9075 Improve ZFS pool import/load process and corrupted pool recovery
[unleashed.git] / usr / src / uts / common / fs / zfs / zio.c
blobbe2ad7714572b122c14f23a08a26bb26ca472ac2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
47 * ==========================================================================
48 * I/O type descriptions
49 * ==========================================================================
51 const char *zio_type_name[ZIO_TYPES] = {
52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 "zio_ioctl"
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
59 * ==========================================================================
60 * I/O kmem caches
61 * ==========================================================================
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
72 #define ZIO_PIPELINE_CONTINUE 0x100
73 #define ZIO_PIPELINE_STOP 0x101
75 #define BP_SPANB(indblkshift, level) \
76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define COMPARE_META_LEVEL 0x80000000ul
79 * The following actions directly effect the spa's sync-to-convergence logic.
80 * The values below define the sync pass when we start performing the action.
81 * Care should be taken when changing these values as they directly impact
82 * spa_sync() performance. Tuning these values may introduce subtle performance
83 * pathologies and should only be done in the context of performance analysis.
84 * These tunables will eventually be removed and replaced with #defines once
85 * enough analysis has been done to determine optimal values.
87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88 * regular blocks are not deferred.
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
95 * An allocating zio is one that either currently has the DVA allocate
96 * stage set or will have it later in its lifetime.
98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
110 void
111 zio_init(void)
113 size_t c;
114 vmem_t *data_alloc_arena = NULL;
116 #ifdef _KERNEL
117 data_alloc_arena = zio_alloc_arena;
118 #endif
119 zio_cache = kmem_cache_create("zio_cache",
120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 zio_link_cache = kmem_cache_create("zio_link_cache",
122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
125 * For small buffers, we want a cache for each multiple of
126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
127 * for each quarter-power of 2.
129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 size_t p2 = size;
132 size_t align = 0;
133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
135 while (!ISP2(p2))
136 p2 &= p2 - 1;
138 #ifndef _KERNEL
140 * If we are using watchpoints, put each buffer on its own page,
141 * to eliminate the performance overhead of trapping to the
142 * kernel when modifying a non-watched buffer that shares the
143 * page with a watched buffer.
145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 continue;
147 #endif
148 if (size <= 4 * SPA_MINBLOCKSIZE) {
149 align = SPA_MINBLOCKSIZE;
150 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 align = MIN(p2 >> 2, PAGESIZE);
154 if (align != 0) {
155 char name[36];
156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 zio_buf_cache[c] = kmem_cache_create(name, size,
158 align, NULL, NULL, NULL, NULL, NULL, cflags);
161 * Since zio_data bufs do not appear in crash dumps, we
162 * pass KMC_NOTOUCH so that no allocator metadata is
163 * stored with the buffers.
165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 cflags | KMC_NOTOUCH);
172 while (--c != 0) {
173 ASSERT(zio_buf_cache[c] != NULL);
174 if (zio_buf_cache[c - 1] == NULL)
175 zio_buf_cache[c - 1] = zio_buf_cache[c];
177 ASSERT(zio_data_buf_cache[c] != NULL);
178 if (zio_data_buf_cache[c - 1] == NULL)
179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
182 zio_inject_init();
185 void
186 zio_fini(void)
188 size_t c;
189 kmem_cache_t *last_cache = NULL;
190 kmem_cache_t *last_data_cache = NULL;
192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 if (zio_buf_cache[c] != last_cache) {
194 last_cache = zio_buf_cache[c];
195 kmem_cache_destroy(zio_buf_cache[c]);
197 zio_buf_cache[c] = NULL;
199 if (zio_data_buf_cache[c] != last_data_cache) {
200 last_data_cache = zio_data_buf_cache[c];
201 kmem_cache_destroy(zio_data_buf_cache[c]);
203 zio_data_buf_cache[c] = NULL;
206 kmem_cache_destroy(zio_link_cache);
207 kmem_cache_destroy(zio_cache);
209 zio_inject_fini();
213 * ==========================================================================
214 * Allocate and free I/O buffers
215 * ==========================================================================
219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222 * excess / transient data in-core during a crashdump.
224 void *
225 zio_buf_alloc(size_t size)
227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
236 * crashdump if the kernel panics. This exists so that we will limit the amount
237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
238 * of kernel heap dumped to disk when the kernel panics)
240 void *
241 zio_data_buf_alloc(size_t size)
243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
250 void
251 zio_buf_free(void *buf, size_t size)
253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
257 kmem_cache_free(zio_buf_cache[c], buf);
260 void
261 zio_data_buf_free(void *buf, size_t size)
263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
267 kmem_cache_free(zio_data_buf_cache[c], buf);
271 * ==========================================================================
272 * Push and pop I/O transform buffers
273 * ==========================================================================
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277 zio_transform_func_t *transform)
279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
282 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 * going to get a nasty surprise when they try to access the data.
285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
287 zt->zt_orig_abd = zio->io_abd;
288 zt->zt_orig_size = zio->io_size;
289 zt->zt_bufsize = bufsize;
290 zt->zt_transform = transform;
292 zt->zt_next = zio->io_transform_stack;
293 zio->io_transform_stack = zt;
295 zio->io_abd = data;
296 zio->io_size = size;
299 void
300 zio_pop_transforms(zio_t *zio)
302 zio_transform_t *zt;
304 while ((zt = zio->io_transform_stack) != NULL) {
305 if (zt->zt_transform != NULL)
306 zt->zt_transform(zio,
307 zt->zt_orig_abd, zt->zt_orig_size);
309 if (zt->zt_bufsize != 0)
310 abd_free(zio->io_abd);
312 zio->io_abd = zt->zt_orig_abd;
313 zio->io_size = zt->zt_orig_size;
314 zio->io_transform_stack = zt->zt_next;
316 kmem_free(zt, sizeof (zio_transform_t));
321 * ==========================================================================
322 * I/O transform callbacks for subblocks and decompression
323 * ==========================================================================
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
328 ASSERT(zio->io_size > size);
330 if (zio->io_type == ZIO_TYPE_READ)
331 abd_copy(data, zio->io_abd, size);
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
337 if (zio->io_error == 0) {
338 void *tmp = abd_borrow_buf(data, size);
339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 zio->io_abd, tmp, zio->io_size, size);
341 abd_return_buf_copy(data, tmp, size);
343 if (ret != 0)
344 zio->io_error = SET_ERROR(EIO);
349 * ==========================================================================
350 * I/O parent/child relationships and pipeline interlocks
351 * ==========================================================================
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
356 list_t *pl = &cio->io_parent_list;
358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 if (*zl == NULL)
360 return (NULL);
362 ASSERT((*zl)->zl_child == cio);
363 return ((*zl)->zl_parent);
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
369 list_t *cl = &pio->io_child_list;
371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 if (*zl == NULL)
373 return (NULL);
375 ASSERT((*zl)->zl_parent == pio);
376 return ((*zl)->zl_child);
379 zio_t *
380 zio_unique_parent(zio_t *cio)
382 zio_link_t *zl = NULL;
383 zio_t *pio = zio_walk_parents(cio, &zl);
385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 return (pio);
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
395 * Logical I/Os can have logical, gang, or vdev children.
396 * Gang I/Os can have gang or vdev children.
397 * Vdev I/Os can only have vdev children.
398 * The following ASSERT captures all of these constraints.
400 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
402 zl->zl_parent = pio;
403 zl->zl_child = cio;
405 mutex_enter(&cio->io_lock);
406 mutex_enter(&pio->io_lock);
408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
410 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
413 list_insert_head(&pio->io_child_list, zl);
414 list_insert_head(&cio->io_parent_list, zl);
416 pio->io_child_count++;
417 cio->io_parent_count++;
419 mutex_exit(&pio->io_lock);
420 mutex_exit(&cio->io_lock);
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
426 ASSERT(zl->zl_parent == pio);
427 ASSERT(zl->zl_child == cio);
429 mutex_enter(&cio->io_lock);
430 mutex_enter(&pio->io_lock);
432 list_remove(&pio->io_child_list, zl);
433 list_remove(&cio->io_parent_list, zl);
435 pio->io_child_count--;
436 cio->io_parent_count--;
438 mutex_exit(&pio->io_lock);
439 mutex_exit(&cio->io_lock);
441 kmem_cache_free(zio_link_cache, zl);
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
447 uint64_t *countp = &zio->io_children[child][wait];
448 boolean_t waiting = B_FALSE;
450 mutex_enter(&zio->io_lock);
451 ASSERT(zio->io_stall == NULL);
452 if (*countp != 0) {
453 zio->io_stage >>= 1;
454 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
455 zio->io_stall = countp;
456 waiting = B_TRUE;
458 mutex_exit(&zio->io_lock);
460 return (waiting);
463 static void
464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 int *errorp = &pio->io_child_error[zio->io_child_type];
469 mutex_enter(&pio->io_lock);
470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 *errorp = zio_worst_error(*errorp, zio->io_error);
472 pio->io_reexecute |= zio->io_reexecute;
473 ASSERT3U(*countp, >, 0);
475 (*countp)--;
477 if (*countp == 0 && pio->io_stall == countp) {
478 zio_taskq_type_t type =
479 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
480 ZIO_TASKQ_INTERRUPT;
481 pio->io_stall = NULL;
482 mutex_exit(&pio->io_lock);
484 * Dispatch the parent zio in its own taskq so that
485 * the child can continue to make progress. This also
486 * prevents overflowing the stack when we have deeply nested
487 * parent-child relationships.
489 zio_taskq_dispatch(pio, type, B_FALSE);
490 } else {
491 mutex_exit(&pio->io_lock);
495 static void
496 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
498 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
499 zio->io_error = zio->io_child_error[c];
503 zio_bookmark_compare(const void *x1, const void *x2)
505 const zio_t *z1 = x1;
506 const zio_t *z2 = x2;
508 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
509 return (-1);
510 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
511 return (1);
513 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
514 return (-1);
515 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
516 return (1);
518 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
519 return (-1);
520 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
521 return (1);
523 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
524 return (-1);
525 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
526 return (1);
528 if (z1 < z2)
529 return (-1);
530 if (z1 > z2)
531 return (1);
533 return (0);
537 * ==========================================================================
538 * Create the various types of I/O (read, write, free, etc)
539 * ==========================================================================
541 static zio_t *
542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
543 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
544 void *private, zio_type_t type, zio_priority_t priority,
545 enum zio_flag flags, vdev_t *vd, uint64_t offset,
546 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
548 zio_t *zio;
550 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
551 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
552 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
554 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
555 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
556 ASSERT(vd || stage == ZIO_STAGE_OPEN);
558 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
560 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
561 bzero(zio, sizeof (zio_t));
563 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
564 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
566 list_create(&zio->io_parent_list, sizeof (zio_link_t),
567 offsetof(zio_link_t, zl_parent_node));
568 list_create(&zio->io_child_list, sizeof (zio_link_t),
569 offsetof(zio_link_t, zl_child_node));
570 metaslab_trace_init(&zio->io_alloc_list);
572 if (vd != NULL)
573 zio->io_child_type = ZIO_CHILD_VDEV;
574 else if (flags & ZIO_FLAG_GANG_CHILD)
575 zio->io_child_type = ZIO_CHILD_GANG;
576 else if (flags & ZIO_FLAG_DDT_CHILD)
577 zio->io_child_type = ZIO_CHILD_DDT;
578 else
579 zio->io_child_type = ZIO_CHILD_LOGICAL;
581 if (bp != NULL) {
582 zio->io_bp = (blkptr_t *)bp;
583 zio->io_bp_copy = *bp;
584 zio->io_bp_orig = *bp;
585 if (type != ZIO_TYPE_WRITE ||
586 zio->io_child_type == ZIO_CHILD_DDT)
587 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
588 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
589 zio->io_logical = zio;
590 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
591 pipeline |= ZIO_GANG_STAGES;
594 zio->io_spa = spa;
595 zio->io_txg = txg;
596 zio->io_done = done;
597 zio->io_private = private;
598 zio->io_type = type;
599 zio->io_priority = priority;
600 zio->io_vd = vd;
601 zio->io_offset = offset;
602 zio->io_orig_abd = zio->io_abd = data;
603 zio->io_orig_size = zio->io_size = psize;
604 zio->io_lsize = lsize;
605 zio->io_orig_flags = zio->io_flags = flags;
606 zio->io_orig_stage = zio->io_stage = stage;
607 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
608 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
610 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
611 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
613 if (zb != NULL)
614 zio->io_bookmark = *zb;
616 if (pio != NULL) {
617 if (zio->io_logical == NULL)
618 zio->io_logical = pio->io_logical;
619 if (zio->io_child_type == ZIO_CHILD_GANG)
620 zio->io_gang_leader = pio->io_gang_leader;
621 zio_add_child(pio, zio);
624 return (zio);
627 static void
628 zio_destroy(zio_t *zio)
630 metaslab_trace_fini(&zio->io_alloc_list);
631 list_destroy(&zio->io_parent_list);
632 list_destroy(&zio->io_child_list);
633 mutex_destroy(&zio->io_lock);
634 cv_destroy(&zio->io_cv);
635 kmem_cache_free(zio_cache, zio);
638 zio_t *
639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
640 void *private, enum zio_flag flags)
642 zio_t *zio;
644 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
645 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
646 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
648 return (zio);
651 zio_t *
652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
654 return (zio_null(NULL, spa, NULL, done, private, flags));
657 void
658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
660 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
661 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
662 bp, (longlong_t)BP_GET_TYPE(bp));
664 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
665 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
666 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
667 bp, (longlong_t)BP_GET_CHECKSUM(bp));
669 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
670 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
671 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
672 bp, (longlong_t)BP_GET_COMPRESS(bp));
674 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
675 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
676 bp, (longlong_t)BP_GET_LSIZE(bp));
678 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
679 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
680 bp, (longlong_t)BP_GET_PSIZE(bp));
683 if (BP_IS_EMBEDDED(bp)) {
684 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
685 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
686 bp, (longlong_t)BPE_GET_ETYPE(bp));
691 * Do not verify individual DVAs if the config is not trusted. This
692 * will be done once the zio is executed in vdev_mirror_map_alloc.
