx));
1974 dbuf_noread(db);
1975 (void) dbuf_dirty(db, tx);
1978 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1979 /* ARGSUSED */
1980 void
1981 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1983 mutex_enter(&db->db_mtx);
1984 DBUF_VERIFY(db);
1986 if (db->db_state == DB_FILL) {
1987 if (db->db_level == 0 && db->db_freed_in_flight) {
1988 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1989 /* we were freed while filling */
1990 /* XXX dbuf_undirty? */
1991 bzero(db->db.db_data, db->db.db_size);
1992 db->db_freed_in_flight = FALSE;
1994 db->db_state = DB_CACHED;
1995 cv_broadcast(&db->db_changed);
1997 mutex_exit(&db->db_mtx);
2000 void
2001 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2002 bp_embedded_type_t etype, enum zio_compress comp,
2003 int uncompressed_size, int compressed_size, int byteorder,
2004 dmu_tx_t *tx)
2006 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2007 struct dirty_leaf *dl;
2008 dmu_object_type_t type;
2010 if (etype == BP_EMBEDDED_TYPE_DATA) {
2011 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2012 SPA_FEATURE_EMBEDDED_DATA));
2015 DB_DNODE_ENTER(db);
2016 type = DB_DNODE(db)->dn_type;
2017 DB_DNODE_EXIT(db);
2019 ASSERT0(db->db_level);
2020 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2022 dmu_buf_will_not_fill(dbuf, tx);
2024 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2025 dl = &db->db_last_dirty->dt.dl;
2026 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2027 data, comp, uncompressed_size, compressed_size);
2028 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2029 BP_SET_TYPE(&dl->dr_overridden_by, type);
2030 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2031 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2033 dl->dr_override_state = DR_OVERRIDDEN;
2034 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2038 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2039 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2041 void
2042 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2044 ASSERT(!refcount_is_zero(&db->db_holds));
2045 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2046 ASSERT(db->db_level == 0);
2047 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2048 ASSERT(buf != NULL);
2049 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2050 ASSERT(tx->tx_txg != 0);
2052 arc_return_buf(buf, db);
2053 ASSERT(arc_released(buf));
2055 mutex_enter(&db->db_mtx);
2057 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2058 cv_wait(&db->db_changed, &db->db_mtx);
2060 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2062 if (db->db_state == DB_CACHED &&
2063 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2064 mutex_exit(&db->db_mtx);
2065 (void) dbuf_dirty(db, tx);
2066 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2067 arc_buf_destroy(buf, db);
2068 xuio_stat_wbuf_copied();
2069 return;
2072 xuio_stat_wbuf_nocopy();
2073 if (db->db_state == DB_CACHED) {
2074 dbuf_dirty_record_t *dr = db->db_last_dirty;
2076 ASSERT(db->db_buf != NULL);
2077 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2078 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2079 if (!arc_released(db->db_buf)) {
2080 ASSERT(dr->dt.dl.dr_override_state ==
2081 DR_OVERRIDDEN);
2082 arc_release(db->db_buf, db);
2084 dr->dt.dl.dr_data = buf;
2085 arc_buf_destroy(db->db_buf, db);
2086 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2087 arc_release(db->db_buf, db);
2088 arc_buf_destroy(db->db_buf, db);
2090 db->db_buf = NULL;
2092 ASSERT(db->db_buf == NULL);
2093 dbuf_set_data(db, buf);
2094 db->db_state = DB_FILL;
2095 mutex_exit(&db->db_mtx);
2096 (void) dbuf_dirty(db, tx);
2097 dmu_buf_fill_done(&db->db, tx);
2100 void
2101 dbuf_destroy(dmu_buf_impl_t *db)
2103 dnode_t *dn;
2104 dmu_buf_impl_t *parent = db->db_parent;
2105 dmu_buf_impl_t *dndb;
2107 ASSERT(MUTEX_HELD(&db->db_mtx));
2108 ASSERT(refcount_is_zero(&db->db_holds));
2110 if (db->db_buf != NULL) {
2111 arc_buf_destroy(db->db_buf, db);
2112 db->db_buf = NULL;
2115 if (db->db_blkid == DMU_BONUS_BLKID) {
2116 ASSERT(db->db.db_data != NULL);
2117 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2118 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2119 db->db_state = DB_UNCACHED;
2122 dbuf_clear_data(db);
2124 if (multilist_link_active(&db->db_cache_link)) {
2125 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2126 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2128 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2129 (void) refcount_remove_many(
2130 &dbuf_caches[db->db_caching_status].size,
2131 db->db.db_size, db);
2133 db->db_caching_status = DB_NO_CACHE;
2136 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2137 ASSERT(db->db_data_pending == NULL);
2139 db->db_state = DB_EVICTING;
2140 db->db_blkptr = NULL;
2143 * Now that db_state is DB_EVICTING, nobody else can find this via
2144 * the hash table. We can now drop db_mtx, which allows us to
2145 * acquire the dn_dbufs_mtx.
2147 mutex_exit(&db->db_mtx);
2149 DB_DNODE_ENTER(db);
2150 dn = DB_DNODE(db);
2151 dndb = dn->dn_dbuf;
2152 if (db->db_blkid != DMU_BONUS_BLKID) {
2153 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2154 if (needlock)
2155 mutex_enter(&dn->dn_dbufs_mtx);
2156 avl_remove(&dn->dn_dbufs, db);
2157 atomic_dec_32(&dn->dn_dbufs_count);
2158 membar_producer();
2159 DB_DNODE_EXIT(db);
2160 if (needlock)
2161 mutex_exit(&dn->dn_dbufs_mtx);
2163 * Decrementing the dbuf count means that the hold corresponding
2164 * to the removed dbuf is no longer discounted in dnode_move(),
2165 * so the dnode cannot be moved until after we release the hold.
2166 * The membar_producer() ensures visibility of the decremented
2167 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2168 * release any lock.
2170 dnode_rele(dn, db);
2171 db->db_dnode_handle = NULL;
2173 dbuf_hash_remove(db);
2174 } else {
2175 DB_DNODE_EXIT(db);
2178 ASSERT(refcount_is_zero(&db->db_holds));
2180 db->db_parent = NULL;
2182 ASSERT(db->db_buf == NULL);
2183 ASSERT(db->db.db_data == NULL);
2184 ASSERT(db->db_hash_next == NULL);
2185 ASSERT(db->db_blkptr == NULL);
2186 ASSERT(db->db_data_pending == NULL);
2187 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2188 ASSERT(!multilist_link_active(&db->db_cache_link));
2190 kmem_cache_free(dbuf_kmem_cache, db);
2191 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2194 * If this dbuf is referenced from an indirect dbuf,
2195 * decrement the ref count on the indirect dbuf.
