7614 zfs device evacuation/removal
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
blob4fc98476102cb8d13b8ba731c823aba66d2dcca6
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright 2017 Joyent, Inc.
31 * Copyright (c) 2017 Datto Inc.
35 * SPA: Storage Pool Allocator
37 * This file contains all the routines used when modifying on-disk SPA state.
38 * This includes opening, importing, destroying, exporting a pool, and syncing a
39 * pool.
42 #include <sys/zfs_context.h>
43 #include <sys/fm/fs/zfs.h>
44 #include <sys/spa_impl.h>
45 #include <sys/zio.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_tx.h>
49 #include <sys/zap.h>
50 #include <sys/zil.h>
51 #include <sys/ddt.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/vdev_removal.h>
54 #include <sys/vdev_indirect_mapping.h>
55 #include <sys/vdev_indirect_births.h>
56 #include <sys/metaslab.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/uberblock_impl.h>
59 #include <sys/txg.h>
60 #include <sys/avl.h>
61 #include <sys/bpobj.h>
62 #include <sys/dmu_traverse.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/unique.h>
65 #include <sys/dsl_pool.h>
66 #include <sys/dsl_dataset.h>
67 #include <sys/dsl_dir.h>
68 #include <sys/dsl_prop.h>
69 #include <sys/dsl_synctask.h>
70 #include <sys/fs/zfs.h>
71 #include <sys/arc.h>
72 #include <sys/callb.h>
73 #include <sys/systeminfo.h>
74 #include <sys/spa_boot.h>
75 #include <sys/zfs_ioctl.h>
76 #include <sys/dsl_scan.h>
77 #include <sys/zfeature.h>
78 #include <sys/dsl_destroy.h>
79 #include <sys/abd.h>
81 #ifdef _KERNEL
82 #include <sys/bootprops.h>
83 #include <sys/callb.h>
84 #include <sys/cpupart.h>
85 #include <sys/pool.h>
86 #include <sys/sysdc.h>
87 #include <sys/zone.h>
88 #endif /* _KERNEL */
90 #include "zfs_prop.h"
91 #include "zfs_comutil.h"
94 * The interval, in seconds, at which failed configuration cache file writes
95 * should be retried.
97 int zfs_ccw_retry_interval = 300;
99 typedef enum zti_modes {
100 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
101 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
102 ZTI_MODE_NULL, /* don't create a taskq */
103 ZTI_NMODES
104 } zti_modes_t;
106 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
107 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
108 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
110 #define ZTI_N(n) ZTI_P(n, 1)
111 #define ZTI_ONE ZTI_N(1)
113 typedef struct zio_taskq_info {
114 zti_modes_t zti_mode;
115 uint_t zti_value;
116 uint_t zti_count;
117 } zio_taskq_info_t;
119 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
120 "issue", "issue_high", "intr", "intr_high"
124 * This table defines the taskq settings for each ZFS I/O type. When
125 * initializing a pool, we use this table to create an appropriately sized
126 * taskq. Some operations are low volume and therefore have a small, static
127 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
128 * macros. Other operations process a large amount of data; the ZTI_BATCH
129 * macro causes us to create a taskq oriented for throughput. Some operations
130 * are so high frequency and short-lived that the taskq itself can become a a
131 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
132 * additional degree of parallelism specified by the number of threads per-
133 * taskq and the number of taskqs; when dispatching an event in this case, the
134 * particular taskq is chosen at random.
136 * The different taskq priorities are to handle the different contexts (issue
137 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
138 * need to be handled with minimum delay.
140 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
141 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
142 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
143 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
144 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
145 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
146 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
147 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
150 static void spa_sync_version(void *arg, dmu_tx_t *tx);
151 static void spa_sync_props(void *arg, dmu_tx_t *tx);
152 static boolean_t spa_has_active_shared_spare(spa_t *spa);
153 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
154 spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
155 char **ereport);
156 static void spa_vdev_resilver_done(spa_t *spa);
158 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
159 id_t zio_taskq_psrset_bind = PS_NONE;
160 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
161 uint_t zio_taskq_basedc = 80; /* base duty cycle */
163 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
164 extern int zfs_sync_pass_deferred_free;
167 * This (illegal) pool name is used when temporarily importing a spa_t in order
168 * to get the vdev stats associated with the imported devices.