694 if (!spa->spa_trust_config)
695 return;
698 * Pool-specific checks.
700 * Note: it would be nice to verify that the blk_birth and
701 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
702 * allows the birth time of log blocks (and dmu_sync()-ed blocks
703 * that are in the log) to be arbitrarily large.
705 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
706 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
707 if (vdevid >= spa->spa_root_vdev->vdev_children) {
708 zfs_panic_recover("blkptr at %p DVA %u has invalid "
709 "VDEV %llu",
710 bp, i, (longlong_t)vdevid);
711 continue;
713 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
714 if (vd == NULL) {
715 zfs_panic_recover("blkptr at %p DVA %u has invalid "
716 "VDEV %llu",
717 bp, i, (longlong_t)vdevid);
718 continue;
720 if (vd->vdev_ops == &vdev_hole_ops) {
721 zfs_panic_recover("blkptr at %p DVA %u has hole "
722 "VDEV %llu",
723 bp, i, (longlong_t)vdevid);
724 continue;
726 if (vd->vdev_ops == &vdev_missing_ops) {
728 * "missing" vdevs are valid during import, but we
729 * don't have their detailed info (e.g. asize), so
730 * we can't perform any more checks on them.
732 continue;
734 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
735 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
736 if (BP_IS_GANG(bp))
737 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
738 if (offset + asize > vd->vdev_asize) {
739 zfs_panic_recover("blkptr at %p DVA %u has invalid "
740 "OFFSET %llu",
741 bp, i, (longlong_t)offset);
746 boolean_t
747 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
749 uint64_t vdevid = DVA_GET_VDEV(dva);
751 if (vdevid >= spa->spa_root_vdev->vdev_children)
752 return (B_FALSE);
754 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
755 if (vd == NULL)
756 return (B_FALSE);
758 if (vd->vdev_ops == &vdev_hole_ops)
759 return (B_FALSE);
761 if (vd->vdev_ops == &vdev_missing_ops) {
762 return (B_FALSE);
765 uint64_t offset = DVA_GET_OFFSET(dva);
766 uint64_t asize = DVA_GET_ASIZE(dva);
768 if (BP_IS_GANG(bp))
769 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
770 if (offset + asize > vd->vdev_asize)
771 return (B_FALSE);
773 return (B_TRUE);
776 zio_t *
777 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
778 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
779 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
781 zio_t *zio;
783 zfs_blkptr_verify(spa, bp);
785 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
786 data, size, size, done, private,
787 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
788 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
789 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
791 return (zio);
794 zio_t *
795 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
796 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
797 zio_done_func_t *ready, zio_done_func_t *children_ready,
798 zio_done_func_t *physdone, zio_done_func_t *done,
799 void *private, zio_priority_t priority, enum zio_flag flags,
800 const zbookmark_phys_t *zb)
802 zio_t *zio;
804 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
805 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
806 zp->zp_compress >= ZIO_COMPRESS_OFF &&
807 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
808 DMU_OT_IS_VALID(zp->zp_type) &&
809 zp->zp_level < 32 &&
810 zp->zp_copies > 0 &&
811 zp->zp_copies <= spa_max_replication(spa));
813 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
814 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
815 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
816 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
818 zio->io_ready = ready;
819 zio->io_children_ready = children_ready;
820 zio->io_physdone = physdone;
821 zio->io_prop = *zp;
824 * Data can be NULL if we are going to call zio_write_override() to
825 * provide the already-allocated BP. But we may need the data to
826 * verify a dedup hit (if requested). In this case, don't try to
827 * dedup (just take the already-allocated BP verbatim).
829 if (data == NULL && zio->io_prop.zp_dedup_verify) {
830 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
833 return (zio);
836 zio_t *
837 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
838 uint64_t size, zio_done_func_t *done, void *private,
839 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
841 zio_t *zio;
843 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
844 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
845 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
847 return (zio);
850 void
851 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
853 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
854 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
855 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
856 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
859 * We must reset the io_prop to match the values that existed
860 * when the bp was first written by dmu_sync() keeping in mind
861 * that nopwrite and dedup are mutually exclusive.
863 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
864 zio->io_prop.zp_nopwrite = nopwrite;
865 zio->io_prop.zp_copies = copies;
866 zio->io_bp_override = bp;
869 void
870 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
873 zfs_blkptr_verify(spa, bp);
876 * The check for EMBEDDED is a performance optimization. We
877 * process the free here (by ignoring it) rather than
878 * putting it on the list and then processing it in zio_free_sync().
880 if (BP_IS_EMBEDDED(bp))
881 return;
882 metaslab_check_free(spa, bp);
885 * Frees that are for the currently-syncing txg, are not going to be
886 * deferred, and which will not need to do a read (i.e. not GANG or
887 * DEDUP), can be processed immediately. Otherwise, put them on the
888 * in-memory list for later processing.
890 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
891 txg != spa->spa_syncing_txg ||
892 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
893 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
894 } else {
895 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
899 zio_t *
900 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
901 enum zio_flag flags)
903 zio_t *zio;
904 enum zio_stage stage = ZIO_FREE_PIPELINE;
906 ASSERT(!BP_IS_HOLE(bp));
907 ASSERT(spa_syncing_txg(spa) == txg);
908 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
910 if (BP_IS_EMBEDDED(bp))
911 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
913 metaslab_check_free(spa, bp);
914 arc_freed(spa, bp);
917 * GANG and DEDUP blocks can induce a read (for the gang block header,
918 * or the DDT), so issue them asynchronously so that this thread is
919 * not tied up.
921 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
922 stage |= ZIO_STAGE_ISSUE_ASYNC;
924 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
925 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
926 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
928 return (zio);
931 zio_t *
932 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
933 zio_done_func_t *done, void *private, enum zio_flag flags)
935 zio_t *zio;
937 zfs_blkptr_verify(spa, bp);
939 if (BP_IS_EMBEDDED(bp))
940 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
943 * A claim is an allocation of a specific block. Claims are needed
944 * to support immediate writes in the intent log. The issue is that
945 * immediate writes contain committed data, but in a txg that was
946 * *not* committed. Upon opening the pool after an unclean shutdown,
947 * the intent log claims all blocks that contain immediate write data
948 * so that the SPA knows they're in use.
950 * All claims *must* be resolved in the first txg -- before the SPA
951 * starts allocating blocks -- so that nothing is allocated twice.
952 * If txg == 0 we just verify that the block is claimable.
954 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
955 ASSERT(txg == spa_first_txg(spa) || txg == 0);
956 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
958 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
959 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
960 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
961 ASSERT0(zio->io_queued_timestamp);
963 return (zio);
966 zio_t *
967 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
968 zio_done_func_t *done, void *private, enum zio_flag flags)
970 zio_t *zio;
971 int c;
973 if (vd->vdev_children == 0) {
974 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
975 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
976 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
978 zio->io_cmd = cmd;
979 } else {
980 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
982 for (c = 0; c < vd->vdev_children; c++)
983 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
984 done, private, flags));
987 return (zio);
990 zio_t *
991 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
992 abd_t *data, int checksum, zio_done_func_t *done, void *private,
993 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
995 zio_t *zio;
997 ASSERT(vd->vdev_children == 0);
998 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
999 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1000 ASSERT3U(offset + size, <=, vd->vdev_psize);
1002 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1003 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1004 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1006 zio->io_prop.zp_checksum = checksum;
1008 return (zio);
1011 zio_t *
1012 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1013 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1014 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1016 zio_t *zio;
1018 ASSERT(vd->vdev_children == 0);
1019 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1020 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1021 ASSERT3U(offset + size, <=, vd->vdev_psize);
1023 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1024 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1025 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1027 zio->io_prop.zp_checksum = checksum;
1029 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1031 * zec checksums are necessarily destructive -- they modify
1032 * the end of the write buffer to hold the verifier/checksum.
1033 * Therefore, we must make a local copy in case the data is
1034 * being written to multiple places in parallel.
1036 abd_t *wbuf = abd_alloc_sametype(data, size);
1037 abd_copy(wbuf, data, size);
1039 zio_push_transform(zio, wbuf, size, size, NULL);
1042 return (zio);
1046 * Create a child I/O to do some work for us.
1048 zio_t *
1049 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1050 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1051 enum zio_flag flags, zio_done_func_t *done, void *private)
1053 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1054 zio_t *zio;
1057 * vdev child I/Os do not propagate their error to the parent.
1058 * Therefore, for correct operation the caller *must* check for
1059 * and handle the error in the child i/o's done callback.
1060 * The only exceptions are i/os that we don't care about
1061 * (OPTIONAL or REPAIR).
1063 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1064 done != NULL);
1067 * In the common case, where the parent zio was to a normal vdev,
1068 * the child zio must be to a child vdev of that vdev. Otherwise,
1069 * the child zio must be to a top-level vdev.
1071 if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) {
1072 ASSERT3P(vd->vdev_parent, ==, pio->io_vd);
1073 } else {
1074 ASSERT3P(vd, ==, vd->vdev_top);
1077 if (type == ZIO_TYPE_READ && bp != NULL) {
1079 * If we have the bp, then the child should perform the
1080 * checksum and the parent need not. This pushes error
1081 * detection as close to the leaves as possible and
1082 * eliminates redundant checksums in the interior nodes.
1084 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1085 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1088 if (vd->vdev_ops->vdev_op_leaf) {
1089 ASSERT0(vd->vdev_children);
1090 offset += VDEV_LABEL_START_SIZE;
1093 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1096 * If we've decided to do a repair, the write is not speculative --
1097 * even if the original read was.
1099 if (flags & ZIO_FLAG_IO_REPAIR)
1100 flags &= ~ZIO_FLAG_SPECULATIVE;
1103 * If we're creating a child I/O that is not associated with a
1104 * top-level vdev, then the child zio is not an allocating I/O.
1105 * If this is a retried I/O then we ignore it since we will
1106 * have already processed the original allocating I/O.
1108 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1109 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1110 metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1112 ASSERT(mc->mc_alloc_throttle_enabled);
1113 ASSERT(type == ZIO_TYPE_WRITE);
1114 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1115 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1116 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1117 pio->io_child_type == ZIO_CHILD_GANG);
1119 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1122 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1123 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1124 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1125 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1127 zio->io_physdone = pio->io_physdone;
1128 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1129 zio->io_logical->io_phys_children++;
1131 return (zio);
1134 zio_t *
1135 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1136 int type, zio_priority_t priority, enum zio_flag flags,
1137 zio_done_func_t *done, void *private)
1139 zio_t *zio;
1141 ASSERT(vd->vdev_ops->vdev_op_leaf);
1143 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1144 data, size, size, done, private, type, priority,
1145 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1146 vd, offset, NULL,
1147 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1149 return (zio);
1152 void
1153 zio_flush(zio_t *zio, vdev_t *vd)
1155 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1156 NULL, NULL,
1157 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1160 void
1161 zio_shrink(zio_t *zio, uint64_t size)
1163 ASSERT3P(zio->io_executor, ==, NULL);
1164 ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1165 ASSERT3U(size, <=, zio->io_size);
1168 * We don't shrink for raidz because of problems with the
1169 * reconstruction when reading back less than the block size.
1170 * Note, BP_IS_RAIDZ() assumes no compression.
