8819 x86 unix: variable set but not used
[unleashed.git] / usr / src / uts / common / vm / vm_pagelist.c
blob0f481b423d302bef23813b0471e282c87f00a5f7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright 2012 Joyent, Inc. All rights reserved.
29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */
33 * Portions of this source code were derived from Berkeley 4.3 BSD
34 * under license from the Regents of the University of California.
39 * This file contains common functions to access and manage the page lists.
40 * Many of these routines originated from platform dependent modules
41 * (sun4/vm/vm_dep.c, i86pc/vm/vm_machdep.c) and modified to function in
42 * a platform independent manner.
44 * vm/vm_dep.h provides for platform specific support.
47 #include <sys/types.h>
48 #include <sys/debug.h>
49 #include <sys/cmn_err.h>
50 #include <sys/systm.h>
51 #include <sys/atomic.h>
52 #include <sys/sysmacros.h>
53 #include <vm/as.h>
54 #include <vm/page.h>
55 #include <vm/seg_kmem.h>
56 #include <vm/seg_vn.h>
57 #include <sys/vmsystm.h>
58 #include <sys/memnode.h>
59 #include <vm/vm_dep.h>
60 #include <sys/lgrp.h>
61 #include <sys/mem_config.h>
62 #include <sys/callb.h>
63 #include <sys/mem_cage.h>
64 #include <sys/sdt.h>
65 #include <sys/dumphdr.h>
66 #include <sys/swap.h>
68 extern uint_t vac_colors;
70 #define MAX_PRAGMA_ALIGN 128
72 /* vm_cpu_data0 for the boot cpu before kmem is initialized */
74 #if L2CACHE_ALIGN_MAX <= MAX_PRAGMA_ALIGN
75 #pragma align L2CACHE_ALIGN_MAX(vm_cpu_data0)
76 #else
77 #pragma align MAX_PRAGMA_ALIGN(vm_cpu_data0)
78 #endif
79 char vm_cpu_data0[VM_CPU_DATA_PADSIZE];
82 * number of page colors equivalent to reqested color in page_get routines.
83 * If set, keeps large pages intact longer and keeps MPO allocation
84 * from the local mnode in favor of acquiring the 'correct' page color from
85 * a demoted large page or from a remote mnode.
87 uint_t colorequiv;
90 * color equivalency mask for each page size.
91 * Mask is computed based on cpu L2$ way sizes and colorequiv global.
92 * High 4 bits determine the number of high order bits of the color to ignore.
93 * Low 4 bits determines number of low order bits of color to ignore (it's only
94 * relevant for hashed index based page coloring).
96 uchar_t colorequivszc[MMU_PAGE_SIZES];
99 * if set, specifies the percentage of large pages that are free from within
100 * a large page region before attempting to lock those pages for
101 * page_get_contig_pages processing.
103 * Should be turned on when kpr is available when page_trylock_contig_pages
104 * can be more selective.
107 int ptcpthreshold;
110 * Limit page get contig page search based on failure cnts in pgcpfailcnt[].
111 * Enabled by default via pgcplimitsearch.
113 * pgcpfailcnt[] is bounded by PGCPFAILMAX (>= 1/2 of installed
114 * memory). When reached, pgcpfailcnt[] is reset to 1/2 of this upper
115 * bound. This upper bound range guarantees:
116 * - all large page 'slots' will be searched over time
117 * - the minimum (1) large page candidates considered on each pgcp call
118 * - count doesn't wrap around to 0
120 pgcnt_t pgcpfailcnt[MMU_PAGE_SIZES];
121 int pgcplimitsearch = 1;
123 #define PGCPFAILMAX (1 << (highbit(physinstalled) - 1))
124 #define SETPGCPFAILCNT(szc) \
125 if (++pgcpfailcnt[szc] >= PGCPFAILMAX) \
126 pgcpfailcnt[szc] = PGCPFAILMAX / 2;
128 #ifdef VM_STATS
129 struct vmm_vmstats_str vmm_vmstats;
131 #endif /* VM_STATS */
133 #if defined(__sparc)
134 #define LPGCREATE 0
135 #else
136 /* enable page_get_contig_pages */
137 #define LPGCREATE 1
138 #endif
140 int pg_contig_disable;
141 int pg_lpgcreate_nocage = LPGCREATE;
144 * page_freelist_split pfn flag to signify no lo or hi pfn requirement.
146 #define PFNNULL 0
148 /* Flags involved in promotion and demotion routines */
149 #define PC_FREE 0x1 /* put page on freelist */
150 #define PC_ALLOC 0x2 /* return page for allocation */
153 * Flag for page_demote to be used with PC_FREE to denote that we don't care
154 * what the color is as the color parameter to the function is ignored.
156 #define PC_NO_COLOR (-1)
158 /* mtype value for page_promote to use when mtype does not matter */
159 #define PC_MTYPE_ANY (-1)
162 * page counters candidates info
163 * See page_ctrs_cands comment below for more details.
164 * fields are as follows:
165 * pcc_pages_free: # pages which freelist coalesce can create
166 * pcc_color_free: pointer to page free counts per color
168 typedef struct pcc_info {
169 pgcnt_t pcc_pages_free;
170 pgcnt_t *pcc_color_free;
171 uint_t pad[12];
172 } pcc_info_t;
175 * On big machines it can take a long time to check page_counters
176 * arrays. page_ctrs_cands is a summary array whose elements are a dynamically
177 * updated sum of all elements of the corresponding page_counters arrays.
178 * page_freelist_coalesce() searches page_counters only if an appropriate
179 * element of page_ctrs_cands array is greater than 0.
181 * page_ctrs_cands is indexed by mutex (i), region (r), mnode (m), mrange (g)
183 pcc_info_t **page_ctrs_cands[NPC_MUTEX][MMU_PAGE_SIZES];
186 * Return in val the total number of free pages which can be created
187 * for the given mnode (m), mrange (g), and region size (r)
189 #define PGCTRS_CANDS_GETVALUE(m, g, r, val) { \
190 int i; \
191 val = 0; \
192 for (i = 0; i < NPC_MUTEX; i++) { \
193 val += page_ctrs_cands[i][(r)][(m)][(g)].pcc_pages_free; \
198 * Return in val the total number of free pages which can be created
199 * for the given mnode (m), mrange (g), region size (r), and color (c)
201 #define PGCTRS_CANDS_GETVALUECOLOR(m, g, r, c, val) { \
202 int i; \
203 val = 0; \
204 ASSERT((c) < PAGE_GET_PAGECOLORS(r)); \
205 for (i = 0; i < NPC_MUTEX; i++) { \
206 val += \
207 page_ctrs_cands[i][(r)][(m)][(g)].pcc_color_free[(c)]; \
212 * We can only allow a single thread to update a counter within the physical
213 * range of the largest supported page size. That is the finest granularity
214 * possible since the counter values are dependent on each other
215 * as you move accross region sizes. PP_CTR_LOCK_INDX is used to determine the
216 * ctr_mutex lock index for a particular physical range.
218 static kmutex_t *ctr_mutex[NPC_MUTEX];
220 #define PP_CTR_LOCK_INDX(pp) \
221 (((pp)->p_pagenum >> \
222 (PAGE_BSZS_SHIFT(mmu_page_sizes - 1))) & (NPC_MUTEX - 1))
224 #define INVALID_COLOR 0xffffffff
225 #define INVALID_MASK 0xffffffff
228 * Local functions prototypes.
231 void page_ctr_add(int, int, page_t *, int);
232 void page_ctr_add_internal(int, int, page_t *, int);
233 void page_ctr_sub(int, int, page_t *, int);
234 void page_ctr_sub_internal(int, int, page_t *, int);
235 void page_freelist_lock(int);
236 void page_freelist_unlock(int);
237 page_t *page_promote(int, pfn_t, uchar_t, int, int);
238 page_t *page_demote(int, pfn_t, pfn_t, uchar_t, uchar_t, int, int);
239 page_t *page_freelist_split(uchar_t,
240 uint_t, int, int, pfn_t, pfn_t, page_list_walker_t *);
241 page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int);
242 static int page_trylock_cons(page_t *pp, se_t se);
245 * The page_counters array below is used to keep track of free contiguous
246 * physical memory. A hw_page_map_t will be allocated per mnode per szc.
247 * This contains an array of counters, the size of the array, a shift value
248 * used to convert a pagenum into a counter array index or vice versa, as
249 * well as a cache of the last successful index to be promoted to a larger
250 * page size. As an optimization, we keep track of the last successful index
251 * to be promoted per page color for the given size region, and this is
252 * allocated dynamically based upon the number of colors for a given
253 * region size.
255 * Conceptually, the page counters are represented as:
257 * page_counters[region_size][mnode]
259 * region_size: size code of a candidate larger page made up
260 * of contiguous free smaller pages.
262 * page_counters[region_size][mnode].hpm_counters[index]:
263 * represents how many (region_size - 1) pages either
264 * exist or can be created within the given index range.
266 * Let's look at a sparc example:
267 * If we want to create a free 512k page, we look at region_size 2
268 * for the mnode we want. We calculate the index and look at a specific
269 * hpm_counters location. If we see 8 (FULL_REGION_CNT on sparc) at
270 * this location, it means that 8 64k pages either exist or can be created
271 * from 8K pages in order to make a single free 512k page at the given
272 * index. Note that when a region is full, it will contribute to the
273 * counts in the region above it. Thus we will not know what page
274 * size the free pages will be which can be promoted to this new free
275 * page unless we look at all regions below the current region.
279 * Note: hpmctr_t is defined in platform vm_dep.h
280 * hw_page_map_t contains all the information needed for the page_counters
281 * logic. The fields are as follows:
283 * hpm_counters: dynamically allocated array to hold counter data
284 * hpm_entries: entries in hpm_counters
285 * hpm_shift: shift for pnum/array index conv
286 * hpm_base: PFN mapped to counter index 0
287 * hpm_color_current: last index in counter array for this color at
288 * which we successfully created a large page
290 typedef struct hw_page_map {
291 hpmctr_t *hpm_counters;
292 size_t hpm_entries;
293 int hpm_shift;
294 pfn_t hpm_base;
295 size_t *hpm_color_current[MAX_MNODE_MRANGES];
296 #if defined(__sparc)
297 uint_t pad[4];
298 #endif
299 } hw_page_map_t;
302 * Element zero is not used, but is allocated for convenience.
304 static hw_page_map_t *page_counters[MMU_PAGE_SIZES];
307 * Cached value of MNODE_RANGE_CNT(mnode).
308 * This is a function call in x86.
310 static int mnode_nranges[MAX_MEM_NODES];
311 static int mnode_maxmrange[MAX_MEM_NODES];
314 * The following macros are convenient ways to get access to the individual
315 * elements of the page_counters arrays. They can be used on both
316 * the left side and right side of equations.
318 #define PAGE_COUNTERS(mnode, rg_szc, idx) \
319 (page_counters[(rg_szc)][(mnode)].hpm_counters[(idx)])
321 #define PAGE_COUNTERS_COUNTERS(mnode, rg_szc) \
322 (page_counters[(rg_szc)][(mnode)].hpm_counters)
324 #define PAGE_COUNTERS_SHIFT(mnode, rg_szc) \
325 (page_counters[(rg_szc)][(mnode)].hpm_shift)
327 #define PAGE_COUNTERS_ENTRIES(mnode, rg_szc) \
328 (page_counters[(rg_szc)][(mnode)].hpm_entries)
330 #define PAGE_COUNTERS_BASE(mnode, rg_szc) \
331 (page_counters[(rg_szc)][(mnode)].hpm_base)
333 #define PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode, rg_szc, g) \
334 (page_counters[(rg_szc)][(mnode)].hpm_color_current[(g)])
336 #define PAGE_COUNTERS_CURRENT_COLOR(mnode, rg_szc, color, mrange) \
337 (page_counters[(rg_szc)][(mnode)]. \
338 hpm_color_current[(mrange)][(color)])
340 #define PNUM_TO_IDX(mnode, rg_szc, pnum) \
341 (((pnum) - PAGE_COUNTERS_BASE((mnode), (rg_szc))) >> \
342 PAGE_COUNTERS_SHIFT((mnode), (rg_szc)))
344 #define IDX_TO_PNUM(mnode, rg_szc, index) \
345 (PAGE_COUNTERS_BASE((mnode), (rg_szc)) + \
346 ((index) << PAGE_COUNTERS_SHIFT((mnode), (rg_szc))))
349 * Protects the hpm_counters and hpm_color_current memory from changing while
350 * looking at page counters information.
351 * Grab the write lock to modify what these fields point at.
352 * Grab the read lock to prevent any pointers from changing.
353 * The write lock can not be held during memory allocation due to a possible
354 * recursion deadlock with trying to grab the read lock while the
355 * write lock is already held.
357 krwlock_t page_ctrs_rwlock[MAX_MEM_NODES];
361 * initialize cpu_vm_data to point at cache aligned vm_cpu_data_t.
363 void
364 cpu_vm_data_init(struct cpu *cp)
366 if (cp == CPU0) {
367 cp->cpu_vm_data = (void *)&vm_cpu_data0;
368 } else {
369 void *kmptr;
370 int align;
371 size_t sz;
373 align = (L2CACHE_ALIGN) ? L2CACHE_ALIGN : L2CACHE_ALIGN_MAX;
374 sz = P2ROUNDUP(sizeof (vm_cpu_data_t), align) + align;
375 kmptr = kmem_zalloc(sz, KM_SLEEP);
376 cp->cpu_vm_data = (void *) P2ROUNDUP((uintptr_t)kmptr, align);
377 ((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmptr = kmptr;
378 ((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmsize = sz;
383 * free cpu_vm_data
385 void
386 cpu_vm_data_destroy(struct cpu *cp)
388 if (cp->cpu_seqid && cp->cpu_vm_data) {
389 ASSERT(cp != CPU0);
390 kmem_free(((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmptr,
391 ((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmsize);
393 cp->cpu_vm_data = NULL;
398 * page size to page size code
401 page_szc(size_t pagesize)
403 int i = 0;
405 while (hw_page_array[i].hp_size) {
406 if (pagesize == hw_page_array[i].hp_size)
407 return (i);
408 i++;
410 return (-1);
414 * page size to page size code with the restriction that it be a supported
415 * user page size. If it's not a supported user page size, -1 will be returned.
418 page_szc_user_filtered(size_t pagesize)
420 int szc = page_szc(pagesize);
421 if ((szc != -1) && (SZC_2_USERSZC(szc) != -1)) {
422 return (szc);
424 return (-1);
428 * Return how many page sizes are available for the user to use. This is
429 * what the hardware supports and not based upon how the OS implements the
430 * support of different page sizes.
432 * If legacy is non-zero, return the number of pagesizes available to legacy
433 * applications. The number of legacy page sizes might be less than the
434 * exported user page sizes. This is to prevent legacy applications that
435 * use the largest page size returned from getpagesizes(3c) from inadvertantly
436 * using the 'new' large pagesizes.
438 uint_t
439 page_num_user_pagesizes(int legacy)
441 if (legacy)
442 return (mmu_legacy_page_sizes);
443 return (mmu_exported_page_sizes);
446 uint_t
447 page_num_pagesizes(void)
449 return (mmu_page_sizes);
453 * returns the count of the number of base pagesize pages associated with szc
455 pgcnt_t
456 page_get_pagecnt(uint_t szc)
458 if (szc >= mmu_page_sizes)
459 panic("page_get_pagecnt: out of range %d", szc);
460 return (hw_page_array[szc].hp_pgcnt);
463 size_t
464 page_get_pagesize(uint_t szc)
466 if (szc >= mmu_page_sizes)
467 panic("page_get_pagesize: out of range %d", szc);
468 return (hw_page_array[szc].hp_size);
472 * Return the size of a page based upon the index passed in. An index of
473 * zero refers to the smallest page size in the system, and as index increases
474 * it refers to the next larger supported page size in the system.
475 * Note that szc and userszc may not be the same due to unsupported szc's on
476 * some systems.
478 size_t
479 page_get_user_pagesize(uint_t userszc)
481 uint_t szc = USERSZC_2_SZC(userszc);
483 if (szc >= mmu_page_sizes)
484 panic("page_get_user_pagesize: out of range %d", szc);
485 return (hw_page_array[szc].hp_size);
488 uint_t
489 page_get_shift(uint_t szc)
491 if (szc >= mmu_page_sizes)
492 panic("page_get_shift: out of range %d", szc);
493 return (PAGE_GET_SHIFT(szc));
496 uint_t
497 page_get_pagecolors(uint_t szc)
499 if (szc >= mmu_page_sizes)
500 panic("page_get_pagecolors: out of range %d", szc);
501 return (PAGE_GET_PAGECOLORS(szc));
505 * this assigns the desired equivalent color after a split
507 uint_t
508 page_correct_color(uchar_t szc, uchar_t nszc, uint_t color,
509 uint_t ncolor, uint_t ceq_mask)
511 ASSERT(nszc > szc);
512 ASSERT(szc < mmu_page_sizes);
513 ASSERT(color < PAGE_GET_PAGECOLORS(szc));
514 ASSERT(ncolor < PAGE_GET_PAGECOLORS(nszc));
516 color &= ceq_mask;
517 ncolor = PAGE_CONVERT_COLOR(ncolor, szc, nszc);
518 return (color | (ncolor & ~ceq_mask));
522 * The interleaved_mnodes flag is set when mnodes overlap in
523 * the physbase..physmax range, but have disjoint slices.
524 * In this case hpm_counters is shared by all mnodes.
525 * This flag is set dynamically by the platform.
527 int interleaved_mnodes = 0;
530 * Called by startup().
531 * Size up the per page size free list counters based on physmax
532 * of each node and max_mem_nodes.
534 * If interleaved_mnodes is set we need to find the first mnode that
535 * exists. hpm_counters for the first mnode will then be shared by
536 * all other mnodes. If interleaved_mnodes is not set, just set
537 * first=mnode each time. That means there will be no sharing.
539 size_t
540 page_ctrs_sz(void)
542 int r; /* region size */
543 int mnode;
544 int firstmn; /* first mnode that exists */
545 int nranges;
546 pfn_t physbase;
547 pfn_t physmax;
548 uint_t ctrs_sz = 0;
549 int i;
550 pgcnt_t colors_per_szc[MMU_PAGE_SIZES];
553 * We need to determine how many page colors there are for each
554 * page size in order to allocate memory for any color specific
555 * arrays.
557 for (i = 0; i < mmu_page_sizes; i++) {
558 colors_per_szc[i] = PAGE_GET_PAGECOLORS(i);
561 for (firstmn = -1, mnode = 0; mnode < max_mem_nodes; mnode++) {
563 pgcnt_t r_pgcnt;
564 pfn_t r_base;
565 pgcnt_t r_align;
567 if (mem_node_config[mnode].exists == 0)
568 continue;
570 HPM_COUNTERS_LIMITS(mnode, physbase, physmax, firstmn);
571 nranges = MNODE_RANGE_CNT(mnode);
572 mnode_nranges[mnode] = nranges;
573 mnode_maxmrange[mnode] = MNODE_MAX_MRANGE(mnode);
576 * determine size needed for page counter arrays with
577 * base aligned to large page size.