170 #define TRYIMPORT_NAME "$import"
173 * ==========================================================================
174 * SPA properties routines
175 * ==========================================================================
179 * Add a (source=src, propname=propval) list to an nvlist.
181 static void
182 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
183 uint64_t intval, zprop_source_t src)
185 const char *propname = zpool_prop_to_name(prop);
186 nvlist_t *propval;
188 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
189 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
191 if (strval != NULL)
192 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
193 else
194 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
196 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
197 nvlist_free(propval);
201 * Get property values from the spa configuration.
203 static void
204 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
206 vdev_t *rvd = spa->spa_root_vdev;
207 dsl_pool_t *pool = spa->spa_dsl_pool;
208 uint64_t size, alloc, cap, version;
209 zprop_source_t src = ZPROP_SRC_NONE;
210 spa_config_dirent_t *dp;
211 metaslab_class_t *mc = spa_normal_class(spa);
213 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
215 if (rvd != NULL) {
216 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
217 size = metaslab_class_get_space(spa_normal_class(spa));
218 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
219 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
220 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
221 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
222 size - alloc, src);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
225 metaslab_class_fragmentation(mc), src);
226 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
227 metaslab_class_expandable_space(mc), src);
228 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
229 (spa_mode(spa) == FREAD), src);
231 cap = (size == 0) ? 0 : (alloc * 100 / size);
232 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
234 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
235 ddt_get_pool_dedup_ratio(spa), src);
237 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
238 rvd->vdev_state, src);
240 version = spa_version(spa);
241 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
242 src = ZPROP_SRC_DEFAULT;
243 else
244 src = ZPROP_SRC_LOCAL;
245 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
248 if (pool != NULL) {
250 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
251 * when opening pools before this version freedir will be NULL.
253 if (pool->dp_free_dir != NULL) {
254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
255 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
256 src);
257 } else {
258 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
259 NULL, 0, src);
262 if (pool->dp_leak_dir != NULL) {
263 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
264 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
265 src);
266 } else {
267 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
268 NULL, 0, src);
272 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
274 if (spa->spa_comment != NULL) {
275 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
276 0, ZPROP_SRC_LOCAL);
279 if (spa->spa_root != NULL)
280 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
281 0, ZPROP_SRC_LOCAL);
283 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
284 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
285 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
286 } else {
287 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
288 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
291 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
292 if (dp->scd_path == NULL) {
293 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
294 "none", 0, ZPROP_SRC_LOCAL);
295 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
296 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
297 dp->scd_path, 0, ZPROP_SRC_LOCAL);
303 * Get zpool property values.
306 spa_prop_get(spa_t *spa, nvlist_t **nvp)
308 objset_t *mos = spa->spa_meta_objset;
309 zap_cursor_t zc;
310 zap_attribute_t za;
311 int err;
313 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
315 mutex_enter(&spa->spa_props_lock);
318 * Get properties from the spa config.
320 spa_prop_get_config(spa, nvp);
322 /* If no pool property object, no more prop to get. */
323 if (mos == NULL || spa->spa_pool_props_object == 0) {
324 mutex_exit(&spa->spa_props_lock);
325 return (0);
329 * Get properties from the MOS pool property object.
331 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
332 (err = zap_cursor_retrieve(&zc, &za)) == 0;
333 zap_cursor_advance(&zc)) {
334 uint64_t intval = 0;
335 char *strval = NULL;
336 zprop_source_t src = ZPROP_SRC_DEFAULT;
337 zpool_prop_t prop;
339 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
340 continue;
342 switch (za.za_integer_length) {
343 case 8:
344 /* integer property */
345 if (za.za_first_integer !=
346 zpool_prop_default_numeric(prop))
347 src = ZPROP_SRC_LOCAL;
349 if (prop == ZPOOL_PROP_BOOTFS) {
350 dsl_pool_t *dp;
351 dsl_dataset_t *ds = NULL;
353 dp = spa_get_dsl(spa);
354 dsl_pool_config_enter(dp, FTAG);
355 if (err = dsl_dataset_hold_obj(dp,
356 za.za_first_integer, FTAG, &ds)) {
357 dsl_pool_config_exit(dp, FTAG);
358 break;
361 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
362 KM_SLEEP);
363 dsl_dataset_name(ds, strval);
364 dsl_dataset_rele(ds, FTAG);
365 dsl_pool_config_exit(dp, FTAG);
366 } else {
367 strval = NULL;
368 intval = za.za_first_integer;
371 spa_prop_add_list(*nvp, prop, strval, intval, src);
373 if (strval != NULL)
374 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
376 break;
378 case 1:
379 /* string property */
380 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
381 err = zap_lookup(mos, spa->spa_pool_props_object,
382 za.za_name, 1, za.za_num_integers, strval);
383 if (err) {
384 kmem_free(strval, za.za_num_integers);
385 break;
387 spa_prop_add_list(*nvp, prop, strval, 0, src);
388 kmem_free(strval, za.za_num_integers);
389 break;
391 default:
392 break;
395 zap_cursor_fini(&zc);
396 mutex_exit(&spa->spa_props_lock);
397 out:
398 if (err && err != ENOENT) {
399 nvlist_free(*nvp);
400 *nvp = NULL;
401 return (err);
404 return (0);
408 * Validate the given pool properties nvlist and modify the list
409 * for the property values to be set.