1172 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1173 if (!BP_IS_RAIDZ(zio->io_bp)) {
1174 /* we are not doing a raw write */
1175 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1176 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1181 * ==========================================================================
1182 * Prepare to read and write logical blocks
1183 * ==========================================================================
1186 static int
1187 zio_read_bp_init(zio_t *zio)
1189 blkptr_t *bp = zio->io_bp;
1191 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1193 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1194 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1195 !(zio->io_flags & ZIO_FLAG_RAW)) {
1196 uint64_t psize =
1197 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1198 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1199 psize, psize, zio_decompress);
1202 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1203 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1205 int psize = BPE_GET_PSIZE(bp);
1206 void *data = abd_borrow_buf(zio->io_abd, psize);
1207 decode_embedded_bp_compressed(bp, data);
1208 abd_return_buf_copy(zio->io_abd, data, psize);
1209 } else {
1210 ASSERT(!BP_IS_EMBEDDED(bp));
1211 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1214 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1215 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1217 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1218 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1220 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1221 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1223 return (ZIO_PIPELINE_CONTINUE);
1226 static int
1227 zio_write_bp_init(zio_t *zio)
1229 if (!IO_IS_ALLOCATING(zio))
1230 return (ZIO_PIPELINE_CONTINUE);
1232 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1234 if (zio->io_bp_override) {
1235 blkptr_t *bp = zio->io_bp;
1236 zio_prop_t *zp = &zio->io_prop;
1238 ASSERT(bp->blk_birth != zio->io_txg);
1239 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1241 *bp = *zio->io_bp_override;
1242 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1244 if (BP_IS_EMBEDDED(bp))
1245 return (ZIO_PIPELINE_CONTINUE);
1248 * If we've been overridden and nopwrite is set then
1249 * set the flag accordingly to indicate that a nopwrite
1250 * has already occurred.
1252 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1253 ASSERT(!zp->zp_dedup);
1254 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1255 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1256 return (ZIO_PIPELINE_CONTINUE);
1259 ASSERT(!zp->zp_nopwrite);
1261 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1262 return (ZIO_PIPELINE_CONTINUE);
1264 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1265 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1267 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1268 BP_SET_DEDUP(bp, 1);
1269 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1270 return (ZIO_PIPELINE_CONTINUE);
1274 * We were unable to handle this as an override bp, treat
1275 * it as a regular write I/O.
1277 zio->io_bp_override = NULL;
1278 *bp = zio->io_bp_orig;
1279 zio->io_pipeline = zio->io_orig_pipeline;
1282 return (ZIO_PIPELINE_CONTINUE);
1285 static int
1286 zio_write_compress(zio_t *zio)
1288 spa_t *spa = zio->io_spa;
1289 zio_prop_t *zp = &zio->io_prop;
1290 enum zio_compress compress = zp->zp_compress;
1291 blkptr_t *bp = zio->io_bp;
1292 uint64_t lsize = zio->io_lsize;
1293 uint64_t psize = zio->io_size;
1294 int pass = 1;
1296 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1299 * If our children haven't all reached the ready stage,
1300 * wait for them and then repeat this pipeline stage.
1302 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1303 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1304 return (ZIO_PIPELINE_STOP);
1306 if (!IO_IS_ALLOCATING(zio))
1307 return (ZIO_PIPELINE_CONTINUE);
1309 if (zio->io_children_ready != NULL) {
1311 * Now that all our children are ready, run the callback
1312 * associated with this zio in case it wants to modify the
1313 * data to be written.
1315 ASSERT3U(zp->zp_level, >, 0);
1316 zio->io_children_ready(zio);
1319 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1320 ASSERT(zio->io_bp_override == NULL);
1322 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1324 * We're rewriting an existing block, which means we're
1325 * working on behalf of spa_sync(). For spa_sync() to
1326 * converge, it must eventually be the case that we don't
1327 * have to allocate new blocks. But compression changes
1328 * the blocksize, which forces a reallocate, and makes
1329 * convergence take longer. Therefore, after the first
1330 * few passes, stop compressing to ensure convergence.
1332 pass = spa_sync_pass(spa);
1334 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1335 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1336 ASSERT(!BP_GET_DEDUP(bp));
1338 if (pass >= zfs_sync_pass_dont_compress)
1339 compress = ZIO_COMPRESS_OFF;
1341 /* Make sure someone doesn't change their mind on overwrites */
1342 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1343 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1346 /* If it's a compressed write that is not raw, compress the buffer. */
1347 if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1348 void *cbuf = zio_buf_alloc(lsize);
1349 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1350 if (psize == 0 || psize == lsize) {
1351 compress = ZIO_COMPRESS_OFF;
1352 zio_buf_free(cbuf, lsize);
1353 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1354 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1355 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1356 encode_embedded_bp_compressed(bp,
1357 cbuf, compress, lsize, psize);
1358 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1359 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1360 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1361 zio_buf_free(cbuf, lsize);
1362 bp->blk_birth = zio->io_txg;
1363 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1364 ASSERT(spa_feature_is_active(spa,
1365 SPA_FEATURE_EMBEDDED_DATA));
1366 return (ZIO_PIPELINE_CONTINUE);
1367 } else {
1369 * Round up compressed size up to the ashift
1370 * of the smallest-ashift device, and zero the tail.
1371 * This ensures that the compressed size of the BP
1372 * (and thus compressratio property) are correct,
1373 * in that we charge for the padding used to fill out
1374 * the last sector.
1376 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1377 size_t rounded = (size_t)P2ROUNDUP(psize,
1378 1ULL << spa->spa_min_ashift);
1379 if (rounded >= lsize) {
1380 compress = ZIO_COMPRESS_OFF;
1381 zio_buf_free(cbuf, lsize);
1382 psize = lsize;
1383 } else {
1384 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1385 abd_take_ownership_of_buf(cdata, B_TRUE);
1386 abd_zero_off(cdata, psize, rounded - psize);
1387 psize = rounded;
1388 zio_push_transform(zio, cdata,
1389 psize, lsize, NULL);
1394 * We were unable to handle this as an override bp, treat
1395 * it as a regular write I/O.
1397 zio->io_bp_override = NULL;
1398 *bp = zio->io_bp_orig;
1399 zio->io_pipeline = zio->io_orig_pipeline;
1400 } else {
1401 ASSERT3U(psize, !=, 0);
1405 * The final pass of spa_sync() must be all rewrites, but the first
1406 * few passes offer a trade-off: allocating blocks defers convergence,
1407 * but newly allocated blocks are sequential, so they can be written
1408 * to disk faster. Therefore, we allow the first few passes of
1409 * spa_sync() to allocate new blocks, but force rewrites after that.
1410 * There should only be a handful of blocks after pass 1 in any case.
1412 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1413 BP_GET_PSIZE(bp) == psize &&
1414 pass >= zfs_sync_pass_rewrite) {
1415 ASSERT(psize != 0);
1416 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1417 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1418 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1419 } else {
1420 BP_ZERO(bp);
1421 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1424 if (psize == 0) {
1425 if (zio->io_bp_orig.blk_birth != 0 &&
1426 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1427 BP_SET_LSIZE(bp, lsize);
1428 BP_SET_TYPE(bp, zp->zp_type);
1429 BP_SET_LEVEL(bp, zp->zp_level);
1430 BP_SET_BIRTH(bp, zio->io_txg, 0);
1432 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1433 } else {
1434 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1435 BP_SET_LSIZE(bp, lsize);
1436 BP_SET_TYPE(bp, zp->zp_type);
1437 BP_SET_LEVEL(bp, zp->zp_level);
1438 BP_SET_PSIZE(bp, psize);
1439 BP_SET_COMPRESS(bp, compress);
1440 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1441 BP_SET_DEDUP(bp, zp->zp_dedup);
1442 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1443 if (zp->zp_dedup) {
1444 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1445 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1446 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1448 if (zp->zp_nopwrite) {
1449 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1450 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1451 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1454 return (ZIO_PIPELINE_CONTINUE);
1457 static int
1458 zio_free_bp_init(zio_t *zio)
1460 blkptr_t *bp = zio->io_bp;
1462 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1463 if (BP_GET_DEDUP(bp))
1464 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1467 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1469 return (ZIO_PIPELINE_CONTINUE);
1473 * ==========================================================================
1474 * Execute the I/O pipeline
1475 * ==========================================================================
1478 static void
1479 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1481 spa_t *spa = zio->io_spa;
1482 zio_type_t t = zio->io_type;
1483 int flags = (cutinline ? TQ_FRONT : 0);
1486 * If we're a config writer or a probe, the normal issue and
1487 * interrupt threads may all be blocked waiting for the config lock.
1488 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1490 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1491 t = ZIO_TYPE_NULL;
1494 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1496 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1497 t = ZIO_TYPE_NULL;
1500 * If this is a high priority I/O, then use the high priority taskq if
1501 * available.
1503 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1504 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1505 q++;
1507 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1510 * NB: We are assuming that the zio can only be dispatched
1511 * to a single taskq at a time. It would be a grievous error
1512 * to dispatch the zio to another taskq at the same time.
1514 ASSERT(zio->io_tqent.tqent_next == NULL);
1515 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1516 flags, &zio->io_tqent);
1519 static boolean_t
1520 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1522 kthread_t *executor = zio->io_executor;
1523 spa_t *spa = zio->io_spa;
1525 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1526 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1527 uint_t i;
1528 for (i = 0; i < tqs->stqs_count; i++) {
1529 if (taskq_member(tqs->stqs_taskq[i], executor))
1530 return (B_TRUE);
1534 return (B_FALSE);
1537 static int
1538 zio_issue_async(zio_t *zio)
1540 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1542 return (ZIO_PIPELINE_STOP);
1545 void
1546 zio_interrupt(zio_t *zio)
1548 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1551 void
1552 zio_delay_interrupt(zio_t *zio)
1555 * The timeout_generic() function isn't defined in userspace, so
1556 * rather than trying to implement the function, the zio delay
1557 * functionality has been disabled for userspace builds.
1560 #ifdef _KERNEL
1562 * If io_target_timestamp is zero, then no delay has been registered
1563 * for this IO, thus jump to the end of this function and "skip" the
1564 * delay; issuing it directly to the zio layer.
1566 if (zio->io_target_timestamp != 0) {
1567 hrtime_t now = gethrtime();
1569 if (now >= zio->io_target_timestamp) {
1571 * This IO has already taken longer than the target
1572 * delay to complete, so we don't want to delay it
1573 * any longer; we "miss" the delay and issue it
1574 * directly to the zio layer. This is likely due to
1575 * the target latency being set to a value less than
1576 * the underlying hardware can satisfy (e.g. delay
1577 * set to 1ms, but the disks take 10ms to complete an
1578 * IO request).
1581 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1582 hrtime_t, now);
1584 zio_interrupt(zio);
1585 } else {
1586 hrtime_t diff = zio->io_target_timestamp - now;
1588 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1589 hrtime_t, now, hrtime_t, diff);
1591 (void) timeout_generic(CALLOUT_NORMAL,
1592 (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1595 return;
1597 #endif
1599 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1600 zio_interrupt(zio);
1604 * Execute the I/O pipeline until one of the following occurs:
1606 * (1) the I/O completes
1607 * (2) the pipeline stalls waiting for dependent child I/Os
1608 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1609 * (4) the I/O is delegated by vdev-level caching or aggregation
1610 * (5) the I/O is deferred due to vdev-level queueing
1611 * (6) the I/O is handed off to another thread.
1613 * In all cases, the pipeline stops whenever there's no CPU work; it never
1614 * burns a thread in cv_wait().
1616 * There's no locking on io_stage because there's no legitimate way
1617 * for multiple threads to be attempting to process the same I/O.
1619 static zio_pipe_stage_t *zio_pipeline[];
1621 void
1622 zio_execute(zio_t *zio)
1624 zio->io_executor = curthread;
1626 ASSERT3U(zio->io_queued_timestamp, >, 0);
1628 while (zio->io_stage < ZIO_STAGE_DONE) {
1629 enum zio_stage pipeline = zio->io_pipeline;
1630 enum zio_stage stage = zio->io_stage;
1631 int rv;
1633 ASSERT(!MUTEX_HELD(&zio->io_lock));
1634 ASSERT(ISP2(stage));
1635 ASSERT(zio->io_stall == NULL);
1637 do {
1638 stage <<= 1;
1639 } while ((stage & pipeline) == 0);
1641 ASSERT(stage <= ZIO_STAGE_DONE);
1644 * If we are in interrupt context and this pipeline stage
1645 * will grab a config lock that is held across I/O,
1646 * or may wait for an I/O that needs an interrupt thread
1647 * to complete, issue async to avoid deadlock.
1649 * For VDEV_IO_START, we cut in line so that the io will
1650 * be sent to disk promptly.
