8909 8585 can cause a use-after-free kernel panic
[unleashed.git] / usr / src / uts / common / fs / zfs / zil.c
blob97af749164fdbc778817c777d1b4a9a43431cd06
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
27 /* Portions Copyright 2010 Robert Milkowski */
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/abd.h>
45 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
46 * calls that change the file system. Each itx has enough information to
47 * be able to replay them after a system crash, power loss, or
48 * equivalent failure mode. These are stored in memory until either:
50 * 1. they are committed to the pool by the DMU transaction group
51 * (txg), at which point they can be discarded; or
52 * 2. they are committed to the on-disk ZIL for the dataset being
53 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
54 * requirement).
56 * In the event of a crash or power loss, the itxs contained by each
57 * dataset's on-disk ZIL will be replayed when that dataset is first
58 * instantianted (e.g. if the dataset is a normal fileystem, when it is
59 * first mounted).
61 * As hinted at above, there is one ZIL per dataset (both the in-memory
62 * representation, and the on-disk representation). The on-disk format
63 * consists of 3 parts:
65 * - a single, per-dataset, ZIL header; which points to a chain of
66 * - zero or more ZIL blocks; each of which contains
67 * - zero or more ZIL records
69 * A ZIL record holds the information necessary to replay a single
70 * system call transaction. A ZIL block can hold many ZIL records, and
71 * the blocks are chained together, similarly to a singly linked list.
73 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
74 * block in the chain, and the ZIL header points to the first block in
75 * the chain.
77 * Note, there is not a fixed place in the pool to hold these ZIL
78 * blocks; they are dynamically allocated and freed as needed from the
79 * blocks available on the pool, though they can be preferentially
80 * allocated from a dedicated "log" vdev.
84 * This controls the amount of time that a ZIL block (lwb) will remain
85 * "open" when it isn't "full", and it has a thread waiting for it to be
86 * committed to stable storage. Please refer to the zil_commit_waiter()
87 * function (and the comments within it) for more details.
89 int zfs_commit_timeout_pct = 5;
92 * Disable intent logging replay. This global ZIL switch affects all pools.
94 int zil_replay_disable = 0;
97 * Tunable parameter for debugging or performance analysis. Setting
98 * zfs_nocacheflush will cause corruption on power loss if a volatile
99 * out-of-order write cache is enabled.
101 boolean_t zfs_nocacheflush = B_FALSE;
104 * Limit SLOG write size per commit executed with synchronous priority.
105 * Any writes above that will be executed with lower (asynchronous) priority
106 * to limit potential SLOG device abuse by single active ZIL writer.
108 uint64_t zil_slog_bulk = 768 * 1024;
110 static kmem_cache_t *zil_lwb_cache;
111 static kmem_cache_t *zil_zcw_cache;
113 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
116 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118 static int
119 zil_bp_compare(const void *x1, const void *x2)
121 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
122 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
125 return (-1);
126 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
127 return (1);
129 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
130 return (-1);
131 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
132 return (1);
134 return (0);
137 static void
138 zil_bp_tree_init(zilog_t *zilog)
140 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
141 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
144 static void
145 zil_bp_tree_fini(zilog_t *zilog)
147 avl_tree_t *t = &zilog->zl_bp_tree;
148 zil_bp_node_t *zn;
149 void *cookie = NULL;
151 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
152 kmem_free(zn, sizeof (zil_bp_node_t));
154 avl_destroy(t);
158 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
160 avl_tree_t *t = &zilog->zl_bp_tree;
161 const dva_t *dva;
162 zil_bp_node_t *zn;
163 avl_index_t where;
165 if (BP_IS_EMBEDDED(bp))
166 return (0);
168 dva = BP_IDENTITY(bp);
170 if (avl_find(t, dva, &where) != NULL)
171 return (SET_ERROR(EEXIST));
173 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
174 zn->zn_dva = *dva;
175 avl_insert(t, zn, where);
177 return (0);
180 static zil_header_t *
181 zil_header_in_syncing_context(zilog_t *zilog)
183 return ((zil_header_t *)zilog->zl_header);
186 static void
187 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
189 zio_cksum_t *zc = &bp->blk_cksum;
191 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
192 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
193 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
194 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
198 * Read a log block and make sure it's valid.
200 static int
201 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
202 char **end)
204 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
205 arc_flags_t aflags = ARC_FLAG_WAIT;
206 arc_buf_t *abuf = NULL;
207 zbookmark_phys_t zb;
208 int error;
210 if (zilog->zl_header->zh_claim_txg == 0)
211 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
213 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
214 zio_flags |= ZIO_FLAG_SPECULATIVE;
216 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
217 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
219 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
220 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
222 if (error == 0) {
223 zio_cksum_t cksum = bp->blk_cksum;
226 * Validate the checksummed log block.
228 * Sequence numbers should be... sequential. The checksum
229 * verifier for the next block should be bp's checksum plus 1.
231 * Also check the log chain linkage and size used.
233 cksum.zc_word[ZIL_ZC_SEQ]++;
235 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
236 zil_chain_t *zilc = abuf->b_data;
237 char *lr = (char *)(zilc + 1);
238 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
240 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
241 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
242 error = SET_ERROR(ECKSUM);
243 } else {
244 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
245 bcopy(lr, dst, len);
246 *end = (char *)dst + len;
247 *nbp = zilc->zc_next_blk;
249 } else {
250 char *lr = abuf->b_data;
251 uint64_t size = BP_GET_LSIZE(bp);
252 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
254 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
255 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
256 (zilc->zc_nused > (size - sizeof (*zilc)))) {
257 error = SET_ERROR(ECKSUM);
258 } else {
259 ASSERT3U(zilc->zc_nused, <=,
260 SPA_OLD_MAXBLOCKSIZE);
261 bcopy(lr, dst, zilc->zc_nused);
262 *end = (char *)dst + zilc->zc_nused;
263 *nbp = zilc->zc_next_blk;
267 arc_buf_destroy(abuf, &abuf);
270 return (error);
274 * Read a TX_WRITE log data block.
276 static int
277 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
279 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
280 const blkptr_t *bp = &lr->lr_blkptr;
281 arc_flags_t aflags = ARC_FLAG_WAIT;
282 arc_buf_t *abuf = NULL;
283 zbookmark_phys_t zb;
284 int error;
286 if (BP_IS_HOLE(bp)) {
287 if (wbuf != NULL)
288 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
289 return (0);
292 if (zilog->zl_header->zh_claim_txg == 0)
293 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
295 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
296 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
298 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
299 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
301 if (error == 0) {
302 if (wbuf != NULL)
303 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
304 arc_buf_destroy(abuf, &abuf);
307 return (error);
311 * Parse the intent log, and call parse_func for each valid record within.
314 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
315 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
317 const zil_header_t *zh = zilog->zl_header;
318 boolean_t claimed = !!zh->zh_claim_txg;
319 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
320 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
321 uint64_t max_blk_seq = 0;
322 uint64_t max_lr_seq = 0;
323 uint64_t blk_count = 0;
324 uint64_t lr_count = 0;
325 blkptr_t blk, next_blk;
326 char *lrbuf, *lrp;
327 int error = 0;
330 * Old logs didn't record the maximum zh_claim_lr_seq.
332 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
333 claim_lr_seq = UINT64_MAX;
336 * Starting at the block pointed to by zh_log we read the log chain.
337 * For each block in the chain we strongly check that block to
338 * ensure its validity. We stop when an invalid block is found.
339 * For each block pointer in the chain we call parse_blk_func().
340 * For each record in each valid block we call parse_lr_func().
341 * If the log has been claimed, stop if we encounter a sequence
342 * number greater than the highest claimed sequence number.
344 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
345 zil_bp_tree_init(zilog);
347 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
348 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
349 int reclen;
350 char *end;
352 if (blk_seq > claim_blk_seq)
353 break;
354 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
355 break;
356 ASSERT3U(max_blk_seq, <, blk_seq);
357 max_blk_seq = blk_seq;
358 blk_count++;
360 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
361 break;
363 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
364 if (error != 0)
365 break;
367 for (lrp = lrbuf; lrp < end; lrp += reclen) {
368 lr_t *lr = (lr_t *)lrp;
369 reclen = lr->lrc_reclen;
370 ASSERT3U(reclen, >=, sizeof (lr_t));
371 if (lr->lrc_seq > claim_lr_seq)
372 goto done;
373 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
374 goto done;
375 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
376 max_lr_seq = lr->lrc_seq;
377 lr_count++;
380 done:
381 zilog->zl_parse_error = error;
382 zilog->zl_parse_blk_seq = max_blk_seq;
383 zilog->zl_parse_lr_seq = max_lr_seq;
384 zilog->zl_parse_blk_count = blk_count;
385 zilog->zl_parse_lr_count = lr_count;
387 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
388 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
390 zil_bp_tree_fini(zilog);
391 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
393 return (error);
396 static int
397 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
400 * Claim log block if not already committed and not already claimed.
401 * If tx == NULL, just verify that the block is claimable.
403 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
404 zil_bp_tree_add(zilog, bp) != 0)
405 return (0);
407 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
408 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
409 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
412 static int
413 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
415 lr_write_t *lr = (lr_write_t *)lrc;
416 int error;
418 if (lrc->lrc_txtype != TX_WRITE)
419 return (0);
422 * If the block is not readable, don't claim it. This can happen
423 * in normal operation when a log block is written to disk before
424 * some of the dmu_sync() blocks it points to. In this case, the
425 * transaction cannot have been committed to anyone (we would have
426 * waited for all writes to be stable first), so it is semantically
427 * correct to declare this the end of the log.
429 if (lr->lr_blkptr.blk_birth >= first_txg &&
430 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
431 return (error);
432 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
435 /* ARGSUSED */
436 static int
437 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
439 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
441 return (0);
444 static int
445 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
447 lr_write_t *lr = (lr_write_t *)lrc;
448 blkptr_t *bp = &lr->lr_blkptr;
451 * If we previously claimed it, we need to free it.
453 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
454 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
455 !BP_IS_HOLE(bp))
456 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
458 return (0);
461 static int
462 zil_lwb_vdev_compare(const void *x1, const void *x2)
464 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
465 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
467 if (v1 < v2)
468 return (-1);
469 if (v1 > v2)
470 return (1);
472 return (0);
475 static lwb_t *
476 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
478 lwb_t *lwb;
480 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
481 lwb->lwb_zilog = zilog;
482 lwb->lwb_blk = *bp;
483 lwb->lwb_slog = slog;
484 lwb->lwb_state = LWB_STATE_CLOSED;
485 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
486 lwb->lwb_max_txg = txg;
487 lwb->lwb_write_zio = NULL;
488 lwb->lwb_root_zio = NULL;
489 lwb->lwb_tx = NULL;
490 lwb->lwb_issued_timestamp = 0;
491 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
492 lwb->lwb_nused = sizeof (zil_chain_t);
493 lwb->lwb_sz = BP_GET_LSIZE(bp);
494 } else {
495 lwb->lwb_nused = 0;
496 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
499 mutex_enter(&zilog->zl_lock);
500 list_insert_tail(&zilog->zl_lwb_list, lwb);
501 mutex_exit(&zilog->zl_lock);
503 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
504 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
505 VERIFY(list_is_empty(&lwb->lwb_waiters));
507 return (lwb);
510 static void
511 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
513 ASSERT(MUTEX_HELD(&zilog->zl_lock));
514 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
515 VERIFY(list_is_empty(&lwb->lwb_waiters));
516 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
517 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
518 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
519 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
520 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
521 lwb->lwb_state == LWB_STATE_DONE);
524 * Clear the zilog's field to indicate this lwb is no longer
525 * valid, and prevent use-after-free errors.