411 static int
412 spa_prop_validate(spa_t *spa, nvlist_t *props)
414 nvpair_t *elem;
415 int error = 0, reset_bootfs = 0;
416 uint64_t objnum = 0;
417 boolean_t has_feature = B_FALSE;
419 elem = NULL;
420 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
421 uint64_t intval;
422 char *strval, *slash, *check, *fname;
423 const char *propname = nvpair_name(elem);
424 zpool_prop_t prop = zpool_name_to_prop(propname);
426 switch (prop) {
427 case ZPROP_INVAL:
428 if (!zpool_prop_feature(propname)) {
429 error = SET_ERROR(EINVAL);
430 break;
434 * Sanitize the input.
436 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
437 error = SET_ERROR(EINVAL);
438 break;
441 if (nvpair_value_uint64(elem, &intval) != 0) {
442 error = SET_ERROR(EINVAL);
443 break;
446 if (intval != 0) {
447 error = SET_ERROR(EINVAL);
448 break;
451 fname = strchr(propname, '@') + 1;
452 if (zfeature_lookup_name(fname, NULL) != 0) {
453 error = SET_ERROR(EINVAL);
454 break;
457 has_feature = B_TRUE;
458 break;
460 case ZPOOL_PROP_VERSION:
461 error = nvpair_value_uint64(elem, &intval);
462 if (!error &&
463 (intval < spa_version(spa) ||
464 intval > SPA_VERSION_BEFORE_FEATURES ||
465 has_feature))
466 error = SET_ERROR(EINVAL);
467 break;
469 case ZPOOL_PROP_DELEGATION:
470 case ZPOOL_PROP_AUTOREPLACE:
471 case ZPOOL_PROP_LISTSNAPS:
472 case ZPOOL_PROP_AUTOEXPAND:
473 error = nvpair_value_uint64(elem, &intval);
474 if (!error && intval > 1)
475 error = SET_ERROR(EINVAL);
476 break;
478 case ZPOOL_PROP_BOOTFS:
480 * If the pool version is less than SPA_VERSION_BOOTFS,
481 * or the pool is still being created (version == 0),
482 * the bootfs property cannot be set.
484 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
485 error = SET_ERROR(ENOTSUP);
486 break;
490 * Make sure the vdev config is bootable
492 if (!vdev_is_bootable(spa->spa_root_vdev)) {
493 error = SET_ERROR(ENOTSUP);
494 break;
497 reset_bootfs = 1;
499 error = nvpair_value_string(elem, &strval);
501 if (!error) {
502 objset_t *os;
503 uint64_t propval;
505 if (strval == NULL || strval[0] == '\0') {
506 objnum = zpool_prop_default_numeric(
507 ZPOOL_PROP_BOOTFS);
508 break;
511 if (error = dmu_objset_hold(strval, FTAG, &os))
512 break;
515 * Must be ZPL, and its property settings
516 * must be supported by GRUB (compression
517 * is not gzip, and large blocks are not used).