2197 if (parent && parent != dndb)
2198 dbuf_rele(parent, db);
2202 * Note: While bpp will always be updated if the function returns success,
2203 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2204 * this happens when the dnode is the meta-dnode, or a userused or groupused
2205 * object.
2207 static int
2208 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2209 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2211 *parentp = NULL;
2212 *bpp = NULL;
2214 ASSERT(blkid != DMU_BONUS_BLKID);
2216 if (blkid == DMU_SPILL_BLKID) {
2217 mutex_enter(&dn->dn_mtx);
2218 if (dn->dn_have_spill &&
2219 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2220 *bpp = &dn->dn_phys->dn_spill;
2221 else
2222 *bpp = NULL;
2223 dbuf_add_ref(dn->dn_dbuf, NULL);
2224 *parentp = dn->dn_dbuf;
2225 mutex_exit(&dn->dn_mtx);
2226 return (0);
2229 int nlevels =
2230 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2231 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2233 ASSERT3U(level * epbs, <, 64);
2234 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2236 * This assertion shouldn't trip as long as the max indirect block size
2237 * is less than 1M. The reason for this is that up to that point,
2238 * the number of levels required to address an entire object with blocks
2239 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2240 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2241 * (i.e. we can address the entire object), objects will all use at most
2242 * N-1 levels and the assertion won't overflow. However, once epbs is
2243 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2244 * enough to address an entire object, so objects will have 5 levels,
2245 * but then this assertion will overflow.
2247 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2248 * need to redo this logic to handle overflows.
2250 ASSERT(level >= nlevels ||
2251 ((nlevels - level - 1) * epbs) +
2252 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2253 if (level >= nlevels ||
2254 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2255 ((nlevels - level - 1) * epbs)) ||
2256 (fail_sparse &&
2257 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2258 /* the buffer has no parent yet */
2259 return (SET_ERROR(ENOENT));
2260 } else if (level < nlevels-1) {
2261 /* this block is referenced from an indirect block */
2262 int err = dbuf_hold_impl(dn, level+1,
2263 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2264 if (err)
2265 return (err);
2266 err = dbuf_read(*parentp, NULL,
2267 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2268 if (err) {
2269 dbuf_rele(*parentp, NULL);
2270 *parentp = NULL;
2271 return (err);
2273 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2274 (blkid & ((1ULL << epbs) - 1));
2275 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2276 ASSERT(BP_IS_HOLE(*bpp));
2277 return (0);
2278 } else {
2279 /* the block is referenced from the dnode */
2280 ASSERT3U(level, ==, nlevels-1);
2281 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2282 blkid < dn->dn_phys->dn_nblkptr);
2283 if (dn->dn_dbuf) {
2284 dbuf_add_ref(dn->dn_dbuf, NULL);
2285 *parentp = dn->dn_dbuf;
2287 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2288 return (0);
2292 static dmu_buf_impl_t *
2293 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2294 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2296 objset_t *os = dn->dn_objset;
2297 dmu_buf_impl_t *db, *odb;
2299 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2300 ASSERT(dn->dn_type != DMU_OT_NONE);
2302 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2304 db->db_objset = os;
2305 db->db.db_object = dn->dn_object;
2306 db->db_level = level;
2307 db->db_blkid = blkid;
2308 db->db_last_dirty = NULL;
2309 db->db_dirtycnt = 0;
2310 db->db_dnode_handle = dn->dn_handle;
2311 db->db_parent = parent;
2312 db->db_blkptr = blkptr;
2314 db->db_user = NULL;
2315 db->db_user_immediate_evict = FALSE;
2316 db->db_freed_in_flight = FALSE;
2317 db->db_pending_evict = FALSE;
2319 if (blkid == DMU_BONUS_BLKID) {
2320 ASSERT3P(parent, ==, dn->dn_dbuf);
2321 db->db.db_size = DN_MAX_BONUSLEN -
2322 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2323 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2324 db->db.db_offset = DMU_BONUS_BLKID;
2325 db->db_state = DB_UNCACHED;
2326 db->db_caching_status = DB_NO_CACHE;
2327 /* the bonus dbuf is not placed in the hash table */
2328 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2329 return (db);
2330 } else if (blkid == DMU_SPILL_BLKID) {
2331 db->db.db_size = (blkptr != NULL) ?
2332 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2333 db->db.db_offset = 0;
2334 } else {
2335 int blocksize =
2336 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2337 db->db.db_size = blocksize;
2338 db->db.db_offset = db->db_blkid * blocksize;
2342 * Hold the dn_dbufs_mtx while we get the new dbuf
2343 * in the hash table *and* added to the dbufs list.
2344 * This prevents a possible deadlock with someone
2345 * trying to look up this dbuf before its added to the
2346 * dn_dbufs list.
2348 mutex_enter(&dn->dn_dbufs_mtx);
2349 db->db_state = DB_EVICTING;
2350 if ((odb = dbuf_hash_insert(db)) != NULL) {
2351 /* someone else inserted it first */
2352 kmem_cache_free(dbuf_kmem_cache, db);
2353 mutex_exit(&dn->dn_dbufs_mtx);
2354 return (odb);
2356 avl_add(&dn->dn_dbufs, db);
2358 db->db_state = DB_UNCACHED;
2359 db->db_caching_status = DB_NO_CACHE;
2360 mutex_exit(&dn->dn_dbufs_mtx);
2361 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2363 if (parent && parent != dn->dn_dbuf)
2364 dbuf_add_ref(parent, db);
2366 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2367 refcount_count(&dn->dn_holds) > 0);
2368 (void) refcount_add(&dn->dn_holds, db);
2369 atomic_inc_32(&dn->dn_dbufs_count);
2371 dprintf_dbuf(db, "db=%p\n", db);
2373 return (db);
2376 typedef struct dbuf_prefetch_arg {
2377 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2378 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2379 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2380 int dpa_curlevel; /* The current level that we're reading */
2381 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2382 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2383 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2384 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2385 } dbuf_prefetch_arg_t;
2388 * Actually issue the prefetch read for the block given.
2390 static void
2391 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2393 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2394 return;
2396 arc_flags_t aflags =
2397 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2399 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2400 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2401 ASSERT(dpa->dpa_zio != NULL);
2402 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2403 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2404 &aflags, &dpa->dpa_zb);
2408 * Called when an indirect block above our prefetch target is read in. This
2409 * will either read in the next indirect block down the tree or issue the actual
2410 * prefetch if the next block down is our target.