527 if (zilog->zl_last_lwb_opened == lwb)
528 zilog->zl_last_lwb_opened = NULL;
530 kmem_cache_free(zil_lwb_cache, lwb);
534 * Called when we create in-memory log transactions so that we know
535 * to cleanup the itxs at the end of spa_sync().
537 void
538 zilog_dirty(zilog_t *zilog, uint64_t txg)
540 dsl_pool_t *dp = zilog->zl_dmu_pool;
541 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
543 ASSERT(spa_writeable(zilog->zl_spa));
545 if (ds->ds_is_snapshot)
546 panic("dirtying snapshot!");
548 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
549 /* up the hold count until we can be written out */
550 dmu_buf_add_ref(ds->ds_dbuf, zilog);
552 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
557 * Determine if the zil is dirty in the specified txg. Callers wanting to
558 * ensure that the dirty state does not change must hold the itxg_lock for
559 * the specified txg. Holding the lock will ensure that the zil cannot be
560 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
561 * state.
563 boolean_t
564 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
566 dsl_pool_t *dp = zilog->zl_dmu_pool;
568 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
569 return (B_TRUE);
570 return (B_FALSE);
574 * Determine if the zil is dirty. The zil is considered dirty if it has
575 * any pending itx records that have not been cleaned by zil_clean().
577 boolean_t
578 zilog_is_dirty(zilog_t *zilog)
580 dsl_pool_t *dp = zilog->zl_dmu_pool;
582 for (int t = 0; t < TXG_SIZE; t++) {
583 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
584 return (B_TRUE);
586 return (B_FALSE);
590 * Create an on-disk intent log.
592 static lwb_t *
593 zil_create(zilog_t *zilog)
595 const zil_header_t *zh = zilog->zl_header;
596 lwb_t *lwb = NULL;
597 uint64_t txg = 0;
598 dmu_tx_t *tx = NULL;
599 blkptr_t blk;
600 int error = 0;
601 boolean_t slog = FALSE;
604 * Wait for any previous destroy to complete.
606 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
608 ASSERT(zh->zh_claim_txg == 0);
609 ASSERT(zh->zh_replay_seq == 0);
611 blk = zh->zh_log;
614 * Allocate an initial log block if:
615 * - there isn't one already
616 * - the existing block is the wrong endianess
618 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
619 tx = dmu_tx_create(zilog->zl_os);
620 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
621 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
622 txg = dmu_tx_get_txg(tx);
624 if (!BP_IS_HOLE(&blk)) {
625 zio_free_zil(zilog->zl_spa, txg, &blk);
626 BP_ZERO(&blk);
629 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
630 ZIL_MIN_BLKSZ, &slog);
632 if (error == 0)
633 zil_init_log_chain(zilog, &blk);
637 * Allocate a log write block (lwb) for the first log block.
639 if (error == 0)
640 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
643 * If we just allocated the first log block, commit our transaction
644 * and wait for zil_sync() to stuff the block poiner into zh_log.
645 * (zh is part of the MOS, so we cannot modify it in open context.)
647 if (tx != NULL) {
648 dmu_tx_commit(tx);
649 txg_wait_synced(zilog->zl_dmu_pool, txg);
652 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
654 return (lwb);
658 * In one tx, free all log blocks and clear the log header. If keep_first
659 * is set, then we're replaying a log with no content. We want to keep the
660 * first block, however, so that the first synchronous transaction doesn't
661 * require a txg_wait_synced() in zil_create(). We don't need to
662 * txg_wait_synced() here either when keep_first is set, because both
663 * zil_create() and zil_destroy() will wait for any in-progress destroys
664 * to complete.
666 void
667 zil_destroy(zilog_t *zilog, boolean_t keep_first)
669 const zil_header_t *zh = zilog->zl_header;
670 lwb_t *lwb;
671 dmu_tx_t *tx;
672 uint64_t txg;
675 * Wait for any previous destroy to complete.
677 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
679 zilog->zl_old_header = *zh; /* debugging aid */
681 if (BP_IS_HOLE(&zh->zh_log))
682 return;
684 tx = dmu_tx_create(zilog->zl_os);
685 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
686 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
687 txg = dmu_tx_get_txg(tx);
689 mutex_enter(&zilog->zl_lock);
691 ASSERT3U(zilog->zl_destroy_txg, <, txg);
692 zilog->zl_destroy_txg = txg;
693 zilog->zl_keep_first = keep_first;
695 if (!list_is_empty(&zilog->zl_lwb_list)) {
696 ASSERT(zh->zh_claim_txg == 0);
697 VERIFY(!keep_first);
698 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
699 list_remove(&zilog->zl_lwb_list, lwb);
700 if (lwb->lwb_buf != NULL)
701 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
702 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
703 zil_free_lwb(zilog, lwb);
705 } else if (!keep_first) {
706 zil_destroy_sync(zilog, tx);
708 mutex_exit(&zilog->zl_lock);
710 dmu_tx_commit(tx);
713 void
714 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
716 ASSERT(list_is_empty(&zilog->zl_lwb_list));
717 (void) zil_parse(zilog, zil_free_log_block,
718 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
722 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
724 dmu_tx_t *tx = txarg;
725 uint64_t first_txg = dmu_tx_get_txg(tx);
726 zilog_t *zilog;
727 zil_header_t *zh;
728 objset_t *os;
729 int error;
731 error = dmu_objset_own_obj(dp, ds->ds_object,
732 DMU_OST_ANY, B_FALSE, FTAG, &os);
733 if (error != 0) {
735 * EBUSY indicates that the objset is inconsistent, in which
736 * case it can not have a ZIL.
738 if (error != EBUSY) {
739 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
740 (unsigned long long)ds->ds_object, error);
742 return (0);
745 zilog = dmu_objset_zil(os);
746 zh = zil_header_in_syncing_context(zilog);
748 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
749 if (!BP_IS_HOLE(&zh->zh_log))
750 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
751 BP_ZERO(&zh->zh_log);
752 dsl_dataset_dirty(dmu_objset_ds(os), tx);
753 dmu_objset_disown(os, FTAG);
754 return (0);
758 * Claim all log blocks if we haven't already done so, and remember
759 * the highest claimed sequence number. This ensures that if we can
760 * read only part of the log now (e.g. due to a missing device),
761 * but we can read the entire log later, we will not try to replay
762 * or destroy beyond the last block we successfully claimed.
764 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
765 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
766 (void) zil_parse(zilog, zil_claim_log_block,
767 zil_claim_log_record, tx, first_txg);
768 zh->zh_claim_txg = first_txg;
769 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
770 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
771 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
772 zh->zh_flags |= ZIL_REPLAY_NEEDED;
773 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
774 dsl_dataset_dirty(dmu_objset_ds(os), tx);
777 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
778 dmu_objset_disown(os, FTAG);
779 return (0);
783 * Check the log by walking the log chain.
784 * Checksum errors are ok as they indicate the end of the chain.
785 * Any other error (no device or read failure) returns an error.
787 /* ARGSUSED */
789 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
791 zilog_t *zilog;
792 objset_t *os;
793 blkptr_t *bp;
794 int error;
796 ASSERT(tx == NULL);
798 error = dmu_objset_from_ds(ds, &os);
799 if (error != 0) {
800 cmn_err(CE_WARN, "can't open objset %llu, error %d",
801 (unsigned long long)ds->ds_object, error);
802 return (0);
805 zilog = dmu_objset_zil(os);
806 bp = (blkptr_t *)&zilog->zl_header->zh_log;
809 * Check the first block and determine if it's on a log device
810 * which may have been removed or faulted prior to loading this
811 * pool. If so, there's no point in checking the rest of the log
812 * as its content should have already been synced to the pool.
814 if (!BP_IS_HOLE(bp)) {
815 vdev_t *vd;
816 boolean_t valid = B_TRUE;
818 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
819 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
820 if (vd->vdev_islog && vdev_is_dead(vd))
821 valid = vdev_log_state_valid(vd);
822 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
824 if (!valid)
825 return (0);
829 * Because tx == NULL, zil_claim_log_block() will not actually claim
830 * any blocks, but just determine whether it is possible to do so.
831 * In addition to checking the log chain, zil_claim_log_block()
832 * will invoke zio_claim() with a done func of spa_claim_notify(),
833 * which will update spa_max_claim_txg. See spa_load() for details.
835 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
836 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
838 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
842 * When an itx is "skipped", this function is used to properly mark the
843 * waiter as "done, and signal any thread(s) waiting on it. An itx can
844 * be skipped (and not committed to an lwb) for a variety of reasons,
845 * one of them being that the itx was committed via spa_sync(), prior to
846 * it being committed to an lwb; this can happen if a thread calling
847 * zil_commit() is racing with spa_sync().
849 static void
850 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
852 mutex_enter(&zcw->zcw_lock);
853 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
854 zcw->zcw_done = B_TRUE;
855 cv_broadcast(&zcw->zcw_cv);
856 mutex_exit(&zcw->zcw_lock);
860 * This function is used when the given waiter is to be linked into an
861 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
862 * At this point, the waiter will no longer be referenced by the itx,
863 * and instead, will be referenced by the lwb.
865 static void
866 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
869 * The lwb_waiters field of the lwb is protected by the zilog's
870 * zl_lock, thus it must be held when calling this function.
872 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
874 mutex_enter(&zcw->zcw_lock);
875 ASSERT(!list_link_active(&zcw->zcw_node));
876 ASSERT3P(zcw->zcw_lwb, ==, NULL);
877 ASSERT3P(lwb, !=, NULL);
878 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
879 lwb->lwb_state == LWB_STATE_ISSUED);
881 list_insert_tail(&lwb->lwb_waiters, zcw);
882 zcw->zcw_lwb = lwb;
883 mutex_exit(&zcw->zcw_lock);
887 * This function is used when zio_alloc_zil() fails to allocate a ZIL
888 * block, and the given waiter must be linked to the "nolwb waiters"
889 * list inside of zil_process_commit_list().
891 static void
892 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
894 mutex_enter(&zcw->zcw_lock);
895 ASSERT(!list_link_active(&zcw->zcw_node));
896 ASSERT3P(zcw->zcw_lwb, ==, NULL);
897 list_insert_tail(nolwb, zcw);
898 mutex_exit(&zcw->zcw_lock);
901 void
902 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
904 avl_tree_t *t = &lwb->lwb_vdev_tree;
905 avl_index_t where;
906 zil_vdev_node_t *zv, zvsearch;
907 int ndvas = BP_GET_NDVAS(bp);
908 int i;
910 if (zfs_nocacheflush)
911 return;
913 mutex_enter(&lwb->lwb_vdev_lock);
914 for (i = 0; i < ndvas; i++) {
915 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
916 if (avl_find(t, &zvsearch, &where) == NULL) {
917 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
918 zv->zv_vdev = zvsearch.zv_vdev;
919 avl_insert(t, zv, where);
922 mutex_exit(&lwb->lwb_vdev_lock);
925 void
926 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
928 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
932 * This function is a called after all VDEVs associated with a given lwb
933 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
934 * as the lwb write completes, if "zfs_nocacheflush" is set.