520 if (dmu_objset_type(os) != DMU_OST_ZFS) {
521 error = SET_ERROR(ENOTSUP);
522 } else if ((error =
523 dsl_prop_get_int_ds(dmu_objset_ds(os),
524 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
525 &propval)) == 0 &&
526 !BOOTFS_COMPRESS_VALID(propval)) {
527 error = SET_ERROR(ENOTSUP);
528 } else {
529 objnum = dmu_objset_id(os);
531 dmu_objset_rele(os, FTAG);
533 break;
535 case ZPOOL_PROP_FAILUREMODE:
536 error = nvpair_value_uint64(elem, &intval);
537 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
538 intval > ZIO_FAILURE_MODE_PANIC))
539 error = SET_ERROR(EINVAL);
542 * This is a special case which only occurs when
543 * the pool has completely failed. This allows
544 * the user to change the in-core failmode property
545 * without syncing it out to disk (I/Os might
546 * currently be blocked). We do this by returning
547 * EIO to the caller (spa_prop_set) to trick it
548 * into thinking we encountered a property validation
549 * error.
551 if (!error && spa_suspended(spa)) {
552 spa->spa_failmode = intval;
553 error = SET_ERROR(EIO);
555 break;
557 case ZPOOL_PROP_CACHEFILE:
558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 break;
561 if (strval[0] == '\0')
562 break;
564 if (strcmp(strval, "none") == 0)
565 break;
567 if (strval[0] != '/') {
568 error = SET_ERROR(EINVAL);
569 break;
572 slash = strrchr(strval, '/');
573 ASSERT(slash != NULL);
575 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
576 strcmp(slash, "/..") == 0)
577 error = SET_ERROR(EINVAL);
578 break;
580 case ZPOOL_PROP_COMMENT:
581 if ((error = nvpair_value_string(elem, &strval)) != 0)
582 break;
583 for (check = strval; *check != '\0'; check++) {
585 * The kernel doesn't have an easy isprint()
586 * check. For this kernel check, we merely
587 * check ASCII apart from DEL. Fix this if
588 * there is an easy-to-use kernel isprint().
590 if (*check >= 0x7f) {
591 error = SET_ERROR(EINVAL);
592 break;
595 if (strlen(strval) > ZPROP_MAX_COMMENT)
596 error = E2BIG;
597 break;
599 case ZPOOL_PROP_DEDUPDITTO:
600 if (spa_version(spa) < SPA_VERSION_DEDUP)
601 error = SET_ERROR(ENOTSUP);
602 else
603 error = nvpair_value_uint64(elem, &intval);
604 if (error == 0 &&
605 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
606 error = SET_ERROR(EINVAL);
607 break;
610 if (error)
611 break;
614 if (!error && reset_bootfs) {
615 error = nvlist_remove(props,
616 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
618 if (!error) {
619 error = nvlist_add_uint64(props,
620 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
624 return (error);
627 void
628 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
630 char *cachefile;
631 spa_config_dirent_t *dp;
633 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
634 &cachefile) != 0)
635 return;
637 dp = kmem_alloc(sizeof (spa_config_dirent_t),
638 KM_SLEEP);
640 if (cachefile[0] == '\0')
641 dp->scd_path = spa_strdup(spa_config_path);
642 else if (strcmp(cachefile, "none") == 0)
643 dp->scd_path = NULL;
644 else
645 dp->scd_path = spa_strdup(cachefile);
647 list_insert_head(&spa->spa_config_list, dp);
648 if (need_sync)
649 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
653 spa_prop_set(spa_t *spa, nvlist_t *nvp)
655 int error;
656 nvpair_t *elem = NULL;
657 boolean_t need_sync = B_FALSE;
659 if ((error = spa_prop_validate(spa, nvp)) != 0)
660 return (error);
662 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
663 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
665 if (prop == ZPOOL_PROP_CACHEFILE ||
666 prop == ZPOOL_PROP_ALTROOT ||
667 prop == ZPOOL_PROP_READONLY)
668 continue;
670 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
671 uint64_t ver;
673 if (prop == ZPOOL_PROP_VERSION) {
674 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
675 } else {
676 ASSERT(zpool_prop_feature(nvpair_name(elem)));
677 ver = SPA_VERSION_FEATURES;
678 need_sync = B_TRUE;
681 /* Save time if the version is already set. */
682 if (ver == spa_version(spa))
683 continue;
686 * In addition to the pool directory object, we might
687 * create the pool properties object, the features for
688 * read object, the features for write object, or the
689 * feature descriptions object.