579 for (r = 1; r < mmu_page_sizes; r++) {
580 /* add in space for hpm_color_current */
581 ctrs_sz += sizeof (size_t) *
582 colors_per_szc[r] * nranges;
584 if (firstmn != mnode)
585 continue;
587 /* add in space for hpm_counters */
588 r_align = page_get_pagecnt(r);
589 r_base = physbase;
590 r_base &= ~(r_align - 1);
591 r_pgcnt = howmany(physmax - r_base + 1, r_align);
594 * Round up to always allocate on pointer sized
595 * boundaries.
597 ctrs_sz += P2ROUNDUP((r_pgcnt * sizeof (hpmctr_t)),
598 sizeof (hpmctr_t *));
602 for (r = 1; r < mmu_page_sizes; r++) {
603 ctrs_sz += (max_mem_nodes * sizeof (hw_page_map_t));
606 /* add in space for page_ctrs_cands and pcc_color_free */
607 ctrs_sz += sizeof (pcc_info_t *) * max_mem_nodes *
608 mmu_page_sizes * NPC_MUTEX;
610 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
612 if (mem_node_config[mnode].exists == 0)
613 continue;
615 nranges = mnode_nranges[mnode];
616 ctrs_sz += sizeof (pcc_info_t) * nranges *
617 mmu_page_sizes * NPC_MUTEX;
618 for (r = 1; r < mmu_page_sizes; r++) {
619 ctrs_sz += sizeof (pgcnt_t) * nranges *
620 colors_per_szc[r] * NPC_MUTEX;
624 /* ctr_mutex */
625 ctrs_sz += (max_mem_nodes * NPC_MUTEX * sizeof (kmutex_t));
627 /* size for page list counts */
628 PLCNT_SZ(ctrs_sz);
631 * add some slop for roundups. page_ctrs_alloc will roundup the start
632 * address of the counters to ecache_alignsize boundary for every
633 * memory node.
635 return (ctrs_sz + max_mem_nodes * L2CACHE_ALIGN);
638 caddr_t
639 page_ctrs_alloc(caddr_t alloc_base)
641 int mnode;
642 int mrange, nranges;
643 int r; /* region size */
644 int i;
645 int firstmn; /* first mnode that exists */
646 pfn_t physbase;
647 pfn_t physmax;
648 pgcnt_t colors_per_szc[MMU_PAGE_SIZES];
651 * We need to determine how many page colors there are for each
652 * page size in order to allocate memory for any color specific
653 * arrays.
655 for (i = 0; i < mmu_page_sizes; i++) {
656 colors_per_szc[i] = PAGE_GET_PAGECOLORS(i);
659 for (r = 1; r < mmu_page_sizes; r++) {
660 page_counters[r] = (hw_page_map_t *)alloc_base;
661 alloc_base += (max_mem_nodes * sizeof (hw_page_map_t));
664 /* page_ctrs_cands and pcc_color_free array */
665 for (i = 0; i < NPC_MUTEX; i++) {
666 for (r = 1; r < mmu_page_sizes; r++) {
668 page_ctrs_cands[i][r] = (pcc_info_t **)alloc_base;
669 alloc_base += sizeof (pcc_info_t *) * max_mem_nodes;
671 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
672 pcc_info_t *pi;
674 if (mem_node_config[mnode].exists == 0)
675 continue;
677 nranges = mnode_nranges[mnode];
679 pi = (pcc_info_t *)alloc_base;
680 alloc_base += sizeof (pcc_info_t) * nranges;
681 page_ctrs_cands[i][r][mnode] = pi;
683 for (mrange = 0; mrange < nranges; mrange++) {
684 pi->pcc_color_free =
685 (pgcnt_t *)alloc_base;
686 alloc_base += sizeof (pgcnt_t) *
687 colors_per_szc[r];
688 pi++;
694 /* ctr_mutex */
695 for (i = 0; i < NPC_MUTEX; i++) {
696 ctr_mutex[i] = (kmutex_t *)alloc_base;
697 alloc_base += (max_mem_nodes * sizeof (kmutex_t));
700 /* initialize page list counts */
701 PLCNT_INIT(alloc_base);
703 for (firstmn = -1, mnode = 0; mnode < max_mem_nodes; mnode++) {
705 pgcnt_t r_pgcnt;
706 pfn_t r_base;
707 pgcnt_t r_align;
708 int r_shift;
709 int nranges = mnode_nranges[mnode];
711 if (mem_node_config[mnode].exists == 0)
712 continue;
714 HPM_COUNTERS_LIMITS(mnode, physbase, physmax, firstmn);
716 for (r = 1; r < mmu_page_sizes; r++) {
718 * the page_counters base has to be aligned to the
719 * page count of page size code r otherwise the counts
720 * will cross large page boundaries.
722 r_align = page_get_pagecnt(r);
723 r_base = physbase;
724 /* base needs to be aligned - lower to aligned value */
725 r_base &= ~(r_align - 1);
726 r_pgcnt = howmany(physmax - r_base + 1, r_align);
727 r_shift = PAGE_BSZS_SHIFT(r);
729 PAGE_COUNTERS_SHIFT(mnode, r) = r_shift;
730 PAGE_COUNTERS_ENTRIES(mnode, r) = r_pgcnt;
731 PAGE_COUNTERS_BASE(mnode, r) = r_base;
732 for (mrange = 0; mrange < nranges; mrange++) {
733 PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode,
734 r, mrange) = (size_t *)alloc_base;
735 alloc_base += sizeof (size_t) *
736 colors_per_szc[r];
738 for (i = 0; i < colors_per_szc[r]; i++) {
739 uint_t color_mask = colors_per_szc[r] - 1;
740 pfn_t pfnum = r_base;
741 size_t idx;
742 int mrange;
743 MEM_NODE_ITERATOR_DECL(it);
745 MEM_NODE_ITERATOR_INIT(pfnum, mnode, r, &it);
746 if (pfnum == (pfn_t)-1) {
747 idx = 0;
748 } else {
749 PAGE_NEXT_PFN_FOR_COLOR(pfnum, r, i,
750 color_mask, color_mask, &it);
751 idx = PNUM_TO_IDX(mnode, r, pfnum);
752 idx = (idx >= r_pgcnt) ? 0 : idx;
754 for (mrange = 0; mrange < nranges; mrange++) {
755 PAGE_COUNTERS_CURRENT_COLOR(mnode,
756 r, i, mrange) = idx;
760 /* hpm_counters may be shared by all mnodes */
761 if (firstmn == mnode) {
762 PAGE_COUNTERS_COUNTERS(mnode, r) =
763 (hpmctr_t *)alloc_base;
764 alloc_base +=
765 P2ROUNDUP((sizeof (hpmctr_t) * r_pgcnt),
766 sizeof (hpmctr_t *));
767 } else {
768 PAGE_COUNTERS_COUNTERS(mnode, r) =
769 PAGE_COUNTERS_COUNTERS(firstmn, r);
773 * Verify that PNUM_TO_IDX and IDX_TO_PNUM
774 * satisfy the identity requirement.
775 * We should be able to go from one to the other
776 * and get consistent values.
778 ASSERT(PNUM_TO_IDX(mnode, r,
779 (IDX_TO_PNUM(mnode, r, 0))) == 0);
780 ASSERT(IDX_TO_PNUM(mnode, r,
781 (PNUM_TO_IDX(mnode, r, r_base))) == r_base);
784 * Roundup the start address of the page_counters to
785 * cache aligned boundary for every memory node.
786 * page_ctrs_sz() has added some slop for these roundups.
788 alloc_base = (caddr_t)P2ROUNDUP((uintptr_t)alloc_base,
789 L2CACHE_ALIGN);
792 /* Initialize other page counter specific data structures. */
793 for (mnode = 0; mnode < MAX_MEM_NODES; mnode++) {
794 rw_init(&page_ctrs_rwlock[mnode], NULL, RW_DEFAULT, NULL);
797 return (alloc_base);
801 * Functions to adjust region counters for each size free list.
802 * Caller is responsible to acquire the ctr_mutex lock if necessary and
803 * thus can be called during startup without locks.
805 /* ARGSUSED */
806 void
807 page_ctr_add_internal(int mnode, int mtype, page_t *pp, int flags)
809 ssize_t r; /* region size */
810 ssize_t idx;
811 pfn_t pfnum;
812 int lckidx;
814 ASSERT(mnode == PP_2_MEM_NODE(pp));
815 ASSERT(mtype == PP_2_MTYPE(pp));
817 ASSERT(pp->p_szc < mmu_page_sizes);
819 PLCNT_INCR(pp, mnode, mtype, pp->p_szc, flags);
821 /* no counter update needed for largest page size */
822 if (pp->p_szc >= mmu_page_sizes - 1) {
823 return;
826 r = pp->p_szc + 1;
827 pfnum = pp->p_pagenum;
828 lckidx = PP_CTR_LOCK_INDX(pp);
831 * Increment the count of free pages for the current
832 * region. Continue looping up in region size incrementing
833 * count if the preceeding region is full.
835 while (r < mmu_page_sizes) {
836 idx = PNUM_TO_IDX(mnode, r, pfnum);
838 ASSERT(idx < PAGE_COUNTERS_ENTRIES(mnode, r));
839 ASSERT(PAGE_COUNTERS(mnode, r, idx) < FULL_REGION_CNT(r));
841 if (++PAGE_COUNTERS(mnode, r, idx) != FULL_REGION_CNT(r)) {
842 break;
843 } else {
844 int root_mtype = PP_2_MTYPE(PP_GROUPLEADER(pp, r));
845 pcc_info_t *cand = &page_ctrs_cands[lckidx][r][mnode]
846 [MTYPE_2_MRANGE(mnode, root_mtype)];
848 cand->pcc_pages_free++;
849 cand->pcc_color_free[PP_2_BIN_SZC(pp, r)]++;
851 r++;
855 void
856 page_ctr_add(int mnode, int mtype, page_t *pp, int flags)
858 int lckidx = PP_CTR_LOCK_INDX(pp);
859 kmutex_t *lock = &ctr_mutex[lckidx][mnode];
861 mutex_enter(lock);
862 page_ctr_add_internal(mnode, mtype, pp, flags);
863 mutex_exit(lock);
866 void
867 page_ctr_sub_internal(int mnode, int mtype, page_t *pp, int flags)
869 int lckidx;
870 ssize_t r; /* region size */
871 ssize_t idx;
872 pfn_t pfnum;
874 ASSERT(mnode == PP_2_MEM_NODE(pp));
875 ASSERT(mtype == PP_2_MTYPE(pp));
877 ASSERT(pp->p_szc < mmu_page_sizes);
879 PLCNT_DECR(pp, mnode, mtype, pp->p_szc, flags);
881 /* no counter update needed for largest page size */
882 if (pp->p_szc >= mmu_page_sizes - 1) {
883 return;
886 r = pp->p_szc + 1;
887 pfnum = pp->p_pagenum;
888 lckidx = PP_CTR_LOCK_INDX(pp);
891 * Decrement the count of free pages for the current
892 * region. Continue looping up in region size decrementing
893 * count if the preceeding region was full.
895 while (r < mmu_page_sizes) {
896 idx = PNUM_TO_IDX(mnode, r, pfnum);
898 ASSERT(idx < PAGE_COUNTERS_ENTRIES(mnode, r));
899 ASSERT(PAGE_COUNTERS(mnode, r, idx) > 0);
901 if (--PAGE_COUNTERS(mnode, r, idx) != FULL_REGION_CNT(r) - 1) {
902 break;
903 } else {
904 int root_mtype = PP_2_MTYPE(PP_GROUPLEADER(pp, r));
905 pcc_info_t *cand = &page_ctrs_cands[lckidx][r][mnode]
906 [MTYPE_2_MRANGE(mnode, root_mtype)];
908 ASSERT(cand->pcc_pages_free != 0);
909 ASSERT(cand->pcc_color_free[PP_2_BIN_SZC(pp, r)] != 0);
911 cand->pcc_pages_free--;
912 cand->pcc_color_free[PP_2_BIN_SZC(pp, r)]--;
914 r++;
918 void
919 page_ctr_sub(int mnode, int mtype, page_t *pp, int flags)
921 int lckidx = PP_CTR_LOCK_INDX(pp);
922 kmutex_t *lock = &ctr_mutex[lckidx][mnode];
924 mutex_enter(lock);
925 page_ctr_sub_internal(mnode, mtype, pp, flags);
926 mutex_exit(lock);
930 * Adjust page counters following a memory attach, since typically the
931 * size of the array needs to change, and the PFN to counter index
932 * mapping needs to change.
934 * It is possible this mnode did not exist at startup. In that case
935 * allocate pcc_info_t and pcc_color_free arrays. Also, allow for nranges
936 * to change (a theoretical possibility on x86), which means pcc_color_free
937 * arrays must be extended.
939 uint_t
940 page_ctrs_adjust(int mnode)
942 pgcnt_t npgs;
943 int r; /* region size */
944 int i;
945 size_t pcsz, old_csz;
946 hpmctr_t *new_ctr, *old_ctr;
947 pfn_t oldbase, newbase;
948 pfn_t physbase, physmax;
949 size_t old_npgs;
950 hpmctr_t *ctr_cache[MMU_PAGE_SIZES];
951 size_t size_cache[MMU_PAGE_SIZES];
952 size_t *color_cache[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
953 size_t *old_color_array[MAX_MNODE_MRANGES];
954 pgcnt_t colors_per_szc[MMU_PAGE_SIZES];
955 pcc_info_t **cands_cache;
956 pcc_info_t *old_pi, *pi;
957 pgcnt_t *pgcntp;
958 int nr, old_nranges, mrange, nranges = MNODE_RANGE_CNT(mnode);
959 int cands_cache_nranges;
960 int old_maxmrange, new_maxmrange;
961 int rc = 0;
962 int oldmnode;
964 cands_cache = kmem_zalloc(sizeof (pcc_info_t *) * NPC_MUTEX *
965 MMU_PAGE_SIZES, KM_NOSLEEP);
966 if (cands_cache == NULL)
967 return (ENOMEM);
969 i = -1;
970 HPM_COUNTERS_LIMITS(mnode, physbase, physmax, i);
972 newbase = physbase & ~PC_BASE_ALIGN_MASK;
973 npgs = roundup(physmax, PC_BASE_ALIGN) - newbase;
975 /* prepare to free non-null pointers on the way out */
976 cands_cache_nranges = nranges;
977 bzero(ctr_cache, sizeof (ctr_cache));
978 bzero(color_cache, sizeof (color_cache));
981 * We need to determine how many page colors there are for each
982 * page size in order to allocate memory for any color specific
983 * arrays.
985 for (r = 0; r < mmu_page_sizes; r++) {
986 colors_per_szc[r] = PAGE_GET_PAGECOLORS(r);
990 * Preallocate all of the new hpm_counters arrays as we can't
991 * hold the page_ctrs_rwlock as a writer and allocate memory.
992 * If we can't allocate all of the arrays, undo our work so far
993 * and return failure.
995 for (r = 1; r < mmu_page_sizes; r++) {
996 pcsz = npgs >> PAGE_BSZS_SHIFT(r);
997 size_cache[r] = pcsz;
998 ctr_cache[r] = kmem_zalloc(pcsz *
999 sizeof (hpmctr_t), KM_NOSLEEP);
1000 if (ctr_cache[r] == NULL) {
1001 rc = ENOMEM;
1002 goto cleanup;
1007 * Preallocate all of the new color current arrays as we can't
1008 * hold the page_ctrs_rwlock as a writer and allocate memory.
1009 * If we can't allocate all of the arrays, undo our work so far
1010 * and return failure.
1012 for (r = 1; r < mmu_page_sizes; r++) {
1013 for (mrange = 0; mrange < nranges; mrange++) {
1014 color_cache[r][mrange] = kmem_zalloc(sizeof (size_t) *
1015 colors_per_szc[r], KM_NOSLEEP);
1016 if (color_cache[r][mrange] == NULL) {
1017 rc = ENOMEM;
1018 goto cleanup;
1024 * Preallocate all of the new pcc_info_t arrays as we can't
1025 * hold the page_ctrs_rwlock as a writer and allocate memory.
1026 * If we can't allocate all of the arrays, undo our work so far
1027 * and return failure.
1029 for (r = 1; r < mmu_page_sizes; r++) {
1030 for (i = 0; i < NPC_MUTEX; i++) {
1031 pi = kmem_zalloc(nranges * sizeof (pcc_info_t),
1032 KM_NOSLEEP);
1033 if (pi == NULL) {
1034 rc = ENOMEM;
1035 goto cleanup;
1037 cands_cache[i * MMU_PAGE_SIZES + r] = pi;
1039 for (mrange = 0; mrange < nranges; mrange++, pi++) {
1040 pgcntp = kmem_zalloc(colors_per_szc[r] *
1041 sizeof (pgcnt_t), KM_NOSLEEP);
1042 if (pgcntp == NULL) {
1043 rc = ENOMEM;
1044 goto cleanup;
1046 pi->pcc_color_free = pgcntp;
1052 * Grab the write lock to prevent others from walking these arrays
1053 * while we are modifying them.
1055 PAGE_CTRS_WRITE_LOCK(mnode);
1058 * For interleaved mnodes, find the first mnode
1059 * with valid page counters since the current
1060 * mnode may have just been added and not have
1061 * valid page counters.
1063 if (interleaved_mnodes) {
1064 for (i = 0; i < max_mem_nodes; i++)
1065 if (PAGE_COUNTERS_COUNTERS(i, 1) != NULL)
1066 break;
1067 ASSERT(i < max_mem_nodes);
1068 oldmnode = i;
1069 } else
1070 oldmnode = mnode;
1072 old_nranges = mnode_nranges[mnode];
1073 cands_cache_nranges = old_nranges;
1074 mnode_nranges[mnode] = nranges;
1075 old_maxmrange = mnode_maxmrange[mnode];
1076 mnode_maxmrange[mnode] = MNODE_MAX_MRANGE(mnode);
1077 new_maxmrange = mnode_maxmrange[mnode];
1079 for (r = 1; r < mmu_page_sizes; r++) {
1080 PAGE_COUNTERS_SHIFT(mnode, r) = PAGE_BSZS_SHIFT(r);
1081 old_ctr = PAGE_COUNTERS_COUNTERS(oldmnode, r);
1082 old_csz = PAGE_COUNTERS_ENTRIES(oldmnode, r);
1083 oldbase = PAGE_COUNTERS_BASE(oldmnode, r);
1084 old_npgs = old_csz << PAGE_COUNTERS_SHIFT(oldmnode, r);
1085 for (mrange = 0; mrange < MAX_MNODE_MRANGES; mrange++) {
1086 old_color_array[mrange] =
1087 PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode,
1088 r, mrange);
1091 pcsz = npgs >> PAGE_COUNTERS_SHIFT(mnode, r);
1092 new_ctr = ctr_cache[r];
1093 ctr_cache[r] = NULL;
1094 if (old_ctr != NULL &&
1095 (oldbase + old_npgs > newbase) &&
1096 (newbase + npgs > oldbase)) {
1098 * Map the intersection of the old and new
1099 * counters into the new array.