936 * The intention is for this function to be called as soon as the
937 * contents of an lwb are considered "stable" on disk, and will survive
938 * any sudden loss of power. At this point, any threads waiting for the
939 * lwb to reach this state are signalled, and the "waiter" structures
940 * are marked "done".
942 static void
943 zil_lwb_flush_vdevs_done(zio_t *zio)
945 lwb_t *lwb = zio->io_private;
946 zilog_t *zilog = lwb->lwb_zilog;
947 dmu_tx_t *tx = lwb->lwb_tx;
948 zil_commit_waiter_t *zcw;
950 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
952 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
954 mutex_enter(&zilog->zl_lock);
957 * Ensure the lwb buffer pointer is cleared before releasing the
958 * txg. If we have had an allocation failure and the txg is
959 * waiting to sync then we want zil_sync() to remove the lwb so
960 * that it's not picked up as the next new one in
961 * zil_process_commit_list(). zil_sync() will only remove the
962 * lwb if lwb_buf is null.
964 lwb->lwb_buf = NULL;
965 lwb->lwb_tx = NULL;
967 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
968 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
970 lwb->lwb_root_zio = NULL;
971 lwb->lwb_state = LWB_STATE_DONE;
973 if (zilog->zl_last_lwb_opened == lwb) {
975 * Remember the highest committed log sequence number
976 * for ztest. We only update this value when all the log
977 * writes succeeded, because ztest wants to ASSERT that
978 * it got the whole log chain.
980 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
983 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
984 mutex_enter(&zcw->zcw_lock);
986 ASSERT(list_link_active(&zcw->zcw_node));
987 list_remove(&lwb->lwb_waiters, zcw);
989 ASSERT3P(zcw->zcw_lwb, ==, lwb);
990 zcw->zcw_lwb = NULL;
992 zcw->zcw_zio_error = zio->io_error;
994 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
995 zcw->zcw_done = B_TRUE;
996 cv_broadcast(&zcw->zcw_cv);
998 mutex_exit(&zcw->zcw_lock);
1001 mutex_exit(&zilog->zl_lock);
1004 * Now that we've written this log block, we have a stable pointer
1005 * to the next block in the chain, so it's OK to let the txg in
1006 * which we allocated the next block sync.
1008 dmu_tx_commit(tx);
1012 * This is called when an lwb write completes. This means, this specific
1013 * lwb was written to disk, and all dependent lwb have also been
1014 * written to disk.
1016 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1017 * the VDEVs involved in writing out this specific lwb. The lwb will be
1018 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1019 * zio completion callback for the lwb's root zio.
1021 static void
1022 zil_lwb_write_done(zio_t *zio)
1024 lwb_t *lwb = zio->io_private;
1025 spa_t *spa = zio->io_spa;
1026 zilog_t *zilog = lwb->lwb_zilog;
1027 avl_tree_t *t = &lwb->lwb_vdev_tree;
1028 void *cookie = NULL;
1029 zil_vdev_node_t *zv;
1031 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1033 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1034 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1035 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1036 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1037 ASSERT(!BP_IS_GANG(zio->io_bp));
1038 ASSERT(!BP_IS_HOLE(zio->io_bp));
1039 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1041 abd_put(zio->io_abd);
1043 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1045 mutex_enter(&zilog->zl_lock);
1046 lwb->lwb_write_zio = NULL;
1047 mutex_exit(&zilog->zl_lock);
1049 if (avl_numnodes(t) == 0)
1050 return;
1053 * If there was an IO error, we're not going to call zio_flush()
1054 * on these vdevs, so we simply empty the tree and free the
1055 * nodes. We avoid calling zio_flush() since there isn't any
1056 * good reason for doing so, after the lwb block failed to be
1057 * written out.
1059 if (zio->io_error != 0) {
1060 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1061 kmem_free(zv, sizeof (*zv));
1062 return;
1065 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1066 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1067 if (vd != NULL)
1068 zio_flush(lwb->lwb_root_zio, vd);
1069 kmem_free(zv, sizeof (*zv));
1074 * This function's purpose is to "open" an lwb such that it is ready to
1075 * accept new itxs being committed to it. To do this, the lwb's zio
1076 * structures are created, and linked to the lwb. This function is
1077 * idempotent; if the passed in lwb has already been opened, this
1078 * function is essentially a no-op.
1080 static void
1081 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1083 zbookmark_phys_t zb;
1084 zio_priority_t prio;
1086 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1087 ASSERT3P(lwb, !=, NULL);
1088 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1089 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1091 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1092 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1093 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1095 if (lwb->lwb_root_zio == NULL) {
1096 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1097 BP_GET_LSIZE(&lwb->lwb_blk));
1099 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1100 prio = ZIO_PRIORITY_SYNC_WRITE;
1101 else
1102 prio = ZIO_PRIORITY_ASYNC_WRITE;
1104 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1105 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1106 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1108 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1109 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1110 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1111 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1112 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1114 lwb->lwb_state = LWB_STATE_OPENED;
1116 mutex_enter(&zilog->zl_lock);
1119 * The zilog's "zl_last_lwb_opened" field is used to
1120 * build the lwb/zio dependency chain, which is used to
1121 * preserve the ordering of lwb completions that is
1122 * required by the semantics of the ZIL. Each new lwb
1123 * zio becomes a parent of the "previous" lwb zio, such
1124 * that the new lwb's zio cannot complete until the
1125 * "previous" lwb's zio completes.
1127 * This is required by the semantics of zil_commit();
1128 * the commit waiters attached to the lwbs will be woken
1129 * in the lwb zio's completion callback, so this zio
1130 * dependency graph ensures the waiters are woken in the
1131 * correct order (the same order the lwbs were created).
1133 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1134 if (last_lwb_opened != NULL &&
1135 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1136 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1137 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1138 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1139 zio_add_child(lwb->lwb_root_zio,
1140 last_lwb_opened->lwb_root_zio);
1142 zilog->zl_last_lwb_opened = lwb;
1144 mutex_exit(&zilog->zl_lock);
1147 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1148 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1149 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1153 * Define a limited set of intent log block sizes.
1155 * These must be a multiple of 4KB. Note only the amount used (again
1156 * aligned to 4KB) actually gets written. However, we can't always just
1157 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1159 uint64_t zil_block_buckets[] = {
1160 4096, /* non TX_WRITE */
1161 8192+4096, /* data base */
1162 32*1024 + 4096, /* NFS writes */
1163 UINT64_MAX
1167 * Start a log block write and advance to the next log block.
1168 * Calls are serialized.
1170 static lwb_t *
1171 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1173 lwb_t *nlwb = NULL;
1174 zil_chain_t *zilc;
1175 spa_t *spa = zilog->zl_spa;
1176 blkptr_t *bp;
1177 dmu_tx_t *tx;
1178 uint64_t txg;
1179 uint64_t zil_blksz, wsz;
1180 int i, error;
1181 boolean_t slog;
1183 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1184 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1185 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1186 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1188 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1189 zilc = (zil_chain_t *)lwb->lwb_buf;
1190 bp = &zilc->zc_next_blk;
1191 } else {
1192 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1193 bp = &zilc->zc_next_blk;
1196 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1199 * Allocate the next block and save its address in this block
1200 * before writing it in order to establish the log chain.
1201 * Note that if the allocation of nlwb synced before we wrote
1202 * the block that points at it (lwb), we'd leak it if we crashed.
1203 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1204 * We dirty the dataset to ensure that zil_sync() will be called
1205 * to clean up in the event of allocation failure or I/O failure.
1208 tx = dmu_tx_create(zilog->zl_os);
1211 * Since we are not going to create any new dirty data and we can even
1212 * help with clearing the existing dirty data, we should not be subject
1213 * to the dirty data based delays.
1214 * We (ab)use TXG_WAITED to bypass the delay mechanism.
1215 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1216 * fail if the pool is suspended. Those are dramatic circumstances,
1217 * so we return NULL to signal that the normal ZIL processing is not
1218 * possible and txg_wait_synced() should be used to ensure that the data
1219 * is on disk.
1221 error = dmu_tx_assign(tx, TXG_WAITED);
1222 if (error != 0) {
1223 ASSERT3S(error, ==, EIO);
1224 dmu_tx_abort(tx);
1225 return (NULL);
1227 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1228 txg = dmu_tx_get_txg(tx);
1230 lwb->lwb_tx = tx;
1233 * Log blocks are pre-allocated. Here we select the size of the next
1234 * block, based on size used in the last block.
1235 * - first find the smallest bucket that will fit the block from a
1236 * limited set of block sizes. This is because it's faster to write
1237 * blocks allocated from the same metaslab as they are adjacent or
1238 * close.
1239 * - next find the maximum from the new suggested size and an array of
1240 * previous sizes. This lessens a picket fence effect of wrongly
1241 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1242 * requests.
1244 * Note we only write what is used, but we can't just allocate
1245 * the maximum block size because we can exhaust the available
1246 * pool log space.
1248 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1249 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1250 continue;
1251 zil_blksz = zil_block_buckets[i];
1252 if (zil_blksz == UINT64_MAX)
1253 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1254 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1255 for (i = 0; i < ZIL_PREV_BLKS; i++)
1256 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1257 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1259 BP_ZERO(bp);
1261 /* pass the old blkptr in order to spread log blocks across devs */
1262 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1263 if (error == 0) {
1264 ASSERT3U(bp->blk_birth, ==, txg);
1265 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1266 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1269 * Allocate a new log write block (lwb).
1271 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1274 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1275 /* For Slim ZIL only write what is used. */
1276 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1277 ASSERT3U(wsz, <=, lwb->lwb_sz);
1278 zio_shrink(lwb->lwb_write_zio, wsz);
1280 } else {
1281 wsz = lwb->lwb_sz;
1284 zilc->zc_pad = 0;
1285 zilc->zc_nused = lwb->lwb_nused;
1286 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1289 * clear unused data for security
1291 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1293 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1295 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1296 lwb->lwb_issued_timestamp = gethrtime();
1297 lwb->lwb_state = LWB_STATE_ISSUED;
1299 zio_nowait(lwb->lwb_root_zio);
1300 zio_nowait(lwb->lwb_write_zio);
1303 * If there was an allocation failure then nlwb will be null which
1304 * forces a txg_wait_synced().
1306 return (nlwb);
1309 static lwb_t *
1310 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1312 lr_t *lrcb, *lrc;
1313 lr_write_t *lrwb, *lrw;
1314 char *lr_buf;
1315 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1317 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1318 ASSERT3P(lwb, !=, NULL);
1319 ASSERT3P(lwb->lwb_buf, !=, NULL);
1321 zil_lwb_write_open(zilog, lwb);
1323 lrc = &itx->itx_lr;
1324 lrw = (lr_write_t *)lrc;
1327 * A commit itx doesn't represent any on-disk state; instead
1328 * it's simply used as a place holder on the commit list, and
1329 * provides a mechanism for attaching a "commit waiter" onto the
1330 * correct lwb (such that the waiter can be signalled upon
1331 * completion of that lwb). Thus, we don't process this itx's
1332 * log record if it's a commit itx (these itx's don't have log
1333 * records), and instead link the itx's waiter onto the lwb's
1334 * list of waiters.
1336 * For more details, see the comment above zil_commit().