691 error = dsl_sync_task(spa->spa_name, NULL,
692 spa_sync_version, &ver,
693 6, ZFS_SPACE_CHECK_RESERVED);
694 if (error)
695 return (error);
696 continue;
699 need_sync = B_TRUE;
700 break;
703 if (need_sync) {
704 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
705 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
708 return (0);
712 * If the bootfs property value is dsobj, clear it.
714 void
715 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
717 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
718 VERIFY(zap_remove(spa->spa_meta_objset,
719 spa->spa_pool_props_object,
720 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
721 spa->spa_bootfs = 0;
725 /*ARGSUSED*/
726 static int
727 spa_change_guid_check(void *arg, dmu_tx_t *tx)
729 uint64_t *newguid = arg;
730 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
731 vdev_t *rvd = spa->spa_root_vdev;
732 uint64_t vdev_state;
734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
735 vdev_state = rvd->vdev_state;
736 spa_config_exit(spa, SCL_STATE, FTAG);
738 if (vdev_state != VDEV_STATE_HEALTHY)
739 return (SET_ERROR(ENXIO));
741 ASSERT3U(spa_guid(spa), !=, *newguid);
743 return (0);
746 static void
747 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
749 uint64_t *newguid = arg;
750 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751 uint64_t oldguid;
752 vdev_t *rvd = spa->spa_root_vdev;
754 oldguid = spa_guid(spa);
756 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
757 rvd->vdev_guid = *newguid;
758 rvd->vdev_guid_sum += (*newguid - oldguid);
759 vdev_config_dirty(rvd);
760 spa_config_exit(spa, SCL_STATE, FTAG);
762 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
763 oldguid, *newguid);
767 * Change the GUID for the pool. This is done so that we can later
768 * re-import a pool built from a clone of our own vdevs. We will modify
769 * the root vdev's guid, our own pool guid, and then mark all of our
770 * vdevs dirty. Note that we must make sure that all our vdevs are
771 * online when we do this, or else any vdevs that weren't present
772 * would be orphaned from our pool. We are also going to issue a
773 * sysevent to update any watchers.
776 spa_change_guid(spa_t *spa)
778 int error;
779 uint64_t guid;
781 mutex_enter(&spa->spa_vdev_top_lock);
782 mutex_enter(&spa_namespace_lock);
783 guid = spa_generate_guid(NULL);
785 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
786 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
788 if (error == 0) {
789 spa_write_cachefile(spa, B_FALSE, B_TRUE);
790 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
793 mutex_exit(&spa_namespace_lock);
794 mutex_exit(&spa->spa_vdev_top_lock);
796 return (error);
800 * ==========================================================================
801 * SPA state manipulation (open/create/destroy/import/export)
802 * ==========================================================================
805 static int
806 spa_error_entry_compare(const void *a, const void *b)
808 spa_error_entry_t *sa = (spa_error_entry_t *)a;
809 spa_error_entry_t *sb = (spa_error_entry_t *)b;
810 int ret;
812 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
813 sizeof (zbookmark_phys_t));
815 if (ret < 0)
816 return (-1);
817 else if (ret > 0)
818 return (1);
819 else
820 return (0);
824 * Utility function which retrieves copies of the current logs and
825 * re-initializes them in the process.
827 void
828 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
830 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
832 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
833 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
835 avl_create(&spa->spa_errlist_scrub,
836 spa_error_entry_compare, sizeof (spa_error_entry_t),
837 offsetof(spa_error_entry_t, se_avl));
838 avl_create(&spa->spa_errlist_last,
839 spa_error_entry_compare, sizeof (spa_error_entry_t),
840 offsetof(spa_error_entry_t, se_avl));
843 static void
844 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
846 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
847 enum zti_modes mode = ztip->zti_mode;
848 uint_t value = ztip->zti_value;
849 uint_t count = ztip->zti_count;
850 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
851 char name[32];
852 uint_t flags = 0;
853 boolean_t batch = B_FALSE;
855 if (mode == ZTI_MODE_NULL) {
856 tqs->stqs_count = 0;
857 tqs->stqs_taskq = NULL;
858 return;
861 ASSERT3U(count, >, 0);
863 tqs->stqs_count = count;
864 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
866 switch (mode) {
867 case ZTI_MODE_FIXED:
868 ASSERT3U(value, >=, 1);
869 value = MAX(value, 1);
870 break;
872 case ZTI_MODE_BATCH:
873 batch = B_TRUE;
874 flags |= TASKQ_THREADS_CPU_PCT;
875 value = zio_taskq_batch_pct;
876 break;
878 default:
879 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
880 "spa_activate()",
881 zio_type_name[t], zio_taskq_types[q], mode, value);
882 break;
885 for (uint_t i = 0; i < count; i++) {
886 taskq_t *tq;
888 if (count > 1) {
889 (void) snprintf(name, sizeof (name), "%s_%s_%u",
890 zio_type_name[t], zio_taskq_types[q], i);
891 } else {
892 (void) snprintf(name, sizeof (name), "%s_%s",
893 zio_type_name[t], zio_taskq_types[q]);
896 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
897 if (batch)
898 flags |= TASKQ_DC_BATCH;
900 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
901 spa->spa_proc, zio_taskq_basedc, flags);
902 } else {
903 pri_t pri = maxclsyspri;
905 * The write issue taskq can be extremely CPU
906 * intensive. Run it at slightly lower priority
907 * than the other taskqs.