1101 size_t offset;
1102 if (newbase > oldbase) {
1103 offset = (newbase - oldbase) >>
1104 PAGE_COUNTERS_SHIFT(mnode, r);
1105 bcopy(old_ctr + offset, new_ctr,
1106 MIN(pcsz, (old_csz - offset)) *
1107 sizeof (hpmctr_t));
1108 } else {
1109 offset = (oldbase - newbase) >>
1110 PAGE_COUNTERS_SHIFT(mnode, r);
1111 bcopy(old_ctr, new_ctr + offset,
1112 MIN(pcsz - offset, old_csz) *
1113 sizeof (hpmctr_t));
1117 PAGE_COUNTERS_COUNTERS(mnode, r) = new_ctr;
1118 PAGE_COUNTERS_ENTRIES(mnode, r) = pcsz;
1119 PAGE_COUNTERS_BASE(mnode, r) = newbase;
1121 /* update shared hpm_counters in other mnodes */
1122 if (interleaved_mnodes) {
1123 for (i = 0; i < max_mem_nodes; i++) {
1124 if ((i == mnode) ||
1125 (mem_node_config[i].exists == 0))
1126 continue;
1127 ASSERT(
1128 PAGE_COUNTERS_COUNTERS(i, r) == old_ctr ||
1129 PAGE_COUNTERS_COUNTERS(i, r) == NULL);
1130 PAGE_COUNTERS_COUNTERS(i, r) = new_ctr;
1131 PAGE_COUNTERS_ENTRIES(i, r) = pcsz;
1132 PAGE_COUNTERS_BASE(i, r) = newbase;
1136 for (mrange = 0; mrange < MAX_MNODE_MRANGES; mrange++) {
1137 PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode, r, mrange) =
1138 color_cache[r][mrange];
1139 color_cache[r][mrange] = NULL;
1142 * for now, just reset on these events as it's probably
1143 * not worthwhile to try and optimize this.
1145 for (i = 0; i < colors_per_szc[r]; i++) {
1146 uint_t color_mask = colors_per_szc[r] - 1;
1147 int mlo = interleaved_mnodes ? 0 : mnode;
1148 int mhi = interleaved_mnodes ? max_mem_nodes :
1149 (mnode + 1);
1150 int m;
1151 pfn_t pfnum;
1152 size_t idx;
1153 MEM_NODE_ITERATOR_DECL(it);
1155 for (m = mlo; m < mhi; m++) {
1156 if (mem_node_config[m].exists == 0)
1157 continue;
1158 pfnum = newbase;
1159 MEM_NODE_ITERATOR_INIT(pfnum, m, r, &it);
1160 if (pfnum == (pfn_t)-1) {
1161 idx = 0;
1162 } else {
1163 PAGE_NEXT_PFN_FOR_COLOR(pfnum, r, i,
1164 color_mask, color_mask, &it);
1165 idx = PNUM_TO_IDX(m, r, pfnum);
1166 idx = (idx < pcsz) ? idx : 0;
1168 for (mrange = 0; mrange < nranges; mrange++) {
1169 if (PAGE_COUNTERS_CURRENT_COLOR_ARRAY(m,
1170 r, mrange) != NULL)
1171 PAGE_COUNTERS_CURRENT_COLOR(m,
1172 r, i, mrange) = idx;
1177 /* cache info for freeing out of the critical path */
1178 if ((caddr_t)old_ctr >= kernelheap &&
1179 (caddr_t)old_ctr < ekernelheap) {
1180 ctr_cache[r] = old_ctr;
1181 size_cache[r] = old_csz;
1183 for (mrange = 0; mrange < MAX_MNODE_MRANGES; mrange++) {
1184 size_t *tmp = old_color_array[mrange];
1185 if ((caddr_t)tmp >= kernelheap &&
1186 (caddr_t)tmp < ekernelheap) {
1187 color_cache[r][mrange] = tmp;
1191 * Verify that PNUM_TO_IDX and IDX_TO_PNUM
1192 * satisfy the identity requirement.
1193 * We should be able to go from one to the other
1194 * and get consistent values.
1196 ASSERT(PNUM_TO_IDX(mnode, r,
1197 (IDX_TO_PNUM(mnode, r, 0))) == 0);
1198 ASSERT(IDX_TO_PNUM(mnode, r,
1199 (PNUM_TO_IDX(mnode, r, newbase))) == newbase);
1201 /* pcc_info_t and pcc_color_free */
1202 for (i = 0; i < NPC_MUTEX; i++) {
1203 pcc_info_t *epi;
1204 pcc_info_t *eold_pi;
1206 pi = cands_cache[i * MMU_PAGE_SIZES + r];
1207 old_pi = page_ctrs_cands[i][r][mnode];
1208 page_ctrs_cands[i][r][mnode] = pi;
1209 cands_cache[i * MMU_PAGE_SIZES + r] = old_pi;
1211 /* preserve old pcc_color_free values, if any */
1212 if (old_pi == NULL)
1213 continue;
1216 * when/if x86 does DR, must account for
1217 * possible change in range index when
1218 * preserving pcc_info
1220 epi = &pi[nranges];
1221 eold_pi = &old_pi[old_nranges];
1222 if (new_maxmrange > old_maxmrange) {
1223 pi += new_maxmrange - old_maxmrange;
1224 } else if (new_maxmrange < old_maxmrange) {
1225 old_pi += old_maxmrange - new_maxmrange;
1227 for (; pi < epi && old_pi < eold_pi; pi++, old_pi++) {
1228 pcc_info_t tmp = *pi;
1229 *pi = *old_pi;
1230 *old_pi = tmp;
1234 PAGE_CTRS_WRITE_UNLOCK(mnode);
1237 * Now that we have dropped the write lock, it is safe to free all
1238 * of the memory we have cached above.
1239 * We come thru here to free memory when pre-alloc fails, and also to
1240 * free old pointers which were recorded while locked.
1242 cleanup:
1243 for (r = 1; r < mmu_page_sizes; r++) {
1244 if (ctr_cache[r] != NULL) {
1245 kmem_free(ctr_cache[r],
1246 size_cache[r] * sizeof (hpmctr_t));
1248 for (mrange = 0; mrange < MAX_MNODE_MRANGES; mrange++) {
1249 if (color_cache[r][mrange] != NULL) {
1250 kmem_free(color_cache[r][mrange],
1251 colors_per_szc[r] * sizeof (size_t));
1254 for (i = 0; i < NPC_MUTEX; i++) {
1255 pi = cands_cache[i * MMU_PAGE_SIZES + r];
1256 if (pi == NULL)
1257 continue;
1258 nr = cands_cache_nranges;
1259 for (mrange = 0; mrange < nr; mrange++, pi++) {
1260 pgcntp = pi->pcc_color_free;
1261 if (pgcntp == NULL)
1262 continue;
1263 if ((caddr_t)pgcntp >= kernelheap &&
1264 (caddr_t)pgcntp < ekernelheap) {
1265 kmem_free(pgcntp,
1266 colors_per_szc[r] *
1267 sizeof (pgcnt_t));
1270 pi = cands_cache[i * MMU_PAGE_SIZES + r];
1271 if ((caddr_t)pi >= kernelheap &&
1272 (caddr_t)pi < ekernelheap) {
1273 kmem_free(pi, nr * sizeof (pcc_info_t));
1278 kmem_free(cands_cache,
1279 sizeof (pcc_info_t *) * NPC_MUTEX * MMU_PAGE_SIZES);
1280 return (rc);
1284 * Cleanup the hpm_counters field in the page counters
1285 * array.
1287 void
1288 page_ctrs_cleanup(void)
1290 int r; /* region size */
1291 int i; /* mnode index */
1294 * Get the page counters write lock while we are
1295 * setting the page hpm_counters field to NULL
1296 * for non-existent mnodes.
1298 for (i = 0; i < max_mem_nodes; i++) {
1299 PAGE_CTRS_WRITE_LOCK(i);
1300 if (mem_node_config[i].exists) {
1301 PAGE_CTRS_WRITE_UNLOCK(i);
1302 continue;
1304 for (r = 1; r < mmu_page_sizes; r++) {
1305 PAGE_COUNTERS_COUNTERS(i, r) = NULL;
1307 PAGE_CTRS_WRITE_UNLOCK(i);
1311 #ifdef DEBUG
1314 * confirm pp is a large page corresponding to szc
1316 void
1317 chk_lpg(page_t *pp, uchar_t szc)
1319 spgcnt_t npgs = page_get_pagecnt(pp->p_szc);
1320 uint_t noreloc;
1322 if (npgs == 1) {
1323 ASSERT(pp->p_szc == 0);
1324 ASSERT(pp->p_next == pp);
1325 ASSERT(pp->p_prev == pp);
1326 return;
1329 ASSERT(pp->p_vpnext == pp || pp->p_vpnext == NULL);
1330 ASSERT(pp->p_vpprev == pp || pp->p_vpprev == NULL);
1332 ASSERT(IS_P2ALIGNED(pp->p_pagenum, npgs));
1333 ASSERT(pp->p_pagenum == (pp->p_next->p_pagenum - 1));
1334 ASSERT(pp->p_prev->p_pagenum == (pp->p_pagenum + (npgs - 1)));
1335 ASSERT(pp->p_prev == (pp + (npgs - 1)));
1338 * Check list of pages.
1340 noreloc = PP_ISNORELOC(pp);
1341 while (npgs--) {
1342 if (npgs != 0) {
1343 ASSERT(pp->p_pagenum == pp->p_next->p_pagenum - 1);
1344 ASSERT(pp->p_next == (pp + 1));
1346 ASSERT(pp->p_szc == szc);
1347 ASSERT(PP_ISFREE(pp));
1348 ASSERT(PP_ISAGED(pp));
1349 ASSERT(pp->p_vpnext == pp || pp->p_vpnext == NULL);
1350 ASSERT(pp->p_vpprev == pp || pp->p_vpprev == NULL);
1351 ASSERT(pp->p_vnode == NULL);
1352 ASSERT(PP_ISNORELOC(pp) == noreloc);
1354 pp = pp->p_next;
1357 #endif /* DEBUG */
1359 void
1360 page_freelist_lock(int mnode)
1362 int i;
1363 for (i = 0; i < NPC_MUTEX; i++) {
1364 mutex_enter(FPC_MUTEX(mnode, i));
1365 mutex_enter(CPC_MUTEX(mnode, i));
1369 void
1370 page_freelist_unlock(int mnode)
1372 int i;
1373 for (i = 0; i < NPC_MUTEX; i++) {
1374 mutex_exit(FPC_MUTEX(mnode, i));
1375 mutex_exit(CPC_MUTEX(mnode, i));
1380 * add pp to the specified page list. Defaults to head of the page list
1381 * unless PG_LIST_TAIL is specified.
1383 void
1384 page_list_add(page_t *pp, int flags)
1386 page_t **ppp;
1387 kmutex_t *pcm;
1388 uint_t bin, mtype;
1389 int mnode;
1391 ASSERT(PAGE_EXCL(pp) || (flags & PG_LIST_ISINIT));
1392 ASSERT(PP_ISFREE(pp));
1393 ASSERT(!hat_page_is_mapped(pp));
1394 ASSERT(hat_page_getshare(pp) == 0);
1397 * Large pages should be freed via page_list_add_pages().
1399 ASSERT(pp->p_szc == 0);
1402 * Don't need to lock the freelist first here
1403 * because the page isn't on the freelist yet.
1404 * This means p_szc can't change on us.
1407 bin = PP_2_BIN(pp);
1408 mnode = PP_2_MEM_NODE(pp);
1409 mtype = PP_2_MTYPE(pp);
1411 if (flags & PG_LIST_ISINIT) {
1413 * PG_LIST_ISINIT is set during system startup (ie. single
1414 * threaded), add a page to the free list and add to the
1415 * the free region counters w/o any locking
1417 ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1419 /* inline version of page_add() */
1420 if (*ppp != NULL) {
1421 pp->p_next = *ppp;
1422 pp->p_prev = (*ppp)->p_prev;
1423 (*ppp)->p_prev = pp;
1424 pp->p_prev->p_next = pp;
1425 } else
1426 *ppp = pp;
1428 page_ctr_add_internal(mnode, mtype, pp, flags);
1429 VM_STAT_ADD(vmm_vmstats.pladd_free[0]);
1430 } else {
1431 pcm = PC_BIN_MUTEX(mnode, bin, flags);
1433 if (flags & PG_FREE_LIST) {
1434 VM_STAT_ADD(vmm_vmstats.pladd_free[0]);
1435 ASSERT(PP_ISAGED(pp));
1436 ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1438 } else {
1439 VM_STAT_ADD(vmm_vmstats.pladd_cache);
1440 ASSERT(pp->p_vnode);
1441 ASSERT((pp->p_offset & PAGEOFFSET) == 0);
1442 ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1444 mutex_enter(pcm);
1445 page_add(ppp, pp);
1447 if (flags & PG_LIST_TAIL)
1448 *ppp = (*ppp)->p_next;
1450 * Add counters before releasing pcm mutex to avoid a race with
1451 * page_freelist_coalesce and page_freelist_split.
1453 page_ctr_add(mnode, mtype, pp, flags);
1454 mutex_exit(pcm);
1458 #if defined(__sparc)
1459 if (PP_ISNORELOC(pp)) {
1460 kcage_freemem_add(1);
1462 #endif
1464 * It is up to the caller to unlock the page!
1466 ASSERT(PAGE_EXCL(pp) || (flags & PG_LIST_ISINIT));
1470 #ifdef __sparc
1472 * This routine is only used by kcage_init during system startup.
1473 * It performs the function of page_list_sub/PP_SETNORELOC/page_list_add
1474 * without the overhead of taking locks and updating counters.
1476 void
1477 page_list_noreloc_startup(page_t *pp)
1479 page_t **ppp;
1480 uint_t bin;
1481 int mnode;
1482 int mtype;
1483 int flags = 0;
1486 * If this is a large page on the freelist then
1487 * break it up into smaller pages.
1489 if (pp->p_szc != 0)
1490 page_boot_demote(pp);
1493 * Get list page is currently on.
1495 bin = PP_2_BIN(pp);
1496 mnode = PP_2_MEM_NODE(pp);
1497 mtype = PP_2_MTYPE(pp);
1498 ASSERT(mtype == MTYPE_RELOC);
1499 ASSERT(pp->p_szc == 0);
1501 if (PP_ISAGED(pp)) {
1502 ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1503 flags |= PG_FREE_LIST;
1504 } else {
1505 ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1506 flags |= PG_CACHE_LIST;
1509 ASSERT(*ppp != NULL);
1512 * Delete page from current list.
1514 if (*ppp == pp)
1515 *ppp = pp->p_next; /* go to next page */
1516 if (*ppp == pp) {
1517 *ppp = NULL; /* page list is gone */
1518 } else {
1519 pp->p_prev->p_next = pp->p_next;
1520 pp->p_next->p_prev = pp->p_prev;
1524 * Decrement page counters
1526 page_ctr_sub_internal(mnode, mtype, pp, flags);
1529 * Set no reloc for cage initted pages.
1531 PP_SETNORELOC(pp);
1533 mtype = PP_2_MTYPE(pp);
1534 ASSERT(mtype == MTYPE_NORELOC);
1537 * Get new list for page.
1539 if (PP_ISAGED(pp)) {
1540 ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1541 } else {
1542 ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1546 * Insert page on new list.
1548 if (*ppp == NULL) {
1549 *ppp = pp;
1550 pp->p_next = pp->p_prev = pp;
1551 } else {
1552 pp->p_next = *ppp;
1553 pp->p_prev = (*ppp)->p_prev;
1554 (*ppp)->p_prev = pp;
1555 pp->p_prev->p_next = pp;
1559 * Increment page counters
1561 page_ctr_add_internal(mnode, mtype, pp, flags);
1564 * Update cage freemem counter
1566 atomic_inc_ulong(&kcage_freemem);
1568 #else /* __sparc */
1570 /* ARGSUSED */
1571 void
1572 page_list_noreloc_startup(page_t *pp)
1574 panic("page_list_noreloc_startup: should be here only for sparc");
1576 #endif
1578 void
1579 page_list_add_pages(page_t *pp, int flags)
1581 kmutex_t *pcm;
1582 pgcnt_t pgcnt;
1583 uint_t bin, mtype, i;
1584 int mnode;
1586 /* default to freelist/head */
1587 ASSERT((flags & (PG_CACHE_LIST | PG_LIST_TAIL)) == 0);
1589 CHK_LPG(pp, pp->p_szc);
1590 VM_STAT_ADD(vmm_vmstats.pladd_free[pp->p_szc]);
1592 bin = PP_2_BIN(pp);
1593 mnode = PP_2_MEM_NODE(pp);
1594 mtype = PP_2_MTYPE(pp);
1596 if (flags & PG_LIST_ISINIT) {
1597 ASSERT(pp->p_szc == mmu_page_sizes - 1);
1598 page_vpadd(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1599 ASSERT(!PP_ISNORELOC(pp));
1600 PLCNT_INCR(pp, mnode, mtype, pp->p_szc, flags);
1601 } else {
1603 ASSERT(pp->p_szc != 0 && pp->p_szc < mmu_page_sizes);
1605 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
1607 mutex_enter(pcm);
1608 page_vpadd(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1609 page_ctr_add(mnode, mtype, pp, PG_FREE_LIST);
1610 mutex_exit(pcm);
1612 pgcnt = page_get_pagecnt(pp->p_szc);
1613 #if defined(__sparc)
1614 if (PP_ISNORELOC(pp))
1615 kcage_freemem_add(pgcnt);
1616 #endif
1617 for (i = 0; i < pgcnt; i++, pp++)
1618 page_unlock_nocapture(pp);
1623 * During boot, need to demote a large page to base
1624 * pagesize pages for seg_kmem for use in boot_alloc()
1626 void
1627 page_boot_demote(page_t *pp)
1629 ASSERT(pp->p_szc != 0);
1630 ASSERT(PP_ISFREE(pp));
1631 ASSERT(PP_ISAGED(pp));
1633 (void) page_demote(PP_2_MEM_NODE(pp),
1634 PFN_BASE(pp->p_pagenum, pp->p_szc), 0, pp->p_szc, 0, PC_NO_COLOR,
1635 PC_FREE);
1637 ASSERT(PP_ISFREE(pp));
1638 ASSERT(PP_ISAGED(pp));
1639 ASSERT(pp->p_szc == 0);
1643 * Take a particular page off of whatever freelist the page
1644 * is claimed to be on.
1646 * NOTE: Only used for PAGESIZE pages.
1648 void
1649 page_list_sub(page_t *pp, int flags)
1651 int bin;
1652 uint_t mtype;
1653 int mnode;
1654 kmutex_t *pcm;
1655 page_t **ppp;
1657 ASSERT(PAGE_EXCL(pp));
1658 ASSERT(PP_ISFREE(pp));
1661 * The p_szc field can only be changed by page_promote()
1662 * and page_demote(). Only free pages can be promoted and
1663 * demoted and the free list MUST be locked during these
1664 * operations. So to prevent a race in page_list_sub()
1665 * between computing which bin of the freelist lock to
1666 * grab and actually grabing the lock we check again that
1667 * the bin we locked is still the correct one. Notice that
1668 * the p_szc field could have actually changed on us but
1669 * if the bin happens to still be the same we are safe.
1671 try_again:
1672 bin = PP_2_BIN(pp);
1673 mnode = PP_2_MEM_NODE(pp);
1674 pcm = PC_BIN_MUTEX(mnode, bin, flags);
1675 mutex_enter(pcm);
1676 if (PP_2_BIN(pp) != bin) {
1677 mutex_exit(pcm);
1678 goto try_again;
1680 mtype = PP_2_MTYPE(pp);
1682 if (flags & PG_FREE_LIST) {
1683 VM_STAT_ADD(vmm_vmstats.plsub_free[0]);
1684 ASSERT(PP_ISAGED(pp));
1685 ppp = &PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype);
1686 } else {
1687 VM_STAT_ADD(vmm_vmstats.plsub_cache);
1688 ASSERT(!PP_ISAGED(pp));
1689 ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1693 * Common PAGESIZE case.