1338 if (lrc->lrc_txtype == TX_COMMIT) {
1339 mutex_enter(&zilog->zl_lock);
1340 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1341 itx->itx_private = NULL;
1342 mutex_exit(&zilog->zl_lock);
1343 return (lwb);
1346 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1347 dlen = P2ROUNDUP_TYPED(
1348 lrw->lr_length, sizeof (uint64_t), uint64_t);
1349 } else {
1350 dlen = 0;
1352 reclen = lrc->lrc_reclen;
1353 zilog->zl_cur_used += (reclen + dlen);
1354 txg = lrc->lrc_txg;
1356 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1358 cont:
1360 * If this record won't fit in the current log block, start a new one.
1361 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1363 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1364 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1365 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1366 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1367 lwb = zil_lwb_write_issue(zilog, lwb);
1368 if (lwb == NULL)
1369 return (NULL);
1370 zil_lwb_write_open(zilog, lwb);
1371 ASSERT(LWB_EMPTY(lwb));
1372 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1373 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1376 dnow = MIN(dlen, lwb_sp - reclen);
1377 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1378 bcopy(lrc, lr_buf, reclen);
1379 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1380 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1383 * If it's a write, fetch the data or get its blkptr as appropriate.
1385 if (lrc->lrc_txtype == TX_WRITE) {
1386 if (txg > spa_freeze_txg(zilog->zl_spa))
1387 txg_wait_synced(zilog->zl_dmu_pool, txg);
1388 if (itx->itx_wr_state != WR_COPIED) {
1389 char *dbuf;
1390 int error;
1392 if (itx->itx_wr_state == WR_NEED_COPY) {
1393 dbuf = lr_buf + reclen;
1394 lrcb->lrc_reclen += dnow;
1395 if (lrwb->lr_length > dnow)
1396 lrwb->lr_length = dnow;
1397 lrw->lr_offset += dnow;
1398 lrw->lr_length -= dnow;
1399 } else {
1400 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1401 dbuf = NULL;
1405 * We pass in the "lwb_write_zio" rather than
1406 * "lwb_root_zio" so that the "lwb_write_zio"
1407 * becomes the parent of any zio's created by
1408 * the "zl_get_data" callback. The vdevs are
1409 * flushed after the "lwb_write_zio" completes,
1410 * so we want to make sure that completion
1411 * callback waits for these additional zio's,
1412 * such that the vdevs used by those zio's will
1413 * be included in the lwb's vdev tree, and those
1414 * vdevs will be properly flushed. If we passed
1415 * in "lwb_root_zio" here, then these additional
1416 * vdevs may not be flushed; e.g. if these zio's
1417 * completed after "lwb_write_zio" completed.
1419 error = zilog->zl_get_data(itx->itx_private,
1420 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1422 if (error == EIO) {
1423 txg_wait_synced(zilog->zl_dmu_pool, txg);
1424 return (lwb);
1426 if (error != 0) {
1427 ASSERT(error == ENOENT || error == EEXIST ||
1428 error == EALREADY);
1429 return (lwb);
1435 * We're actually making an entry, so update lrc_seq to be the
1436 * log record sequence number. Note that this is generally not
1437 * equal to the itx sequence number because not all transactions
1438 * are synchronous, and sometimes spa_sync() gets there first.
1440 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1441 lwb->lwb_nused += reclen + dnow;
1443 zil_lwb_add_txg(lwb, txg);
1445 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1446 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1448 dlen -= dnow;
1449 if (dlen > 0) {
1450 zilog->zl_cur_used += reclen;
1451 goto cont;
1454 return (lwb);
1457 itx_t *
1458 zil_itx_create(uint64_t txtype, size_t lrsize)
1460 itx_t *itx;
1462 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1464 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1465 itx->itx_lr.lrc_txtype = txtype;
1466 itx->itx_lr.lrc_reclen = lrsize;
1467 itx->itx_lr.lrc_seq = 0; /* defensive */
1468 itx->itx_sync = B_TRUE; /* default is synchronous */
1470 return (itx);
1473 void
1474 zil_itx_destroy(itx_t *itx)
1476 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1480 * Free up the sync and async itxs. The itxs_t has already been detached
1481 * so no locks are needed.
1483 static void
1484 zil_itxg_clean(itxs_t *itxs)
1486 itx_t *itx;
1487 list_t *list;
1488 avl_tree_t *t;
1489 void *cookie;
1490 itx_async_node_t *ian;
1492 list = &itxs->i_sync_list;
1493 while ((itx = list_head(list)) != NULL) {
1495 * In the general case, commit itxs will not be found
1496 * here, as they'll be committed to an lwb via
1497 * zil_lwb_commit(), and free'd in that function. Having
1498 * said that, it is still possible for commit itxs to be
1499 * found here, due to the following race:
1501 * - a thread calls zil_commit() which assigns the
1502 * commit itx to a per-txg i_sync_list
1503 * - zil_itxg_clean() is called (e.g. via spa_sync())
1504 * while the waiter is still on the i_sync_list
1506 * There's nothing to prevent syncing the txg while the
1507 * waiter is on the i_sync_list. This normally doesn't
1508 * happen because spa_sync() is slower than zil_commit(),
1509 * but if zil_commit() calls txg_wait_synced() (e.g.
1510 * because zil_create() or zil_commit_writer_stall() is
1511 * called) we will hit this case.
1513 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1514 zil_commit_waiter_skip(itx->itx_private);
1516 list_remove(list, itx);
1517 zil_itx_destroy(itx);
1520 cookie = NULL;
1521 t = &itxs->i_async_tree;
1522 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1523 list = &ian->ia_list;
1524 while ((itx = list_head(list)) != NULL) {
1525 list_remove(list, itx);
1526 /* commit itxs should never be on the async lists. */
1527 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1528 zil_itx_destroy(itx);
1530 list_destroy(list);
1531 kmem_free(ian, sizeof (itx_async_node_t));
1533 avl_destroy(t);
1535 kmem_free(itxs, sizeof (itxs_t));
1538 static int
1539 zil_aitx_compare(const void *x1, const void *x2)
1541 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1542 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1544 if (o1 < o2)
1545 return (-1);
1546 if (o1 > o2)
1547 return (1);
1549 return (0);
1553 * Remove all async itx with the given oid.
1555 static void
1556 zil_remove_async(zilog_t *zilog, uint64_t oid)
1558 uint64_t otxg, txg;
1559 itx_async_node_t *ian;
1560 avl_tree_t *t;
1561 avl_index_t where;
1562 list_t clean_list;
1563 itx_t *itx;
1565 ASSERT(oid != 0);
1566 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1568 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1569 otxg = ZILTEST_TXG;
1570 else
1571 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1573 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1574 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1576 mutex_enter(&itxg->itxg_lock);
1577 if (itxg->itxg_txg != txg) {
1578 mutex_exit(&itxg->itxg_lock);
1579 continue;
1583 * Locate the object node and append its list.
1585 t = &itxg->itxg_itxs->i_async_tree;
1586 ian = avl_find(t, &oid, &where);
1587 if (ian != NULL)
1588 list_move_tail(&clean_list, &ian->ia_list);
1589 mutex_exit(&itxg->itxg_lock);
1591 while ((itx = list_head(&clean_list)) != NULL) {
1592 list_remove(&clean_list, itx);
1593 /* commit itxs should never be on the async lists. */
1594 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1595 zil_itx_destroy(itx);
1597 list_destroy(&clean_list);
1600 void
1601 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1603 uint64_t txg;
1604 itxg_t *itxg;
1605 itxs_t *itxs, *clean = NULL;
1608 * Object ids can be re-instantiated in the next txg so
1609 * remove any async transactions to avoid future leaks.
1610 * This can happen if a fsync occurs on the re-instantiated
1611 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1612 * the new file data and flushes a write record for the old object.
1614 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1615 zil_remove_async(zilog, itx->itx_oid);
1618 * Ensure the data of a renamed file is committed before the rename.
1620 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1621 zil_async_to_sync(zilog, itx->itx_oid);
1623 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1624 txg = ZILTEST_TXG;
1625 else
1626 txg = dmu_tx_get_txg(tx);
1628 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1629 mutex_enter(&itxg->itxg_lock);
1630 itxs = itxg->itxg_itxs;
1631 if (itxg->itxg_txg != txg) {
1632 if (itxs != NULL) {
1634 * The zil_clean callback hasn't got around to cleaning
1635 * this itxg. Save the itxs for release below.
1636 * This should be rare.
1638 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1639 "txg %llu", itxg->itxg_txg);
1640 clean = itxg->itxg_itxs;
1642 itxg->itxg_txg = txg;
1643 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1645 list_create(&itxs->i_sync_list, sizeof (itx_t),
1646 offsetof(itx_t, itx_node));
1647 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1648 sizeof (itx_async_node_t),
1649 offsetof(itx_async_node_t, ia_node));
1651 if (itx->itx_sync) {
1652 list_insert_tail(&itxs->i_sync_list, itx);
1653 } else {
1654 avl_tree_t *t = &itxs->i_async_tree;
1655 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1656 itx_async_node_t *ian;
1657 avl_index_t where;
1659 ian = avl_find(t, &foid, &where);
1660 if (ian == NULL) {
1661 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1662 list_create(&ian->ia_list, sizeof (itx_t),
1663 offsetof(itx_t, itx_node));
1664 ian->ia_foid = foid;
1665 avl_insert(t, ian, where);
1667 list_insert_tail(&ian->ia_list, itx);
1670 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1673 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1674 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1675 * need to be careful to always dirty the ZIL using the "real"
1676 * TXG (not itxg_txg) even when the SPA is frozen.
1678 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1679 mutex_exit(&itxg->itxg_lock);
1681 /* Release the old itxs now we've dropped the lock */
1682 if (clean != NULL)
1683 zil_itxg_clean(clean);
1687 * If there are any in-memory intent log transactions which have now been
1688 * synced then start up a taskq to free them. We should only do this after we
1689 * have written out the uberblocks (i.e. txg has been comitted) so that
1690 * don't inadvertently clean out in-memory log records that would be required
1691 * by zil_commit().
1693 void
1694 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1696 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1697 itxs_t *clean_me;
1699 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1701 mutex_enter(&itxg->itxg_lock);
1702 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1703 mutex_exit(&itxg->itxg_lock);
1704 return;
1706 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1707 ASSERT3U(itxg->itxg_txg, !=, 0);
1708 clean_me = itxg->itxg_itxs;
1709 itxg->itxg_itxs = NULL;
1710 itxg->itxg_txg = 0;
1711 mutex_exit(&itxg->itxg_lock);
1713 * Preferably start a task queue to free up the old itxs but
1714 * if taskq_dispatch can't allocate resources to do that then
1715 * free it in-line. This should be rare. Note, using TQ_SLEEP
1716 * created a bad performance problem.
1718 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1719 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1720 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1721 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1722 zil_itxg_clean(clean_me);
1726 * This function will traverse the queue of itxs that need to be
1727 * committed, and move them onto the ZIL's zl_itx_commit_list.
1729 static void
1730 zil_get_commit_list(zilog_t *zilog)
1732 uint64_t otxg, txg;
1733 list_t *commit_list = &zilog->zl_itx_commit_list;
1735 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1737 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1738 otxg = ZILTEST_TXG;
1739 else
1740 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1743 * This is inherently racy, since there is nothing to prevent
1744 * the last synced txg from changing. That's okay since we'll
1745 * only commit things in the future.