909 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
910 pri--;
912 tq = taskq_create_proc(name, value, pri, 50,
913 INT_MAX, spa->spa_proc, flags);
916 tqs->stqs_taskq[i] = tq;
920 static void
921 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
923 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
925 if (tqs->stqs_taskq == NULL) {
926 ASSERT0(tqs->stqs_count);
927 return;
930 for (uint_t i = 0; i < tqs->stqs_count; i++) {
931 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
932 taskq_destroy(tqs->stqs_taskq[i]);
935 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
936 tqs->stqs_taskq = NULL;
940 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
941 * Note that a type may have multiple discrete taskqs to avoid lock contention
942 * on the taskq itself. In that case we choose which taskq at random by using
943 * the low bits of gethrtime().
945 void
946 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
947 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
949 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
950 taskq_t *tq;
952 ASSERT3P(tqs->stqs_taskq, !=, NULL);
953 ASSERT3U(tqs->stqs_count, !=, 0);
955 if (tqs->stqs_count == 1) {
956 tq = tqs->stqs_taskq[0];
957 } else {
958 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
961 taskq_dispatch_ent(tq, func, arg, flags, ent);
964 static void
965 spa_create_zio_taskqs(spa_t *spa)
967 for (int t = 0; t < ZIO_TYPES; t++) {
968 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
969 spa_taskqs_init(spa, t, q);
974 #ifdef _KERNEL
975 static void
976 spa_thread(void *arg)
978 callb_cpr_t cprinfo;
980 spa_t *spa = arg;
981 user_t *pu = PTOU(curproc);
983 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
984 spa->spa_name);
986 ASSERT(curproc != &p0);
987 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
988 "zpool-%s", spa->spa_name);
989 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
991 /* bind this thread to the requested psrset */
992 if (zio_taskq_psrset_bind != PS_NONE) {
993 pool_lock();
994 mutex_enter(&cpu_lock);
995 mutex_enter(&pidlock);
996 mutex_enter(&curproc->p_lock);
998 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999 0, NULL, NULL) == 0) {
1000 curthread->t_bind_pset = zio_taskq_psrset_bind;
1001 } else {
1002 cmn_err(CE_WARN,
1003 "Couldn't bind process for zfs pool \"%s\" to "
1004 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1007 mutex_exit(&curproc->p_lock);
1008 mutex_exit(&pidlock);
1009 mutex_exit(&cpu_lock);
1010 pool_unlock();
1013 if (zio_taskq_sysdc) {
1014 sysdc_thread_enter(curthread, 100, 0);
1017 spa->spa_proc = curproc;
1018 spa->spa_did = curthread->t_did;
1020 spa_create_zio_taskqs(spa);
1022 mutex_enter(&spa->spa_proc_lock);
1023 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1025 spa->spa_proc_state = SPA_PROC_ACTIVE;
1026 cv_broadcast(&spa->spa_proc_cv);
1028 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1029 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1030 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1031 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1033 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1034 spa->spa_proc_state = SPA_PROC_GONE;
1035 spa->spa_proc = &p0;
1036 cv_broadcast(&spa->spa_proc_cv);
1037 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1039 mutex_enter(&curproc->p_lock);
1040 lwp_exit();
1042 #endif
1045 * Activate an uninitialized pool.