1695 * Note that we locked the freelist. This prevents
1696 * any page promotion/demotion operations. Therefore
1697 * the p_szc will not change until we drop pcm mutex.
1699 if (pp->p_szc == 0) {
1700 page_sub(ppp, pp);
1702 * Subtract counters before releasing pcm mutex
1703 * to avoid race with page_freelist_coalesce.
1705 page_ctr_sub(mnode, mtype, pp, flags);
1706 mutex_exit(pcm);
1708 #if defined(__sparc)
1709 if (PP_ISNORELOC(pp)) {
1710 kcage_freemem_sub(1);
1712 #endif
1713 return;
1717 * Large pages on the cache list are not supported.
1719 if (flags & PG_CACHE_LIST)
1720 panic("page_list_sub: large page on cachelist");
1723 * Slow but rare.
1725 * Somebody wants this particular page which is part
1726 * of a large page. In this case we just demote the page
1727 * if it's on the freelist.
1729 * We have to drop pcm before locking the entire freelist.
1730 * Once we have re-locked the freelist check to make sure
1731 * the page hasn't already been demoted or completely
1732 * freed.
1734 mutex_exit(pcm);
1735 page_freelist_lock(mnode);
1736 if (pp->p_szc != 0) {
1738 * Large page is on freelist.
1740 (void) page_demote(mnode, PFN_BASE(pp->p_pagenum, pp->p_szc),
1741 0, pp->p_szc, 0, PC_NO_COLOR, PC_FREE);
1743 ASSERT(PP_ISFREE(pp));
1744 ASSERT(PP_ISAGED(pp));
1745 ASSERT(pp->p_szc == 0);
1748 * Subtract counters before releasing pcm mutex
1749 * to avoid race with page_freelist_coalesce.
1751 bin = PP_2_BIN(pp);
1752 mtype = PP_2_MTYPE(pp);
1753 ppp = &PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype);
1755 page_sub(ppp, pp);
1756 page_ctr_sub(mnode, mtype, pp, flags);
1757 page_freelist_unlock(mnode);
1759 #if defined(__sparc)
1760 if (PP_ISNORELOC(pp)) {
1761 kcage_freemem_sub(1);
1763 #endif
1766 void
1767 page_list_sub_pages(page_t *pp, uint_t szc)
1769 kmutex_t *pcm;
1770 uint_t bin, mtype;
1771 int mnode;
1773 ASSERT(PAGE_EXCL(pp));
1774 ASSERT(PP_ISFREE(pp));
1775 ASSERT(PP_ISAGED(pp));
1778 * See comment in page_list_sub().
1780 try_again:
1781 bin = PP_2_BIN(pp);
1782 mnode = PP_2_MEM_NODE(pp);
1783 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
1784 mutex_enter(pcm);
1785 if (PP_2_BIN(pp) != bin) {
1786 mutex_exit(pcm);
1787 goto try_again;
1791 * If we're called with a page larger than szc or it got
1792 * promoted above szc before we locked the freelist then
1793 * drop pcm and re-lock entire freelist. If page still larger
1794 * than szc then demote it.
1796 if (pp->p_szc > szc) {
1797 mutex_exit(pcm);
1798 pcm = NULL;
1799 page_freelist_lock(mnode);
1800 if (pp->p_szc > szc) {
1801 VM_STAT_ADD(vmm_vmstats.plsubpages_szcbig);
1802 (void) page_demote(mnode,
1803 PFN_BASE(pp->p_pagenum, pp->p_szc), 0,
1804 pp->p_szc, szc, PC_NO_COLOR, PC_FREE);
1806 bin = PP_2_BIN(pp);
1808 ASSERT(PP_ISFREE(pp));
1809 ASSERT(PP_ISAGED(pp));
1810 ASSERT(pp->p_szc <= szc);
1811 ASSERT(pp == PP_PAGEROOT(pp));
1813 VM_STAT_ADD(vmm_vmstats.plsub_free[pp->p_szc]);
1815 mtype = PP_2_MTYPE(pp);
1816 if (pp->p_szc != 0) {
1817 page_vpsub(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1818 CHK_LPG(pp, pp->p_szc);
1819 } else {
1820 VM_STAT_ADD(vmm_vmstats.plsubpages_szc0);
1821 page_sub(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1823 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
1825 if (pcm != NULL) {
1826 mutex_exit(pcm);
1827 } else {
1828 page_freelist_unlock(mnode);
1831 #if defined(__sparc)
1832 if (PP_ISNORELOC(pp)) {
1833 pgcnt_t pgcnt;
1835 pgcnt = page_get_pagecnt(pp->p_szc);
1836 kcage_freemem_sub(pgcnt);
1838 #endif
1842 * Add the page to the front of a linked list of pages
1843 * using the p_next & p_prev pointers for the list.
1844 * The caller is responsible for protecting the list pointers.
1846 void
1847 mach_page_add(page_t **ppp, page_t *pp)
1849 if (*ppp == NULL) {
1850 pp->p_next = pp->p_prev = pp;
1851 } else {
1852 pp->p_next = *ppp;
1853 pp->p_prev = (*ppp)->p_prev;
1854 (*ppp)->p_prev = pp;
1855 pp->p_prev->p_next = pp;
1857 *ppp = pp;
1861 * Remove this page from a linked list of pages
1862 * using the p_next & p_prev pointers for the list.
1864 * The caller is responsible for protecting the list pointers.
1866 void
1867 mach_page_sub(page_t **ppp, page_t *pp)
1869 ASSERT(PP_ISFREE(pp));
1871 if (*ppp == NULL || pp == NULL)
1872 panic("mach_page_sub");
1874 if (*ppp == pp)
1875 *ppp = pp->p_next; /* go to next page */
1877 if (*ppp == pp)
1878 *ppp = NULL; /* page list is gone */
1879 else {
1880 pp->p_prev->p_next = pp->p_next;
1881 pp->p_next->p_prev = pp->p_prev;
1883 pp->p_prev = pp->p_next = pp; /* make pp a list of one */
1887 * Routine fsflush uses to gradually coalesce the free list into larger pages.
1889 void
1890 page_promote_size(page_t *pp, uint_t cur_szc)
1892 pfn_t pfn;
1893 int mnode;
1894 int idx;
1895 int new_szc = cur_szc + 1;
1896 int full = FULL_REGION_CNT(new_szc);
1898 pfn = page_pptonum(pp);
1899 mnode = PFN_2_MEM_NODE(pfn);
1901 page_freelist_lock(mnode);
1903 idx = PNUM_TO_IDX(mnode, new_szc, pfn);
1904 if (PAGE_COUNTERS(mnode, new_szc, idx) == full)
1905 (void) page_promote(mnode, pfn, new_szc, PC_FREE, PC_MTYPE_ANY);
1907 page_freelist_unlock(mnode);
1910 static uint_t page_promote_err;
1911 static uint_t page_promote_noreloc_err;
1914 * Create a single larger page (of szc new_szc) from smaller contiguous pages
1915 * for the given mnode starting at pfnum. Pages involved are on the freelist
1916 * before the call and may be returned to the caller if requested, otherwise
1917 * they will be placed back on the freelist.
1918 * If flags is PC_ALLOC, then the large page will be returned to the user in
1919 * a state which is consistent with a page being taken off the freelist. If
1920 * we failed to lock the new large page, then we will return NULL to the
1921 * caller and put the large page on the freelist instead.
1922 * If flags is PC_FREE, then the large page will be placed on the freelist,
1923 * and NULL will be returned.
1924 * The caller is responsible for locking the freelist as well as any other
1925 * accounting which needs to be done for a returned page.
1927 * RFE: For performance pass in pp instead of pfnum so
1928 * we can avoid excessive calls to page_numtopp_nolock().
1929 * This would depend on an assumption that all contiguous
1930 * pages are in the same memseg so we can just add/dec
1931 * our pp.
1933 * Lock ordering:
1935 * There is a potential but rare deadlock situation
1936 * for page promotion and demotion operations. The problem
1937 * is there are two paths into the freelist manager and
1938 * they have different lock orders:
1940 * page_create()
1941 * lock freelist
1942 * page_lock(EXCL)
1943 * unlock freelist
1944 * return
1945 * caller drops page_lock
1947 * page_free() and page_reclaim()
1948 * caller grabs page_lock(EXCL)
1950 * lock freelist
1951 * unlock freelist
1952 * drop page_lock
1954 * What prevents a thread in page_create() from deadlocking
1955 * with a thread freeing or reclaiming the same page is the
1956 * page_trylock() in page_get_freelist(). If the trylock fails
1957 * it skips the page.
1959 * The lock ordering for promotion and demotion is the same as
1960 * for page_create(). Since the same deadlock could occur during
1961 * page promotion and freeing or reclaiming of a page on the
1962 * cache list we might have to fail the operation and undo what
1963 * have done so far. Again this is rare.
1965 page_t *
1966 page_promote(int mnode, pfn_t pfnum, uchar_t new_szc, int flags, int mtype)
1968 page_t *pp, *pplist, *tpp, *start_pp;
1969 pgcnt_t new_npgs, npgs;
1970 uint_t bin;
1971 pgcnt_t tmpnpgs, pages_left;
1972 uint_t noreloc;
1973 int which_list;
1974 ulong_t index;
1975 kmutex_t *phm;
1978 * General algorithm:
1979 * Find the starting page
1980 * Walk each page struct removing it from the freelist,
1981 * and linking it to all the other pages removed.
1982 * Once all pages are off the freelist,
1983 * walk the list, modifying p_szc to new_szc and what
1984 * ever other info needs to be done to create a large free page.
1985 * According to the flags, either return the page or put it
1986 * on the freelist.
1989 start_pp = page_numtopp_nolock(pfnum);
1990 ASSERT(start_pp && (start_pp->p_pagenum == pfnum));
1991 new_npgs = page_get_pagecnt(new_szc);
1992 ASSERT(IS_P2ALIGNED(pfnum, new_npgs));
1994 /* don't return page of the wrong mtype */
1995 if (mtype != PC_MTYPE_ANY && mtype != PP_2_MTYPE(start_pp))
1996 return (NULL);
1999 * Loop through smaller pages to confirm that all pages
2000 * give the same result for PP_ISNORELOC().
2001 * We can check this reliably here as the protocol for setting
2002 * P_NORELOC requires pages to be taken off the free list first.
2004 noreloc = PP_ISNORELOC(start_pp);
2005 for (pp = start_pp + new_npgs; --pp > start_pp; ) {
2006 if (noreloc != PP_ISNORELOC(pp)) {
2007 page_promote_noreloc_err++;
2008 page_promote_err++;
2009 return (NULL);
2013 pages_left = new_npgs;
2014 pplist = NULL;
2015 pp = start_pp;
2017 /* Loop around coalescing the smaller pages into a big page. */
2018 while (pages_left) {
2020 * Remove from the freelist.
2022 ASSERT(PP_ISFREE(pp));
2023 bin = PP_2_BIN(pp);
2024 ASSERT(mnode == PP_2_MEM_NODE(pp));
2025 mtype = PP_2_MTYPE(pp);
2026 if (PP_ISAGED(pp)) {
2029 * PG_FREE_LIST
2031 if (pp->p_szc) {
2032 page_vpsub(&PAGE_FREELISTS(mnode,
2033 pp->p_szc, bin, mtype), pp);
2034 } else {
2035 mach_page_sub(&PAGE_FREELISTS(mnode, 0,
2036 bin, mtype), pp);
2038 which_list = PG_FREE_LIST;
2039 } else {
2040 ASSERT(pp->p_szc == 0);
2043 * PG_CACHE_LIST
2045 * Since this page comes from the
2046 * cachelist, we must destroy the
2047 * vnode association.
2049 if (!page_trylock(pp, SE_EXCL)) {
2050 goto fail_promote;
2054 * We need to be careful not to deadlock
2055 * with another thread in page_lookup().
2056 * The page_lookup() thread could be holding
2057 * the same phm that we need if the two
2058 * pages happen to hash to the same phm lock.
2059 * At this point we have locked the entire
2060 * freelist and page_lookup() could be trying
2061 * to grab a freelist lock.
2063 index = PAGE_HASH_FUNC(pp->p_vnode, pp->p_offset);
2064 phm = PAGE_HASH_MUTEX(index);
2065 if (!mutex_tryenter(phm)) {
2066 page_unlock_nocapture(pp);
2067 goto fail_promote;
2070 mach_page_sub(&PAGE_CACHELISTS(mnode, bin, mtype), pp);
2071 page_hashout(pp, phm);
2072 mutex_exit(phm);
2073 PP_SETAGED(pp);
2074 page_unlock_nocapture(pp);
2075 which_list = PG_CACHE_LIST;
2077 page_ctr_sub(mnode, mtype, pp, which_list);
2080 * Concatenate the smaller page(s) onto
2081 * the large page list.
2083 tmpnpgs = npgs = page_get_pagecnt(pp->p_szc);
2084 pages_left -= npgs;
2085 tpp = pp;
2086 while (npgs--) {
2087 tpp->p_szc = new_szc;
2088 tpp = tpp->p_next;
2090 page_list_concat(&pplist, &pp);
2091 pp += tmpnpgs;
2093 CHK_LPG(pplist, new_szc);
2096 * return the page to the user if requested
2097 * in the properly locked state.
2099 if (flags == PC_ALLOC && (page_trylock_cons(pplist, SE_EXCL))) {
2100 return (pplist);
2104 * Otherwise place the new large page on the freelist
2106 bin = PP_2_BIN(pplist);
2107 mnode = PP_2_MEM_NODE(pplist);
2108 mtype = PP_2_MTYPE(pplist);
2109 page_vpadd(&PAGE_FREELISTS(mnode, new_szc, bin, mtype), pplist);
2111 page_ctr_add(mnode, mtype, pplist, PG_FREE_LIST);
2112 return (NULL);
2114 fail_promote:
2116 * A thread must have still been freeing or
2117 * reclaiming the page on the cachelist.
2118 * To prevent a deadlock undo what we have
2119 * done sofar and return failure. This
2120 * situation can only happen while promoting
2121 * PAGESIZE pages.
2123 page_promote_err++;
2124 while (pplist) {
2125 pp = pplist;
2126 mach_page_sub(&pplist, pp);
2127 pp->p_szc = 0;
2128 bin = PP_2_BIN(pp);
2129 mtype = PP_2_MTYPE(pp);
2130 mach_page_add(&PAGE_FREELISTS(mnode, 0, bin, mtype), pp);
2131 page_ctr_add(mnode, mtype, pp, PG_FREE_LIST);
2133 return (NULL);
2138 * Break up a large page into smaller size pages.
2139 * Pages involved are on the freelist before the call and may
2140 * be returned to the caller if requested, otherwise they will
2141 * be placed back on the freelist.
2142 * The caller is responsible for locking the freelist as well as any other
2143 * accounting which needs to be done for a returned page.
2144 * If flags is not PC_ALLOC, the color argument is ignored, and thus
2145 * technically, any value may be passed in but PC_NO_COLOR is the standard
2146 * which should be followed for clarity's sake.
2147 * Returns a page whose pfn is < pfnmax
2149 page_t *
2150 page_demote(int mnode, pfn_t pfnum, pfn_t pfnmax, uchar_t cur_szc,
2151 uchar_t new_szc, int color, int flags)
2153 page_t *pp, *pplist, *npplist;
2154 pgcnt_t npgs, n;
2155 uint_t bin;
2156 uint_t mtype;
2157 page_t *ret_pp = NULL;
2159 ASSERT(cur_szc != 0);
2160 ASSERT(new_szc < cur_szc);
2162 pplist = page_numtopp_nolock(pfnum);
2163 ASSERT(pplist != NULL);
2165 ASSERT(pplist->p_szc == cur_szc);
2167 bin = PP_2_BIN(pplist);
2168 ASSERT(mnode == PP_2_MEM_NODE(pplist));
2169 mtype = PP_2_MTYPE(pplist);
2170 page_vpsub(&PAGE_FREELISTS(mnode, cur_szc, bin, mtype), pplist);
2172 CHK_LPG(pplist, cur_szc);
2173 page_ctr_sub(mnode, mtype, pplist, PG_FREE_LIST);
2176 * Number of PAGESIZE pages for smaller new_szc
2177 * page.
2179 npgs = page_get_pagecnt(new_szc);
2181 while (pplist) {
2182 pp = pplist;
2184 ASSERT(pp->p_szc == cur_szc);
2187 * We either break it up into PAGESIZE pages or larger.
2189 if (npgs == 1) { /* PAGESIZE case */
2190 mach_page_sub(&pplist, pp);
2191 ASSERT(pp->p_szc == cur_szc);
2192 ASSERT(new_szc == 0);
2193 ASSERT(mnode == PP_2_MEM_NODE(pp));
2194 pp->p_szc = new_szc;
2195 bin = PP_2_BIN(pp);
2196 if ((bin == color) && (flags == PC_ALLOC) &&
2197 (ret_pp == NULL) && (pfnmax == 0 ||
2198 pp->p_pagenum < pfnmax) &&
2199 page_trylock_cons(pp, SE_EXCL)) {
2200 ret_pp = pp;
2201 } else {
2202 mtype = PP_2_MTYPE(pp);
2203 mach_page_add(&PAGE_FREELISTS(mnode, 0, bin,
2204 mtype), pp);
2205 page_ctr_add(mnode, mtype, pp, PG_FREE_LIST);
2207 } else {
2208 page_t *try_to_return_this_page = NULL;
2209 int count = 0;
2212 * Break down into smaller lists of pages.
2214 page_list_break(&pplist, &npplist, npgs);
2216 pp = pplist;
2217 n = npgs;
2218 while (n--) {
2219 ASSERT(pp->p_szc == cur_szc);
2221 * Check whether all the pages in this list
2222 * fit the request criteria.
2224 if (pfnmax == 0 || pp->p_pagenum < pfnmax) {
2225 count++;
2227 pp->p_szc = new_szc;
2228 pp = pp->p_next;
2231 if (count == npgs &&
2232 (pfnmax == 0 || pp->p_pagenum < pfnmax)) {
2233 try_to_return_this_page = pp;
2236 CHK_LPG(pplist, new_szc);
2238 bin = PP_2_BIN(pplist);
2239 if (try_to_return_this_page)
2240 ASSERT(mnode ==
2241 PP_2_MEM_NODE(try_to_return_this_page));
2242 if ((bin == color) && (flags == PC_ALLOC) &&
2243 (ret_pp == NULL) && try_to_return_this_page &&
2244 page_trylock_cons(try_to_return_this_page,
2245 SE_EXCL)) {
2246 ret_pp = try_to_return_this_page;
2247 } else {
2248 mtype = PP_2_MTYPE(pp);
2249 page_vpadd(&PAGE_FREELISTS(mnode, new_szc,
2250 bin, mtype), pplist);
2252 page_ctr_add(mnode, mtype, pplist,
2253 PG_FREE_LIST);
2255 pplist = npplist;
2258 return (ret_pp);
2261 int mpss_coalesce_disable = 0;
2264 * Coalesce free pages into a page of the given szc and color if possible.