1652 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1653 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1654 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1655 zio_requeue_io_start_cut_in_line : B_FALSE;
1656 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1657 return;
1660 zio->io_stage = stage;
1661 zio->io_pipeline_trace |= zio->io_stage;
1662 rv = zio_pipeline[highbit64(stage) - 1](zio);
1664 if (rv == ZIO_PIPELINE_STOP)
1665 return;
1667 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1672 * ==========================================================================
1673 * Initiate I/O, either sync or async
1674 * ==========================================================================
1677 zio_wait(zio_t *zio)
1679 int error;
1681 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1682 ASSERT3P(zio->io_executor, ==, NULL);
1684 zio->io_waiter = curthread;
1685 ASSERT0(zio->io_queued_timestamp);
1686 zio->io_queued_timestamp = gethrtime();
1688 zio_execute(zio);
1690 mutex_enter(&zio->io_lock);
1691 while (zio->io_executor != NULL)
1692 cv_wait(&zio->io_cv, &zio->io_lock);
1693 mutex_exit(&zio->io_lock);
1695 error = zio->io_error;
1696 zio_destroy(zio);
1698 return (error);
1701 void
1702 zio_nowait(zio_t *zio)
1704 ASSERT3P(zio->io_executor, ==, NULL);
1706 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1707 zio_unique_parent(zio) == NULL) {
1709 * This is a logical async I/O with no parent to wait for it.
1710 * We add it to the spa_async_root_zio "Godfather" I/O which
1711 * will ensure they complete prior to unloading the pool.
1713 spa_t *spa = zio->io_spa;
1715 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1718 ASSERT0(zio->io_queued_timestamp);
1719 zio->io_queued_timestamp = gethrtime();
1720 zio_execute(zio);
1724 * ==========================================================================
1725 * Reexecute, cancel, or suspend/resume failed I/O
1726 * ==========================================================================
1729 static void
1730 zio_reexecute(zio_t *pio)
1732 zio_t *cio, *cio_next;
1734 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1735 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1736 ASSERT(pio->io_gang_leader == NULL);
1737 ASSERT(pio->io_gang_tree == NULL);
1739 pio->io_flags = pio->io_orig_flags;
1740 pio->io_stage = pio->io_orig_stage;
1741 pio->io_pipeline = pio->io_orig_pipeline;
1742 pio->io_reexecute = 0;
1743 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1744 pio->io_pipeline_trace = 0;
1745 pio->io_error = 0;
1746 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1747 pio->io_state[w] = 0;
1748 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1749 pio->io_child_error[c] = 0;
1751 if (IO_IS_ALLOCATING(pio))
1752 BP_ZERO(pio->io_bp);
1755 * As we reexecute pio's children, new children could be created.
1756 * New children go to the head of pio's io_child_list, however,
1757 * so we will (correctly) not reexecute them. The key is that
1758 * the remainder of pio's io_child_list, from 'cio_next' onward,
1759 * cannot be affected by any side effects of reexecuting 'cio'.
1761 zio_link_t *zl = NULL;
1762 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1763 cio_next = zio_walk_children(pio, &zl);
1764 mutex_enter(&pio->io_lock);
1765 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1766 pio->io_children[cio->io_child_type][w]++;
1767 mutex_exit(&pio->io_lock);
1768 zio_reexecute(cio);
1772 * Now that all children have been reexecuted, execute the parent.
1773 * We don't reexecute "The Godfather" I/O here as it's the
1774 * responsibility of the caller to wait on it.
1776 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1777 pio->io_queued_timestamp = gethrtime();
1778 zio_execute(pio);
1782 void
1783 zio_suspend(spa_t *spa, zio_t *zio)
1785 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1786 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1787 "failure and the failure mode property for this pool "
1788 "is set to panic.", spa_name(spa));
1790 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1792 mutex_enter(&spa->spa_suspend_lock);
1794 if (spa->spa_suspend_zio_root == NULL)
1795 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1796 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1797 ZIO_FLAG_GODFATHER);
1799 spa->spa_suspended = B_TRUE;
1801 if (zio != NULL) {
1802 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1803 ASSERT(zio != spa->spa_suspend_zio_root);
1804 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1805 ASSERT(zio_unique_parent(zio) == NULL);
1806 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1807 zio_add_child(spa->spa_suspend_zio_root, zio);
1810 mutex_exit(&spa->spa_suspend_lock);
1814 zio_resume(spa_t *spa)
1816 zio_t *pio;
1819 * Reexecute all previously suspended i/o.
1821 mutex_enter(&spa->spa_suspend_lock);
1822 spa->spa_suspended = B_FALSE;
1823 cv_broadcast(&spa->spa_suspend_cv);
1824 pio = spa->spa_suspend_zio_root;
1825 spa->spa_suspend_zio_root = NULL;
1826 mutex_exit(&spa->spa_suspend_lock);
1828 if (pio == NULL)
1829 return (0);
1831 zio_reexecute(pio);
1832 return (zio_wait(pio));
1835 void
1836 zio_resume_wait(spa_t *spa)
1838 mutex_enter(&spa->spa_suspend_lock);
1839 while (spa_suspended(spa))
1840 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1841 mutex_exit(&spa->spa_suspend_lock);
1845 * ==========================================================================
1846 * Gang blocks.
1848 * A gang block is a collection of small blocks that looks to the DMU
1849 * like one large block. When zio_dva_allocate() cannot find a block
1850 * of the requested size, due to either severe fragmentation or the pool
1851 * being nearly full, it calls zio_write_gang_block() to construct the
1852 * block from smaller fragments.
1854 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1855 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1856 * an indirect block: it's an array of block pointers. It consumes
1857 * only one sector and hence is allocatable regardless of fragmentation.
1858 * The gang header's bps point to its gang members, which hold the data.
1860 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1861 * as the verifier to ensure uniqueness of the SHA256 checksum.
1862 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1863 * not the gang header. This ensures that data block signatures (needed for
1864 * deduplication) are independent of how the block is physically stored.
1866 * Gang blocks can be nested: a gang member may itself be a gang block.
1867 * Thus every gang block is a tree in which root and all interior nodes are
1868 * gang headers, and the leaves are normal blocks that contain user data.
1869 * The root of the gang tree is called the gang leader.
1871 * To perform any operation (read, rewrite, free, claim) on a gang block,
1872 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1873 * in the io_gang_tree field of the original logical i/o by recursively
1874 * reading the gang leader and all gang headers below it. This yields
1875 * an in-core tree containing the contents of every gang header and the
1876 * bps for every constituent of the gang block.
1878 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1879 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1880 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1881 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1882 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1883 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1884 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1885 * of the gang header plus zio_checksum_compute() of the data to update the
1886 * gang header's blk_cksum as described above.
1888 * The two-phase assemble/issue model solves the problem of partial failure --
1889 * what if you'd freed part of a gang block but then couldn't read the
1890 * gang header for another part? Assembling the entire gang tree first
1891 * ensures that all the necessary gang header I/O has succeeded before
1892 * starting the actual work of free, claim, or write. Once the gang tree
1893 * is assembled, free and claim are in-memory operations that cannot fail.
1895 * In the event that a gang write fails, zio_dva_unallocate() walks the
1896 * gang tree to immediately free (i.e. insert back into the space map)
1897 * everything we've allocated. This ensures that we don't get ENOSPC
1898 * errors during repeated suspend/resume cycles due to a flaky device.
1900 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1901 * the gang tree, we won't modify the block, so we can safely defer the free
1902 * (knowing that the block is still intact). If we *can* assemble the gang
1903 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1904 * each constituent bp and we can allocate a new block on the next sync pass.
1906 * In all cases, the gang tree allows complete recovery from partial failure.
1907 * ==========================================================================
1910 static void
1911 zio_gang_issue_func_done(zio_t *zio)
1913 abd_put(zio->io_abd);
1916 static zio_t *
1917 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1918 uint64_t offset)
1920 if (gn != NULL)
1921 return (pio);
1923 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1924 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1925 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1926 &pio->io_bookmark));
1929 static zio_t *
1930 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1931 uint64_t offset)
1933 zio_t *zio;
1935 if (gn != NULL) {
1936 abd_t *gbh_abd =
1937 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1938 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1939 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1940 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1941 &pio->io_bookmark);
1943 * As we rewrite each gang header, the pipeline will compute
1944 * a new gang block header checksum for it; but no one will
1945 * compute a new data checksum, so we do that here. The one
1946 * exception is the gang leader: the pipeline already computed
1947 * its data checksum because that stage precedes gang assembly.
1948 * (Presently, nothing actually uses interior data checksums;
1949 * this is just good hygiene.)
1951 if (gn != pio->io_gang_leader->io_gang_tree) {
1952 abd_t *buf = abd_get_offset(data, offset);
1954 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1955 buf, BP_GET_PSIZE(bp));
1957 abd_put(buf);
1960 * If we are here to damage data for testing purposes,
1961 * leave the GBH alone so that we can detect the damage.
1963 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1964 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1965 } else {
1966 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1967 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1968 zio_gang_issue_func_done, NULL, pio->io_priority,
1969 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1972 return (zio);
1975 /* ARGSUSED */
1976 static zio_t *
1977 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1978 uint64_t offset)
1980 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1981 ZIO_GANG_CHILD_FLAGS(pio)));
1984 /* ARGSUSED */
1985 static zio_t *
1986 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1987 uint64_t offset)
1989 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1990 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1993 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1994 NULL,
1995 zio_read_gang,
1996 zio_rewrite_gang,
1997 zio_free_gang,
1998 zio_claim_gang,
1999 NULL
2002 static void zio_gang_tree_assemble_done(zio_t *zio);
2004 static zio_gang_node_t *
2005 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2007 zio_gang_node_t *gn;
2009 ASSERT(*gnpp == NULL);
2011 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2012 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2013 *gnpp = gn;
2015 return (gn);
2018 static void
2019 zio_gang_node_free(zio_gang_node_t **gnpp)
2021 zio_gang_node_t *gn = *gnpp;
2023 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2024 ASSERT(gn->gn_child[g] == NULL);
2026 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2027 kmem_free(gn, sizeof (*gn));
2028 *gnpp = NULL;
2031 static void
2032 zio_gang_tree_free(zio_gang_node_t **gnpp)
2034 zio_gang_node_t *gn = *gnpp;
2036 if (gn == NULL)
2037 return;
2039 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2040 zio_gang_tree_free(&gn->gn_child[g]);
2042 zio_gang_node_free(gnpp);
2045 static void
2046 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2048 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2049 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2051 ASSERT(gio->io_gang_leader == gio);
2052 ASSERT(BP_IS_GANG(bp));
2054 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2055 zio_gang_tree_assemble_done, gn, gio->io_priority,
2056 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2059 static void
2060 zio_gang_tree_assemble_done(zio_t *zio)
2062 zio_t *gio = zio->io_gang_leader;
2063 zio_gang_node_t *gn = zio->io_private;
2064 blkptr_t *bp = zio->io_bp;
2066 ASSERT(gio == zio_unique_parent(zio));
2067 ASSERT(zio->io_child_count == 0);
2069 if (zio->io_error)
2070 return;
2072 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2073 if (BP_SHOULD_BYTESWAP(bp))
2074 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2076 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2077 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2078 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2080 abd_put(zio->io_abd);
2082 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2083 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2084 if (!BP_IS_GANG(gbp))
2085 continue;
2086 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2090 static void
2091 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2092 uint64_t offset)
2094 zio_t *gio = pio->io_gang_leader;
2095 zio_t *zio;
2097 ASSERT(BP_IS_GANG(bp) == !!gn);
2098 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2099 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2102 * If you're a gang header, your data is in gn->gn_gbh.
2103 * If you're a gang member, your data is in 'data' and gn == NULL.