2412 static void
2413 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2415 dbuf_prefetch_arg_t *dpa = private;
2417 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2418 ASSERT3S(dpa->dpa_curlevel, >, 0);
2421 * The dpa_dnode is only valid if we are called with a NULL
2422 * zio. This indicates that the arc_read() returned without
2423 * first calling zio_read() to issue a physical read. Once
2424 * a physical read is made the dpa_dnode must be invalidated
2425 * as the locks guarding it may have been dropped. If the
2426 * dpa_dnode is still valid, then we want to add it to the dbuf
2427 * cache. To do so, we must hold the dbuf associated with the block
2428 * we just prefetched, read its contents so that we associate it
2429 * with an arc_buf_t, and then release it.
2431 if (zio != NULL) {
2432 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2433 if (zio->io_flags & ZIO_FLAG_RAW) {
2434 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2435 } else {
2436 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2438 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2440 dpa->dpa_dnode = NULL;
2441 } else if (dpa->dpa_dnode != NULL) {
2442 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2443 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2444 dpa->dpa_zb.zb_level));
2445 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2446 dpa->dpa_curlevel, curblkid, FTAG);
2447 (void) dbuf_read(db, NULL,
2448 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2449 dbuf_rele(db, FTAG);
2452 dpa->dpa_curlevel--;
2454 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2455 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2456 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2457 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2458 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2459 kmem_free(dpa, sizeof (*dpa));
2460 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2461 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2462 dbuf_issue_final_prefetch(dpa, bp);
2463 kmem_free(dpa, sizeof (*dpa));
2464 } else {
2465 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2466 zbookmark_phys_t zb;
2468 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2469 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2470 iter_aflags |= ARC_FLAG_L2CACHE;
2472 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2474 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2475 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2477 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2478 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2479 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2480 &iter_aflags, &zb);
2483 arc_buf_destroy(abuf, private);
2487 * Issue prefetch reads for the given block on the given level. If the indirect
2488 * blocks above that block are not in memory, we will read them in
2489 * asynchronously. As a result, this call never blocks waiting for a read to
2490 * complete.
2492 void
2493 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2494 arc_flags_t aflags)
2496 blkptr_t bp;
2497 int epbs, nlevels, curlevel;
2498 uint64_t curblkid;
2500 ASSERT(blkid != DMU_BONUS_BLKID);
2501 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2503 if (blkid > dn->dn_maxblkid)
2504 return;
2506 if (dnode_block_freed(dn, blkid))
2507 return;
2510 * This dnode hasn't been written to disk yet, so there's nothing to
2511 * prefetch.
2513 nlevels = dn->dn_phys->dn_nlevels;
2514 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2515 return;
2517 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2518 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2519 return;
2521 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2522 level, blkid);
2523 if (db != NULL) {
2524 mutex_exit(&db->db_mtx);
2526 * This dbuf already exists. It is either CACHED, or
2527 * (we assume) about to be read or filled.
2529 return;
2533 * Find the closest ancestor (indirect block) of the target block
2534 * that is present in the cache. In this indirect block, we will
2535 * find the bp that is at curlevel, curblkid.
2537 curlevel = level;
2538 curblkid = blkid;
2539 while (curlevel < nlevels - 1) {
2540 int parent_level = curlevel + 1;
2541 uint64_t parent_blkid = curblkid >> epbs;
2542 dmu_buf_impl_t *db;
2544 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2545 FALSE, TRUE, FTAG, &db) == 0) {
2546 blkptr_t *bpp = db->db_buf->b_data;
2547 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2548 dbuf_rele(db, FTAG);
2549 break;
2552 curlevel = parent_level;
2553 curblkid = parent_blkid;
2556 if (curlevel == nlevels - 1) {
2557 /* No cached indirect blocks found. */
2558 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2559 bp = dn->dn_phys->dn_blkptr[curblkid];
2561 if (BP_IS_HOLE(&bp))
2562 return;
2564 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2566 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2567 ZIO_FLAG_CANFAIL);
2569 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2570 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2571 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2572 dn->dn_object, level, blkid);
2573 dpa->dpa_curlevel = curlevel;
2574 dpa->dpa_prio = prio;
2575 dpa->dpa_aflags = aflags;
2576 dpa->dpa_spa = dn->dn_objset->os_spa;
2577 dpa->dpa_dnode = dn;
2578 dpa->dpa_epbs = epbs;
2579 dpa->dpa_zio = pio;
2581 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2582 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2583 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2586 * If we have the indirect just above us, no need to do the asynchronous
2587 * prefetch chain; we'll just run the last step ourselves. If we're at
2588 * a higher level, though, we want to issue the prefetches for all the
2589 * indirect blocks asynchronously, so we can go on with whatever we were
2590 * doing.
2592 if (curlevel == level) {
2593 ASSERT3U(curblkid, ==, blkid);
2594 dbuf_issue_final_prefetch(dpa, &bp);
2595 kmem_free(dpa, sizeof (*dpa));
2596 } else {
2597 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2598 zbookmark_phys_t zb;
2600 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2601 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2602 iter_aflags |= ARC_FLAG_L2CACHE;
2604 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2605 dn->dn_object, curlevel, curblkid);
2606 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2607 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2608 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2609 &iter_aflags, &zb);
2612 * We use pio here instead of dpa_zio since it's possible that
2613 * dpa may have already been freed.
2615 zio_nowait(pio);
2619 * Returns with db_holds incremented, and db_mtx not held.
2620 * Note: dn_struct_rwlock must be held.
2623 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2624 boolean_t fail_sparse, boolean_t fail_uncached,
2625 void *tag, dmu_buf_impl_t **dbp)
2627 dmu_buf_impl_t *db, *parent = NULL;
2629 ASSERT(blkid != DMU_BONUS_BLKID);
2630 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2631 ASSERT3U(dn->dn_nlevels, >, level);
2633 *dbp = NULL;
2634 top:
2635 /* dbuf_find() returns with db_mtx held */
2636 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2638 if (db == NULL) {
2639 blkptr_t *bp = NULL;
2640 int err;
2642 if (fail_uncached)
2643 return (SET_ERROR(ENOENT));
2645 ASSERT3P(parent, ==, NULL);
2646 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2647 if (fail_sparse) {
2648 if (err == 0 && bp && BP_IS_HOLE(bp))
2649 err = SET_ERROR(ENOENT);
2650 if (err) {
2651 if (parent)
2652 dbuf_rele(parent, NULL);
2653 return (err);
2656 if (err && err != ENOENT)
2657 return (err);
2658 db = dbuf_create(dn, level, blkid, parent, bp);
2661 if (fail_uncached && db->db_state != DB_CACHED) {
2662 mutex_exit(&db->db_mtx);
2663 return (SET_ERROR(ENOENT));
2666 if (db->db_buf != NULL)
2667 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2669 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2672 * If this buffer is currently syncing out, and we are are
2673 * still referencing it from db_data, we need to make a copy
2674 * of it in case we decide we want to dirty it again in this txg.