2265 * Return the pointer to the page created, otherwise, return NULL.
2267 * If pfnhi is non-zero, search for large page with pfn range less than pfnhi.
2269 page_t *
2270 page_freelist_coalesce(int mnode, uchar_t szc, uint_t color, uint_t ceq_mask,
2271 int mtype, pfn_t pfnhi)
2273 int r = szc; /* region size */
2274 int mrange;
2275 uint_t full, bin, color_mask, wrap = 0;
2276 pfn_t pfnum, lo, hi;
2277 size_t len, idx, idx0;
2278 pgcnt_t cands = 0, szcpgcnt = page_get_pagecnt(szc);
2279 page_t *ret_pp;
2280 MEM_NODE_ITERATOR_DECL(it);
2281 #if defined(__sparc)
2282 pfn_t pfnum0, nlo, nhi;
2283 #endif
2285 if (mpss_coalesce_disable) {
2286 ASSERT(szc < MMU_PAGE_SIZES);
2287 VM_STAT_ADD(vmm_vmstats.page_ctrs_coalesce[szc][0]);
2288 return (NULL);
2291 ASSERT(szc < mmu_page_sizes);
2292 color_mask = PAGE_GET_PAGECOLORS(szc) - 1;
2293 ASSERT(ceq_mask <= color_mask);
2294 ASSERT(color <= color_mask);
2295 color &= ceq_mask;
2297 /* Prevent page_counters dynamic memory from being freed */
2298 rw_enter(&page_ctrs_rwlock[mnode], RW_READER);
2300 mrange = MTYPE_2_MRANGE(mnode, mtype);
2301 ASSERT(mrange < mnode_nranges[mnode]);
2302 VM_STAT_ADD(vmm_vmstats.page_ctrs_coalesce[r][mrange]);
2304 /* get pfn range for mtype */
2305 len = PAGE_COUNTERS_ENTRIES(mnode, r);
2306 MNODETYPE_2_PFN(mnode, mtype, lo, hi);
2307 hi++;
2309 /* use lower limit if given */
2310 if (pfnhi != PFNNULL && pfnhi < hi)
2311 hi = pfnhi;
2313 /* round to szcpgcnt boundaries */
2314 lo = P2ROUNDUP(lo, szcpgcnt);
2315 MEM_NODE_ITERATOR_INIT(lo, mnode, szc, &it);
2316 if (lo == (pfn_t)-1) {
2317 rw_exit(&page_ctrs_rwlock[mnode]);
2318 return (NULL);
2320 hi = hi & ~(szcpgcnt - 1);
2322 /* set lo to the closest pfn of the right color */
2323 if (((PFN_2_COLOR(lo, szc, &it) ^ color) & ceq_mask) ||
2324 (interleaved_mnodes && PFN_2_MEM_NODE(lo) != mnode)) {
2325 PAGE_NEXT_PFN_FOR_COLOR(lo, szc, color, ceq_mask, color_mask,
2326 &it);
2329 if (hi <= lo) {
2330 rw_exit(&page_ctrs_rwlock[mnode]);
2331 return (NULL);
2334 full = FULL_REGION_CNT(r);
2336 /* calculate the number of page candidates and initial search index */
2337 bin = color;
2338 idx0 = (size_t)(-1);
2339 do {
2340 pgcnt_t acand;
2342 PGCTRS_CANDS_GETVALUECOLOR(mnode, mrange, r, bin, acand);
2343 if (acand) {
2344 idx = PAGE_COUNTERS_CURRENT_COLOR(mnode,
2345 r, bin, mrange);
2346 idx0 = MIN(idx0, idx);
2347 cands += acand;
2349 bin = ADD_MASKED(bin, 1, ceq_mask, color_mask);
2350 } while (bin != color);
2352 if (cands == 0) {
2353 VM_STAT_ADD(vmm_vmstats.page_ctrs_cands_skip[r][mrange]);
2354 rw_exit(&page_ctrs_rwlock[mnode]);
2355 return (NULL);
2358 pfnum = IDX_TO_PNUM(mnode, r, idx0);
2359 if (pfnum < lo || pfnum >= hi) {
2360 pfnum = lo;
2361 } else {
2362 MEM_NODE_ITERATOR_INIT(pfnum, mnode, szc, &it);
2363 if (pfnum == (pfn_t)-1) {
2364 pfnum = lo;
2365 MEM_NODE_ITERATOR_INIT(pfnum, mnode, szc, &it);
2366 ASSERT(pfnum != (pfn_t)-1);
2367 } else if ((PFN_2_COLOR(pfnum, szc, &it) ^ color) & ceq_mask ||
2368 (interleaved_mnodes && PFN_2_MEM_NODE(pfnum) != mnode)) {
2369 /* invalid color, get the closest correct pfn */
2370 PAGE_NEXT_PFN_FOR_COLOR(pfnum, szc, color, ceq_mask,
2371 color_mask, &it);
2372 if (pfnum >= hi) {
2373 pfnum = lo;
2374 MEM_NODE_ITERATOR_INIT(pfnum, mnode, szc, &it);
2379 /* set starting index */
2380 idx0 = PNUM_TO_IDX(mnode, r, pfnum);
2381 ASSERT(idx0 < len);
2383 #if defined(__sparc)
2384 pfnum0 = pfnum; /* page corresponding to idx0 */
2385 nhi = 0; /* search kcage ranges */
2386 #endif
2388 for (idx = idx0; wrap == 0 || (idx < idx0 && wrap < 2); ) {
2390 #if defined(__sparc)
2392 * Find lowest intersection of kcage ranges and mnode.
2393 * MTYPE_NORELOC means look in the cage, otherwise outside.
2395 if (nhi <= pfnum) {
2396 if (kcage_next_range(mtype == MTYPE_NORELOC, pfnum,
2397 (wrap == 0 ? hi : pfnum0), &nlo, &nhi))
2398 goto wrapit;
2400 /* jump to the next page in the range */
2401 if (pfnum < nlo) {
2402 pfnum = P2ROUNDUP(nlo, szcpgcnt);
2403 MEM_NODE_ITERATOR_INIT(pfnum, mnode, szc, &it);
2404 idx = PNUM_TO_IDX(mnode, r, pfnum);
2405 if (idx >= len || pfnum >= hi)
2406 goto wrapit;
2407 if ((PFN_2_COLOR(pfnum, szc, &it) ^ color) &
2408 ceq_mask)
2409 goto next;
2410 if (interleaved_mnodes &&
2411 PFN_2_MEM_NODE(pfnum) != mnode)
2412 goto next;
2415 #endif
2417 if (PAGE_COUNTERS(mnode, r, idx) != full)
2418 goto next;
2421 * RFE: For performance maybe we can do something less
2422 * brutal than locking the entire freelist. So far
2423 * this doesn't seem to be a performance problem?
2425 page_freelist_lock(mnode);
2426 if (PAGE_COUNTERS(mnode, r, idx) == full) {
2427 ret_pp =
2428 page_promote(mnode, pfnum, r, PC_ALLOC, mtype);
2429 if (ret_pp != NULL) {
2430 VM_STAT_ADD(vmm_vmstats.pfc_coalok[r][mrange]);
2431 PAGE_COUNTERS_CURRENT_COLOR(mnode, r,
2432 PFN_2_COLOR(pfnum, szc, &it), mrange) = idx;
2433 page_freelist_unlock(mnode);
2434 rw_exit(&page_ctrs_rwlock[mnode]);
2435 #if defined(__sparc)
2436 if (PP_ISNORELOC(ret_pp)) {
2437 pgcnt_t npgs;
2439 npgs = page_get_pagecnt(ret_pp->p_szc);
2440 kcage_freemem_sub(npgs);
2442 #endif
2443 return (ret_pp);
2445 } else {
2446 VM_STAT_ADD(vmm_vmstats.page_ctrs_changed[r][mrange]);
2449 page_freelist_unlock(mnode);
2451 * No point looking for another page if we've
2452 * already tried all of the ones that
2453 * page_ctr_cands indicated. Stash off where we left
2454 * off.
2455 * Note: this is not exact since we don't hold the
2456 * page_freelist_locks before we initially get the
2457 * value of cands for performance reasons, but should
2458 * be a decent approximation.
2460 if (--cands == 0) {
2461 PAGE_COUNTERS_CURRENT_COLOR(mnode, r, color, mrange) =
2462 idx;
2463 break;
2465 next:
2466 PAGE_NEXT_PFN_FOR_COLOR(pfnum, szc, color, ceq_mask,
2467 color_mask, &it);
2468 idx = PNUM_TO_IDX(mnode, r, pfnum);
2469 if (idx >= len || pfnum >= hi) {
2470 wrapit:
2471 pfnum = lo;
2472 MEM_NODE_ITERATOR_INIT(pfnum, mnode, szc, &it);
2473 idx = PNUM_TO_IDX(mnode, r, pfnum);
2474 wrap++;
2475 #if defined(__sparc)
2476 nhi = 0; /* search kcage ranges */
2477 #endif
2481 rw_exit(&page_ctrs_rwlock[mnode]);
2482 VM_STAT_ADD(vmm_vmstats.page_ctrs_failed[r][mrange]);
2483 return (NULL);
2487 * For the given mnode, promote as many small pages to large pages as possible.
2488 * mnode can be -1, which means do them all
2490 void
2491 page_freelist_coalesce_all(int mnode)
2493 int r; /* region size */
2494 int idx, full;
2495 size_t len;
2496 int doall = interleaved_mnodes || mnode < 0;
2497 int mlo = doall ? 0 : mnode;
2498 int mhi = doall ? max_mem_nodes : (mnode + 1);
2500 VM_STAT_ADD(vmm_vmstats.page_ctrs_coalesce_all);
2502 if (mpss_coalesce_disable) {
2503 return;
2507 * Lock the entire freelist and coalesce what we can.
2509 * Always promote to the largest page possible
2510 * first to reduce the number of page promotions.
2512 for (mnode = mlo; mnode < mhi; mnode++) {
2513 rw_enter(&page_ctrs_rwlock[mnode], RW_READER);
2514 page_freelist_lock(mnode);
2516 for (r = mmu_page_sizes - 1; r > 0; r--) {
2517 for (mnode = mlo; mnode < mhi; mnode++) {
2518 pgcnt_t cands = 0;
2519 int mrange, nranges = mnode_nranges[mnode];
2521 for (mrange = 0; mrange < nranges; mrange++) {
2522 PGCTRS_CANDS_GETVALUE(mnode, mrange, r, cands);
2523 if (cands != 0)
2524 break;
2526 if (cands == 0) {
2527 VM_STAT_ADD(vmm_vmstats.
2528 page_ctrs_cands_skip_all);
2529 continue;
2532 full = FULL_REGION_CNT(r);
2533 len = PAGE_COUNTERS_ENTRIES(mnode, r);
2535 for (idx = 0; idx < len; idx++) {
2536 if (PAGE_COUNTERS(mnode, r, idx) == full) {
2537 pfn_t pfnum =
2538 IDX_TO_PNUM(mnode, r, idx);
2539 int tmnode = interleaved_mnodes ?
2540 PFN_2_MEM_NODE(pfnum) : mnode;
2542 ASSERT(pfnum >=
2543 mem_node_config[tmnode].physbase &&
2544 pfnum <
2545 mem_node_config[tmnode].physmax);
2547 (void) page_promote(tmnode,
2548 pfnum, r, PC_FREE, PC_MTYPE_ANY);
2551 /* shared hpm_counters covers all mnodes, so we quit */
2552 if (interleaved_mnodes)
2553 break;
2556 for (mnode = mlo; mnode < mhi; mnode++) {
2557 page_freelist_unlock(mnode);
2558 rw_exit(&page_ctrs_rwlock[mnode]);
2563 * This is where all polices for moving pages around
2564 * to different page size free lists is implemented.
2565 * Returns 1 on success, 0 on failure.
2567 * So far these are the priorities for this algorithm in descending
2568 * order:
2570 * 1) When servicing a request try to do so with a free page
2571 * from next size up. Helps defer fragmentation as long
2572 * as possible.
2574 * 2) Page coalesce on demand. Only when a freelist
2575 * larger than PAGESIZE is empty and step 1
2576 * will not work since all larger size lists are
2577 * also empty.
2579 * If pfnhi is non-zero, search for large page with pfn range less than pfnhi.
2582 page_t *
2583 page_freelist_split(uchar_t szc, uint_t color, int mnode, int mtype,
2584 pfn_t pfnlo, pfn_t pfnhi, page_list_walker_t *plw)
2586 uchar_t nszc = szc + 1;
2587 uint_t bin, sbin, bin_prev;
2588 page_t *pp, *firstpp;
2589 page_t *ret_pp = NULL;
2590 uint_t color_mask;
2592 if (nszc == mmu_page_sizes)
2593 return (NULL);
2595 ASSERT(nszc < mmu_page_sizes);
2596 color_mask = PAGE_GET_PAGECOLORS(nszc) - 1;
2597 bin = sbin = PAGE_GET_NSZ_COLOR(szc, color);
2598 bin_prev = (plw->plw_bin_split_prev == color) ? INVALID_COLOR :
2599 PAGE_GET_NSZ_COLOR(szc, plw->plw_bin_split_prev);
2601 VM_STAT_ADD(vmm_vmstats.pfs_req[szc]);
2603 * First try to break up a larger page to fill current size freelist.
2605 while (plw->plw_bins[nszc] != 0) {
2607 ASSERT(nszc < mmu_page_sizes);
2610 * If page found then demote it.
2612 if (PAGE_FREELISTS(mnode, nszc, bin, mtype)) {
2613 page_freelist_lock(mnode);
2614 firstpp = pp = PAGE_FREELISTS(mnode, nszc, bin, mtype);
2617 * If pfnhi is not PFNNULL, look for large page below
2618 * pfnhi. PFNNULL signifies no pfn requirement.
2620 if (pp &&
2621 ((pfnhi != PFNNULL && pp->p_pagenum >= pfnhi) ||
2622 (pfnlo != PFNNULL && pp->p_pagenum < pfnlo))) {
2623 do {
2624 pp = pp->p_vpnext;
2625 if (pp == firstpp) {
2626 pp = NULL;
2627 break;
2629 } while ((pfnhi != PFNNULL &&
2630 pp->p_pagenum >= pfnhi) ||
2631 (pfnlo != PFNNULL &&
2632 pp->p_pagenum < pfnlo));
2634 if (pfnhi != PFNNULL && pp != NULL)
2635 ASSERT(pp->p_pagenum < pfnhi);
2637 if (pfnlo != PFNNULL && pp != NULL)
2638 ASSERT(pp->p_pagenum >= pfnlo);
2640 if (pp) {
2641 uint_t ccolor = page_correct_color(szc, nszc,
2642 color, bin, plw->plw_ceq_mask[szc]);
2644 ASSERT(pp->p_szc == nszc);
2645 VM_STAT_ADD(vmm_vmstats.pfs_demote[nszc]);
2646 ret_pp = page_demote(mnode, pp->p_pagenum,
2647 pfnhi, pp->p_szc, szc, ccolor, PC_ALLOC);
2648 if (ret_pp) {
2649 page_freelist_unlock(mnode);
2650 #if defined(__sparc)
2651 if (PP_ISNORELOC(ret_pp)) {
2652 pgcnt_t npgs;
2654 npgs = page_get_pagecnt(
2655 ret_pp->p_szc);
2656 kcage_freemem_sub(npgs);
2658 #endif
2659 return (ret_pp);
2662 page_freelist_unlock(mnode);
2665 /* loop through next size bins */
2666 bin = ADD_MASKED(bin, 1, plw->plw_ceq_mask[nszc], color_mask);
2667 plw->plw_bins[nszc]--;
2669 if (bin == sbin) {
2670 uchar_t nnszc = nszc + 1;
2672 /* we are done with this page size - check next */
2673 if (plw->plw_bins[nnszc] == 0)
2674 /* we have already checked next size bins */
2675 break;
2677 bin = sbin = PAGE_GET_NSZ_COLOR(nszc, bin);
2678 if (bin_prev != INVALID_COLOR) {
2679 bin_prev = PAGE_GET_NSZ_COLOR(nszc, bin_prev);
2680 if (!((bin ^ bin_prev) &
2681 plw->plw_ceq_mask[nnszc]))
2682 break;
2684 ASSERT(nnszc < mmu_page_sizes);
2685 color_mask = PAGE_GET_PAGECOLORS(nnszc) - 1;
2686 nszc = nnszc;
2687 ASSERT(nszc < mmu_page_sizes);
2691 return (ret_pp);
2695 * Helper routine used only by the freelist code to lock
2696 * a page. If the page is a large page then it succeeds in
2697 * locking all the constituent pages or none at all.
2698 * Returns 1 on sucess, 0 on failure.
2700 static int
2701 page_trylock_cons(page_t *pp, se_t se)
2703 page_t *tpp, *first_pp = pp;
2706 * Fail if can't lock first or only page.
2708 if (!page_trylock(pp, se)) {
2709 return (0);
2713 * PAGESIZE: common case.
2715 if (pp->p_szc == 0) {
2716 return (1);
2720 * Large page case.
2722 tpp = pp->p_next;
2723 while (tpp != pp) {
2724 if (!page_trylock(tpp, se)) {
2726 * On failure unlock what we have locked so far.
2727 * We want to avoid attempting to capture these
2728 * pages as the pcm mutex may be held which could
2729 * lead to a recursive mutex panic.
2731 while (first_pp != tpp) {
2732 page_unlock_nocapture(first_pp);
2733 first_pp = first_pp->p_next;
2735 return (0);
2737 tpp = tpp->p_next;
2739 return (1);
2743 * init context for walking page lists
2744 * Called when a page of the given szc in unavailable. Sets markers
2745 * for the beginning of the search to detect when search has
2746 * completed a full cycle. Sets flags for splitting larger pages
2747 * and coalescing smaller pages. Page walking procedes until a page
2748 * of the desired equivalent color is found.