2105 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2107 if (gn != NULL) {
2108 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2110 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2111 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2112 if (BP_IS_HOLE(gbp))
2113 continue;
2114 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2115 offset);
2116 offset += BP_GET_PSIZE(gbp);
2120 if (gn == gio->io_gang_tree)
2121 ASSERT3U(gio->io_size, ==, offset);
2123 if (zio != pio)
2124 zio_nowait(zio);
2127 static int
2128 zio_gang_assemble(zio_t *zio)
2130 blkptr_t *bp = zio->io_bp;
2132 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2133 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2135 zio->io_gang_leader = zio;
2137 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2139 return (ZIO_PIPELINE_CONTINUE);
2142 static int
2143 zio_gang_issue(zio_t *zio)
2145 blkptr_t *bp = zio->io_bp;
2147 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2148 return (ZIO_PIPELINE_STOP);
2150 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2151 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2153 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2154 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2156 else
2157 zio_gang_tree_free(&zio->io_gang_tree);
2159 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2161 return (ZIO_PIPELINE_CONTINUE);
2164 static void
2165 zio_write_gang_member_ready(zio_t *zio)
2167 zio_t *pio = zio_unique_parent(zio);
2168 zio_t *gio = zio->io_gang_leader;
2169 dva_t *cdva = zio->io_bp->blk_dva;
2170 dva_t *pdva = pio->io_bp->blk_dva;
2171 uint64_t asize;
2173 if (BP_IS_HOLE(zio->io_bp))
2174 return;
2176 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2178 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2179 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2180 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2181 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2182 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2184 mutex_enter(&pio->io_lock);
2185 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2186 ASSERT(DVA_GET_GANG(&pdva[d]));
2187 asize = DVA_GET_ASIZE(&pdva[d]);
2188 asize += DVA_GET_ASIZE(&cdva[d]);
2189 DVA_SET_ASIZE(&pdva[d], asize);
2191 mutex_exit(&pio->io_lock);
2194 static void
2195 zio_write_gang_done(zio_t *zio)
2197 abd_put(zio->io_abd);
2200 static int
2201 zio_write_gang_block(zio_t *pio)
2203 spa_t *spa = pio->io_spa;
2204 metaslab_class_t *mc = spa_normal_class(spa);
2205 blkptr_t *bp = pio->io_bp;
2206 zio_t *gio = pio->io_gang_leader;
2207 zio_t *zio;
2208 zio_gang_node_t *gn, **gnpp;
2209 zio_gbh_phys_t *gbh;
2210 abd_t *gbh_abd;
2211 uint64_t txg = pio->io_txg;
2212 uint64_t resid = pio->io_size;
2213 uint64_t lsize;
2214 int copies = gio->io_prop.zp_copies;
2215 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2216 zio_prop_t zp;
2217 int error;
2219 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2220 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2221 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2222 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2224 flags |= METASLAB_ASYNC_ALLOC;
2225 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2228 * The logical zio has already placed a reservation for
2229 * 'copies' allocation slots but gang blocks may require
2230 * additional copies. These additional copies
2231 * (i.e. gbh_copies - copies) are guaranteed to succeed
2232 * since metaslab_class_throttle_reserve() always allows
2233 * additional reservations for gang blocks.
2235 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2236 pio, flags));
2239 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2240 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2241 &pio->io_alloc_list, pio);
2242 if (error) {
2243 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2244 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2245 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2248 * If we failed to allocate the gang block header then
2249 * we remove any additional allocation reservations that
2250 * we placed here. The original reservation will
2251 * be removed when the logical I/O goes to the ready
2252 * stage.
2254 metaslab_class_throttle_unreserve(mc,
2255 gbh_copies - copies, pio);
2257 pio->io_error = error;
2258 return (ZIO_PIPELINE_CONTINUE);
2261 if (pio == gio) {
2262 gnpp = &gio->io_gang_tree;
2263 } else {
2264 gnpp = pio->io_private;
2265 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2268 gn = zio_gang_node_alloc(gnpp);
2269 gbh = gn->gn_gbh;
2270 bzero(gbh, SPA_GANGBLOCKSIZE);
2271 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2274 * Create the gang header.
2276 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2277 zio_write_gang_done, NULL, pio->io_priority,
2278 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2281 * Create and nowait the gang children.
2283 for (int g = 0; resid != 0; resid -= lsize, g++) {
2284 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2285 SPA_MINBLOCKSIZE);
2286 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2288 zp.zp_checksum = gio->io_prop.zp_checksum;
2289 zp.zp_compress = ZIO_COMPRESS_OFF;
2290 zp.zp_type = DMU_OT_NONE;
2291 zp.zp_level = 0;
2292 zp.zp_copies = gio->io_prop.zp_copies;
2293 zp.zp_dedup = B_FALSE;
2294 zp.zp_dedup_verify = B_FALSE;
2295 zp.zp_nopwrite = B_FALSE;
2297 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2298 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2299 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2300 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2301 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2303 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2304 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2305 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2308 * Gang children won't throttle but we should
2309 * account for their work, so reserve an allocation
2310 * slot for them here.
2312 VERIFY(metaslab_class_throttle_reserve(mc,
2313 zp.zp_copies, cio, flags));
2315 zio_nowait(cio);
2319 * Set pio's pipeline to just wait for zio to finish.
2321 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2323 zio_nowait(zio);
2325 return (ZIO_PIPELINE_CONTINUE);
2329 * The zio_nop_write stage in the pipeline determines if allocating a
2330 * new bp is necessary. The nopwrite feature can handle writes in
2331 * either syncing or open context (i.e. zil writes) and as a result is
2332 * mutually exclusive with dedup.
2334 * By leveraging a cryptographically secure checksum, such as SHA256, we
2335 * can compare the checksums of the new data and the old to determine if
2336 * allocating a new block is required. Note that our requirements for
2337 * cryptographic strength are fairly weak: there can't be any accidental
2338 * hash collisions, but we don't need to be secure against intentional
2339 * (malicious) collisions. To trigger a nopwrite, you have to be able
2340 * to write the file to begin with, and triggering an incorrect (hash
2341 * collision) nopwrite is no worse than simply writing to the file.
2342 * That said, there are no known attacks against the checksum algorithms
2343 * used for nopwrite, assuming that the salt and the checksums
2344 * themselves remain secret.
2346 static int
2347 zio_nop_write(zio_t *zio)
2349 blkptr_t *bp = zio->io_bp;
2350 blkptr_t *bp_orig = &zio->io_bp_orig;
2351 zio_prop_t *zp = &zio->io_prop;
2353 ASSERT(BP_GET_LEVEL(bp) == 0);
2354 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2355 ASSERT(zp->zp_nopwrite);
2356 ASSERT(!zp->zp_dedup);
2357 ASSERT(zio->io_bp_override == NULL);
2358 ASSERT(IO_IS_ALLOCATING(zio));
2361 * Check to see if the original bp and the new bp have matching
2362 * characteristics (i.e. same checksum, compression algorithms, etc).
2363 * If they don't then just continue with the pipeline which will
2364 * allocate a new bp.
2366 if (BP_IS_HOLE(bp_orig) ||
2367 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2368 ZCHECKSUM_FLAG_NOPWRITE) ||
2369 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2370 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2371 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2372 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2373 return (ZIO_PIPELINE_CONTINUE);
2376 * If the checksums match then reset the pipeline so that we
2377 * avoid allocating a new bp and issuing any I/O.
2379 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2380 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2381 ZCHECKSUM_FLAG_NOPWRITE);
2382 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2383 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2384 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2385 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2386 sizeof (uint64_t)) == 0);
2388 *bp = *bp_orig;
2389 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2390 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2393 return (ZIO_PIPELINE_CONTINUE);
2397 * ==========================================================================
2398 * Dedup
2399 * ==========================================================================
2401 static void
2402 zio_ddt_child_read_done(zio_t *zio)
2404 blkptr_t *bp = zio->io_bp;
2405 ddt_entry_t *dde = zio->io_private;
2406 ddt_phys_t *ddp;
2407 zio_t *pio = zio_unique_parent(zio);
2409 mutex_enter(&pio->io_lock);
2410 ddp = ddt_phys_select(dde, bp);
2411 if (zio->io_error == 0)
2412 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2414 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2415 dde->dde_repair_abd = zio->io_abd;
2416 else
2417 abd_free(zio->io_abd);
2418 mutex_exit(&pio->io_lock);
2421 static int
2422 zio_ddt_read_start(zio_t *zio)
2424 blkptr_t *bp = zio->io_bp;
2426 ASSERT(BP_GET_DEDUP(bp));
2427 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2428 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2430 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2431 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2432 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2433 ddt_phys_t *ddp = dde->dde_phys;
2434 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2435 blkptr_t blk;
2437 ASSERT(zio->io_vsd == NULL);
2438 zio->io_vsd = dde;
2440 if (ddp_self == NULL)
2441 return (ZIO_PIPELINE_CONTINUE);
2443 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2444 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2445 continue;
2446 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2447 &blk);
2448 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2449 abd_alloc_for_io(zio->io_size, B_TRUE),
2450 zio->io_size, zio_ddt_child_read_done, dde,
2451 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2452 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2454 return (ZIO_PIPELINE_CONTINUE);
2457 zio_nowait(zio_read(zio, zio->io_spa, bp,
2458 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2459 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2461 return (ZIO_PIPELINE_CONTINUE);
2464 static int
2465 zio_ddt_read_done(zio_t *zio)
2467 blkptr_t *bp = zio->io_bp;
2469 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2470 return (ZIO_PIPELINE_STOP);
2472 ASSERT(BP_GET_DEDUP(bp));
2473 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2474 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2476 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2477 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2478 ddt_entry_t *dde = zio->io_vsd;
2479 if (ddt == NULL) {
2480 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2481 return (ZIO_PIPELINE_CONTINUE);
2483 if (dde == NULL) {
2484 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2485 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2486 return (ZIO_PIPELINE_STOP);
2488 if (dde->dde_repair_abd != NULL) {
2489 abd_copy(zio->io_abd, dde->dde_repair_abd,
2490 zio->io_size);
2491 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2493 ddt_repair_done(ddt, dde);
2494 zio->io_vsd = NULL;
2497 ASSERT(zio->io_vsd == NULL);
2499 return (ZIO_PIPELINE_CONTINUE);
2502 static boolean_t
2503 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2505 spa_t *spa = zio->io_spa;
2506 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2508 /* We should never get a raw, override zio */
2509 ASSERT(!(zio->io_bp_override && do_raw));
2512 * Note: we compare the original data, not the transformed data,
2513 * because when zio->io_bp is an override bp, we will not have
2514 * pushed the I/O transforms. That's an important optimization
2515 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2517 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2518 zio_t *lio = dde->dde_lead_zio[p];
2520 if (lio != NULL) {
2521 return (lio->io_orig_size != zio->io_orig_size ||
2522 abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2523 zio->io_orig_size) != 0);
2527 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2528 ddt_phys_t *ddp = &dde->dde_phys[p];
2530 if (ddp->ddp_phys_birth != 0) {
2531 arc_buf_t *abuf = NULL;
2532 arc_flags_t aflags = ARC_FLAG_WAIT;
2533 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2534 blkptr_t blk = *zio->io_bp;
2535 int error;
2537 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2539 ddt_exit(ddt);
2542 * Intuitively, it would make more sense to compare
2543 * io_abd than io_orig_abd in the raw case since you
2544 * don't want to look at any transformations that have
2545 * happened to the data. However, for raw I/Os the
2546 * data will actually be the same in io_abd and
2547 * io_orig_abd, so all we have to do is issue this as
2548 * a raw ARC read.
2550 if (do_raw) {
2551 zio_flags |= ZIO_FLAG_RAW;
2552 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2553 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2554 zio->io_size));
2555 ASSERT3P(zio->io_transform_stack, ==, NULL);
2558 error = arc_read(NULL, spa, &blk,
2559 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2560 zio_flags, &aflags, &zio->io_bookmark);
2562 if (error == 0) {
2563 if (arc_buf_size(abuf) != zio->io_orig_size ||
2564 abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2565 zio->io_orig_size) != 0)
2566 error = SET_ERROR(EEXIST);
2567 arc_buf_destroy(abuf, &abuf);
2570 ddt_enter(ddt);
2571 return (error != 0);
2575 return (B_FALSE);
2578 static void
2579 zio_ddt_child_write_ready(zio_t *zio)
2581 int p = zio->io_prop.zp_copies;
2582 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2583 ddt_entry_t *dde = zio->io_private;
2584 ddt_phys_t *ddp = &dde->dde_phys[p];
2585 zio_t *pio;
2587 if (zio->io_error)
2588 return;
2590 ddt_enter(ddt);
2592 ASSERT(dde->dde_lead_zio[p] == zio);
2594 ddt_phys_fill(ddp, zio->io_bp);
2596 zio_link_t *zl = NULL;
2597 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2598 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2600 ddt_exit(ddt);
2603 static void
2604 zio_ddt_child_write_done(zio_t *zio)
2606 int p = zio->io_prop.zp_copies;
2607 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2608 ddt_entry_t *dde = zio->io_private;
2609 ddt_phys_t *ddp = &dde->dde_phys[p];
2611 ddt_enter(ddt);
2613 ASSERT(ddp->ddp_refcnt == 0);
2614 ASSERT(dde->dde_lead_zio[p] == zio);
2615 dde->dde_lead_zio[p] = NULL;
2617 if (zio->io_error == 0) {
2618 zio_link_t *zl = NULL;
2619 while (zio_walk_parents(zio, &zl) != NULL)
2620 ddt_phys_addref(ddp);
2621 } else {
2622 ddt_phys_clear(ddp);
2625 ddt_exit(ddt);
2628 static void
2629 zio_ddt_ditto_write_done(zio_t *zio)
2631 int p = DDT_PHYS_DITTO;
2632 zio_prop_t *zp = &zio->io_prop;
2633 blkptr_t *bp = zio->io_bp;
2634 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2635 ddt_entry_t *dde = zio->io_private;
2636 ddt_phys_t *ddp = &dde->dde_phys[p];
2637 ddt_key_t *ddk = &dde->dde_key;
2639 ddt_enter(ddt);
2641 ASSERT(ddp->ddp_refcnt == 0);
2642 ASSERT(dde->dde_lead_zio[p] == zio);
2643 dde->dde_lead_zio[p] = NULL;
2645 if (zio->io_error == 0) {
2646 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2647 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2648 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2649 if (ddp->ddp_phys_birth != 0)
2650 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2651 ddt_phys_fill(ddp, bp);
2654 ddt_exit(ddt);
2657 static int
2658 zio_ddt_write(zio_t *zio)
2660 spa_t *spa = zio->io_spa;
2661 blkptr_t *bp = zio->io_bp;
2662 uint64_t txg = zio->io_txg;
2663 zio_prop_t *zp = &zio->io_prop;
2664 int p = zp->zp_copies;
2665 int ditto_copies;
2666 zio_t *cio = NULL;
2667 zio_t *dio = NULL;
2668 ddt_t *ddt = ddt_select(spa, bp);
2669 ddt_entry_t *dde;
2670 ddt_phys_t *ddp;
2672 ASSERT(BP_GET_DEDUP(bp));
2673 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2674 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2675 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2677 ddt_enter(ddt);
2678 dde = ddt_lookup(ddt, bp, B_TRUE);
2679 ddp = &dde->dde_phys[p];
2681 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2683 * If we're using a weak checksum, upgrade to a strong checksum
2684 * and try again. If we're already using a strong checksum,
2685 * we can't resolve it, so just convert to an ordinary write.