2676 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2677 dn->dn_object != DMU_META_DNODE_OBJECT &&
2678 db->db_state == DB_CACHED && db->db_data_pending) {
2679 dbuf_dirty_record_t *dr = db->db_data_pending;
2681 if (dr->dt.dl.dr_data == db->db_buf) {
2682 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2684 dbuf_set_data(db,
2685 arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2686 db->db.db_size));
2687 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2688 db->db.db_size);
2692 if (multilist_link_active(&db->db_cache_link)) {
2693 ASSERT(refcount_is_zero(&db->db_holds));
2694 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2695 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2697 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2698 (void) refcount_remove_many(
2699 &dbuf_caches[db->db_caching_status].size,
2700 db->db.db_size, db);
2702 db->db_caching_status = DB_NO_CACHE;
2704 (void) refcount_add(&db->db_holds, tag);
2705 DBUF_VERIFY(db);
2706 mutex_exit(&db->db_mtx);
2708 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2709 if (parent)
2710 dbuf_rele(parent, NULL);
2712 ASSERT3P(DB_DNODE(db), ==, dn);
2713 ASSERT3U(db->db_blkid, ==, blkid);
2714 ASSERT3U(db->db_level, ==, level);
2715 *dbp = db;
2717 return (0);
2720 dmu_buf_impl_t *
2721 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2723 return (dbuf_hold_level(dn, 0, blkid, tag));
2726 dmu_buf_impl_t *
2727 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2729 dmu_buf_impl_t *db;
2730 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2731 return (err ? NULL : db);
2734 void
2735 dbuf_create_bonus(dnode_t *dn)
2737 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2739 ASSERT(dn->dn_bonus == NULL);
2740 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2744 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2746 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2747 dnode_t *dn;
2749 if (db->db_blkid != DMU_SPILL_BLKID)
2750 return (SET_ERROR(ENOTSUP));
2751 if (blksz == 0)
2752 blksz = SPA_MINBLOCKSIZE;
2753 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2754 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2756 DB_DNODE_ENTER(db);
2757 dn = DB_DNODE(db);
2758 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2759 dbuf_new_size(db, blksz, tx);
2760 rw_exit(&dn->dn_struct_rwlock);
2761 DB_DNODE_EXIT(db);
2763 return (0);
2766 void
2767 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2769 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2772 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2773 void
2774 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2776 int64_t holds = refcount_add(&db->db_holds, tag);
2777 ASSERT3S(holds, >, 1);
2780 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2781 boolean_t
2782 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2783 void *tag)
2785 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2786 dmu_buf_impl_t *found_db;
2787 boolean_t result = B_FALSE;
2789 if (db->db_blkid == DMU_BONUS_BLKID)
2790 found_db = dbuf_find_bonus(os, obj);
2791 else
2792 found_db = dbuf_find(os, obj, 0, blkid);
2794 if (found_db != NULL) {
2795 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2796 (void) refcount_add(&db->db_holds, tag);
2797 result = B_TRUE;
2799 mutex_exit(&db->db_mtx);
2801 return (result);
2805 * If you call dbuf_rele() you had better not be referencing the dnode handle
2806 * unless you have some other direct or indirect hold on the dnode. (An indirect
2807 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2808 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2809 * dnode's parent dbuf evicting its dnode handles.
2811 void
2812 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2814 mutex_enter(&db->db_mtx);
2815 dbuf_rele_and_unlock(db, tag);
2818 void
2819 dmu_buf_rele(dmu_buf_t *db, void *tag)
2821 dbuf_rele((dmu_buf_impl_t *)db, tag);
2825 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2826 * db_dirtycnt and db_holds to be updated atomically.
2828 void
2829 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2831 int64_t holds;
2833 ASSERT(MUTEX_HELD(&db->db_mtx));
2834 DBUF_VERIFY(db);
2837 * Remove the reference to the dbuf before removing its hold on the
2838 * dnode so we can guarantee in dnode_move() that a referenced bonus
2839 * buffer has a corresponding dnode hold.
2841 holds = refcount_remove(&db->db_holds, tag);
2842 ASSERT(holds >= 0);
2845 * We can't freeze indirects if there is a possibility that they
2846 * may be modified in the current syncing context.
2848 if (db->db_buf != NULL &&
2849 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2850 arc_buf_freeze(db->db_buf);
2853 if (holds == db->db_dirtycnt &&
2854 db->db_level == 0 && db->db_user_immediate_evict)
2855 dbuf_evict_user(db);
2857 if (holds == 0) {
2858 if (db->db_blkid == DMU_BONUS_BLKID) {
2859 dnode_t *dn;
2860 boolean_t evict_dbuf = db->db_pending_evict;
2863 * If the dnode moves here, we cannot cross this
2864 * barrier until the move completes.
2866 DB_DNODE_ENTER(db);
2868 dn = DB_DNODE(db);
2869 atomic_dec_32(&dn->dn_dbufs_count);
2872 * Decrementing the dbuf count means that the bonus
2873 * buffer's dnode hold is no longer discounted in
2874 * dnode_move(). The dnode cannot move until after
2875 * the dnode_rele() below.
2877 DB_DNODE_EXIT(db);
2880 * Do not reference db after its lock is dropped.
2881 * Another thread may evict it.
2883 mutex_exit(&db->db_mtx);
2885 if (evict_dbuf)
2886 dnode_evict_bonus(dn);
2888 dnode_rele(dn, db);
2889 } else if (db->db_buf == NULL) {
2891 * This is a special case: we never associated this
2892 * dbuf with any data allocated from the ARC.
2894 ASSERT(db->db_state == DB_UNCACHED ||
2895 db->db_state == DB_NOFILL);
2896 dbuf_destroy(db);
2897 } else if (arc_released(db->db_buf)) {
2899 * This dbuf has anonymous data associated with it.
2901 dbuf_destroy(db);
2902 } else {
2903 boolean_t do_arc_evict = B_FALSE;
2904 blkptr_t bp;
2905 spa_t *spa = dmu_objset_spa(db->db_objset);
2907 if (!DBUF_IS_CACHEABLE(db) &&
2908 db->db_blkptr != NULL &&
2909 !BP_IS_HOLE(db->db_blkptr) &&
2910 !BP_IS_EMBEDDED(db->db_blkptr)) {
2911 do_arc_evict = B_TRUE;
2912 bp = *db->db_blkptr;
2915 if (!DBUF_IS_CACHEABLE(db) ||
2916 db->db_pending_evict) {
2917 dbuf_destroy(db);
2918 } else if (!multilist_link_active(&db->db_cache_link)) {
2919 ASSERT3U(db->db_caching_status, ==,
2920 DB_NO_CACHE);
2922 dbuf_cached_state_t dcs =
2923 dbuf_include_in_metadata_cache(db) ?