1047 static void
1048 spa_activate(spa_t *spa, int mode)
1050 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1052 spa->spa_state = POOL_STATE_ACTIVE;
1053 spa->spa_mode = mode;
1055 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1058 /* Try to create a covering process */
1059 mutex_enter(&spa->spa_proc_lock);
1060 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1061 ASSERT(spa->spa_proc == &p0);
1062 spa->spa_did = 0;
1064 /* Only create a process if we're going to be around a while. */
1065 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1066 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1067 NULL, 0) == 0) {
1068 spa->spa_proc_state = SPA_PROC_CREATED;
1069 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1070 cv_wait(&spa->spa_proc_cv,
1071 &spa->spa_proc_lock);
1073 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1074 ASSERT(spa->spa_proc != &p0);
1075 ASSERT(spa->spa_did != 0);
1076 } else {
1077 #ifdef _KERNEL
1078 cmn_err(CE_WARN,
1079 "Couldn't create process for zfs pool \"%s\"\n",
1080 spa->spa_name);
1081 #endif
1084 mutex_exit(&spa->spa_proc_lock);
1086 /* If we didn't create a process, we need to create our taskqs. */
1087 if (spa->spa_proc == &p0) {
1088 spa_create_zio_taskqs(spa);
1091 for (size_t i = 0; i < TXG_SIZE; i++)
1092 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1094 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1095 offsetof(vdev_t, vdev_config_dirty_node));
1096 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1097 offsetof(objset_t, os_evicting_node));
1098 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1099 offsetof(vdev_t, vdev_state_dirty_node));
1101 txg_list_create(&spa->spa_vdev_txg_list, spa,
1102 offsetof(struct vdev, vdev_txg_node));
1104 avl_create(&spa->spa_errlist_scrub,
1105 spa_error_entry_compare, sizeof (spa_error_entry_t),
1106 offsetof(spa_error_entry_t, se_avl));
1107 avl_create(&spa->spa_errlist_last,
1108 spa_error_entry_compare, sizeof (spa_error_entry_t),
1109 offsetof(spa_error_entry_t, se_avl));
1113 * Opposite of spa_activate().
1115 static void
1116 spa_deactivate(spa_t *spa)
1118 ASSERT(spa->spa_sync_on == B_FALSE);
1119 ASSERT(spa->spa_dsl_pool == NULL);
1120 ASSERT(spa->spa_root_vdev == NULL);
1121 ASSERT(spa->spa_async_zio_root == NULL);
1122 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1124 spa_evicting_os_wait(spa);
1126 txg_list_destroy(&spa->spa_vdev_txg_list);
1128 list_destroy(&spa->spa_config_dirty_list);
1129 list_destroy(&spa->spa_evicting_os_list);
1130 list_destroy(&spa->spa_state_dirty_list);
1132 for (int t = 0; t < ZIO_TYPES; t++) {
1133 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1134 spa_taskqs_fini(spa, t, q);
1138 for (size_t i = 0; i < TXG_SIZE; i++) {
1139 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1140 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1141 spa->spa_txg_zio[i] = NULL;
1144 metaslab_class_destroy(spa->spa_normal_class);
1145 spa->spa_normal_class = NULL;
1147 metaslab_class_destroy(spa->spa_log_class);
1148 spa->spa_log_class = NULL;
1151 * If this was part of an import or the open otherwise failed, we may
1152 * still have errors left in the queues. Empty them just in case.
1154 spa_errlog_drain(spa);
1156 avl_destroy(&spa->spa_errlist_scrub);
1157 avl_destroy(&spa->spa_errlist_last);
1159 spa->spa_state = POOL_STATE_UNINITIALIZED;
1161 mutex_enter(&spa->spa_proc_lock);
1162 if (spa->spa_proc_state != SPA_PROC_NONE) {
1163 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1164 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1165 cv_broadcast(&spa->spa_proc_cv);
1166 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1167 ASSERT(spa->spa_proc != &p0);
1168 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1170 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1171 spa->spa_proc_state = SPA_PROC_NONE;
1173 ASSERT(spa->spa_proc == &p0);
1174 mutex_exit(&spa->spa_proc_lock);
1177 * We want to make sure spa_thread() has actually exited the ZFS
1178 * module, so that the module can't be unloaded out from underneath
1179 * it.