2686 * (And automatically e-mail a paper to Nature?)
2688 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2689 ZCHECKSUM_FLAG_DEDUP)) {
2690 zp->zp_checksum = spa_dedup_checksum(spa);
2691 zio_pop_transforms(zio);
2692 zio->io_stage = ZIO_STAGE_OPEN;
2693 BP_ZERO(bp);
2694 } else {
2695 zp->zp_dedup = B_FALSE;
2696 BP_SET_DEDUP(bp, B_FALSE);
2698 ASSERT(!BP_GET_DEDUP(bp));
2699 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2700 ddt_exit(ddt);
2701 return (ZIO_PIPELINE_CONTINUE);
2704 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2705 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2707 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2708 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2709 zio_prop_t czp = *zp;
2711 czp.zp_copies = ditto_copies;
2714 * If we arrived here with an override bp, we won't have run
2715 * the transform stack, so we won't have the data we need to
2716 * generate a child i/o. So, toss the override bp and restart.
2717 * This is safe, because using the override bp is just an
2718 * optimization; and it's rare, so the cost doesn't matter.
2720 if (zio->io_bp_override) {
2721 zio_pop_transforms(zio);
2722 zio->io_stage = ZIO_STAGE_OPEN;
2723 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2724 zio->io_bp_override = NULL;
2725 BP_ZERO(bp);
2726 ddt_exit(ddt);
2727 return (ZIO_PIPELINE_CONTINUE);
2730 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2731 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2732 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2733 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2735 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2736 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2739 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2740 if (ddp->ddp_phys_birth != 0)
2741 ddt_bp_fill(ddp, bp, txg);
2742 if (dde->dde_lead_zio[p] != NULL)
2743 zio_add_child(zio, dde->dde_lead_zio[p]);
2744 else
2745 ddt_phys_addref(ddp);
2746 } else if (zio->io_bp_override) {
2747 ASSERT(bp->blk_birth == txg);
2748 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2749 ddt_phys_fill(ddp, bp);
2750 ddt_phys_addref(ddp);
2751 } else {
2752 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2753 zio->io_orig_size, zio->io_orig_size, zp,
2754 zio_ddt_child_write_ready, NULL, NULL,
2755 zio_ddt_child_write_done, dde, zio->io_priority,
2756 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2758 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2759 dde->dde_lead_zio[p] = cio;
2762 ddt_exit(ddt);
2764 if (cio)
2765 zio_nowait(cio);
2766 if (dio)
2767 zio_nowait(dio);
2769 return (ZIO_PIPELINE_CONTINUE);
2772 ddt_entry_t *freedde; /* for debugging */
2774 static int
2775 zio_ddt_free(zio_t *zio)
2777 spa_t *spa = zio->io_spa;
2778 blkptr_t *bp = zio->io_bp;
2779 ddt_t *ddt = ddt_select(spa, bp);
2780 ddt_entry_t *dde;
2781 ddt_phys_t *ddp;
2783 ASSERT(BP_GET_DEDUP(bp));
2784 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2786 ddt_enter(ddt);
2787 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2788 ddp = ddt_phys_select(dde, bp);
2789 ddt_phys_decref(ddp);
2790 ddt_exit(ddt);
2792 return (ZIO_PIPELINE_CONTINUE);
2796 * ==========================================================================
2797 * Allocate and free blocks
2798 * ==========================================================================
2801 static zio_t *
2802 zio_io_to_allocate(spa_t *spa)
2804 zio_t *zio;
2806 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2808 zio = avl_first(&spa->spa_alloc_tree);
2809 if (zio == NULL)
2810 return (NULL);
2812 ASSERT(IO_IS_ALLOCATING(zio));
2815 * Try to place a reservation for this zio. If we're unable to
2816 * reserve then we throttle.
2818 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2819 zio->io_prop.zp_copies, zio, 0)) {
2820 return (NULL);
2823 avl_remove(&spa->spa_alloc_tree, zio);
2824 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2826 return (zio);
2829 static int
2830 zio_dva_throttle(zio_t *zio)
2832 spa_t *spa = zio->io_spa;
2833 zio_t *nio;
2835 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2836 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2837 zio->io_child_type == ZIO_CHILD_GANG ||
2838 zio->io_flags & ZIO_FLAG_NODATA) {
2839 return (ZIO_PIPELINE_CONTINUE);
2842 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2844 ASSERT3U(zio->io_queued_timestamp, >, 0);
2845 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2847 mutex_enter(&spa->spa_alloc_lock);
2849 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2850 avl_add(&spa->spa_alloc_tree, zio);
2852 nio = zio_io_to_allocate(zio->io_spa);
2853 mutex_exit(&spa->spa_alloc_lock);
2855 if (nio == zio)
2856 return (ZIO_PIPELINE_CONTINUE);
2858 if (nio != NULL) {
2859 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2861 * We are passing control to a new zio so make sure that
2862 * it is processed by a different thread. We do this to
2863 * avoid stack overflows that can occur when parents are
2864 * throttled and children are making progress. We allow
2865 * it to go to the head of the taskq since it's already
2866 * been waiting.
2868 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2870 return (ZIO_PIPELINE_STOP);
2873 void
2874 zio_allocate_dispatch(spa_t *spa)
2876 zio_t *zio;
2878 mutex_enter(&spa->spa_alloc_lock);
2879 zio = zio_io_to_allocate(spa);
2880 mutex_exit(&spa->spa_alloc_lock);
2881 if (zio == NULL)
2882 return;
2884 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2885 ASSERT0(zio->io_error);
2886 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2889 static int
2890 zio_dva_allocate(zio_t *zio)
2892 spa_t *spa = zio->io_spa;
2893 metaslab_class_t *mc = spa_normal_class(spa);
2894 blkptr_t *bp = zio->io_bp;
2895 int error;
2896 int flags = 0;
2898 if (zio->io_gang_leader == NULL) {
2899 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2900 zio->io_gang_leader = zio;
2903 ASSERT(BP_IS_HOLE(bp));
2904 ASSERT0(BP_GET_NDVAS(bp));
2905 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2906 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2907 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2909 if (zio->io_flags & ZIO_FLAG_NODATA) {
2910 flags |= METASLAB_DONT_THROTTLE;
2912 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2913 flags |= METASLAB_GANG_CHILD;
2915 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2916 flags |= METASLAB_ASYNC_ALLOC;
2919 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2920 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2921 &zio->io_alloc_list, zio);
2923 if (error != 0) {
2924 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2925 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2926 error);
2927 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2928 return (zio_write_gang_block(zio));
2929 zio->io_error = error;
2932 return (ZIO_PIPELINE_CONTINUE);
2935 static int
2936 zio_dva_free(zio_t *zio)
2938 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2940 return (ZIO_PIPELINE_CONTINUE);
2943 static int
2944 zio_dva_claim(zio_t *zio)
2946 int error;
2948 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2949 if (error)
2950 zio->io_error = error;
2952 return (ZIO_PIPELINE_CONTINUE);
2956 * Undo an allocation. This is used by zio_done() when an I/O fails
2957 * and we want to give back the block we just allocated.
2958 * This handles both normal blocks and gang blocks.
2960 static void
2961 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2963 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2964 ASSERT(zio->io_bp_override == NULL);
2966 if (!BP_IS_HOLE(bp))
2967 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2969 if (gn != NULL) {
2970 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2971 zio_dva_unallocate(zio, gn->gn_child[g],
2972 &gn->gn_gbh->zg_blkptr[g]);
2978 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2981 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2982 uint64_t size, boolean_t *slog)
2984 int error = 1;
2985 zio_alloc_list_t io_alloc_list;
2987 ASSERT(txg > spa_syncing_txg(spa));
2989 metaslab_trace_init(&io_alloc_list);
2990 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2991 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2992 if (error == 0) {
2993 *slog = TRUE;
2994 } else {
2995 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2996 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2997 &io_alloc_list, NULL);
2998 if (error == 0)
2999 *slog = FALSE;
3001 metaslab_trace_fini(&io_alloc_list);
3003 if (error == 0) {
3004 BP_SET_LSIZE(new_bp, size);
3005 BP_SET_PSIZE(new_bp, size);
3006 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3007 BP_SET_CHECKSUM(new_bp,
3008 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3009 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3010 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3011 BP_SET_LEVEL(new_bp, 0);
3012 BP_SET_DEDUP(new_bp, 0);
3013 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3014 } else {
3015 zfs_dbgmsg("%s: zil block allocation failure: "
3016 "size %llu, error %d", spa_name(spa), size, error);
3019 return (error);
3023 * Free an intent log block.
3025 void
3026 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3028 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3029 ASSERT(!BP_IS_GANG(bp));
3031 zio_free(spa, txg, bp);
3035 * ==========================================================================
3036 * Read and write to physical devices
3037 * ==========================================================================
3042 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3043 * stops after this stage and will resume upon I/O completion.
3044 * However, there are instances where the vdev layer may need to
3045 * continue the pipeline when an I/O was not issued. Since the I/O
3046 * that was sent to the vdev layer might be different than the one
3047 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3048 * force the underlying vdev layers to call either zio_execute() or
3049 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3051 static int
3052 zio_vdev_io_start(zio_t *zio)
3054 vdev_t *vd = zio->io_vd;
3055 uint64_t align;
3056 spa_t *spa = zio->io_spa;
3058 ASSERT(zio->io_error == 0);
3059 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3061 if (vd == NULL) {
3062 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3063 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3066 * The mirror_ops handle multiple DVAs in a single BP.
3068 vdev_mirror_ops.vdev_op_io_start(zio);
3069 return (ZIO_PIPELINE_STOP);
3072 ASSERT3P(zio->io_logical, !=, zio);
3073 if (zio->io_type == ZIO_TYPE_WRITE) {
3074 ASSERT(spa->spa_trust_config);
3076 if (zio->io_vd->vdev_removing) {
3077 ASSERT(zio->io_flags &
3078 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3079 ZIO_FLAG_INDUCE_DAMAGE));
3084 * We keep track of time-sensitive I/Os so that the scan thread
3085 * can quickly react to certain workloads. In particular, we care
3086 * about non-scrubbing, top-level reads and writes with the following
3087 * characteristics:
3088 * - synchronous writes of user data to non-slog devices
3089 * - any reads of user data
3090 * When these conditions are met, adjust the timestamp of spa_last_io
3091 * which allows the scan thread to adjust its workload accordingly.
3093 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3094 vd == vd->vdev_top && !vd->vdev_islog &&
3095 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3096 zio->io_txg != spa_syncing_txg(spa)) {
3097 uint64_t old = spa->spa_last_io;
3098 uint64_t new = ddi_get_lbolt64();
3099 if (old != new)
3100 (void) atomic_cas_64(&spa->spa_last_io, old, new);
3103 align = 1ULL << vd->vdev_top->vdev_ashift;
3105 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3106 P2PHASE(zio->io_size, align) != 0) {
3107 /* Transform logical writes to be a full physical block size. */
3108 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3109 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3110 ASSERT(vd == vd->vdev_top);
3111 if (zio->io_type == ZIO_TYPE_WRITE) {
3112 abd_copy(abuf, zio->io_abd, zio->io_size);
3113 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3115 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3119 * If this is not a physical io, make sure that it is properly aligned
3120 * before proceeding.