2924 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
2925 db->db_caching_status = dcs;
2927 multilist_insert(dbuf_caches[dcs].cache, db);
2928 (void) refcount_add_many(&dbuf_caches[dcs].size,
2929 db->db.db_size, db);
2930 mutex_exit(&db->db_mtx);
2932 if (db->db_caching_status == DB_DBUF_CACHE) {
2933 dbuf_evict_notify();
2937 if (do_arc_evict)
2938 arc_freed(spa, &bp);
2940 } else {
2941 mutex_exit(&db->db_mtx);
2946 #pragma weak dmu_buf_refcount = dbuf_refcount
2947 uint64_t
2948 dbuf_refcount(dmu_buf_impl_t *db)
2950 return (refcount_count(&db->db_holds));
2953 void *
2954 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2955 dmu_buf_user_t *new_user)
2957 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2959 mutex_enter(&db->db_mtx);
2960 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2961 if (db->db_user == old_user)
2962 db->db_user = new_user;
2963 else
2964 old_user = db->db_user;
2965 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2966 mutex_exit(&db->db_mtx);
2968 return (old_user);
2971 void *
2972 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2974 return (dmu_buf_replace_user(db_fake, NULL, user));
2977 void *
2978 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2980 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2982 db->db_user_immediate_evict = TRUE;
2983 return (dmu_buf_set_user(db_fake, user));
2986 void *
2987 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2989 return (dmu_buf_replace_user(db_fake, user, NULL));
2992 void *
2993 dmu_buf_get_user(dmu_buf_t *db_fake)
2995 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2997 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2998 return (db->db_user);
3001 void
3002 dmu_buf_user_evict_wait()
3004 taskq_wait(dbu_evict_taskq);
3007 blkptr_t *
3008 dmu_buf_get_blkptr(dmu_buf_t *db)
3010 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3011 return (dbi->db_blkptr);
3014 objset_t *
3015 dmu_buf_get_objset(dmu_buf_t *db)
3017 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3018 return (dbi->db_objset);
3021 dnode_t *
3022 dmu_buf_dnode_enter(dmu_buf_t *db)
3024 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3025 DB_DNODE_ENTER(dbi);
3026 return (DB_DNODE(dbi));
3029 void
3030 dmu_buf_dnode_exit(dmu_buf_t *db)
3032 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3033 DB_DNODE_EXIT(dbi);
3036 static void
3037 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3039 /* ASSERT(dmu_tx_is_syncing(tx) */
3040 ASSERT(MUTEX_HELD(&db->db_mtx));
3042 if (db->db_blkptr != NULL)
3043 return;
3045 if (db->db_blkid == DMU_SPILL_BLKID) {
3046 db->db_blkptr = &dn->dn_phys->dn_spill;
3047 BP_ZERO(db->db_blkptr);
3048 return;
3050 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3052 * This buffer was allocated at a time when there was
3053 * no available blkptrs from the dnode, or it was
3054 * inappropriate to hook it in (i.e., nlevels mis-match).
3056 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3057 ASSERT(db->db_parent == NULL);
3058 db->db_parent = dn->dn_dbuf;
3059 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3060 DBUF_VERIFY(db);
3061 } else {
3062 dmu_buf_impl_t *parent = db->db_parent;
3063 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3065 ASSERT(dn->dn_phys->dn_nlevels > 1);
3066 if (parent == NULL) {
3067 mutex_exit(&db->db_mtx);
3068 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3069 parent = dbuf_hold_level(dn, db->db_level + 1,
3070 db->db_blkid >> epbs, db);
3071 rw_exit(&dn->dn_struct_rwlock);
3072 mutex_enter(&db->db_mtx);
3073 db->db_parent = parent;
3075 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3076 (db->db_blkid & ((1ULL << epbs) - 1));
3077 DBUF_VERIFY(db);
3081 static void
3082 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3084 dmu_buf_impl_t *db = dr->dr_dbuf;
3085 dnode_t *dn;
3086 zio_t *zio;
3088 ASSERT(dmu_tx_is_syncing(tx));
3090 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3092 mutex_enter(&db->db_mtx);
3094 ASSERT(db->db_level > 0);
3095 DBUF_VERIFY(db);
3097 /* Read the block if it hasn't been read yet. */
3098 if (db->db_buf == NULL) {
3099 mutex_exit(&db->db_mtx);
3100 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3101 mutex_enter(&db->db_mtx);
3103 ASSERT3U(db->db_state, ==, DB_CACHED);
3104 ASSERT(db->db_buf != NULL);
3106 DB_DNODE_ENTER(db);
3107 dn = DB_DNODE(db);
3108 /* Indirect block size must match what the dnode thinks it is. */
3109 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3110 dbuf_check_blkptr(dn, db);
3111 DB_DNODE_EXIT(db);
3113 /* Provide the pending dirty record to child dbufs */
3114 db->db_data_pending = dr;
3116 mutex_exit(&db->db_mtx);
3118 dbuf_write(dr, db->db_buf, tx);
3120 zio = dr->dr_zio;
3121 mutex_enter(&dr->dt.di.dr_mtx);
3122 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3123 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3124 mutex_exit(&dr->dt.di.dr_mtx);
3125 zio_nowait(zio);
3128 static void
3129 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3131 arc_buf_t **datap = &dr->dt.dl.dr_data;
3132 dmu_buf_impl_t *db = dr->dr_dbuf;
3133 dnode_t *dn;
3134 objset_t *os;
3135 uint64_t txg = tx->tx_txg;
3137 ASSERT(dmu_tx_is_syncing(tx));
3139 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3141 mutex_enter(&db->db_mtx);
3143 * To be synced, we must be dirtied. But we
3144 * might have been freed after the dirty.
3146 if (db->db_state == DB_UNCACHED) {
3147 /* This buffer has been freed since it was dirtied */
3148 ASSERT(db->db.db_data == NULL);
3149 } else if (db->db_state == DB_FILL) {
3150 /* This buffer was freed and is now being re-filled */
3151 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3152 } else {
3153 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3155 DBUF_VERIFY(db);
3157 DB_DNODE_ENTER(db);
3158 dn = DB_DNODE(db);
3160 if (db->db_blkid == DMU_SPILL_BLKID) {
3161 mutex_enter(&dn->dn_mtx);
3162 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3163 mutex_exit(&dn->dn_mtx);
3167 * If this is a bonus buffer, simply copy the bonus data into the
3168 * dnode. It will be written out when the dnode is synced (and it
3169 * will be synced, since it must have been dirty for dbuf_sync to
3170 * be called).