2750 void
2751 page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, int can_split,
2752 int use_ceq, page_list_walker_t *plw)
2754 uint_t nszc, ceq_mask, colors;
2755 uchar_t ceq = use_ceq ? colorequivszc[szc] : 0;
2757 ASSERT(szc < mmu_page_sizes);
2758 colors = PAGE_GET_PAGECOLORS(szc);
2760 plw->plw_colors = colors;
2761 plw->plw_color_mask = colors - 1;
2762 plw->plw_bin_marker = plw->plw_bin0 = bin;
2763 plw->plw_bin_split_prev = bin;
2764 plw->plw_bin_step = (szc == 0) ? vac_colors : 1;
2767 * if vac aliasing is possible make sure lower order color
2768 * bits are never ignored
2770 if (vac_colors > 1)
2771 ceq &= 0xf0;
2774 * calculate the number of non-equivalent colors and
2775 * color equivalency mask
2777 plw->plw_ceq_dif = colors >> ((ceq >> 4) + (ceq & 0xf));
2778 ASSERT(szc > 0 || plw->plw_ceq_dif >= vac_colors);
2779 ASSERT(plw->plw_ceq_dif > 0);
2780 plw->plw_ceq_mask[szc] = (plw->plw_ceq_dif - 1) << (ceq & 0xf);
2782 if (flags & PG_MATCH_COLOR) {
2783 if (cpu_page_colors < 0) {
2785 * this is a heterogeneous machine with different CPUs
2786 * having different size e$ (not supported for ni2/rock
2788 uint_t cpucolors = CPUSETSIZE() >> PAGE_GET_SHIFT(szc);
2789 cpucolors = MAX(cpucolors, 1);
2790 ceq_mask = plw->plw_color_mask & (cpucolors - 1);
2791 plw->plw_ceq_mask[szc] =
2792 MIN(ceq_mask, plw->plw_ceq_mask[szc]);
2794 plw->plw_ceq_dif = 1;
2797 /* we can split pages in the freelist, but not the cachelist */
2798 if (can_split) {
2799 plw->plw_do_split = (szc + 1 < mmu_page_sizes) ? 1 : 0;
2801 /* set next szc color masks and number of free list bins */
2802 for (nszc = szc + 1; nszc < mmu_page_sizes; nszc++, szc++) {
2803 plw->plw_ceq_mask[nszc] = PAGE_GET_NSZ_MASK(szc,
2804 plw->plw_ceq_mask[szc]);
2805 plw->plw_bins[nszc] = PAGE_GET_PAGECOLORS(nszc);
2807 plw->plw_ceq_mask[nszc] = INVALID_MASK;
2808 plw->plw_bins[nszc] = 0;
2810 } else {
2811 ASSERT(szc == 0);
2812 plw->plw_do_split = 0;
2813 plw->plw_bins[1] = 0;
2814 plw->plw_ceq_mask[1] = INVALID_MASK;
2819 * set mark to flag where next split should occur
2821 #define PAGE_SET_NEXT_SPLIT_MARKER(szc, nszc, bin, plw) { \
2822 uint_t bin_nsz = PAGE_GET_NSZ_COLOR(szc, bin); \
2823 uint_t bin0_nsz = PAGE_GET_NSZ_COLOR(szc, plw->plw_bin0); \
2824 uint_t neq_mask = ~plw->plw_ceq_mask[nszc] & plw->plw_color_mask; \
2825 plw->plw_split_next = \
2826 INC_MASKED(bin_nsz, neq_mask, plw->plw_color_mask); \
2827 if (!((plw->plw_split_next ^ bin0_nsz) & plw->plw_ceq_mask[nszc])) { \
2828 plw->plw_split_next = \
2829 INC_MASKED(plw->plw_split_next, \
2830 neq_mask, plw->plw_color_mask); \
2834 uint_t
2835 page_list_walk_next_bin(uchar_t szc, uint_t bin, page_list_walker_t *plw)
2837 uint_t neq_mask = ~plw->plw_ceq_mask[szc] & plw->plw_color_mask;
2838 uint_t bin0_nsz, nbin_nsz, nbin0, nbin;
2839 uchar_t nszc = szc + 1;
2841 nbin = ADD_MASKED(bin,
2842 plw->plw_bin_step, neq_mask, plw->plw_color_mask);
2844 if (plw->plw_do_split) {
2845 plw->plw_bin_split_prev = bin;
2846 PAGE_SET_NEXT_SPLIT_MARKER(szc, nszc, bin, plw);
2847 plw->plw_do_split = 0;
2850 if (szc == 0) {
2851 if (plw->plw_count != 0 || plw->plw_ceq_dif == vac_colors) {
2852 if (nbin == plw->plw_bin0 &&
2853 (vac_colors == 1 || nbin != plw->plw_bin_marker)) {
2854 nbin = ADD_MASKED(nbin, plw->plw_bin_step,
2855 neq_mask, plw->plw_color_mask);
2856 plw->plw_bin_split_prev = plw->plw_bin0;
2859 if (vac_colors > 1 && nbin == plw->plw_bin_marker) {
2860 plw->plw_bin_marker =
2861 nbin = INC_MASKED(nbin, neq_mask,
2862 plw->plw_color_mask);
2863 plw->plw_bin_split_prev = plw->plw_bin0;
2865 * large pages all have the same vac color
2866 * so by now we should be done with next
2867 * size page splitting process
2869 ASSERT(plw->plw_bins[1] == 0);
2870 plw->plw_do_split = 0;
2871 return (nbin);
2874 } else {
2875 uint_t bin_jump = (vac_colors == 1) ?
2876 (BIN_STEP & ~3) - (plw->plw_bin0 & 3) : BIN_STEP;
2878 bin_jump &= ~(vac_colors - 1);
2880 nbin0 = ADD_MASKED(plw->plw_bin0, bin_jump, neq_mask,
2881 plw->plw_color_mask);
2883 if ((nbin0 ^ plw->plw_bin0) & plw->plw_ceq_mask[szc]) {
2885 plw->plw_bin_marker = nbin = nbin0;
2887 if (plw->plw_bins[nszc] != 0) {
2889 * check if next page size bin is the
2890 * same as the next page size bin for
2891 * bin0
2893 nbin_nsz = PAGE_GET_NSZ_COLOR(szc,
2894 nbin);
2895 bin0_nsz = PAGE_GET_NSZ_COLOR(szc,
2896 plw->plw_bin0);
2898 if ((bin0_nsz ^ nbin_nsz) &
2899 plw->plw_ceq_mask[nszc])
2900 plw->plw_do_split = 1;
2902 return (nbin);
2907 if (plw->plw_bins[nszc] != 0) {
2908 nbin_nsz = PAGE_GET_NSZ_COLOR(szc, nbin);
2909 if (!((plw->plw_split_next ^ nbin_nsz) &
2910 plw->plw_ceq_mask[nszc]))
2911 plw->plw_do_split = 1;
2914 return (nbin);
2917 page_t *
2918 page_get_mnode_freelist(int mnode, uint_t bin, int mtype, uchar_t szc,
2919 uint_t flags)
2921 kmutex_t *pcm;
2922 page_t *pp, *first_pp;
2923 uint_t sbin;
2924 int plw_initialized;
2925 page_list_walker_t plw;
2927 ASSERT(szc < mmu_page_sizes);
2929 VM_STAT_ADD(vmm_vmstats.pgmf_alloc[szc]);
2931 MTYPE_START(mnode, mtype, flags);
2932 if (mtype < 0) { /* mnode does not have memory in mtype range */
2933 VM_STAT_ADD(vmm_vmstats.pgmf_allocempty[szc]);
2934 return (NULL);
2936 try_again:
2938 plw_initialized = 0;
2939 plw.plw_ceq_dif = 1;
2942 * Only hold one freelist lock at a time, that way we
2943 * can start anywhere and not have to worry about lock
2944 * ordering.
2946 for (plw.plw_count = 0;
2947 plw.plw_count < plw.plw_ceq_dif; plw.plw_count++) {
2948 sbin = bin;
2949 do {
2950 if (!PAGE_FREELISTS(mnode, szc, bin, mtype))
2951 goto bin_empty_1;
2953 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
2954 mutex_enter(pcm);
2955 pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
2956 if (pp == NULL)
2957 goto bin_empty_0;
2960 * These were set before the page
2961 * was put on the free list,
2962 * they must still be set.
2964 ASSERT(PP_ISFREE(pp));
2965 ASSERT(PP_ISAGED(pp));
2966 ASSERT(pp->p_vnode == NULL);
2967 ASSERT(pp->p_hash == NULL);
2968 ASSERT(pp->p_offset == (u_offset_t)-1);
2969 ASSERT(pp->p_szc == szc);
2970 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
2973 * Walk down the hash chain.
2974 * 8k pages are linked on p_next
2975 * and p_prev fields. Large pages
2976 * are a contiguous group of
2977 * constituent pages linked together
2978 * on their p_next and p_prev fields.
2979 * The large pages are linked together
2980 * on the hash chain using p_vpnext
2981 * p_vpprev of the base constituent
2982 * page of each large page.
2984 first_pp = pp;
2985 while (IS_DUMP_PAGE(pp) || !page_trylock_cons(pp,
2986 SE_EXCL)) {
2987 if (szc == 0) {
2988 pp = pp->p_next;
2989 } else {
2990 pp = pp->p_vpnext;
2993 ASSERT(PP_ISFREE(pp));
2994 ASSERT(PP_ISAGED(pp));
2995 ASSERT(pp->p_vnode == NULL);
2996 ASSERT(pp->p_hash == NULL);
2997 ASSERT(pp->p_offset == (u_offset_t)-1);
2998 ASSERT(pp->p_szc == szc);
2999 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3001 if (pp == first_pp)
3002 goto bin_empty_0;
3005 ASSERT(pp != NULL);
3006 ASSERT(mtype == PP_2_MTYPE(pp));
3007 ASSERT(pp->p_szc == szc);
3008 if (szc == 0) {
3009 page_sub(&PAGE_FREELISTS(mnode,
3010 szc, bin, mtype), pp);
3011 } else {
3012 page_vpsub(&PAGE_FREELISTS(mnode,
3013 szc, bin, mtype), pp);
3014 CHK_LPG(pp, szc);
3016 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
3018 if ((PP_ISFREE(pp) == 0) || (PP_ISAGED(pp) == 0))
3019 panic("free page is not. pp %p", (void *)pp);
3020 mutex_exit(pcm);
3022 #if defined(__sparc)
3023 ASSERT(!kcage_on || PP_ISNORELOC(pp) ||
3024 (flags & PG_NORELOC) == 0);
3026 if (PP_ISNORELOC(pp))
3027 kcage_freemem_sub(page_get_pagecnt(szc));
3028 #endif
3029 VM_STAT_ADD(vmm_vmstats.pgmf_allocok[szc]);
3030 return (pp);
3032 bin_empty_0:
3033 mutex_exit(pcm);
3034 bin_empty_1:
3035 if (plw_initialized == 0) {
3036 page_list_walk_init(szc, flags, bin, 1, 1,
3037 &plw);
3038 plw_initialized = 1;
3039 ASSERT(plw.plw_colors <=
3040 PAGE_GET_PAGECOLORS(szc));
3041 ASSERT(plw.plw_colors > 0);
3042 ASSERT((plw.plw_colors &
3043 (plw.plw_colors - 1)) == 0);
3044 ASSERT(bin < plw.plw_colors);
3045 ASSERT(plw.plw_ceq_mask[szc] < plw.plw_colors);
3047 /* calculate the next bin with equivalent color */
3048 bin = ADD_MASKED(bin, plw.plw_bin_step,
3049 plw.plw_ceq_mask[szc], plw.plw_color_mask);
3050 } while (sbin != bin);
3053 * color bins are all empty if color match. Try and
3054 * satisfy the request by breaking up or coalescing
3055 * pages from a different size freelist of the correct
3056 * color that satisfies the ORIGINAL color requested.
3057 * If that fails then try pages of the same size but
3058 * different colors assuming we are not called with
3059 * PG_MATCH_COLOR.
3061 if (plw.plw_do_split &&
3062 (pp = page_freelist_split(szc, bin, mnode,
3063 mtype, PFNNULL, PFNNULL, &plw)) != NULL)
3064 return (pp);
3066 if (szc > 0 && (pp = page_freelist_coalesce(mnode, szc,
3067 bin, plw.plw_ceq_mask[szc], mtype, PFNNULL)) != NULL)
3068 return (pp);
3070 if (plw.plw_ceq_dif > 1)
3071 bin = page_list_walk_next_bin(szc, bin, &plw);
3074 /* if allowed, cycle through additional mtypes */
3075 MTYPE_NEXT(mnode, mtype, flags);
3076 if (mtype >= 0)
3077 goto try_again;
3079 VM_STAT_ADD(vmm_vmstats.pgmf_allocfailed[szc]);
3081 return (NULL);
3085 * Returns the count of free pages for 'pp' with size code 'szc'.
3086 * Note: This function does not return an exact value as the page freelist
3087 * locks are not held and thus the values in the page_counters may be
3088 * changing as we walk through the data.
3090 static int
3091 page_freecnt(int mnode, page_t *pp, uchar_t szc)
3093 pgcnt_t pgfree;
3094 pgcnt_t cnt;
3095 ssize_t r = szc; /* region size */
3096 ssize_t idx;
3097 int i;
3098 int full, range;
3100 /* Make sure pagenum passed in is aligned properly */
3101 ASSERT((pp->p_pagenum & (PNUM_SIZE(szc) - 1)) == 0);
3102 ASSERT(szc > 0);
3104 /* Prevent page_counters dynamic memory from being freed */
3105 rw_enter(&page_ctrs_rwlock[mnode], RW_READER);
3106 idx = PNUM_TO_IDX(mnode, r, pp->p_pagenum);
3107 cnt = PAGE_COUNTERS(mnode, r, idx);
3108 pgfree = cnt << PNUM_SHIFT(r - 1);
3109 range = FULL_REGION_CNT(szc);
3111 /* Check for completely full region */
3112 if (cnt == range) {
3113 rw_exit(&page_ctrs_rwlock[mnode]);
3114 return (pgfree);
3117 while (--r > 0) {
3118 idx = PNUM_TO_IDX(mnode, r, pp->p_pagenum);
3119 full = FULL_REGION_CNT(r);
3120 for (i = 0; i < range; i++, idx++) {
3121 cnt = PAGE_COUNTERS(mnode, r, idx);
3123 * If cnt here is full, that means we have already
3124 * accounted for these pages earlier.
3126 if (cnt != full) {
3127 pgfree += (cnt << PNUM_SHIFT(r - 1));
3130 range *= full;
3132 rw_exit(&page_ctrs_rwlock[mnode]);
3133 return (pgfree);
3137 * Called from page_geti_contig_pages to exclusively lock constituent pages
3138 * starting from 'spp' for page size code 'szc'.
3140 * If 'ptcpthreshold' is set, the number of free pages needed in the 'szc'
3141 * region needs to be greater than or equal to the threshold.
3143 static int
3144 page_trylock_contig_pages(int mnode, page_t *spp, uchar_t szc, int flags)
3146 pgcnt_t pgcnt = PNUM_SIZE(szc);
3147 pgcnt_t pgfree, i;
3148 page_t *pp;
3150 VM_STAT_ADD(vmm_vmstats.ptcp[szc]);
3153 if ((ptcpthreshold == 0) || (flags & PGI_PGCPHIPRI))
3154 goto skipptcpcheck;
3156 * check if there are sufficient free pages available before attempting
3157 * to trylock. Count is approximate as page counters can change.
3159 pgfree = page_freecnt(mnode, spp, szc);
3161 /* attempt to trylock if there are sufficient already free pages */
3162 if (pgfree < pgcnt/ptcpthreshold) {
3163 VM_STAT_ADD(vmm_vmstats.ptcpfreethresh[szc]);
3164 return (0);
3167 skipptcpcheck:
3169 for (i = 0; i < pgcnt; i++) {
3170 pp = &spp[i];
3171 if (!page_trylock(pp, SE_EXCL)) {
3172 VM_STAT_ADD(vmm_vmstats.ptcpfailexcl[szc]);
3173 while (--i != (pgcnt_t)-1) {
3174 pp = &spp[i];
3175 ASSERT(PAGE_EXCL(pp));
3176 page_unlock_nocapture(pp);
3178 return (0);
3180 ASSERT(spp[i].p_pagenum == spp->p_pagenum + i);
3181 if ((pp->p_szc > szc || (szc && pp->p_szc == szc)) &&
3182 !PP_ISFREE(pp)) {
3183 VM_STAT_ADD(vmm_vmstats.ptcpfailszc[szc]);
3184 ASSERT(i == 0);
3185 page_unlock_nocapture(pp);
3186 return (0);
3190 * If a page has been marked non-relocatable or has been
3191 * explicitly locked in memory, we don't want to relocate it;
3192 * unlock the pages and fail the operation.
3194 if (PP_ISNORELOC(pp) ||
3195 pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
3196 VM_STAT_ADD(vmm_vmstats.ptcpfailcage[szc]);
3197 while (i != (pgcnt_t)-1) {
3198 pp = &spp[i];
3199 ASSERT(PAGE_EXCL(pp));
3200 page_unlock_nocapture(pp);
3201 i--;
3203 return (0);
3206 VM_STAT_ADD(vmm_vmstats.ptcpok[szc]);
3207 return (1);
3211 * Claim large page pointed to by 'pp'. 'pp' is the starting set
3212 * of 'szc' constituent pages that had been locked exclusively previously.
3213 * Will attempt to relocate constituent pages in use.
3215 static page_t *
3216 page_claim_contig_pages(page_t *pp, uchar_t szc, int flags)
3218 spgcnt_t pgcnt, npgs, i;
3219 page_t *targpp, *rpp, *hpp;
3220 page_t *replpp = NULL;
3221 page_t *pplist = NULL;
3223 ASSERT(pp != NULL);
3225 pgcnt = page_get_pagecnt(szc);
3226 while (pgcnt) {
3227 ASSERT(PAGE_EXCL(pp));
3228 ASSERT(!PP_ISNORELOC(pp));
3229 if (PP_ISFREE(pp)) {
3231 * If this is a PG_FREE_LIST page then its
3232 * size code can change underneath us due to
3233 * page promotion or demotion. As an optimzation
3234 * use page_list_sub_pages() instead of
3235 * page_list_sub().
3237 if (PP_ISAGED(pp)) {
3238 page_list_sub_pages(pp, szc);
3239 if (pp->p_szc == szc) {
3240 return (pp);
3242 ASSERT(pp->p_szc < szc);
3243 npgs = page_get_pagecnt(pp->p_szc);
3244 hpp = pp;
3245 for (i = 0; i < npgs; i++, pp++) {
3246 pp->p_szc = szc;
3248 page_list_concat(&pplist, &hpp);
3249 pgcnt -= npgs;
3250 continue;
3252 ASSERT(!PP_ISAGED(pp));
3253 ASSERT(pp->p_szc == 0);
3254 page_list_sub(pp, PG_CACHE_LIST);
3255 page_hashout(pp, NULL);
3256 PP_SETAGED(pp);
3257 pp->p_szc = szc;
3258 page_list_concat(&pplist, &pp);
3259 pp++;
3260 pgcnt--;
3261 continue;
3263 npgs = page_get_pagecnt(pp->p_szc);
3266 * page_create_wait freemem accounting done by caller of
3267 * page_get_freelist and not necessary to call it prior to
3268 * calling page_get_replacement_page.
3270 * page_get_replacement_page can call page_get_contig_pages
3271 * to acquire a large page (szc > 0); the replacement must be
3272 * smaller than the contig page size to avoid looping or
3273 * szc == 0 and PGI_PGCPSZC0 is set.
3275 if (pp->p_szc < szc || (szc == 0 && (flags & PGI_PGCPSZC0))) {
3276 replpp = page_get_replacement_page(pp, NULL, 0);
3277 if (replpp) {
3278 npgs = page_get_pagecnt(pp->p_szc);
3279 ASSERT(npgs <= pgcnt);
3280 targpp = pp;
3285 * If replacement is NULL or do_page_relocate fails, fail
3286 * coalescing of pages.
3288 if (replpp == NULL || (do_page_relocate(&targpp, &replpp, 0,
3289 &npgs, NULL) != 0)) {
3291 * Unlock un-processed target list
3293 while (pgcnt--) {
3294 ASSERT(PAGE_EXCL(pp));
3295 page_unlock_nocapture(pp);
3296 pp++;
3299 * Free the processed target list.