1747 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1748 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1750 mutex_enter(&itxg->itxg_lock);
1751 if (itxg->itxg_txg != txg) {
1752 mutex_exit(&itxg->itxg_lock);
1753 continue;
1757 * If we're adding itx records to the zl_itx_commit_list,
1758 * then the zil better be dirty in this "txg". We can assert
1759 * that here since we're holding the itxg_lock which will
1760 * prevent spa_sync from cleaning it. Once we add the itxs
1761 * to the zl_itx_commit_list we must commit it to disk even
1762 * if it's unnecessary (i.e. the txg was synced).
1764 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1765 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1766 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1768 mutex_exit(&itxg->itxg_lock);
1773 * Move the async itxs for a specified object to commit into sync lists.
1775 static void
1776 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1778 uint64_t otxg, txg;
1779 itx_async_node_t *ian;
1780 avl_tree_t *t;
1781 avl_index_t where;
1783 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1784 otxg = ZILTEST_TXG;
1785 else
1786 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1789 * This is inherently racy, since there is nothing to prevent
1790 * the last synced txg from changing.
1792 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1793 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1795 mutex_enter(&itxg->itxg_lock);
1796 if (itxg->itxg_txg != txg) {
1797 mutex_exit(&itxg->itxg_lock);
1798 continue;
1802 * If a foid is specified then find that node and append its
1803 * list. Otherwise walk the tree appending all the lists
1804 * to the sync list. We add to the end rather than the
1805 * beginning to ensure the create has happened.
1807 t = &itxg->itxg_itxs->i_async_tree;
1808 if (foid != 0) {
1809 ian = avl_find(t, &foid, &where);
1810 if (ian != NULL) {
1811 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1812 &ian->ia_list);
1814 } else {
1815 void *cookie = NULL;
1817 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1818 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1819 &ian->ia_list);
1820 list_destroy(&ian->ia_list);
1821 kmem_free(ian, sizeof (itx_async_node_t));
1824 mutex_exit(&itxg->itxg_lock);
1829 * This function will prune commit itxs that are at the head of the
1830 * commit list (it won't prune past the first non-commit itx), and
1831 * either: a) attach them to the last lwb that's still pending
1832 * completion, or b) skip them altogether.
1834 * This is used as a performance optimization to prevent commit itxs
1835 * from generating new lwbs when it's unnecessary to do so.
1837 static void
1838 zil_prune_commit_list(zilog_t *zilog)
1840 itx_t *itx;
1842 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1844 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1845 lr_t *lrc = &itx->itx_lr;
1846 if (lrc->lrc_txtype != TX_COMMIT)
1847 break;
1849 mutex_enter(&zilog->zl_lock);
1851 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1852 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1854 * All of the itxs this waiter was waiting on
1855 * must have already completed (or there were
1856 * never any itx's for it to wait on), so it's
1857 * safe to skip this waiter and mark it done.
1859 zil_commit_waiter_skip(itx->itx_private);
1860 } else {
1861 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1862 itx->itx_private = NULL;
1865 mutex_exit(&zilog->zl_lock);
1867 list_remove(&zilog->zl_itx_commit_list, itx);
1868 zil_itx_destroy(itx);
1871 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1874 static void
1875 zil_commit_writer_stall(zilog_t *zilog)
1878 * When zio_alloc_zil() fails to allocate the next lwb block on
1879 * disk, we must call txg_wait_synced() to ensure all of the
1880 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1881 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1882 * to zil_process_commit_list()) will have to call zil_create(),
1883 * and start a new ZIL chain.
1885 * Since zil_alloc_zil() failed, the lwb that was previously
1886 * issued does not have a pointer to the "next" lwb on disk.
1887 * Thus, if another ZIL writer thread was to allocate the "next"
1888 * on-disk lwb, that block could be leaked in the event of a
1889 * crash (because the previous lwb on-disk would not point to
1890 * it).
1892 * We must hold the zilog's zl_issuer_lock while we do this, to
1893 * ensure no new threads enter zil_process_commit_list() until
1894 * all lwb's in the zl_lwb_list have been synced and freed
1895 * (which is achieved via the txg_wait_synced() call).
1897 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1898 txg_wait_synced(zilog->zl_dmu_pool, 0);
1899 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1903 * This function will traverse the commit list, creating new lwbs as
1904 * needed, and committing the itxs from the commit list to these newly
1905 * created lwbs. Additionally, as a new lwb is created, the previous
1906 * lwb will be issued to the zio layer to be written to disk.
1908 static void
1909 zil_process_commit_list(zilog_t *zilog)
1911 spa_t *spa = zilog->zl_spa;
1912 list_t nolwb_waiters;
1913 lwb_t *lwb;
1914 itx_t *itx;
1916 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1919 * Return if there's nothing to commit before we dirty the fs by
1920 * calling zil_create().
1922 if (list_head(&zilog->zl_itx_commit_list) == NULL)
1923 return;
1925 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1926 offsetof(zil_commit_waiter_t, zcw_node));
1928 lwb = list_tail(&zilog->zl_lwb_list);
1929 if (lwb == NULL) {
1930 lwb = zil_create(zilog);
1931 } else {
1932 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1933 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
1936 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1937 lr_t *lrc = &itx->itx_lr;
1938 uint64_t txg = lrc->lrc_txg;
1940 ASSERT3U(txg, !=, 0);
1942 if (lrc->lrc_txtype == TX_COMMIT) {
1943 DTRACE_PROBE2(zil__process__commit__itx,
1944 zilog_t *, zilog, itx_t *, itx);
1945 } else {
1946 DTRACE_PROBE2(zil__process__normal__itx,
1947 zilog_t *, zilog, itx_t *, itx);
1950 boolean_t synced = txg <= spa_last_synced_txg(spa);
1951 boolean_t frozen = txg > spa_freeze_txg(spa);
1954 * If the txg of this itx has already been synced out, then
1955 * we don't need to commit this itx to an lwb. This is
1956 * because the data of this itx will have already been
1957 * written to the main pool. This is inherently racy, and
1958 * it's still ok to commit an itx whose txg has already
1959 * been synced; this will result in a write that's
1960 * unnecessary, but will do no harm.
1962 * With that said, we always want to commit TX_COMMIT itxs
1963 * to an lwb, regardless of whether or not that itx's txg
1964 * has been synced out. We do this to ensure any OPENED lwb
1965 * will always have at least one zil_commit_waiter_t linked
1966 * to the lwb.
1968 * As a counter-example, if we skipped TX_COMMIT itx's
1969 * whose txg had already been synced, the following
1970 * situation could occur if we happened to be racing with
1971 * spa_sync:
1973 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
1974 * itx's txg is 10 and the last synced txg is 9.
1975 * 2. spa_sync finishes syncing out txg 10.
1976 * 3. we move to the next itx in the list, it's a TX_COMMIT
1977 * whose txg is 10, so we skip it rather than committing
1978 * it to the lwb used in (1).
1980 * If the itx that is skipped in (3) is the last TX_COMMIT
1981 * itx in the commit list, than it's possible for the lwb
1982 * used in (1) to remain in the OPENED state indefinitely.
1984 * To prevent the above scenario from occuring, ensuring
1985 * that once an lwb is OPENED it will transition to ISSUED
1986 * and eventually DONE, we always commit TX_COMMIT itx's to
1987 * an lwb here, even if that itx's txg has already been
1988 * synced.
1990 * Finally, if the pool is frozen, we _always_ commit the
1991 * itx. The point of freezing the pool is to prevent data
1992 * from being written to the main pool via spa_sync, and
1993 * instead rely solely on the ZIL to persistently store the
1994 * data; i.e. when the pool is frozen, the last synced txg
1995 * value can't be trusted.
1997 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
1998 if (lwb != NULL) {
1999 lwb = zil_lwb_commit(zilog, itx, lwb);
2000 } else if (lrc->lrc_txtype == TX_COMMIT) {
2001 ASSERT3P(lwb, ==, NULL);
2002 zil_commit_waiter_link_nolwb(
2003 itx->itx_private, &nolwb_waiters);
2007 list_remove(&zilog->zl_itx_commit_list, itx);
2008 zil_itx_destroy(itx);
2011 if (lwb == NULL) {
2013 * This indicates zio_alloc_zil() failed to allocate the
2014 * "next" lwb on-disk. When this happens, we must stall
2015 * the ZIL write pipeline; see the comment within
2016 * zil_commit_writer_stall() for more details.
2018 zil_commit_writer_stall(zilog);
2021 * Additionally, we have to signal and mark the "nolwb"
2022 * waiters as "done" here, since without an lwb, we
2023 * can't do this via zil_lwb_flush_vdevs_done() like
2024 * normal.
2026 zil_commit_waiter_t *zcw;
2027 while (zcw = list_head(&nolwb_waiters)) {
2028 zil_commit_waiter_skip(zcw);
2029 list_remove(&nolwb_waiters, zcw);
2031 } else {
2032 ASSERT(list_is_empty(&nolwb_waiters));
2033 ASSERT3P(lwb, !=, NULL);
2034 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2035 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2038 * At this point, the ZIL block pointed at by the "lwb"
2039 * variable is in one of the following states: "closed"
2040 * or "open".
2042 * If its "closed", then no itxs have been committed to
2043 * it, so there's no point in issuing its zio (i.e.
2044 * it's "empty").
2046 * If its "open" state, then it contains one or more
2047 * itxs that eventually need to be committed to stable
2048 * storage. In this case we intentionally do not issue
2049 * the lwb's zio to disk yet, and instead rely on one of
2050 * the following two mechanisms for issuing the zio:
2052 * 1. Ideally, there will be more ZIL activity occuring
2053 * on the system, such that this function will be
2054 * immediately called again (not necessarily by the same
2055 * thread) and this lwb's zio will be issued via
2056 * zil_lwb_commit(). This way, the lwb is guaranteed to
2057 * be "full" when it is issued to disk, and we'll make
2058 * use of the lwb's size the best we can.
2060 * 2. If there isn't sufficient ZIL activity occuring on
2061 * the system, such that this lwb's zio isn't issued via
2062 * zil_lwb_commit(), zil_commit_waiter() will issue the
2063 * lwb's zio. If this occurs, the lwb is not guaranteed
2064 * to be "full" by the time its zio is issued, and means
2065 * the size of the lwb was "too large" given the amount
2066 * of ZIL activity occuring on the system at that time.
2068 * We do this for a couple of reasons:
2070 * 1. To try and reduce the number of IOPs needed to
2071 * write the same number of itxs. If an lwb has space
2072 * available in it's buffer for more itxs, and more itxs
2073 * will be committed relatively soon (relative to the
2074 * latency of performing a write), then it's beneficial
2075 * to wait for these "next" itxs. This way, more itxs
2076 * can be committed to stable storage with fewer writes.
2078 * 2. To try and use the largest lwb block size that the
2079 * incoming rate of itxs can support. Again, this is to
2080 * try and pack as many itxs into as few lwbs as
2081 * possible, without significantly impacting the latency
2082 * of each individual itx.
2088 * This function is responsible for ensuring the passed in commit waiter
2089 * (and associated commit itx) is committed to an lwb. If the waiter is
2090 * not already committed to an lwb, all itxs in the zilog's queue of
2091 * itxs will be processed. The assumption is the passed in waiter's
2092 * commit itx will found in the queue just like the other non-commit
2093 * itxs, such that when the entire queue is processed, the waiter will
2094 * have been commited to an lwb.