3172 if (db->db_blkid == DMU_BONUS_BLKID) {
3173 dbuf_dirty_record_t **drp;
3175 ASSERT(*datap != NULL);
3176 ASSERT0(db->db_level);
3177 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3178 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3179 DB_DNODE_EXIT(db);
3181 if (*datap != db->db.db_data) {
3182 zio_buf_free(*datap, DN_MAX_BONUSLEN);
3183 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3185 db->db_data_pending = NULL;
3186 drp = &db->db_last_dirty;
3187 while (*drp != dr)
3188 drp = &(*drp)->dr_next;
3189 ASSERT(dr->dr_next == NULL);
3190 ASSERT(dr->dr_dbuf == db);
3191 *drp = dr->dr_next;
3192 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3193 ASSERT(db->db_dirtycnt > 0);
3194 db->db_dirtycnt -= 1;
3195 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3196 return;
3199 os = dn->dn_objset;
3202 * This function may have dropped the db_mtx lock allowing a dmu_sync
3203 * operation to sneak in. As a result, we need to ensure that we
3204 * don't check the dr_override_state until we have returned from
3205 * dbuf_check_blkptr.
3207 dbuf_check_blkptr(dn, db);
3210 * If this buffer is in the middle of an immediate write,
3211 * wait for the synchronous IO to complete.
3213 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3214 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3215 cv_wait(&db->db_changed, &db->db_mtx);
3216 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3219 if (db->db_state != DB_NOFILL &&
3220 dn->dn_object != DMU_META_DNODE_OBJECT &&
3221 refcount_count(&db->db_holds) > 1 &&
3222 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3223 *datap == db->db_buf) {
3225 * If this buffer is currently "in use" (i.e., there
3226 * are active holds and db_data still references it),
3227 * then make a copy before we start the write so that
3228 * any modifications from the open txg will not leak
3229 * into this write.
3231 * NOTE: this copy does not need to be made for
3232 * objects only modified in the syncing context (e.g.
3233 * DNONE_DNODE blocks).
3235 int psize = arc_buf_size(*datap);
3236 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3237 enum zio_compress compress_type = arc_get_compression(*datap);
3239 if (compress_type == ZIO_COMPRESS_OFF) {
3240 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3241 } else {
3242 ASSERT3U(type, ==, ARC_BUFC_DATA);
3243 int lsize = arc_buf_lsize(*datap);
3244 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3245 psize, lsize, compress_type);
3247 bcopy(db->db.db_data, (*datap)->b_data, psize);
3249 db->db_data_pending = dr;
3251 mutex_exit(&db->db_mtx);
3253 dbuf_write(dr, *datap, tx);
3255 ASSERT(!list_link_active(&dr->dr_dirty_node));
3256 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3257 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3258 DB_DNODE_EXIT(db);
3259 } else {
3261 * Although zio_nowait() does not "wait for an IO", it does
3262 * initiate the IO. If this is an empty write it seems plausible
3263 * that the IO could actually be completed before the nowait
3264 * returns. We need to DB_DNODE_EXIT() first in case
3265 * zio_nowait() invalidates the dbuf.
3267 DB_DNODE_EXIT(db);
3268 zio_nowait(dr->dr_zio);
3272 void
3273 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3275 dbuf_dirty_record_t *dr;
3277 while (dr = list_head(list)) {
3278 if (dr->dr_zio != NULL) {
3280 * If we find an already initialized zio then we
3281 * are processing the meta-dnode, and we have finished.
3282 * The dbufs for all dnodes are put back on the list
3283 * during processing, so that we can zio_wait()
3284 * these IOs after initiating all child IOs.
3286 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3287 DMU_META_DNODE_OBJECT);
3288 break;
3290 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3291 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3292 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3294 list_remove(list, dr);
3295 if (dr->dr_dbuf->db_level > 0)
3296 dbuf_sync_indirect(dr, tx);
3297 else
3298 dbuf_sync_leaf(dr, tx);
3302 /* ARGSUSED */
3303 static void
3304 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3306 dmu_buf_impl_t *db = vdb;
3307 dnode_t *dn;
3308 blkptr_t *bp = zio->io_bp;
3309 blkptr_t *bp_orig = &zio->io_bp_orig;
3310 spa_t *spa = zio->io_spa;
3311 int64_t delta;
3312 uint64_t fill = 0;
3313 int i;
3315 ASSERT3P(db->db_blkptr, !=, NULL);
3316 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3318 DB_DNODE_ENTER(db);
3319 dn = DB_DNODE(db);
3320 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3321 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3322 zio->io_prev_space_delta = delta;
3324 if (bp->blk_birth != 0) {
3325 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3326 BP_GET_TYPE(bp) == dn->dn_type) ||
3327 (db->db_blkid == DMU_SPILL_BLKID &&
3328 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3329 BP_IS_EMBEDDED(bp));
3330 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3333 mutex_enter(&db->db_mtx);
3335 #ifdef ZFS_DEBUG
3336 if (db->db_blkid == DMU_SPILL_BLKID) {
3337 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3338 ASSERT(!(BP_IS_HOLE(bp)) &&
3339 db->db_blkptr == &dn->dn_phys->dn_spill);
3341 #endif
3343 if (db->db_level == 0) {
3344 mutex_enter(&dn->dn_mtx);
3345 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3346 db->db_blkid != DMU_SPILL_BLKID)
3347 dn->dn_phys->dn_maxblkid = db->db_blkid;
3348 mutex_exit(&dn->dn_mtx);
3350 if (dn->dn_type == DMU_OT_DNODE) {
3351 dnode_phys_t *dnp = db->db.db_data;
3352 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3353 i--, dnp++) {
3354 if (dnp->dn_type != DMU_OT_NONE)
3355 fill++;
3357 } else {
3358 if (BP_IS_HOLE(bp)) {
3359 fill = 0;
3360 } else {
3361 fill = 1;
3364 } else {
3365 blkptr_t *ibp = db->db.db_data;
3366 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3367 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3368 if (BP_IS_HOLE(ibp))
3369 continue;
3370 fill += BP_GET_FILL(ibp);
3373 DB_DNODE_EXIT(db);
3375 if (!BP_IS_EMBEDDED(bp))
3376 bp->blk_fill = fill;
3378 mutex_exit(&db->db_mtx);
3380 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3381 *db->db_blkptr = *bp;
3382 rw_exit(&dn->dn_struct_rwlock);
3385 /* ARGSUSED */
3387 * This function gets called just prior to running through the compression
3388 * stage of the zio pipeline. If we're an indirect block comprised of only
3389 * holes, then we want this indirect to be compressed away to a hole. In
3390 * order to do that we must zero out any information about the holes that
3391 * this indirect points to prior to before we try to compress it.