3301 while (pplist) {
3302 pp = pplist;
3303 page_sub(&pplist, pp);
3304 ASSERT(PAGE_EXCL(pp));
3305 ASSERT(pp->p_szc == szc);
3306 ASSERT(PP_ISFREE(pp));
3307 ASSERT(PP_ISAGED(pp));
3308 pp->p_szc = 0;
3309 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3310 page_unlock_nocapture(pp);
3313 if (replpp != NULL)
3314 page_free_replacement_page(replpp);
3316 return (NULL);
3318 ASSERT(pp == targpp);
3320 /* LINTED */
3321 ASSERT(hpp = pp); /* That's right, it's an assignment */
3323 pp += npgs;
3324 pgcnt -= npgs;
3326 while (npgs--) {
3327 ASSERT(PAGE_EXCL(targpp));
3328 ASSERT(!PP_ISFREE(targpp));
3329 ASSERT(!PP_ISNORELOC(targpp));
3330 PP_SETFREE(targpp);
3331 ASSERT(PP_ISAGED(targpp));
3332 ASSERT(targpp->p_szc < szc || (szc == 0 &&
3333 (flags & PGI_PGCPSZC0)));
3334 targpp->p_szc = szc;
3335 targpp = targpp->p_next;
3337 rpp = replpp;
3338 ASSERT(rpp != NULL);
3339 page_sub(&replpp, rpp);
3340 ASSERT(PAGE_EXCL(rpp));
3341 ASSERT(!PP_ISFREE(rpp));
3342 page_unlock_nocapture(rpp);
3344 ASSERT(targpp == hpp);
3345 ASSERT(replpp == NULL);
3346 page_list_concat(&pplist, &targpp);
3348 CHK_LPG(pplist, szc);
3349 return (pplist);
3353 * Trim kernel cage from pfnlo-pfnhi and store result in lo-hi. Return code
3354 * of 0 means nothing left after trim.
3357 trimkcage(struct memseg *mseg, pfn_t *lo, pfn_t *hi, pfn_t pfnlo, pfn_t pfnhi)
3359 pfn_t kcagepfn;
3360 int decr;
3361 int rc = 0;
3363 if (PP_ISNORELOC(mseg->pages)) {
3364 if (PP_ISNORELOC(mseg->epages - 1) == 0) {
3366 /* lower part of this mseg inside kernel cage */
3367 decr = kcage_current_pfn(&kcagepfn);
3369 /* kernel cage may have transitioned past mseg */
3370 if (kcagepfn >= mseg->pages_base &&
3371 kcagepfn < mseg->pages_end) {
3372 ASSERT(decr == 0);
3373 *lo = MAX(kcagepfn, pfnlo);
3374 *hi = MIN(pfnhi, (mseg->pages_end - 1));
3375 rc = 1;
3378 /* else entire mseg in the cage */
3379 } else {
3380 if (PP_ISNORELOC(mseg->epages - 1)) {
3382 /* upper part of this mseg inside kernel cage */
3383 decr = kcage_current_pfn(&kcagepfn);
3385 /* kernel cage may have transitioned past mseg */
3386 if (kcagepfn >= mseg->pages_base &&
3387 kcagepfn < mseg->pages_end) {
3388 ASSERT(decr);
3389 *hi = MIN(kcagepfn, pfnhi);
3390 *lo = MAX(pfnlo, mseg->pages_base);
3391 rc = 1;
3393 } else {
3394 /* entire mseg outside of kernel cage */
3395 *lo = MAX(pfnlo, mseg->pages_base);
3396 *hi = MIN(pfnhi, (mseg->pages_end - 1));
3397 rc = 1;
3400 return (rc);
3404 * called from page_get_contig_pages to search 'pfnlo' thru 'pfnhi' to claim a
3405 * page with size code 'szc'. Claiming such a page requires acquiring
3406 * exclusive locks on all constituent pages (page_trylock_contig_pages),
3407 * relocating pages in use and concatenating these constituent pages into a
3408 * large page.
3410 * The page lists do not have such a large page and page_freelist_split has
3411 * already failed to demote larger pages and/or coalesce smaller free pages.
3413 * 'flags' may specify PG_COLOR_MATCH which would limit the search of large
3414 * pages with the same color as 'bin'.
3416 * 'pfnflag' specifies the subset of the pfn range to search.
3419 static page_t *
3420 page_geti_contig_pages(int mnode, uint_t bin, uchar_t szc, int flags,
3421 pfn_t pfnlo, pfn_t pfnhi, pgcnt_t pfnflag)
3423 struct memseg *mseg;
3424 pgcnt_t szcpgcnt = page_get_pagecnt(szc);
3425 pgcnt_t szcpgmask = szcpgcnt - 1;
3426 pfn_t randpfn;
3427 page_t *pp, *randpp, *endpp;
3428 uint_t colors, ceq_mask;
3429 /* LINTED : set but not used in function */
3430 uint_t color_mask __unused;
3431 pfn_t hi, lo;
3432 uint_t skip;
3433 MEM_NODE_ITERATOR_DECL(it);
3435 ASSERT(szc != 0 || (flags & PGI_PGCPSZC0));
3437 pfnlo = P2ROUNDUP(pfnlo, szcpgcnt);
3439 if ((pfnhi - pfnlo) + 1 < szcpgcnt || pfnlo >= pfnhi)
3440 return (NULL);
3442 ASSERT(szc < mmu_page_sizes);
3444 colors = PAGE_GET_PAGECOLORS(szc);
3445 color_mask = colors - 1;
3446 if ((colors > 1) && (flags & PG_MATCH_COLOR)) {
3447 uchar_t ceq = colorequivszc[szc];
3448 uint_t ceq_dif = colors >> ((ceq >> 4) + (ceq & 0xf));
3450 ASSERT(ceq_dif > 0);
3451 ceq_mask = (ceq_dif - 1) << (ceq & 0xf);
3452 } else {
3453 ceq_mask = 0;
3456 ASSERT(bin < colors);
3458 /* clear "non-significant" color bits */
3459 bin &= ceq_mask;
3462 * trim the pfn range to search based on pfnflag. pfnflag is set
3463 * when there have been previous page_get_contig_page failures to
3464 * limit the search.
3466 * The high bit in pfnflag specifies the number of 'slots' in the
3467 * pfn range and the remainder of pfnflag specifies which slot.
3468 * For example, a value of 1010b would mean the second slot of
3469 * the pfn range that has been divided into 8 slots.
3471 if (pfnflag > 1) {
3472 int slots = 1 << (highbit(pfnflag) - 1);
3473 int slotid = pfnflag & (slots - 1);
3474 pgcnt_t szcpages;
3475 int slotlen;
3477 pfnhi = P2ALIGN((pfnhi + 1), szcpgcnt) - 1;
3478 szcpages = ((pfnhi - pfnlo) + 1) / szcpgcnt;
3479 slotlen = howmany(szcpages, slots);
3480 /* skip if 'slotid' slot is empty */
3481 if (slotid * slotlen >= szcpages)
3482 return (NULL);
3483 pfnlo = pfnlo + (((slotid * slotlen) % szcpages) * szcpgcnt);
3484 ASSERT(pfnlo < pfnhi);
3485 if (pfnhi > pfnlo + (slotlen * szcpgcnt))
3486 pfnhi = pfnlo + (slotlen * szcpgcnt) - 1;
3490 * This routine is can be called recursively so we shouldn't
3491 * acquire a reader lock if a write request is pending. This
3492 * could lead to a deadlock with the DR thread.
3494 * Returning NULL informs the caller that we could not get
3495 * a contig page with the required characteristics.
3498 if (!memsegs_trylock(0))
3499 return (NULL);
3502 * loop through memsegs to look for contig page candidates
3505 for (mseg = memsegs; mseg != NULL; mseg = mseg->next) {
3506 if (pfnhi < mseg->pages_base || pfnlo >= mseg->pages_end) {
3507 /* no overlap */
3508 continue;
3511 if (mseg->pages_end - mseg->pages_base < szcpgcnt)
3512 /* mseg too small */
3513 continue;
3516 * trim off kernel cage pages from pfn range and check for
3517 * a trimmed pfn range returned that does not span the
3518 * desired large page size.
3520 if (kcage_on) {
3521 if (trimkcage(mseg, &lo, &hi, pfnlo, pfnhi) == 0 ||
3522 lo >= hi || ((hi - lo) + 1) < szcpgcnt)
3523 continue;
3524 } else {
3525 lo = MAX(pfnlo, mseg->pages_base);
3526 hi = MIN(pfnhi, (mseg->pages_end - 1));
3529 /* round to szcpgcnt boundaries */
3530 lo = P2ROUNDUP(lo, szcpgcnt);
3532 MEM_NODE_ITERATOR_INIT(lo, mnode, szc, &it);
3533 hi = P2ALIGN((hi + 1), szcpgcnt) - 1;
3535 if (hi <= lo)
3536 continue;
3539 * set lo to point to the pfn for the desired bin. Large
3540 * page sizes may only have a single page color
3542 skip = szcpgcnt;
3543 if (ceq_mask > 0 || interleaved_mnodes) {
3544 /* set lo to point at appropriate color */
3545 if (((PFN_2_COLOR(lo, szc, &it) ^ bin) & ceq_mask) ||
3546 (interleaved_mnodes &&
3547 PFN_2_MEM_NODE(lo) != mnode)) {
3548 PAGE_NEXT_PFN_FOR_COLOR(lo, szc, bin, ceq_mask,
3549 color_mask, &it);
3551 if (hi <= lo)
3552 /* mseg cannot satisfy color request */
3553 continue;
3556 /* randomly choose a point between lo and hi to begin search */
3558 randpfn = (pfn_t)GETTICK();
3559 randpfn = ((randpfn % (hi - lo)) + lo) & ~(skip - 1);
3560 MEM_NODE_ITERATOR_INIT(randpfn, mnode, szc, &it);
3561 if (ceq_mask || interleaved_mnodes || randpfn == (pfn_t)-1) {
3562 if (randpfn != (pfn_t)-1) {
3563 PAGE_NEXT_PFN_FOR_COLOR(randpfn, szc, bin,
3564 ceq_mask, color_mask, &it);
3566 if (randpfn >= hi) {
3567 randpfn = lo;
3568 MEM_NODE_ITERATOR_INIT(randpfn, mnode, szc,
3569 &it);
3572 randpp = mseg->pages + (randpfn - mseg->pages_base);
3574 ASSERT(randpp->p_pagenum == randpfn);
3576 pp = randpp;
3577 endpp = mseg->pages + (hi - mseg->pages_base) + 1;
3579 ASSERT(randpp + szcpgcnt <= endpp);
3581 do {
3582 ASSERT(!(pp->p_pagenum & szcpgmask));
3583 ASSERT(((PP_2_BIN(pp) ^ bin) & ceq_mask) == 0);
3585 if (page_trylock_contig_pages(mnode, pp, szc, flags)) {
3586 /* pages unlocked by page_claim on failure */
3587 if (page_claim_contig_pages(pp, szc, flags)) {
3588 memsegs_unlock(0);
3589 return (pp);
3593 if (ceq_mask == 0 && !interleaved_mnodes) {
3594 pp += skip;
3595 } else {
3596 pfn_t pfn = pp->p_pagenum;
3598 PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, bin,
3599 ceq_mask, color_mask, &it);
3600 if (pfn == (pfn_t)-1) {
3601 pp = endpp;
3602 } else {
3603 pp = mseg->pages +
3604 (pfn - mseg->pages_base);
3607 if (pp >= endpp) {
3608 /* start from the beginning */
3609 MEM_NODE_ITERATOR_INIT(lo, mnode, szc, &it);
3610 pp = mseg->pages + (lo - mseg->pages_base);
3611 ASSERT(pp->p_pagenum == lo);
3612 ASSERT(pp + szcpgcnt <= endpp);
3614 } while (pp != randpp);
3616 memsegs_unlock(0);
3617 return (NULL);
3622 * controlling routine that searches through physical memory in an attempt to
3623 * claim a large page based on the input parameters.
3624 * on the page free lists.
3626 * calls page_geti_contig_pages with an initial pfn range from the mnode
3627 * and mtype. page_geti_contig_pages will trim off the parts of the pfn range
3628 * that overlaps with the kernel cage or does not match the requested page
3629 * color if PG_MATCH_COLOR is set. Since this search is very expensive,
3630 * page_geti_contig_pages may further limit the search range based on
3631 * previous failure counts (pgcpfailcnt[]).
3633 * for PGI_PGCPSZC0 requests, page_get_contig_pages will relocate a base
3634 * pagesize page that satisfies mtype.
3636 page_t *
3637 page_get_contig_pages(int mnode, uint_t bin, int mtype, uchar_t szc,
3638 uint_t flags)
3640 pfn_t pfnlo, pfnhi; /* contig pages pfn range */
3641 page_t *pp;
3642 pgcnt_t pfnflag = 0; /* no limit on search if 0 */
3644 VM_STAT_ADD(vmm_vmstats.pgcp_alloc[szc]);
3646 /* no allocations from cage */
3647 flags |= PGI_NOCAGE;
3649 /* LINTED */
3650 MTYPE_START(mnode, mtype, flags);
3651 if (mtype < 0) { /* mnode does not have memory in mtype range */
3652 VM_STAT_ADD(vmm_vmstats.pgcp_allocempty[szc]);
3653 return (NULL);
3656 ASSERT(szc > 0 || (flags & PGI_PGCPSZC0));
3658 /* do not limit search and ignore color if hi pri */
3660 if (pgcplimitsearch && ((flags & PGI_PGCPHIPRI) == 0))
3661 pfnflag = pgcpfailcnt[szc];
3663 /* remove color match to improve chances */
3665 if (flags & PGI_PGCPHIPRI || pfnflag)
3666 flags &= ~PG_MATCH_COLOR;
3668 do {
3669 /* get pfn range based on mnode and mtype */
3670 MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi);
3672 ASSERT(pfnhi >= pfnlo);
3674 pp = page_geti_contig_pages(mnode, bin, szc, flags,
3675 pfnlo, pfnhi, pfnflag);
3677 if (pp != NULL) {
3678 pfnflag = pgcpfailcnt[szc];
3679 if (pfnflag) {
3680 /* double the search size */
3681 pgcpfailcnt[szc] = pfnflag >> 1;
3683 VM_STAT_ADD(vmm_vmstats.pgcp_allocok[szc]);
3684 return (pp);
3686 MTYPE_NEXT(mnode, mtype, flags);
3687 } while (mtype >= 0);
3689 VM_STAT_ADD(vmm_vmstats.pgcp_allocfailed[szc]);
3690 return (NULL);
3693 #if defined(__i386) || defined(__amd64)
3695 * Determine the likelihood of finding/coalescing a szc page.
3696 * Return 0 if the likelihood is small otherwise return 1.
3698 * For now, be conservative and check only 1g pages and return 0
3699 * if there had been previous coalescing failures and the szc pages
3700 * needed to satisfy request would exhaust most of freemem.
3703 page_chk_freelist(uint_t szc)
3705 pgcnt_t pgcnt;
3707 if (szc <= 1)
3708 return (1);
3710 pgcnt = page_get_pagecnt(szc);
3711 if (pgcpfailcnt[szc] && pgcnt + throttlefree >= freemem) {
3712 VM_STAT_ADD(vmm_vmstats.pcf_deny[szc]);
3713 return (0);
3715 VM_STAT_ADD(vmm_vmstats.pcf_allow[szc]);
3716 return (1);
3718 #endif
3721 * Find the `best' page on the freelist for this (vp,off) (as,vaddr) pair.
3723 * Does its own locking and accounting.
3724 * If PG_MATCH_COLOR is set, then NULL will be returned if there are no
3725 * pages of the proper color even if there are pages of a different color.
3727 * Finds a page, removes it, THEN locks it.
3730 /*ARGSUSED*/
3731 page_t *
3732 page_get_freelist(struct vnode *vp, u_offset_t off, struct seg *seg,
3733 caddr_t vaddr, size_t size, uint_t flags, struct lgrp *lgrp)
3735 struct as *as = seg->s_as;
3736 page_t *pp = NULL;
3737 ulong_t bin;
3738 uchar_t szc;
3739 int mnode;
3740 int mtype;
3741 page_t *(*page_get_func)(int, uint_t, int, uchar_t, uint_t);
3742 lgrp_mnode_cookie_t lgrp_cookie;
3744 page_get_func = page_get_mnode_freelist;
3747 * If we aren't passed a specific lgroup, or passed a freed lgrp
3748 * assume we wish to allocate near to the current thread's home.
3750 if (!LGRP_EXISTS(lgrp))
3751 lgrp = lgrp_home_lgrp();
3753 if (kcage_on) {
3754 if ((flags & (PG_NORELOC | PG_PANIC)) == PG_NORELOC &&
3755 kcage_freemem < kcage_throttlefree + btop(size) &&
3756 curthread != kcage_cageout_thread) {
3758 * Set a "reserve" of kcage_throttlefree pages for
3759 * PG_PANIC and cageout thread allocations.
3761 * Everybody else has to serialize in
3762 * page_create_get_something() to get a cage page, so
3763 * that we don't deadlock cageout!
3765 return (NULL);
3767 } else {
3768 flags &= ~PG_NORELOC;
3769 flags |= PGI_NOCAGE;
3772 /* LINTED */
3773 MTYPE_INIT(mtype, vp, vaddr, flags, size);
3776 * Convert size to page size code.
3778 if ((szc = page_szc(size)) == (uchar_t)-1)
3779 panic("page_get_freelist: illegal page size request");
3780 ASSERT(szc < mmu_page_sizes);
3782 VM_STAT_ADD(vmm_vmstats.pgf_alloc[szc]);
3784 /* LINTED */
3785 AS_2_BIN(as, seg, vp, vaddr, bin, szc);
3787 ASSERT(bin < PAGE_GET_PAGECOLORS(szc));
3790 * Try to get a local page first, but try remote if we can't
3791 * get a page of the right color.
3793 pgretry:
3794 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_LOCAL);
3795 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3796 pp = page_get_func(mnode, bin, mtype, szc, flags);
3797 if (pp != NULL) {
3798 VM_STAT_ADD(vmm_vmstats.pgf_allocok[szc]);
3799 DTRACE_PROBE4(page__get,
3800 lgrp_t *, lgrp,
3801 int, mnode,
3802 ulong_t, bin,
3803 uint_t, flags);
3804 return (pp);
3807 ASSERT(pp == NULL);
3810 * for non-SZC0 PAGESIZE requests, check cachelist before checking
3811 * remote free lists. Caller expected to call page_get_cachelist which
3812 * will check local cache lists and remote free lists.
3814 if (szc == 0 && ((flags & PGI_PGCPSZC0) == 0)) {
3815 VM_STAT_ADD(vmm_vmstats.pgf_allocdeferred);
3816 return (NULL);
3819 ASSERT(szc > 0 || (flags & PGI_PGCPSZC0));
3821 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3823 if (!(flags & PG_LOCAL)) {
3825 * Try to get a non-local freelist page.
3827 LGRP_MNODE_COOKIE_UPGRADE(lgrp_cookie);
3828 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3829 pp = page_get_func(mnode, bin, mtype, szc, flags);
3830 if (pp != NULL) {
3831 DTRACE_PROBE4(page__get,
3832 lgrp_t *, lgrp,
3833 int, mnode,
3834 ulong_t, bin,
3835 uint_t, flags);
3836 VM_STAT_ADD(vmm_vmstats.pgf_allocokrem[szc]);
3837 return (pp);
3840 ASSERT(pp == NULL);
3844 * when the cage is off chances are page_get_contig_pages() will fail
3845 * to lock a large page chunk therefore when the cage is off it's not
3846 * called by default. this can be changed via /etc/system.