2096 * The lwb associated with the passed in waiter is not guaranteed to
2097 * have been issued by the time this function completes. If the lwb is
2098 * not issued, we rely on future calls to zil_commit_writer() to issue
2099 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2101 static void
2102 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2104 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2105 ASSERT(spa_writeable(zilog->zl_spa));
2107 mutex_enter(&zilog->zl_issuer_lock);
2109 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2111 * It's possible that, while we were waiting to acquire
2112 * the "zl_issuer_lock", another thread committed this
2113 * waiter to an lwb. If that occurs, we bail out early,
2114 * without processing any of the zilog's queue of itxs.
2116 * On certain workloads and system configurations, the
2117 * "zl_issuer_lock" can become highly contended. In an
2118 * attempt to reduce this contention, we immediately drop
2119 * the lock if the waiter has already been processed.
2121 * We've measured this optimization to reduce CPU spent
2122 * contending on this lock by up to 5%, using a system
2123 * with 32 CPUs, low latency storage (~50 usec writes),
2124 * and 1024 threads performing sync writes.
2126 goto out;
2129 zil_get_commit_list(zilog);
2130 zil_prune_commit_list(zilog);
2131 zil_process_commit_list(zilog);
2133 out:
2134 mutex_exit(&zilog->zl_issuer_lock);
2137 static void
2138 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2140 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2141 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2142 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2144 lwb_t *lwb = zcw->zcw_lwb;
2145 ASSERT3P(lwb, !=, NULL);
2146 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2149 * If the lwb has already been issued by another thread, we can
2150 * immediately return since there's no work to be done (the
2151 * point of this function is to issue the lwb). Additionally, we
2152 * do this prior to acquiring the zl_issuer_lock, to avoid
2153 * acquiring it when it's not necessary to do so.
2155 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2156 lwb->lwb_state == LWB_STATE_DONE)
2157 return;
2160 * In order to call zil_lwb_write_issue() we must hold the
2161 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2162 * since we're already holding the commit waiter's "zcw_lock",
2163 * and those two locks are aquired in the opposite order
2164 * elsewhere.
2166 mutex_exit(&zcw->zcw_lock);
2167 mutex_enter(&zilog->zl_issuer_lock);
2168 mutex_enter(&zcw->zcw_lock);
2171 * Since we just dropped and re-acquired the commit waiter's
2172 * lock, we have to re-check to see if the waiter was marked
2173 * "done" during that process. If the waiter was marked "done",
2174 * the "lwb" pointer is no longer valid (it can be free'd after
2175 * the waiter is marked "done"), so without this check we could
2176 * wind up with a use-after-free error below.
2178 if (zcw->zcw_done)
2179 goto out;
2181 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2184 * We've already checked this above, but since we hadn't acquired
2185 * the zilog's zl_issuer_lock, we have to perform this check a
2186 * second time while holding the lock.
2188 * We don't need to hold the zl_lock since the lwb cannot transition
2189 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2190 * _can_ transition from ISSUED to DONE, but it's OK to race with
2191 * that transition since we treat the lwb the same, whether it's in
2192 * the ISSUED or DONE states.
2194 * The important thing, is we treat the lwb differently depending on
2195 * if it's ISSUED or OPENED, and block any other threads that might
2196 * attempt to issue this lwb. For that reason we hold the
2197 * zl_issuer_lock when checking the lwb_state; we must not call
2198 * zil_lwb_write_issue() if the lwb had already been issued.
2200 * See the comment above the lwb_state_t structure definition for
2201 * more details on the lwb states, and locking requirements.
2203 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2204 lwb->lwb_state == LWB_STATE_DONE)
2205 goto out;
2207 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2210 * As described in the comments above zil_commit_waiter() and
2211 * zil_process_commit_list(), we need to issue this lwb's zio
2212 * since we've reached the commit waiter's timeout and it still
2213 * hasn't been issued.
2215 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2217 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2220 * Since the lwb's zio hadn't been issued by the time this thread
2221 * reached its timeout, we reset the zilog's "zl_cur_used" field
2222 * to influence the zil block size selection algorithm.
2224 * By having to issue the lwb's zio here, it means the size of the
2225 * lwb was too large, given the incoming throughput of itxs. By
2226 * setting "zl_cur_used" to zero, we communicate this fact to the
2227 * block size selection algorithm, so it can take this informaiton
2228 * into account, and potentially select a smaller size for the
2229 * next lwb block that is allocated.
2231 zilog->zl_cur_used = 0;
2233 if (nlwb == NULL) {
2235 * When zil_lwb_write_issue() returns NULL, this
2236 * indicates zio_alloc_zil() failed to allocate the
2237 * "next" lwb on-disk. When this occurs, the ZIL write
2238 * pipeline must be stalled; see the comment within the
2239 * zil_commit_writer_stall() function for more details.
2241 * We must drop the commit waiter's lock prior to
2242 * calling zil_commit_writer_stall() or else we can wind
2243 * up with the following deadlock:
2245 * - This thread is waiting for the txg to sync while
2246 * holding the waiter's lock; txg_wait_synced() is
2247 * used within txg_commit_writer_stall().
2249 * - The txg can't sync because it is waiting for this
2250 * lwb's zio callback to call dmu_tx_commit().
2252 * - The lwb's zio callback can't call dmu_tx_commit()
2253 * because it's blocked trying to acquire the waiter's
2254 * lock, which occurs prior to calling dmu_tx_commit()
2256 mutex_exit(&zcw->zcw_lock);
2257 zil_commit_writer_stall(zilog);
2258 mutex_enter(&zcw->zcw_lock);
2261 out:
2262 mutex_exit(&zilog->zl_issuer_lock);
2263 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2267 * This function is responsible for performing the following two tasks:
2269 * 1. its primary responsibility is to block until the given "commit
2270 * waiter" is considered "done".
2272 * 2. its secondary responsibility is to issue the zio for the lwb that
2273 * the given "commit waiter" is waiting on, if this function has
2274 * waited "long enough" and the lwb is still in the "open" state.
2276 * Given a sufficient amount of itxs being generated and written using
2277 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2278 * function. If this does not occur, this secondary responsibility will
2279 * ensure the lwb is issued even if there is not other synchronous
2280 * activity on the system.
2282 * For more details, see zil_process_commit_list(); more specifically,
2283 * the comment at the bottom of that function.
2285 static void
2286 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2288 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2289 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2290 ASSERT(spa_writeable(zilog->zl_spa));
2292 mutex_enter(&zcw->zcw_lock);
2295 * The timeout is scaled based on the lwb latency to avoid
2296 * significantly impacting the latency of each individual itx.
2297 * For more details, see the comment at the bottom of the
2298 * zil_process_commit_list() function.
2300 int pct = MAX(zfs_commit_timeout_pct, 1);
2301 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2302 hrtime_t wakeup = gethrtime() + sleep;
2303 boolean_t timedout = B_FALSE;
2305 while (!zcw->zcw_done) {
2306 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2308 lwb_t *lwb = zcw->zcw_lwb;
2311 * Usually, the waiter will have a non-NULL lwb field here,
2312 * but it's possible for it to be NULL as a result of
2313 * zil_commit() racing with spa_sync().
2315 * When zil_clean() is called, it's possible for the itxg
2316 * list (which may be cleaned via a taskq) to contain
2317 * commit itxs. When this occurs, the commit waiters linked
2318 * off of these commit itxs will not be committed to an
2319 * lwb. Additionally, these commit waiters will not be
2320 * marked done until zil_commit_waiter_skip() is called via
2321 * zil_itxg_clean().
2323 * Thus, it's possible for this commit waiter (i.e. the
2324 * "zcw" variable) to be found in this "in between" state;
2325 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2326 * been skipped, so it's "zcw_done" field is still B_FALSE.
2328 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2330 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2331 ASSERT3B(timedout, ==, B_FALSE);
2334 * If the lwb hasn't been issued yet, then we
2335 * need to wait with a timeout, in case this
2336 * function needs to issue the lwb after the
2337 * timeout is reached; responsibility (2) from
2338 * the comment above this function.
2340 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2341 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2342 CALLOUT_FLAG_ABSOLUTE);
2344 if (timeleft >= 0 || zcw->zcw_done)
2345 continue;
2347 timedout = B_TRUE;
2348 zil_commit_waiter_timeout(zilog, zcw);
2350 if (!zcw->zcw_done) {
2352 * If the commit waiter has already been
2353 * marked "done", it's possible for the
2354 * waiter's lwb structure to have already
2355 * been freed. Thus, we can only reliably
2356 * make these assertions if the waiter
2357 * isn't done.
2359 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2360 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2362 } else {
2364 * If the lwb isn't open, then it must have already
2365 * been issued. In that case, there's no need to
2366 * use a timeout when waiting for the lwb to
2367 * complete.
2369 * Additionally, if the lwb is NULL, the waiter
2370 * will soon be signalled and marked done via
2371 * zil_clean() and zil_itxg_clean(), so no timeout
2372 * is required.
2375 IMPLY(lwb != NULL,
2376 lwb->lwb_state == LWB_STATE_ISSUED ||
2377 lwb->lwb_state == LWB_STATE_DONE);
2378 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2382 mutex_exit(&zcw->zcw_lock);
2385 static zil_commit_waiter_t *
2386 zil_alloc_commit_waiter()
2388 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2390 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2391 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2392 list_link_init(&zcw->zcw_node);
2393 zcw->zcw_lwb = NULL;
2394 zcw->zcw_done = B_FALSE;
2395 zcw->zcw_zio_error = 0;
2397 return (zcw);
2400 static void
2401 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2403 ASSERT(!list_link_active(&zcw->zcw_node));
2404 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2405 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2406 mutex_destroy(&zcw->zcw_lock);
2407 cv_destroy(&zcw->zcw_cv);
2408 kmem_cache_free(zil_zcw_cache, zcw);
2412 * This function is used to create a TX_COMMIT itx and assign it. This
2413 * way, it will be linked into the ZIL's list of synchronous itxs, and
2414 * then later committed to an lwb (or skipped) when
2415 * zil_process_commit_list() is called.
2417 static void
2418 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2420 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2421 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2423 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2424 itx->itx_sync = B_TRUE;
2425 itx->itx_private = zcw;
2427 zil_itx_assign(zilog, itx, tx);
2429 dmu_tx_commit(tx);
2433 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2435 * When writing ZIL transactions to the on-disk representation of the
2436 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2437 * itxs can be committed to a single lwb. Once a lwb is written and
2438 * committed to stable storage (i.e. the lwb is written, and vdevs have
2439 * been flushed), each itx that was committed to that lwb is also
2440 * considered to be committed to stable storage.
2442 * When an itx is committed to an lwb, the log record (lr_t) contained
2443 * by the itx is copied into the lwb's zio buffer, and once this buffer
2444 * is written to disk, it becomes an on-disk ZIL block.
2446 * As itxs are generated, they're inserted into the ZIL's queue of
2447 * uncommitted itxs. The semantics of zil_commit() are such that it will
2448 * block until all itxs that were in the queue when it was called, are
2449 * committed to stable storage.
2451 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2452 * itxs, for all objects in the dataset, will be committed to stable
2453 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2454 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2455 * that correspond to the foid passed in, will be committed to stable
2456 * storage prior to zil_commit() returning.