3393 static void
3394 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3396 dmu_buf_impl_t *db = vdb;
3397 dnode_t *dn;
3398 blkptr_t *bp;
3399 unsigned int epbs, i;
3401 ASSERT3U(db->db_level, >, 0);
3402 DB_DNODE_ENTER(db);
3403 dn = DB_DNODE(db);
3404 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3405 ASSERT3U(epbs, <, 31);
3407 /* Determine if all our children are holes */
3408 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3409 if (!BP_IS_HOLE(bp))
3410 break;
3414 * If all the children are holes, then zero them all out so that
3415 * we may get compressed away.
3417 if (i == 1 << epbs) {
3419 * We only found holes. Grab the rwlock to prevent
3420 * anybody from reading the blocks we're about to
3421 * zero out.
3423 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3424 bzero(db->db.db_data, db->db.db_size);
3425 rw_exit(&dn->dn_struct_rwlock);
3427 DB_DNODE_EXIT(db);
3431 * The SPA will call this callback several times for each zio - once
3432 * for every physical child i/o (zio->io_phys_children times). This
3433 * allows the DMU to monitor the progress of each logical i/o. For example,
3434 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3435 * block. There may be a long delay before all copies/fragments are completed,
3436 * so this callback allows us to retire dirty space gradually, as the physical
3437 * i/os complete.
3439 /* ARGSUSED */
3440 static void
3441 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3443 dmu_buf_impl_t *db = arg;
3444 objset_t *os = db->db_objset;
3445 dsl_pool_t *dp = dmu_objset_pool(os);
3446 dbuf_dirty_record_t *dr;
3447 int delta = 0;
3449 dr = db->db_data_pending;
3450 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3453 * The callback will be called io_phys_children times. Retire one
3454 * portion of our dirty space each time we are called. Any rounding
3455 * error will be cleaned up by dsl_pool_sync()'s call to
3456 * dsl_pool_undirty_space().
3458 delta = dr->dr_accounted / zio->io_phys_children;
3459 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3462 /* ARGSUSED */
3463 static void
3464 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3466 dmu_buf_impl_t *db = vdb;
3467 blkptr_t *bp_orig = &zio->io_bp_orig;
3468 blkptr_t *bp = db->db_blkptr;
3469 objset_t *os = db->db_objset;
3470 dmu_tx_t *tx = os->os_synctx;
3471 dbuf_dirty_record_t **drp, *dr;
3473 ASSERT0(zio->io_error);
3474 ASSERT(db->db_blkptr == bp);
3477 * For nopwrites and rewrites we ensure that the bp matches our
3478 * original and bypass all the accounting.
3480 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3481 ASSERT(BP_EQUAL(bp, bp_orig));
3482 } else {
3483 dsl_dataset_t *ds = os->os_dsl_dataset;
3484 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3485 dsl_dataset_block_born(ds, bp, tx);
3488 mutex_enter(&db->db_mtx);
3490 DBUF_VERIFY(db);
3492 drp = &db->db_last_dirty;
3493 while ((dr = *drp) != db->db_data_pending)
3494 drp = &dr->dr_next;
3495 ASSERT(!list_link_active(&dr->dr_dirty_node));
3496 ASSERT(dr->dr_dbuf == db);
3497 ASSERT(dr->dr_next == NULL);
3498 *drp = dr->dr_next;
3500 #ifdef ZFS_DEBUG
3501 if (db->db_blkid == DMU_SPILL_BLKID) {
3502 dnode_t *dn;
3504 DB_DNODE_ENTER(db);
3505 dn = DB_DNODE(db);
3506 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3507 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3508 db->db_blkptr == &dn->dn_phys->dn_spill);
3509 DB_DNODE_EXIT(db);
3511 #endif
3513 if (db->db_level == 0) {
3514 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3515 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3516 if (db->db_state != DB_NOFILL) {
3517 if (dr->dt.dl.dr_data != db->db_buf)
3518 arc_buf_destroy(dr->dt.dl.dr_data, db);
3520 } else {
3521 dnode_t *dn;
3523 DB_DNODE_ENTER(db);
3524 dn = DB_DNODE(db);
3525 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3526 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3527 if (!BP_IS_HOLE(db->db_blkptr)) {
3528 int epbs =
3529 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3530 ASSERT3U(db->db_blkid, <=,
3531 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3532 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3533 db->db.db_size);
3535 DB_DNODE_EXIT(db);
3536 mutex_destroy(&dr->dt.di.dr_mtx);
3537 list_destroy(&dr->dt.di.dr_children);
3539 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3541 cv_broadcast(&db->db_changed);
3542 ASSERT(db->db_dirtycnt > 0);
3543 db->db_dirtycnt -= 1;
3544 db->db_data_pending = NULL;
3545 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3548 static void
3549 dbuf_write_nofill_ready(zio_t *zio)
3551 dbuf_write_ready(zio, NULL, zio->io_private);
3554 static void
3555 dbuf_write_nofill_done(zio_t *zio)
3557 dbuf_write_done(zio, NULL, zio->io_private);
3560 static void
3561 dbuf_write_override_ready(zio_t *zio)
3563 dbuf_dirty_record_t *dr = zio->io_private;
3564 dmu_buf_impl_t *db = dr->dr_dbuf;
3566 dbuf_write_ready(zio, NULL, db);
3569 static void
3570 dbuf_write_override_done(zio_t *zio)
3572 dbuf_dirty_record_t *dr = zio->io_private;
3573 dmu_buf_impl_t *db = dr->dr_dbuf;
3574 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3576 mutex_enter(&db->db_mtx);
3577 if (!BP_EQUAL(zio->io_bp, obp)) {
3578 if (!BP_IS_HOLE(obp))
3579 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3580 arc_release(dr->dt.dl.dr_data, db);
3582 mutex_exit(&db->db_mtx);
3583 dbuf_write_done(zio, NULL, db);
3585 if (zio->io_abd != NULL)
3586 abd_put(zio->io_abd);
3589 typedef struct dbuf_remap_impl_callback_arg {
3590 objset_t *drica_os;
3591 uint64_t drica_blk_birth;
3592 dmu_tx_t *drica_tx;
3593 } dbuf_remap_impl_callback_arg_t;
3595 static void
3596 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
3597 void *arg)
3599 dbuf_remap_impl_callback_arg_t *drica = arg;
3600 objset_t *os = drica->drica_os;
3601 spa_t *spa = dmu_objset_spa(os);
3602 dmu_tx_t *tx = drica->drica_tx;
3604 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3606 if (os == spa_meta_objset(spa)) {
3607 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
3608 } else {
3609 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
3610 size, drica->drica_blk_birth, tx);
3614 static void
3615 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
3617 blkptr_t bp_copy = *bp;
3618 spa_t *spa = dmu_objset_spa(dn->dn_objset);
3619 dbuf_remap_impl_callback_arg_t drica;
3621 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3623 drica.drica_os = dn->dn_objset;
3624 drica.drica_blk_birth = bp->blk_birth;
3625 drica.drica_tx = tx;
3626 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
3627 &drica)) {
3629 * The struct_rwlock prevents dbuf_read_impl() from
3630 * dereferencing the BP while we are changing it. To
3631 * avoid lock contention, only grab it when we are actually
3632 * changing the BP.