3848 * page_get_contig_pages() also called to acquire a base pagesize page
3849 * for page_create_get_something().
3851 if (!(flags & PG_NORELOC) && (pg_contig_disable == 0) &&
3852 (kcage_on || pg_lpgcreate_nocage || szc == 0) &&
3853 (page_get_func != page_get_contig_pages)) {
3855 VM_STAT_ADD(vmm_vmstats.pgf_allocretry[szc]);
3856 page_get_func = page_get_contig_pages;
3857 goto pgretry;
3860 if (!(flags & PG_LOCAL) && pgcplimitsearch &&
3861 page_get_func == page_get_contig_pages)
3862 SETPGCPFAILCNT(szc);
3864 VM_STAT_ADD(vmm_vmstats.pgf_allocfailed[szc]);
3865 return (NULL);
3869 * Find the `best' page on the cachelist for this (vp,off) (as,vaddr) pair.
3871 * Does its own locking.
3872 * If PG_MATCH_COLOR is set, then NULL will be returned if there are no
3873 * pages of the proper color even if there are pages of a different color.
3874 * Otherwise, scan the bins for ones with pages. For each bin with pages,
3875 * try to lock one of them. If no page can be locked, try the
3876 * next bin. Return NULL if a page can not be found and locked.
3878 * Finds a pages, trys to lock it, then removes it.
3881 /*ARGSUSED*/
3882 page_t *
3883 page_get_cachelist(struct vnode *vp, u_offset_t off, struct seg *seg,
3884 caddr_t vaddr, uint_t flags, struct lgrp *lgrp)
3886 page_t *pp;
3887 struct as *as = seg->s_as;
3888 ulong_t bin;
3889 /*LINTED*/
3890 int mnode;
3891 int mtype;
3892 lgrp_mnode_cookie_t lgrp_cookie;
3895 * If we aren't passed a specific lgroup, or pasased a freed lgrp
3896 * assume we wish to allocate near to the current thread's home.
3898 if (!LGRP_EXISTS(lgrp))
3899 lgrp = lgrp_home_lgrp();
3901 if (!kcage_on) {
3902 flags &= ~PG_NORELOC;
3903 flags |= PGI_NOCAGE;
3906 if ((flags & (PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == PG_NORELOC &&
3907 kcage_freemem <= kcage_throttlefree) {
3909 * Reserve kcage_throttlefree pages for critical kernel
3910 * threads.
3912 * Everybody else has to go to page_create_get_something()
3913 * to get a cage page, so we don't deadlock cageout.
3915 return (NULL);
3918 /* LINTED */
3919 AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3921 ASSERT(bin < PAGE_GET_PAGECOLORS(0));
3923 /* LINTED */
3924 MTYPE_INIT(mtype, vp, vaddr, flags, MMU_PAGESIZE);
3926 VM_STAT_ADD(vmm_vmstats.pgc_alloc);
3929 * Try local cachelists first
3931 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_LOCAL);
3932 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3933 pp = page_get_mnode_cachelist(bin, flags, mnode, mtype);
3934 if (pp != NULL) {
3935 VM_STAT_ADD(vmm_vmstats.pgc_allocok);
3936 DTRACE_PROBE4(page__get,
3937 lgrp_t *, lgrp,
3938 int, mnode,
3939 ulong_t, bin,
3940 uint_t, flags);
3941 return (pp);
3945 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3948 * Try freelists/cachelists that are farther away
3949 * This is our only chance to allocate remote pages for PAGESIZE
3950 * requests.
3952 LGRP_MNODE_COOKIE_UPGRADE(lgrp_cookie);
3953 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3954 pp = page_get_mnode_freelist(mnode, bin, mtype,
3955 0, flags);
3956 if (pp != NULL) {
3957 VM_STAT_ADD(vmm_vmstats.pgc_allocokdeferred);
3958 DTRACE_PROBE4(page__get,
3959 lgrp_t *, lgrp,
3960 int, mnode,
3961 ulong_t, bin,
3962 uint_t, flags);
3963 return (pp);
3965 pp = page_get_mnode_cachelist(bin, flags, mnode, mtype);
3966 if (pp != NULL) {
3967 VM_STAT_ADD(vmm_vmstats.pgc_allocokrem);
3968 DTRACE_PROBE4(page__get,
3969 lgrp_t *, lgrp,
3970 int, mnode,
3971 ulong_t, bin,
3972 uint_t, flags);
3973 return (pp);
3977 VM_STAT_ADD(vmm_vmstats.pgc_allocfailed);
3978 return (NULL);
3981 page_t *
3982 page_get_mnode_cachelist(uint_t bin, uint_t flags, int mnode, int mtype)
3984 kmutex_t *pcm;
3985 page_t *pp, *first_pp;
3986 uint_t sbin;
3987 int plw_initialized;
3988 page_list_walker_t plw;
3990 VM_STAT_ADD(vmm_vmstats.pgmc_alloc);
3992 /* LINTED */
3993 MTYPE_START(mnode, mtype, flags);
3994 if (mtype < 0) { /* mnode does not have memory in mtype range */
3995 VM_STAT_ADD(vmm_vmstats.pgmc_allocempty);
3996 return (NULL);
3999 try_again:
4001 plw_initialized = 0;
4002 plw.plw_ceq_dif = 1;
4005 * Only hold one cachelist lock at a time, that way we
4006 * can start anywhere and not have to worry about lock
4007 * ordering.
4010 for (plw.plw_count = 0;
4011 plw.plw_count < plw.plw_ceq_dif; plw.plw_count++) {
4012 sbin = bin;
4013 do {
4015 if (!PAGE_CACHELISTS(mnode, bin, mtype))
4016 goto bin_empty_1;
4017 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
4018 mutex_enter(pcm);
4019 pp = PAGE_CACHELISTS(mnode, bin, mtype);
4020 if (pp == NULL)
4021 goto bin_empty_0;
4023 first_pp = pp;
4024 ASSERT(pp->p_vnode);
4025 ASSERT(PP_ISAGED(pp) == 0);
4026 ASSERT(pp->p_szc == 0);
4027 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
4028 while (IS_DUMP_PAGE(pp) || !page_trylock(pp, SE_EXCL)) {
4029 pp = pp->p_next;
4030 ASSERT(pp->p_szc == 0);
4031 if (pp == first_pp) {
4033 * We have searched the complete list!
4034 * And all of them (might only be one)
4035 * are locked. This can happen since
4036 * these pages can also be found via
4037 * the hash list. When found via the
4038 * hash list, they are locked first,
4039 * then removed. We give up to let the
4040 * other thread run.
4042 pp = NULL;
4043 break;
4045 ASSERT(pp->p_vnode);
4046 ASSERT(PP_ISFREE(pp));
4047 ASSERT(PP_ISAGED(pp) == 0);
4048 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) ==
4049 mnode);
4052 if (pp) {
4053 page_t **ppp;
4055 * Found and locked a page.
4056 * Pull it off the list.
4058 ASSERT(mtype == PP_2_MTYPE(pp));
4059 ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
4060 page_sub(ppp, pp);
4062 * Subtract counters before releasing pcm mutex
4063 * to avoid a race with page_freelist_coalesce
4064 * and page_freelist_split.
4066 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
4067 mutex_exit(pcm);
4068 ASSERT(pp->p_vnode);
4069 ASSERT(PP_ISAGED(pp) == 0);
4070 #if defined(__sparc)
4071 ASSERT(!kcage_on ||
4072 (flags & PG_NORELOC) == 0 ||
4073 PP_ISNORELOC(pp));
4074 if (PP_ISNORELOC(pp)) {
4075 kcage_freemem_sub(1);
4077 #endif
4078 VM_STAT_ADD(vmm_vmstats. pgmc_allocok);
4079 return (pp);
4081 bin_empty_0:
4082 mutex_exit(pcm);
4083 bin_empty_1:
4084 if (plw_initialized == 0) {
4085 page_list_walk_init(0, flags, bin, 0, 1, &plw);
4086 plw_initialized = 1;
4088 /* calculate the next bin with equivalent color */
4089 bin = ADD_MASKED(bin, plw.plw_bin_step,
4090 plw.plw_ceq_mask[0], plw.plw_color_mask);
4091 } while (sbin != bin);
4093 if (plw.plw_ceq_dif > 1)
4094 bin = page_list_walk_next_bin(0, bin, &plw);
4097 MTYPE_NEXT(mnode, mtype, flags);
4098 if (mtype >= 0)
4099 goto try_again;
4101 VM_STAT_ADD(vmm_vmstats.pgmc_allocfailed);
4102 return (NULL);
4105 #ifdef DEBUG
4106 #define REPL_PAGE_STATS
4107 #endif /* DEBUG */
4109 #ifdef REPL_PAGE_STATS
4110 struct repl_page_stats {
4111 uint_t ngets;
4112 uint_t ngets_noreloc;
4113 uint_t npgr_noreloc;
4114 uint_t nnopage_first;
4115 uint_t nnopage;
4116 uint_t nhashout;
4117 uint_t nnofree;
4118 uint_t nnext_pp;
4119 } repl_page_stats;
4120 #define REPL_STAT_INCR(v) atomic_inc_32(&repl_page_stats.v)
4121 #else /* REPL_PAGE_STATS */
4122 #define REPL_STAT_INCR(v)
4123 #endif /* REPL_PAGE_STATS */
4125 int pgrppgcp;
4128 * The freemem accounting must be done by the caller.
4129 * First we try to get a replacement page of the same size as like_pp,
4130 * if that is not possible, then we just get a set of discontiguous
4131 * PAGESIZE pages.
4133 page_t *
4134 page_get_replacement_page(page_t *orig_like_pp, struct lgrp *lgrp_target,
4135 uint_t pgrflags)
4137 page_t *like_pp;
4138 page_t *pp, *pplist;
4139 page_t *pl = NULL;
4140 ulong_t bin;
4141 int mnode, page_mnode;
4142 int szc;
4143 spgcnt_t npgs, pg_cnt;
4144 pfn_t pfnum;
4145 int mtype;
4146 int flags = 0;
4147 lgrp_mnode_cookie_t lgrp_cookie;
4148 lgrp_t *lgrp;
4150 REPL_STAT_INCR(ngets);
4151 like_pp = orig_like_pp;
4152 ASSERT(PAGE_EXCL(like_pp));
4154 szc = like_pp->p_szc;
4155 npgs = page_get_pagecnt(szc);
4157 * Now we reset like_pp to the base page_t.
4158 * That way, we won't walk past the end of this 'szc' page.
4160 pfnum = PFN_BASE(like_pp->p_pagenum, szc);
4161 like_pp = page_numtopp_nolock(pfnum);
4162 ASSERT(like_pp->p_szc == szc);
4164 if (PP_ISNORELOC(like_pp)) {
4165 ASSERT(kcage_on);
4166 REPL_STAT_INCR(ngets_noreloc);
4167 flags = PGI_RELOCONLY;
4168 } else if (pgrflags & PGR_NORELOC) {
4169 ASSERT(kcage_on);
4170 REPL_STAT_INCR(npgr_noreloc);
4171 flags = PG_NORELOC;
4175 * Kernel pages must always be replaced with the same size
4176 * pages, since we cannot properly handle demotion of kernel
4177 * pages.
4179 if (PP_ISKAS(like_pp))
4180 pgrflags |= PGR_SAMESZC;
4182 /* LINTED */
4183 MTYPE_PGR_INIT(mtype, flags, like_pp, page_mnode, npgs);
4185 while (npgs) {
4186 pplist = NULL;
4187 for (;;) {
4188 pg_cnt = page_get_pagecnt(szc);
4189 bin = PP_2_BIN(like_pp);
4190 ASSERT(like_pp->p_szc == orig_like_pp->p_szc);
4191 ASSERT(pg_cnt <= npgs);
4194 * If an lgroup was specified, try to get the
4195 * page from that lgroup.
4196 * NOTE: Must be careful with code below because
4197 * lgroup may disappear and reappear since there
4198 * is no locking for lgroup here.
4200 if (LGRP_EXISTS(lgrp_target)) {
4202 * Keep local variable for lgroup separate
4203 * from lgroup argument since this code should
4204 * only be exercised when lgroup argument
4205 * exists....
4207 lgrp = lgrp_target;
4209 /* Try the lgroup's freelists first */
4210 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
4211 LGRP_SRCH_LOCAL);
4212 while ((pplist == NULL) &&
4213 (mnode = lgrp_memnode_choose(&lgrp_cookie))
4214 != -1) {
4215 pplist =
4216 page_get_mnode_freelist(mnode, bin,
4217 mtype, szc, flags);
4221 * Now try it's cachelists if this is a
4222 * small page. Don't need to do it for
4223 * larger ones since page_freelist_coalesce()
4224 * already failed.
4226 if (pplist != NULL || szc != 0)
4227 break;
4229 /* Now try it's cachelists */
4230 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
4231 LGRP_SRCH_LOCAL);
4233 while ((pplist == NULL) &&
4234 (mnode = lgrp_memnode_choose(&lgrp_cookie))
4235 != -1) {
4236 pplist =
4237 page_get_mnode_cachelist(bin, flags,
4238 mnode, mtype);
4240 if (pplist != NULL) {
4241 page_hashout(pplist, NULL);
4242 PP_SETAGED(pplist);
4243 REPL_STAT_INCR(nhashout);
4244 break;
4246 /* Done looking in this lgroup. Bail out. */
4247 break;
4251 * No lgroup was specified (or lgroup was removed by
4252 * DR, so just try to get the page as close to
4253 * like_pp's mnode as possible.
4254 * First try the local freelist...
4256 mnode = PP_2_MEM_NODE(like_pp);
4257 pplist = page_get_mnode_freelist(mnode, bin,
4258 mtype, szc, flags);
4259 if (pplist != NULL)
4260 break;
4262 REPL_STAT_INCR(nnofree);
4265 * ...then the local cachelist. Don't need to do it for
4266 * larger pages cause page_freelist_coalesce() already
4267 * failed there anyway.
4269 if (szc == 0) {
4270 pplist = page_get_mnode_cachelist(bin, flags,
4271 mnode, mtype);
4272 if (pplist != NULL) {
4273 page_hashout(pplist, NULL);
4274 PP_SETAGED(pplist);
4275 REPL_STAT_INCR(nhashout);
4276 break;
4280 /* Now try remote freelists */
4281 page_mnode = mnode;
4282 lgrp =
4283 lgrp_hand_to_lgrp(MEM_NODE_2_LGRPHAND(page_mnode));
4284 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
4285 LGRP_SRCH_HIER);
4286 while (pplist == NULL &&
4287 (mnode = lgrp_memnode_choose(&lgrp_cookie))
4288 != -1) {
4290 * Skip local mnode.
4292 if ((mnode == page_mnode) ||
4293 (mem_node_config[mnode].exists == 0))
4294 continue;
4296 pplist = page_get_mnode_freelist(mnode,
4297 bin, mtype, szc, flags);
4300 if (pplist != NULL)
4301 break;
4304 /* Now try remote cachelists */
4305 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
4306 LGRP_SRCH_HIER);
4307 while (pplist == NULL && szc == 0) {
4308 mnode = lgrp_memnode_choose(&lgrp_cookie);
4309 if (mnode == -1)
4310 break;
4312 * Skip local mnode.
4314 if ((mnode == page_mnode) ||
4315 (mem_node_config[mnode].exists == 0))
4316 continue;
4318 pplist = page_get_mnode_cachelist(bin,
4319 flags, mnode, mtype);
4321 if (pplist != NULL) {
4322 page_hashout(pplist, NULL);
4323 PP_SETAGED(pplist);
4324 REPL_STAT_INCR(nhashout);
4325 break;
4330 * Break out of while loop under the following cases:
4331 * - If we successfully got a page.
4332 * - If pgrflags specified only returning a specific
4333 * page size and we could not find that page size.
4334 * - If we could not satisfy the request with PAGESIZE
4335 * or larger pages.
4337 if (pplist != NULL || szc == 0)
4338 break;
4340 if ((pgrflags & PGR_SAMESZC) || pgrppgcp) {
4341 /* try to find contig page */
4343 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
4344 LGRP_SRCH_HIER);
4346 while ((pplist == NULL) &&
4347 (mnode =
4348 lgrp_memnode_choose(&lgrp_cookie))
4349 != -1) {
4350 pplist = page_get_contig_pages(
4351 mnode, bin, mtype, szc,
4352 flags | PGI_PGCPHIPRI);
4354 break;
4358 * The correct thing to do here is try the next
4359 * page size down using szc--. Due to a bug
4360 * with the processing of HAT_RELOAD_SHARE
4361 * where the sfmmu_ttecnt arrays of all
4362 * hats sharing an ISM segment don't get updated,
4363 * using intermediate size pages for relocation
4364 * can lead to continuous page faults.
4366 szc = 0;
4369 if (pplist != NULL) {
4370 DTRACE_PROBE4(page__get,
4371 lgrp_t *, lgrp,
4372 int, mnode,
4373 ulong_t, bin,
4374 uint_t, flags);
4376 while (pplist != NULL && pg_cnt--) {
4377 ASSERT(pplist != NULL);
4378 pp = pplist;
4379 page_sub(&pplist, pp);
4380 PP_CLRFREE(pp);
4381 PP_CLRAGED(pp);
4382 page_list_concat(&pl, &pp);
4383 npgs--;
4384 like_pp = like_pp + 1;
4385 REPL_STAT_INCR(nnext_pp);
4387 ASSERT(pg_cnt == 0);
4388 } else {
4389 break;
4393 if (npgs) {
4395 * We were unable to allocate the necessary number
4396 * of pages.
4397 * We need to free up any pl.
4399 REPL_STAT_INCR(nnopage);
4400 page_free_replacement_page(pl);
4401 return (NULL);
4402 } else {
4403 return (pl);
4408 * demote a free large page to it's constituent pages
4410 void
4411 page_demote_free_pages(page_t *pp)
4414 int mnode;
4416 ASSERT(pp != NULL);
4417 ASSERT(PAGE_LOCKED(pp));
4418 ASSERT(PP_ISFREE(pp));
4419 ASSERT(pp->p_szc != 0 && pp->p_szc < mmu_page_sizes);
4421 mnode = PP_2_MEM_NODE(pp);
4422 page_freelist_lock(mnode);
4423 if (pp->p_szc != 0) {
4424 (void) page_demote(mnode, PFN_BASE(pp->p_pagenum,
4425 pp->p_szc), 0, pp->p_szc, 0, PC_NO_COLOR, PC_FREE);
4427 page_freelist_unlock(mnode);
4428 ASSERT(pp->p_szc == 0);
4432 * Factor in colorequiv to check additional 'equivalent' bins.
4433 * colorequiv may be set in /etc/system
4435 void
4436 page_set_colorequiv_arr(void)
4438 if (colorequiv > 1) {
4439 int i;
4440 uint_t sv_a = lowbit(colorequiv) - 1;
4442 if (sv_a > 15)
4443 sv_a = 15;
4445 for (i = 0; i < MMU_PAGE_SIZES; i++) {
4446 uint_t colors;
4447 uint_t a = sv_a;
4449 if ((colors = hw_page_array[i].hp_colors) <= 1) {
4450 continue;
4452 while ((colors >> a) == 0)
4453 a--;
4454 if ((a << 4) > colorequivszc[i]) {
4455 colorequivszc[i] = (a << 4);