3122 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3123 ASSERT0(P2PHASE(zio->io_offset, align));
3124 ASSERT0(P2PHASE(zio->io_size, align));
3125 } else {
3127 * For physical writes, we allow 512b aligned writes and assume
3128 * the device will perform a read-modify-write as necessary.
3130 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3131 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3134 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3137 * If this is a repair I/O, and there's no self-healing involved --
3138 * that is, we're just resilvering what we expect to resilver --
3139 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3140 * This prevents spurious resilvering with nested replication.
3141 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3142 * A is out of date, we'll read from C+D, then use the data to
3143 * resilver A+B -- but we don't actually want to resilver B, just A.
3144 * The top-level mirror has no way to know this, so instead we just
3145 * discard unnecessary repairs as we work our way down the vdev tree.
3146 * The same logic applies to any form of nested replication:
3147 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3149 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3150 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3151 zio->io_txg != 0 && /* not a delegated i/o */
3152 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3153 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3154 zio_vdev_io_bypass(zio);
3155 return (ZIO_PIPELINE_CONTINUE);
3158 if (vd->vdev_ops->vdev_op_leaf &&
3159 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3161 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3162 return (ZIO_PIPELINE_CONTINUE);
3164 if ((zio = vdev_queue_io(zio)) == NULL)
3165 return (ZIO_PIPELINE_STOP);
3167 if (!vdev_accessible(vd, zio)) {
3168 zio->io_error = SET_ERROR(ENXIO);
3169 zio_interrupt(zio);
3170 return (ZIO_PIPELINE_STOP);
3174 vd->vdev_ops->vdev_op_io_start(zio);
3175 return (ZIO_PIPELINE_STOP);
3178 static int
3179 zio_vdev_io_done(zio_t *zio)
3181 vdev_t *vd = zio->io_vd;
3182 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3183 boolean_t unexpected_error = B_FALSE;
3185 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3186 return (ZIO_PIPELINE_STOP);
3188 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3190 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3192 vdev_queue_io_done(zio);
3194 if (zio->io_type == ZIO_TYPE_WRITE)
3195 vdev_cache_write(zio);
3197 if (zio_injection_enabled && zio->io_error == 0)
3198 zio->io_error = zio_handle_device_injection(vd,
3199 zio, EIO);
3201 if (zio_injection_enabled && zio->io_error == 0)
3202 zio->io_error = zio_handle_label_injection(zio, EIO);
3204 if (zio->io_error) {
3205 if (!vdev_accessible(vd, zio)) {
3206 zio->io_error = SET_ERROR(ENXIO);
3207 } else {
3208 unexpected_error = B_TRUE;
3213 ops->vdev_op_io_done(zio);
3215 if (unexpected_error)
3216 VERIFY(vdev_probe(vd, zio) == NULL);
3218 return (ZIO_PIPELINE_CONTINUE);
3222 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3223 * disk, and use that to finish the checksum ereport later.
3225 static void
3226 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3227 const void *good_buf)
3229 /* no processing needed */
3230 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3233 /*ARGSUSED*/
3234 void
3235 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3237 void *buf = zio_buf_alloc(zio->io_size);
3239 abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3241 zcr->zcr_cbinfo = zio->io_size;
3242 zcr->zcr_cbdata = buf;
3243 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3244 zcr->zcr_free = zio_buf_free;
3247 static int
3248 zio_vdev_io_assess(zio_t *zio)
3250 vdev_t *vd = zio->io_vd;
3252 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3253 return (ZIO_PIPELINE_STOP);
3255 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3256 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3258 if (zio->io_vsd != NULL) {
3259 zio->io_vsd_ops->vsd_free(zio);
3260 zio->io_vsd = NULL;
3263 if (zio_injection_enabled && zio->io_error == 0)
3264 zio->io_error = zio_handle_fault_injection(zio, EIO);
3267 * If the I/O failed, determine whether we should attempt to retry it.
3269 * On retry, we cut in line in the issue queue, since we don't want
3270 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3272 if (zio->io_error && vd == NULL &&
3273 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3274 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3275 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3276 zio->io_error = 0;
3277 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3278 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3279 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3280 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3281 zio_requeue_io_start_cut_in_line);
3282 return (ZIO_PIPELINE_STOP);
3286 * If we got an error on a leaf device, convert it to ENXIO
3287 * if the device is not accessible at all.
3289 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3290 !vdev_accessible(vd, zio))
3291 zio->io_error = SET_ERROR(ENXIO);
3294 * If we can't write to an interior vdev (mirror or RAID-Z),
3295 * set vdev_cant_write so that we stop trying to allocate from it.
3297 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3298 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3299 vd->vdev_cant_write = B_TRUE;
3303 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3304 * attempts will ever succeed. In this case we set a persistent bit so
3305 * that we don't bother with it in the future.
3307 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3308 zio->io_type == ZIO_TYPE_IOCTL &&
3309 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3310 vd->vdev_nowritecache = B_TRUE;
3312 if (zio->io_error)
3313 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3315 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3316 zio->io_physdone != NULL) {
3317 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3318 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3319 zio->io_physdone(zio->io_logical);
3322 return (ZIO_PIPELINE_CONTINUE);
3325 void
3326 zio_vdev_io_reissue(zio_t *zio)
3328 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3329 ASSERT(zio->io_error == 0);
3331 zio->io_stage >>= 1;
3334 void
3335 zio_vdev_io_redone(zio_t *zio)
3337 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3339 zio->io_stage >>= 1;
3342 void
3343 zio_vdev_io_bypass(zio_t *zio)
3345 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3346 ASSERT(zio->io_error == 0);
3348 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3349 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3353 * ==========================================================================
3354 * Generate and verify checksums
3355 * ==========================================================================
3357 static int
3358 zio_checksum_generate(zio_t *zio)
3360 blkptr_t *bp = zio->io_bp;
3361 enum zio_checksum checksum;
3363 if (bp == NULL) {
3365 * This is zio_write_phys().
3366 * We're either generating a label checksum, or none at all.
3368 checksum = zio->io_prop.zp_checksum;
3370 if (checksum == ZIO_CHECKSUM_OFF)
3371 return (ZIO_PIPELINE_CONTINUE);
3373 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3374 } else {
3375 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3376 ASSERT(!IO_IS_ALLOCATING(zio));
3377 checksum = ZIO_CHECKSUM_GANG_HEADER;
3378 } else {
3379 checksum = BP_GET_CHECKSUM(bp);
3383 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3385 return (ZIO_PIPELINE_CONTINUE);
3388 static int
3389 zio_checksum_verify(zio_t *zio)
3391 zio_bad_cksum_t info;
3392 blkptr_t *bp = zio->io_bp;
3393 int error;
3395 ASSERT(zio->io_vd != NULL);
3397 if (bp == NULL) {
3399 * This is zio_read_phys().
3400 * We're either verifying a label checksum, or nothing at all.
3402 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3403 return (ZIO_PIPELINE_CONTINUE);
3405 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3408 if ((error = zio_checksum_error(zio, &info)) != 0) {
3409 zio->io_error = error;
3410 if (error == ECKSUM &&
3411 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3412 zfs_ereport_start_checksum(zio->io_spa,
3413 zio->io_vd, zio, zio->io_offset,
3414 zio->io_size, NULL, &info);
3418 return (ZIO_PIPELINE_CONTINUE);
3422 * Called by RAID-Z to ensure we don't compute the checksum twice.
3424 void
3425 zio_checksum_verified(zio_t *zio)
3427 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3431 * ==========================================================================
3432 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3433 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3434 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3435 * indicate errors that are specific to one I/O, and most likely permanent.
3436 * Any other error is presumed to be worse because we weren't expecting it.
3437 * ==========================================================================
3440 zio_worst_error(int e1, int e2)
3442 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3443 int r1, r2;
3445 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3446 if (e1 == zio_error_rank[r1])
3447 break;
3449 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3450 if (e2 == zio_error_rank[r2])
3451 break;
3453 return (r1 > r2 ? e1 : e2);
3457 * ==========================================================================
3458 * I/O completion
3459 * ==========================================================================
3461 static int
3462 zio_ready(zio_t *zio)
3464 blkptr_t *bp = zio->io_bp;
3465 zio_t *pio, *pio_next;
3466 zio_link_t *zl = NULL;
3468 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3469 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3470 return (ZIO_PIPELINE_STOP);
3472 if (zio->io_ready) {
3473 ASSERT(IO_IS_ALLOCATING(zio));
3474 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3475 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3476 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3478 zio->io_ready(zio);
3481 if (bp != NULL && bp != &zio->io_bp_copy)
3482 zio->io_bp_copy = *bp;
3484 if (zio->io_error != 0) {
3485 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3487 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3488 ASSERT(IO_IS_ALLOCATING(zio));
3489 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3491 * We were unable to allocate anything, unreserve and
3492 * issue the next I/O to allocate.
3494 metaslab_class_throttle_unreserve(
3495 spa_normal_class(zio->io_spa),
3496 zio->io_prop.zp_copies, zio);
3497 zio_allocate_dispatch(zio->io_spa);
3501 mutex_enter(&zio->io_lock);
3502 zio->io_state[ZIO_WAIT_READY] = 1;
3503 pio = zio_walk_parents(zio, &zl);
3504 mutex_exit(&zio->io_lock);
3507 * As we notify zio's parents, new parents could be added.
3508 * New parents go to the head of zio's io_parent_list, however,
3509 * so we will (correctly) not notify them. The remainder of zio's
3510 * io_parent_list, from 'pio_next' onward, cannot change because
3511 * all parents must wait for us to be done before they can be done.
3513 for (; pio != NULL; pio = pio_next) {
3514 pio_next = zio_walk_parents(zio, &zl);
3515 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3518 if (zio->io_flags & ZIO_FLAG_NODATA) {
3519 if (BP_IS_GANG(bp)) {
3520 zio->io_flags &= ~ZIO_FLAG_NODATA;
3521 } else {
3522 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3523 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3527 if (zio_injection_enabled &&
3528 zio->io_spa->spa_syncing_txg == zio->io_txg)
3529 zio_handle_ignored_writes(zio);
3531 return (ZIO_PIPELINE_CONTINUE);
3535 * Update the allocation throttle accounting.
3537 static void
3538 zio_dva_throttle_done(zio_t *zio)
3540 zio_t *lio = zio->io_logical;
3541 zio_t *pio = zio_unique_parent(zio);
3542 vdev_t *vd = zio->io_vd;
3543 int flags = METASLAB_ASYNC_ALLOC;
3545 ASSERT3P(zio->io_bp, !=, NULL);
3546 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3547 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3548 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3549 ASSERT(vd != NULL);
3550 ASSERT3P(vd, ==, vd->vdev_top);
3551 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3552 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3553 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3554 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3557 * Parents of gang children can have two flavors -- ones that
3558 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3559 * and ones that allocated the constituent blocks. The allocation
3560 * throttle needs to know the allocating parent zio so we must find
3561 * it here.
3563 if (pio->io_child_type == ZIO_CHILD_GANG) {
3565 * If our parent is a rewrite gang child then our grandparent
3566 * would have been the one that performed the allocation.
3568 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3569 pio = zio_unique_parent(pio);
3570 flags |= METASLAB_GANG_CHILD;
3573 ASSERT(IO_IS_ALLOCATING(pio));
3574 ASSERT3P(zio, !=, zio->io_logical);
3575 ASSERT(zio->io_logical != NULL);
3576 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3577 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3579 mutex_enter(&pio->io_lock);
3580 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3581 mutex_exit(&pio->io_lock);
3583 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3584 1, pio);
3587 * Call into the pipeline to see if there is more work that
3588 * needs to be done. If there is work to be done it will be
3589 * dispatched to another taskq thread.
3591 zio_allocate_dispatch(zio->io_spa);
3594 static int
3595 zio_done(zio_t *zio)
3597 spa_t *spa = zio->io_spa;
3598 zio_t *lio = zio->io_logical;
3599 blkptr_t *bp = zio->io_bp;
3600 vdev_t *vd = zio->io_vd;
3601 uint64_t psize = zio->io_size;
3602 zio_t *pio, *pio_next;
3603 metaslab_class_t *mc = spa_normal_class(spa);
3604 zio_link_t *zl = NULL;
3607 * If our children haven't all completed,
3608 * wait for them and then repeat this pipeline stage.
3610 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3611 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3612 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3613 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3614 return (ZIO_PIPELINE_STOP);
3617 * If the allocation throttle is enabled, then update the accounting.