3634 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3635 *bp = bp_copy;
3636 rw_exit(&dn->dn_struct_rwlock);
3641 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
3642 * to remap a copy of every bp in the dbuf.
3644 boolean_t
3645 dbuf_can_remap(const dmu_buf_impl_t *db)
3647 spa_t *spa = dmu_objset_spa(db->db_objset);
3648 blkptr_t *bp = db->db.db_data;
3649 boolean_t ret = B_FALSE;
3651 ASSERT3U(db->db_level, >, 0);
3652 ASSERT3S(db->db_state, ==, DB_CACHED);
3654 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3657 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3658 blkptr_t bp_copy = bp[i];
3659 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3660 ret = B_TRUE;
3661 break;
3664 spa_config_exit(spa, SCL_VDEV, FTAG);
3666 return (ret);
3669 boolean_t
3670 dnode_needs_remap(const dnode_t *dn)
3672 spa_t *spa = dmu_objset_spa(dn->dn_objset);
3673 boolean_t ret = B_FALSE;
3675 if (dn->dn_phys->dn_nlevels == 0) {
3676 return (B_FALSE);
3679 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
3681 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3682 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
3683 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
3684 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
3685 ret = B_TRUE;
3686 break;
3689 spa_config_exit(spa, SCL_VDEV, FTAG);
3691 return (ret);
3695 * Remap any existing BP's to concrete vdevs, if possible.
3697 static void
3698 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
3700 spa_t *spa = dmu_objset_spa(db->db_objset);
3701 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
3703 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
3704 return;
3706 if (db->db_level > 0) {
3707 blkptr_t *bp = db->db.db_data;
3708 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
3709 dbuf_remap_impl(dn, &bp[i], tx);
3711 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
3712 dnode_phys_t *dnp = db->db.db_data;
3713 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
3714 DMU_OT_DNODE);
3715 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; i++) {
3716 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
3717 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
3724 /* Issue I/O to commit a dirty buffer to disk. */
3725 static void
3726 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3728 dmu_buf_impl_t *db = dr->dr_dbuf;
3729 dnode_t *dn;
3730 objset_t *os;
3731 dmu_buf_impl_t *parent = db->db_parent;
3732 uint64_t txg = tx->tx_txg;
3733 zbookmark_phys_t zb;
3734 zio_prop_t zp;
3735 zio_t *zio;
3736 int wp_flag = 0;
3738 ASSERT(dmu_tx_is_syncing(tx));
3740 DB_DNODE_ENTER(db);
3741 dn = DB_DNODE(db);
3742 os = dn->dn_objset;
3744 if (db->db_state != DB_NOFILL) {
3745 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3747 * Private object buffers are released here rather
3748 * than in dbuf_dirty() since they are only modified
3749 * in the syncing context and we don't want the
3750 * overhead of making multiple copies of the data.
3752 if (BP_IS_HOLE(db->db_blkptr)) {
3753 arc_buf_thaw(data);
3754 } else {
3755 dbuf_release_bp(db);
3757 dbuf_remap(dn, db, tx);
3761 if (parent != dn->dn_dbuf) {
3762 /* Our parent is an indirect block. */
3763 /* We have a dirty parent that has been scheduled for write. */
3764 ASSERT(parent && parent->db_data_pending);
3765 /* Our parent's buffer is one level closer to the dnode. */
3766 ASSERT(db->db_level == parent->db_level-1);
3768 * We're about to modify our parent's db_data by modifying
3769 * our block pointer, so the parent must be released.
3771 ASSERT(arc_released(parent->db_buf));
3772 zio = parent->db_data_pending->dr_zio;
3773 } else {
3774 /* Our parent is the dnode itself. */
3775 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3776 db->db_blkid != DMU_SPILL_BLKID) ||
3777 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3778 if (db->db_blkid != DMU_SPILL_BLKID)
3779 ASSERT3P(db->db_blkptr, ==,
3780 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3781 zio = dn->dn_zio;
3784 ASSERT(db->db_level == 0 || data == db->db_buf);
3785 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3786 ASSERT(zio);
3788 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3789 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3790 db->db.db_object, db->db_level, db->db_blkid);
3792 if (db->db_blkid == DMU_SPILL_BLKID)
3793 wp_flag = WP_SPILL;
3794 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3796 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3797 DB_DNODE_EXIT(db);
3800 * We copy the blkptr now (rather than when we instantiate the dirty
3801 * record), because its value can change between open context and
3802 * syncing context. We do not need to hold dn_struct_rwlock to read
3803 * db_blkptr because we are in syncing context.
3805 dr->dr_bp_copy = *db->db_blkptr;
3807 if (db->db_level == 0 &&
3808 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3810 * The BP for this block has been provided by open context
3811 * (by dmu_sync() or dmu_buf_write_embedded()).
3813 abd_t *contents = (data != NULL) ?
3814 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3816 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3817 contents, db->db.db_size, db->db.db_size, &zp,
3818 dbuf_write_override_ready, NULL, NULL,
3819 dbuf_write_override_done,
3820 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3821 mutex_enter(&db->db_mtx);
3822 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3823 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3824 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3825 mutex_exit(&db->db_mtx);
3826 } else if (db->db_state == DB_NOFILL) {
3827 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3828 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3829 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3830 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3831 dbuf_write_nofill_ready, NULL, NULL,
3832 dbuf_write_nofill_done, db,
3833 ZIO_PRIORITY_ASYNC_WRITE,
3834 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3835 } else {
3836 ASSERT(arc_released(data));
3839 * For indirect blocks, we want to setup the children
3840 * ready callback so that we can properly handle an indirect
3841 * block that only contains holes.
3843 arc_done_func_t *children_ready_cb = NULL;
3844 if (db->db_level != 0)
3845 children_ready_cb = dbuf_write_children_ready;
3847 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3848 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3849 &zp, dbuf_write_ready, children_ready_cb,
3850 dbuf_write_physdone, dbuf_write_done, db,
3851 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);