2458 * Generally speaking, when zil_commit() is called, the consumer doesn't
2459 * actually care about _all_ of the uncommitted itxs. Instead, they're
2460 * simply trying to waiting for a specific itx to be committed to disk,
2461 * but the interface(s) for interacting with the ZIL don't allow such
2462 * fine-grained communication. A better interface would allow a consumer
2463 * to create and assign an itx, and then pass a reference to this itx to
2464 * zil_commit(); such that zil_commit() would return as soon as that
2465 * specific itx was committed to disk (instead of waiting for _all_
2466 * itxs to be committed).
2468 * When a thread calls zil_commit() a special "commit itx" will be
2469 * generated, along with a corresponding "waiter" for this commit itx.
2470 * zil_commit() will wait on this waiter's CV, such that when the waiter
2471 * is marked done, and signalled, zil_commit() will return.
2473 * This commit itx is inserted into the queue of uncommitted itxs. This
2474 * provides an easy mechanism for determining which itxs were in the
2475 * queue prior to zil_commit() having been called, and which itxs were
2476 * added after zil_commit() was called.
2478 * The commit it is special; it doesn't have any on-disk representation.
2479 * When a commit itx is "committed" to an lwb, the waiter associated
2480 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2481 * completes, each waiter on the lwb's list is marked done and signalled
2482 * -- allowing the thread waiting on the waiter to return from zil_commit().
2484 * It's important to point out a few critical factors that allow us
2485 * to make use of the commit itxs, commit waiters, per-lwb lists of
2486 * commit waiters, and zio completion callbacks like we're doing:
2488 * 1. The list of waiters for each lwb is traversed, and each commit
2489 * waiter is marked "done" and signalled, in the zio completion
2490 * callback of the lwb's zio[*].
2492 * * Actually, the waiters are signalled in the zio completion
2493 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2494 * that are sent to the vdevs upon completion of the lwb zio.
2496 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2497 * itxs, the order in which they are inserted is preserved[*]; as
2498 * itxs are added to the queue, they are added to the tail of
2499 * in-memory linked lists.
2501 * When committing the itxs to lwbs (to be written to disk), they
2502 * are committed in the same order in which the itxs were added to
2503 * the uncommitted queue's linked list(s); i.e. the linked list of
2504 * itxs to commit is traversed from head to tail, and each itx is
2505 * committed to an lwb in that order.
2507 * * To clarify:
2509 * - the order of "sync" itxs is preserved w.r.t. other
2510 * "sync" itxs, regardless of the corresponding objects.
2511 * - the order of "async" itxs is preserved w.r.t. other
2512 * "async" itxs corresponding to the same object.
2513 * - the order of "async" itxs is *not* preserved w.r.t. other
2514 * "async" itxs corresponding to different objects.
2515 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2516 * versa) is *not* preserved, even for itxs that correspond
2517 * to the same object.
2519 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2520 * zil_get_commit_list(), and zil_process_commit_list().
2522 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2523 * lwb cannot be considered committed to stable storage, until its
2524 * "previous" lwb is also committed to stable storage. This fact,
2525 * coupled with the fact described above, means that itxs are
2526 * committed in (roughly) the order in which they were generated.
2527 * This is essential because itxs are dependent on prior itxs.
2528 * Thus, we *must not* deem an itx as being committed to stable
2529 * storage, until *all* prior itxs have also been committed to
2530 * stable storage.
2532 * To enforce this ordering of lwb zio's, while still leveraging as
2533 * much of the underlying storage performance as possible, we rely
2534 * on two fundamental concepts:
2536 * 1. The creation and issuance of lwb zio's is protected by
2537 * the zilog's "zl_issuer_lock", which ensures only a single
2538 * thread is creating and/or issuing lwb's at a time
2539 * 2. The "previous" lwb is a child of the "current" lwb
2540 * (leveraging the zio parent-child depenency graph)
2542 * By relying on this parent-child zio relationship, we can have
2543 * many lwb zio's concurrently issued to the underlying storage,
2544 * but the order in which they complete will be the same order in
2545 * which they were created.
2547 void
2548 zil_commit(zilog_t *zilog, uint64_t foid)
2551 * We should never attempt to call zil_commit on a snapshot for
2552 * a couple of reasons:
2554 * 1. A snapshot may never be modified, thus it cannot have any
2555 * in-flight itxs that would have modified the dataset.
2557 * 2. By design, when zil_commit() is called, a commit itx will
2558 * be assigned to this zilog; as a result, the zilog will be
2559 * dirtied. We must not dirty the zilog of a snapshot; there's
2560 * checks in the code that enforce this invariant, and will
2561 * cause a panic if it's not upheld.
2563 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2565 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2566 return;
2568 if (!spa_writeable(zilog->zl_spa)) {
2570 * If the SPA is not writable, there should never be any
2571 * pending itxs waiting to be committed to disk. If that
2572 * weren't true, we'd skip writing those itxs out, and
2573 * would break the sematics of zil_commit(); thus, we're
2574 * verifying that truth before we return to the caller.
2576 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2577 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2578 for (int i = 0; i < TXG_SIZE; i++)
2579 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2580 return;
2584 * If the ZIL is suspended, we don't want to dirty it by calling
2585 * zil_commit_itx_assign() below, nor can we write out
2586 * lwbs like would be done in zil_commit_write(). Thus, we
2587 * simply rely on txg_wait_synced() to maintain the necessary
2588 * semantics, and avoid calling those functions altogether.
2590 if (zilog->zl_suspend > 0) {
2591 txg_wait_synced(zilog->zl_dmu_pool, 0);
2592 return;
2595 zil_commit_impl(zilog, foid);
2598 void
2599 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2602 * Move the "async" itxs for the specified foid to the "sync"
2603 * queues, such that they will be later committed (or skipped)
2604 * to an lwb when zil_process_commit_list() is called.
2606 * Since these "async" itxs must be committed prior to this
2607 * call to zil_commit returning, we must perform this operation
2608 * before we call zil_commit_itx_assign().
2610 zil_async_to_sync(zilog, foid);
2613 * We allocate a new "waiter" structure which will initially be
2614 * linked to the commit itx using the itx's "itx_private" field.
2615 * Since the commit itx doesn't represent any on-disk state,
2616 * when it's committed to an lwb, rather than copying the its
2617 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2618 * added to the lwb's list of waiters. Then, when the lwb is
2619 * committed to stable storage, each waiter in the lwb's list of
2620 * waiters will be marked "done", and signalled.
2622 * We must create the waiter and assign the commit itx prior to
2623 * calling zil_commit_writer(), or else our specific commit itx
2624 * is not guaranteed to be committed to an lwb prior to calling
2625 * zil_commit_waiter().
2627 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2628 zil_commit_itx_assign(zilog, zcw);
2630 zil_commit_writer(zilog, zcw);
2631 zil_commit_waiter(zilog, zcw);
2633 if (zcw->zcw_zio_error != 0) {
2635 * If there was an error writing out the ZIL blocks that
2636 * this thread is waiting on, then we fallback to
2637 * relying on spa_sync() to write out the data this
2638 * thread is waiting on. Obviously this has performance
2639 * implications, but the expectation is for this to be
2640 * an exceptional case, and shouldn't occur often.
2642 DTRACE_PROBE2(zil__commit__io__error,
2643 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2644 txg_wait_synced(zilog->zl_dmu_pool, 0);
2647 zil_free_commit_waiter(zcw);
2651 * Called in syncing context to free committed log blocks and update log header.
2653 void
2654 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2656 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2657 uint64_t txg = dmu_tx_get_txg(tx);
2658 spa_t *spa = zilog->zl_spa;
2659 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2660 lwb_t *lwb;
2663 * We don't zero out zl_destroy_txg, so make sure we don't try
2664 * to destroy it twice.
2666 if (spa_sync_pass(spa) != 1)
2667 return;
2669 mutex_enter(&zilog->zl_lock);
2671 ASSERT(zilog->zl_stop_sync == 0);
2673 if (*replayed_seq != 0) {
2674 ASSERT(zh->zh_replay_seq < *replayed_seq);
2675 zh->zh_replay_seq = *replayed_seq;
2676 *replayed_seq = 0;
2679 if (zilog->zl_destroy_txg == txg) {
2680 blkptr_t blk = zh->zh_log;
2682 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2684 bzero(zh, sizeof (zil_header_t));
2685 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2687 if (zilog->zl_keep_first) {
2689 * If this block was part of log chain that couldn't
2690 * be claimed because a device was missing during
2691 * zil_claim(), but that device later returns,
2692 * then this block could erroneously appear valid.
2693 * To guard against this, assign a new GUID to the new
2694 * log chain so it doesn't matter what blk points to.
2696 zil_init_log_chain(zilog, &blk);
2697 zh->zh_log = blk;
2701 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2702 zh->zh_log = lwb->lwb_blk;
2703 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2704 break;
2705 list_remove(&zilog->zl_lwb_list, lwb);
2706 zio_free(spa, txg, &lwb->lwb_blk);
2707 zil_free_lwb(zilog, lwb);
2710 * If we don't have anything left in the lwb list then
2711 * we've had an allocation failure and we need to zero
2712 * out the zil_header blkptr so that we don't end
2713 * up freeing the same block twice.
2715 if (list_head(&zilog->zl_lwb_list) == NULL)
2716 BP_ZERO(&zh->zh_log);
2718 mutex_exit(&zilog->zl_lock);
2721 /* ARGSUSED */
2722 static int
2723 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2725 lwb_t *lwb = vbuf;
2726 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2727 offsetof(zil_commit_waiter_t, zcw_node));
2728 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2729 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2730 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2731 return (0);
2734 /* ARGSUSED */
2735 static void
2736 zil_lwb_dest(void *vbuf, void *unused)
2738 lwb_t *lwb = vbuf;
2739 mutex_destroy(&lwb->lwb_vdev_lock);
2740 avl_destroy(&lwb->lwb_vdev_tree);
2741 list_destroy(&lwb->lwb_waiters);
2744 void
2745 zil_init(void)
2747 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2748 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2750 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2751 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2754 void
2755 zil_fini(void)
2757 kmem_cache_destroy(zil_zcw_cache);
2758 kmem_cache_destroy(zil_lwb_cache);
2761 void
2762 zil_set_sync(zilog_t *zilog, uint64_t sync)
2764 zilog->zl_sync = sync;
2767 void
2768 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2770 zilog->zl_logbias = logbias;
2773 zilog_t *
2774 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2776 zilog_t *zilog;
2778 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2780 zilog->zl_header = zh_phys;
2781 zilog->zl_os = os;
2782 zilog->zl_spa = dmu_objset_spa(os);
2783 zilog->zl_dmu_pool = dmu_objset_pool(os);
2784 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2785 zilog->zl_logbias = dmu_objset_logbias(os);
2786 zilog->zl_sync = dmu_objset_syncprop(os);
2787 zilog->zl_dirty_max_txg = 0;
2788 zilog->zl_last_lwb_opened = NULL;
2789 zilog->zl_last_lwb_latency = 0;
2791 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2792 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2794 for (int i = 0; i < TXG_SIZE; i++) {
2795 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2796 MUTEX_DEFAULT, NULL);
2799 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2800 offsetof(lwb_t, lwb_node));
2802 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2803 offsetof(itx_t, itx_node));
2805 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2807 return (zilog);
2810 void
2811 zil_free(zilog_t *zilog)
2813 zilog->zl_stop_sync = 1;
2815 ASSERT0(zilog->zl_suspend);
2816 ASSERT0(zilog->zl_suspending);
2818 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2819 list_destroy(&zilog->zl_lwb_list);
2821 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2822 list_destroy(&zilog->zl_itx_commit_list);
2824 for (int i = 0; i < TXG_SIZE; i++) {
2826 * It's possible for an itx to be generated that doesn't dirty
2827 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2828 * callback to remove the entry. We remove those here.