3618 * We only track child I/Os that are part of an allocating async
3619 * write. We must do this since the allocation is performed
3620 * by the logical I/O but the actual write is done by child I/Os.
3622 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3623 zio->io_child_type == ZIO_CHILD_VDEV) {
3624 ASSERT(mc->mc_alloc_throttle_enabled);
3625 zio_dva_throttle_done(zio);
3629 * If the allocation throttle is enabled, verify that
3630 * we have decremented the refcounts for every I/O that was throttled.
3632 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3633 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3634 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3635 ASSERT(bp != NULL);
3636 metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3637 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3640 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3641 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3642 ASSERT(zio->io_children[c][w] == 0);
3644 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3645 ASSERT(bp->blk_pad[0] == 0);
3646 ASSERT(bp->blk_pad[1] == 0);
3647 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3648 (bp == zio_unique_parent(zio)->io_bp));
3649 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3650 zio->io_bp_override == NULL &&
3651 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3652 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3653 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3654 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3655 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3657 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3658 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3662 * If there were child vdev/gang/ddt errors, they apply to us now.
3664 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3665 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3666 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3669 * If the I/O on the transformed data was successful, generate any
3670 * checksum reports now while we still have the transformed data.
3672 if (zio->io_error == 0) {
3673 while (zio->io_cksum_report != NULL) {
3674 zio_cksum_report_t *zcr = zio->io_cksum_report;
3675 uint64_t align = zcr->zcr_align;
3676 uint64_t asize = P2ROUNDUP(psize, align);
3677 char *abuf = NULL;
3678 abd_t *adata = zio->io_abd;
3680 if (asize != psize) {
3681 adata = abd_alloc_linear(asize, B_TRUE);
3682 abd_copy(adata, zio->io_abd, psize);
3683 abd_zero_off(adata, psize, asize - psize);
3686 if (adata != NULL)
3687 abuf = abd_borrow_buf_copy(adata, asize);
3689 zio->io_cksum_report = zcr->zcr_next;
3690 zcr->zcr_next = NULL;
3691 zcr->zcr_finish(zcr, abuf);
3692 zfs_ereport_free_checksum(zcr);
3694 if (adata != NULL)
3695 abd_return_buf(adata, abuf, asize);
3697 if (asize != psize)
3698 abd_free(adata);
3702 zio_pop_transforms(zio); /* note: may set zio->io_error */
3704 vdev_stat_update(zio, psize);
3706 if (zio->io_error) {
3708 * If this I/O is attached to a particular vdev,
3709 * generate an error message describing the I/O failure
3710 * at the block level. We ignore these errors if the
3711 * device is currently unavailable.
3713 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3714 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3716 if ((zio->io_error == EIO || !(zio->io_flags &
3717 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3718 zio == lio) {
3720 * For logical I/O requests, tell the SPA to log the
3721 * error and generate a logical data ereport.
3723 spa_log_error(spa, zio);
3724 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3725 0, 0);
3729 if (zio->io_error && zio == lio) {
3731 * Determine whether zio should be reexecuted. This will
3732 * propagate all the way to the root via zio_notify_parent().
3734 ASSERT(vd == NULL && bp != NULL);
3735 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3737 if (IO_IS_ALLOCATING(zio) &&
3738 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3739 if (zio->io_error != ENOSPC)
3740 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3741 else
3742 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3745 if ((zio->io_type == ZIO_TYPE_READ ||
3746 zio->io_type == ZIO_TYPE_FREE) &&
3747 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3748 zio->io_error == ENXIO &&
3749 spa_load_state(spa) == SPA_LOAD_NONE &&
3750 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3751 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3753 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3754 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3757 * Here is a possibly good place to attempt to do
3758 * either combinatorial reconstruction or error correction
3759 * based on checksums. It also might be a good place
3760 * to send out preliminary ereports before we suspend
3761 * processing.
3766 * If there were logical child errors, they apply to us now.
3767 * We defer this until now to avoid conflating logical child
3768 * errors with errors that happened to the zio itself when
3769 * updating vdev stats and reporting FMA events above.
3771 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3773 if ((zio->io_error || zio->io_reexecute) &&
3774 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3775 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3776 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3778 zio_gang_tree_free(&zio->io_gang_tree);
3781 * Godfather I/Os should never suspend.
3783 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3784 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3785 zio->io_reexecute = 0;
3787 if (zio->io_reexecute) {
3789 * This is a logical I/O that wants to reexecute.
3791 * Reexecute is top-down. When an i/o fails, if it's not
3792 * the root, it simply notifies its parent and sticks around.
3793 * The parent, seeing that it still has children in zio_done(),
3794 * does the same. This percolates all the way up to the root.
3795 * The root i/o will reexecute or suspend the entire tree.
3797 * This approach ensures that zio_reexecute() honors
3798 * all the original i/o dependency relationships, e.g.
3799 * parents not executing until children are ready.
3801 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3803 zio->io_gang_leader = NULL;
3805 mutex_enter(&zio->io_lock);
3806 zio->io_state[ZIO_WAIT_DONE] = 1;
3807 mutex_exit(&zio->io_lock);
3810 * "The Godfather" I/O monitors its children but is
3811 * not a true parent to them. It will track them through
3812 * the pipeline but severs its ties whenever they get into
3813 * trouble (e.g. suspended). This allows "The Godfather"
3814 * I/O to return status without blocking.
3816 zl = NULL;
3817 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3818 pio = pio_next) {
3819 zio_link_t *remove_zl = zl;
3820 pio_next = zio_walk_parents(zio, &zl);
3822 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3823 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3824 zio_remove_child(pio, zio, remove_zl);
3825 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3829 if ((pio = zio_unique_parent(zio)) != NULL) {
3831 * We're not a root i/o, so there's nothing to do
3832 * but notify our parent. Don't propagate errors
3833 * upward since we haven't permanently failed yet.
3835 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3836 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3837 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3838 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3840 * We'd fail again if we reexecuted now, so suspend
3841 * until conditions improve (e.g. device comes online).
3843 zio_suspend(spa, zio);
3844 } else {
3846 * Reexecution is potentially a huge amount of work.
3847 * Hand it off to the otherwise-unused claim taskq.
3849 ASSERT(zio->io_tqent.tqent_next == NULL);
3850 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3851 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3852 0, &zio->io_tqent);
3854 return (ZIO_PIPELINE_STOP);
3857 ASSERT(zio->io_child_count == 0);
3858 ASSERT(zio->io_reexecute == 0);
3859 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3862 * Report any checksum errors, since the I/O is complete.
3864 while (zio->io_cksum_report != NULL) {
3865 zio_cksum_report_t *zcr = zio->io_cksum_report;
3866 zio->io_cksum_report = zcr->zcr_next;
3867 zcr->zcr_next = NULL;
3868 zcr->zcr_finish(zcr, NULL);
3869 zfs_ereport_free_checksum(zcr);
3873 * It is the responsibility of the done callback to ensure that this
3874 * particular zio is no longer discoverable for adoption, and as
3875 * such, cannot acquire any new parents.
3877 if (zio->io_done)
3878 zio->io_done(zio);
3880 mutex_enter(&zio->io_lock);
3881 zio->io_state[ZIO_WAIT_DONE] = 1;
3882 mutex_exit(&zio->io_lock);
3884 zl = NULL;
3885 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3886 zio_link_t *remove_zl = zl;
3887 pio_next = zio_walk_parents(zio, &zl);
3888 zio_remove_child(pio, zio, remove_zl);
3889 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3892 if (zio->io_waiter != NULL) {
3893 mutex_enter(&zio->io_lock);
3894 zio->io_executor = NULL;
3895 cv_broadcast(&zio->io_cv);
3896 mutex_exit(&zio->io_lock);
3897 } else {
3898 zio_destroy(zio);
3901 return (ZIO_PIPELINE_STOP);
3905 * ==========================================================================
3906 * I/O pipeline definition
3907 * ==========================================================================
3909 static zio_pipe_stage_t *zio_pipeline[] = {
3910 NULL,
3911 zio_read_bp_init,
3912 zio_write_bp_init,
3913 zio_free_bp_init,
3914 zio_issue_async,
3915 zio_write_compress,
3916 zio_checksum_generate,
3917 zio_nop_write,
3918 zio_ddt_read_start,
3919 zio_ddt_read_done,
3920 zio_ddt_write,
3921 zio_ddt_free,
3922 zio_gang_assemble,
3923 zio_gang_issue,
3924 zio_dva_throttle,
3925 zio_dva_allocate,
3926 zio_dva_free,
3927 zio_dva_claim,
3928 zio_ready,
3929 zio_vdev_io_start,
3930 zio_vdev_io_done,
3931 zio_vdev_io_assess,
3932 zio_checksum_verify,
3933 zio_done
3940 * Compare two zbookmark_phys_t's to see which we would reach first in a
3941 * pre-order traversal of the object tree.
3943 * This is simple in every case aside from the meta-dnode object. For all other
3944 * objects, we traverse them in order (object 1 before object 2, and so on).
3945 * However, all of these objects are traversed while traversing object 0, since
3946 * the data it points to is the list of objects. Thus, we need to convert to a
3947 * canonical representation so we can compare meta-dnode bookmarks to
3948 * non-meta-dnode bookmarks.
3950 * We do this by calculating "equivalents" for each field of the zbookmark.
3951 * zbookmarks outside of the meta-dnode use their own object and level, and
3952 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3953 * blocks this bookmark refers to) by multiplying their blkid by their span
3954 * (the number of L0 blocks contained within one block at their level).
3955 * zbookmarks inside the meta-dnode calculate their object equivalent
3956 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3957 * level + 1<<31 (any value larger than a level could ever be) for their level.
3958 * This causes them to always compare before a bookmark in their object
3959 * equivalent, compare appropriately to bookmarks in other objects, and to
3960 * compare appropriately to other bookmarks in the meta-dnode.
3963 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3964 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3967 * These variables represent the "equivalent" values for the zbookmark,
3968 * after converting zbookmarks inside the meta dnode to their
3969 * normal-object equivalents.
3971 uint64_t zb1obj, zb2obj;
3972 uint64_t zb1L0, zb2L0;
3973 uint64_t zb1level, zb2level;
3975 if (zb1->zb_object == zb2->zb_object &&
3976 zb1->zb_level == zb2->zb_level &&
3977 zb1->zb_blkid == zb2->zb_blkid)
3978 return (0);
3981 * BP_SPANB calculates the span in blocks.
3983 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3984 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3986 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3987 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3988 zb1L0 = 0;
3989 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3990 } else {
3991 zb1obj = zb1->zb_object;
3992 zb1level = zb1->zb_level;
3995 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3996 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3997 zb2L0 = 0;
3998 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3999 } else {
4000 zb2obj = zb2->zb_object;
4001 zb2level = zb2->zb_level;
4004 /* Now that we have a canonical representation, do the comparison. */
4005 if (zb1obj != zb2obj)
4006 return (zb1obj < zb2obj ? -1 : 1);
4007 else if (zb1L0 != zb2L0)
4008 return (zb1L0 < zb2L0 ? -1 : 1);
4009 else if (zb1level != zb2level)
4010 return (zb1level > zb2level ? -1 : 1);
4012 * This can (theoretically) happen if the bookmarks have the same object
4013 * and level, but different blkids, if the block sizes are not the same.
4014 * There is presently no way to change the indirect block sizes
4016 return (0);
4020 * This function checks the following: given that last_block is the place that
4021 * our traversal stopped last time, does that guarantee that we've visited
4022 * every node under subtree_root? Therefore, we can't just use the raw output
4023 * of zbookmark_compare. We have to pass in a modified version of
4024 * subtree_root; by incrementing the block id, and then checking whether
4025 * last_block is before or equal to that, we can tell whether or not having
4026 * visited last_block implies that all of subtree_root's children have been
4027 * visited.
4029 boolean_t
4030 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4031 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4033 zbookmark_phys_t mod_zb = *subtree_root;
4034 mod_zb.zb_blkid++;
4035 ASSERT(last_block->zb_level == 0);
4037 /* The objset_phys_t isn't before anything. */
4038 if (dnp == NULL)
4039 return (B_FALSE);
4042 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4043 * data block size in sectors, because that variable is only used if
4044 * the bookmark refers to a block in the meta-dnode. Since we don't
4045 * know without examining it what object it refers to, and there's no
4046 * harm in passing in this value in other cases, we always pass it in.
4048 * We pass in 0 for the indirect block size shift because zb2 must be
4049 * level 0. The indirect block size is only used to calculate the span
4050 * of the bookmark, but since the bookmark must be level 0, the span is
4051 * always 1, so the math works out.
4053 * If you make changes to how the zbookmark_compare code works, be sure
4054 * to make sure that this code still works afterwards.
4056 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4057 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4058 last_block) <= 0);