2830 * Also free up the ziltest itxs.
2832 if (zilog->zl_itxg[i].itxg_itxs)
2833 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2834 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2837 mutex_destroy(&zilog->zl_issuer_lock);
2838 mutex_destroy(&zilog->zl_lock);
2840 cv_destroy(&zilog->zl_cv_suspend);
2842 kmem_free(zilog, sizeof (zilog_t));
2846 * Open an intent log.
2848 zilog_t *
2849 zil_open(objset_t *os, zil_get_data_t *get_data)
2851 zilog_t *zilog = dmu_objset_zil(os);
2853 ASSERT3P(zilog->zl_get_data, ==, NULL);
2854 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2855 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2857 zilog->zl_get_data = get_data;
2859 return (zilog);
2863 * Close an intent log.
2865 void
2866 zil_close(zilog_t *zilog)
2868 lwb_t *lwb;
2869 uint64_t txg;
2871 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2872 zil_commit(zilog, 0);
2873 } else {
2874 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2875 ASSERT0(zilog->zl_dirty_max_txg);
2876 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2879 mutex_enter(&zilog->zl_lock);
2880 lwb = list_tail(&zilog->zl_lwb_list);
2881 if (lwb == NULL)
2882 txg = zilog->zl_dirty_max_txg;
2883 else
2884 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2885 mutex_exit(&zilog->zl_lock);
2888 * We need to use txg_wait_synced() to wait long enough for the
2889 * ZIL to be clean, and to wait for all pending lwbs to be
2890 * written out.
2892 if (txg != 0)
2893 txg_wait_synced(zilog->zl_dmu_pool, txg);
2895 if (zilog_is_dirty(zilog))
2896 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2897 VERIFY(!zilog_is_dirty(zilog));
2899 zilog->zl_get_data = NULL;
2902 * We should have only one lwb left on the list; remove it now.
2904 mutex_enter(&zilog->zl_lock);
2905 lwb = list_head(&zilog->zl_lwb_list);
2906 if (lwb != NULL) {
2907 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2908 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2909 list_remove(&zilog->zl_lwb_list, lwb);
2910 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2911 zil_free_lwb(zilog, lwb);
2913 mutex_exit(&zilog->zl_lock);
2916 static char *suspend_tag = "zil suspending";
2919 * Suspend an intent log. While in suspended mode, we still honor
2920 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2921 * On old version pools, we suspend the log briefly when taking a
2922 * snapshot so that it will have an empty intent log.
2924 * Long holds are not really intended to be used the way we do here --
2925 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
2926 * could fail. Therefore we take pains to only put a long hold if it is
2927 * actually necessary. Fortunately, it will only be necessary if the
2928 * objset is currently mounted (or the ZVOL equivalent). In that case it
2929 * will already have a long hold, so we are not really making things any worse.
2931 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2932 * zvol_state_t), and use their mechanism to prevent their hold from being
2933 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2934 * very little gain.
2936 * if cookiep == NULL, this does both the suspend & resume.
2937 * Otherwise, it returns with the dataset "long held", and the cookie
2938 * should be passed into zil_resume().
2941 zil_suspend(const char *osname, void **cookiep)
2943 objset_t *os;
2944 zilog_t *zilog;
2945 const zil_header_t *zh;
2946 int error;
2948 error = dmu_objset_hold(osname, suspend_tag, &os);
2949 if (error != 0)
2950 return (error);
2951 zilog = dmu_objset_zil(os);
2953 mutex_enter(&zilog->zl_lock);
2954 zh = zilog->zl_header;
2956 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2957 mutex_exit(&zilog->zl_lock);
2958 dmu_objset_rele(os, suspend_tag);
2959 return (SET_ERROR(EBUSY));
2963 * Don't put a long hold in the cases where we can avoid it. This
2964 * is when there is no cookie so we are doing a suspend & resume
2965 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2966 * for the suspend because it's already suspended, or there's no ZIL.
2968 if (cookiep == NULL && !zilog->zl_suspending &&
2969 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2970 mutex_exit(&zilog->zl_lock);
2971 dmu_objset_rele(os, suspend_tag);
2972 return (0);
2975 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2976 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2978 zilog->zl_suspend++;
2980 if (zilog->zl_suspend > 1) {
2982 * Someone else is already suspending it.
2983 * Just wait for them to finish.
2986 while (zilog->zl_suspending)
2987 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2988 mutex_exit(&zilog->zl_lock);
2990 if (cookiep == NULL)
2991 zil_resume(os);
2992 else
2993 *cookiep = os;
2994 return (0);
2998 * If there is no pointer to an on-disk block, this ZIL must not
2999 * be active (e.g. filesystem not mounted), so there's nothing
3000 * to clean up.
3002 if (BP_IS_HOLE(&zh->zh_log)) {
3003 ASSERT(cookiep != NULL); /* fast path already handled */
3005 *cookiep = os;
3006 mutex_exit(&zilog->zl_lock);
3007 return (0);
3010 zilog->zl_suspending = B_TRUE;
3011 mutex_exit(&zilog->zl_lock);
3014 * We need to use zil_commit_impl to ensure we wait for all
3015 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3016 * to disk before proceeding. If we used zil_commit instead, it
3017 * would just call txg_wait_synced(), because zl_suspend is set.
3018 * txg_wait_synced() doesn't wait for these lwb's to be
3019 * LWB_STATE_DONE before returning.
3021 zil_commit_impl(zilog, 0);
3024 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3025 * txg_wait_synced() to ensure the data from the zilog has
3026 * migrated to the main pool before calling zil_destroy().
3028 txg_wait_synced(zilog->zl_dmu_pool, 0);
3030 zil_destroy(zilog, B_FALSE);
3032 mutex_enter(&zilog->zl_lock);
3033 zilog->zl_suspending = B_FALSE;
3034 cv_broadcast(&zilog->zl_cv_suspend);
3035 mutex_exit(&zilog->zl_lock);
3037 if (cookiep == NULL)
3038 zil_resume(os);
3039 else
3040 *cookiep = os;
3041 return (0);
3044 void
3045 zil_resume(void *cookie)
3047 objset_t *os = cookie;
3048 zilog_t *zilog = dmu_objset_zil(os);
3050 mutex_enter(&zilog->zl_lock);
3051 ASSERT(zilog->zl_suspend != 0);
3052 zilog->zl_suspend--;
3053 mutex_exit(&zilog->zl_lock);
3054 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3055 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3058 typedef struct zil_replay_arg {
3059 zil_replay_func_t **zr_replay;
3060 void *zr_arg;
3061 boolean_t zr_byteswap;
3062 char *zr_lr;
3063 } zil_replay_arg_t;
3065 static int
3066 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3068 char name[ZFS_MAX_DATASET_NAME_LEN];
3070 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3072 dmu_objset_name(zilog->zl_os, name);
3074 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3075 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3076 (u_longlong_t)lr->lrc_seq,
3077 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3078 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3080 return (error);
3083 static int
3084 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3086 zil_replay_arg_t *zr = zra;
3087 const zil_header_t *zh = zilog->zl_header;
3088 uint64_t reclen = lr->lrc_reclen;
3089 uint64_t txtype = lr->lrc_txtype;
3090 int error = 0;
3092 zilog->zl_replaying_seq = lr->lrc_seq;
3094 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3095 return (0);
3097 if (lr->lrc_txg < claim_txg) /* already committed */
3098 return (0);
3100 /* Strip case-insensitive bit, still present in log record */
3101 txtype &= ~TX_CI;
3103 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3104 return (zil_replay_error(zilog, lr, EINVAL));
3107 * If this record type can be logged out of order, the object
3108 * (lr_foid) may no longer exist. That's legitimate, not an error.
3110 if (TX_OOO(txtype)) {
3111 error = dmu_object_info(zilog->zl_os,
3112 ((lr_ooo_t *)lr)->lr_foid, NULL);
3113 if (error == ENOENT || error == EEXIST)
3114 return (0);
3118 * Make a copy of the data so we can revise and extend it.
3120 bcopy(lr, zr->zr_lr, reclen);
3123 * If this is a TX_WRITE with a blkptr, suck in the data.
3125 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3126 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3127 zr->zr_lr + reclen);
3128 if (error != 0)
3129 return (zil_replay_error(zilog, lr, error));
3133 * The log block containing this lr may have been byteswapped
3134 * so that we can easily examine common fields like lrc_txtype.
3135 * However, the log is a mix of different record types, and only the
3136 * replay vectors know how to byteswap their records. Therefore, if
3137 * the lr was byteswapped, undo it before invoking the replay vector.
3139 if (zr->zr_byteswap)
3140 byteswap_uint64_array(zr->zr_lr, reclen);
3143 * We must now do two things atomically: replay this log record,
3144 * and update the log header sequence number to reflect the fact that
3145 * we did so. At the end of each replay function the sequence number
3146 * is updated if we are in replay mode.
3148 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3149 if (error != 0) {
3151 * The DMU's dnode layer doesn't see removes until the txg
3152 * commits, so a subsequent claim can spuriously fail with
3153 * EEXIST. So if we receive any error we try syncing out
3154 * any removes then retry the transaction. Note that we
3155 * specify B_FALSE for byteswap now, so we don't do it twice.
3157 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3158 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3159 if (error != 0)
3160 return (zil_replay_error(zilog, lr, error));
3162 return (0);
3165 /* ARGSUSED */
3166 static int
3167 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3169 zilog->zl_replay_blks++;
3171 return (0);
3175 * If this dataset has a non-empty intent log, replay it and destroy it.
3177 void
3178 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3180 zilog_t *zilog = dmu_objset_zil(os);
3181 const zil_header_t *zh = zilog->zl_header;
3182 zil_replay_arg_t zr;
3184 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3185 zil_destroy(zilog, B_TRUE);
3186 return;
3189 zr.zr_replay = replay_func;
3190 zr.zr_arg = arg;
3191 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3192 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3195 * Wait for in-progress removes to sync before starting replay.
3197 txg_wait_synced(zilog->zl_dmu_pool, 0);
3199 zilog->zl_replay = B_TRUE;
3200 zilog->zl_replay_time = ddi_get_lbolt();
3201 ASSERT(zilog->zl_replay_blks == 0);
3202 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3203 zh->zh_claim_txg);
3204 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3206 zil_destroy(zilog, B_FALSE);
3207 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3208 zilog->zl_replay = B_FALSE;
3211 boolean_t
3212 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3214 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3215 return (B_TRUE);
3217 if (zilog->zl_replay) {
3218 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3219 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3220 zilog->zl_replaying_seq;
3221 return (B_TRUE);
3224 return (B_FALSE);
3227 /* ARGSUSED */
3229 zil_vdev_offline(const char *osname, void *arg)
3231 int error;
3233 error = zil_suspend(osname, NULL);
3234 if (error != 0)
3235 return (SET_ERROR(EEXIST));
3236 return (0);