1181 if (spa->spa_did != 0) {
1182 thread_join(spa->spa_did);
1183 spa->spa_did = 0;
1188 * Verify a pool configuration, and construct the vdev tree appropriately. This
1189 * will create all the necessary vdevs in the appropriate layout, with each vdev
1190 * in the CLOSED state. This will prep the pool before open/creation/import.
1191 * All vdev validation is done by the vdev_alloc() routine.
1193 static int
1194 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1195 uint_t id, int atype)
1197 nvlist_t **child;
1198 uint_t children;
1199 int error;
1201 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1202 return (error);
1204 if ((*vdp)->vdev_ops->vdev_op_leaf)
1205 return (0);
1207 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1208 &child, &children);
1210 if (error == ENOENT)
1211 return (0);
1213 if (error) {
1214 vdev_free(*vdp);
1215 *vdp = NULL;
1216 return (SET_ERROR(EINVAL));
1219 for (int c = 0; c < children; c++) {
1220 vdev_t *vd;
1221 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1222 atype)) != 0) {
1223 vdev_free(*vdp);
1224 *vdp = NULL;
1225 return (error);
1229 ASSERT(*vdp != NULL);
1231 return (0);
1235 * Opposite of spa_load().
1237 static void
1238 spa_unload(spa_t *spa)
1240 int i;
1242 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1245 * Stop async tasks.
1247 spa_async_suspend(spa);
1250 * Stop syncing.
1252 if (spa->spa_sync_on) {
1253 txg_sync_stop(spa->spa_dsl_pool);
1254 spa->spa_sync_on = B_FALSE;
1258 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1259 * to call it earlier, before we wait for async i/o to complete.
1260 * This ensures that there is no async metaslab prefetching, by
1261 * calling taskq_wait(mg_taskq).
1263 if (spa->spa_root_vdev != NULL) {
1264 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1265 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1266 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1267 spa_config_exit(spa, SCL_ALL, FTAG);
1271 * Wait for any outstanding async I/O to complete.
1273 if (spa->spa_async_zio_root != NULL) {
1274 for (int i = 0; i < max_ncpus; i++)
1275 (void) zio_wait(spa->spa_async_zio_root[i]);
1276 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1277 spa->spa_async_zio_root = NULL;
1280 if (spa->spa_vdev_removal != NULL) {
1281 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1282 spa->spa_vdev_removal = NULL;
1285 spa_condense_fini(spa);
1287 bpobj_close(&spa->spa_deferred_bpobj);
1289 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1292 * Close all vdevs.
1294 if (spa->spa_root_vdev)
1295 vdev_free(spa->spa_root_vdev);
1296 ASSERT(spa->spa_root_vdev == NULL);
1299 * Close the dsl pool.
1301 if (spa->spa_dsl_pool) {
1302 dsl_pool_close(spa->spa_dsl_pool);
1303 spa->spa_dsl_pool = NULL;
1304 spa->spa_meta_objset = NULL;
1307 ddt_unload(spa);
1310 * Drop and purge level 2 cache
1312 spa_l2cache_drop(spa);
1314 for (i = 0; i < spa->spa_spares.sav_count; i++)
1315 vdev_free(spa->spa_spares.sav_vdevs[i]);
1316 if (spa->spa_spares.sav_vdevs) {
1317 kmem_free(spa->spa_spares.sav_vdevs,
1318 spa->spa_spares.sav_count * sizeof (void *));
1319 spa->spa_spares.sav_vdevs = NULL;
1321 if (spa->spa_spares.sav_config) {
1322 nvlist_free(spa->spa_spares.sav_config);
1323 spa->spa_spares.sav_config = NULL;
1325 spa->spa_spares.sav_count = 0;
1327 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1328 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1329 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1331 if (spa->spa_l2cache.sav_vdevs) {
1332 kmem_free(spa->spa_l2cache.sav_vdevs,
1333 spa->spa_l2cache.sav_count * sizeof (void *));
1334 spa->spa_l2cache.sav_vdevs = NULL;
1336 if (spa->spa_l2cache.sav_config) {
1337 nvlist_free(spa->spa_l2cache.sav_config);
1338 spa->spa_l2cache.sav_config = NULL;
1340 spa->spa_l2cache.sav_count = 0;
1342 spa->spa_async_suspended = 0;
1344 spa->spa_indirect_vdevs_loaded = B_FALSE;
1346 if (spa->spa_comment != NULL) {
1347 spa_strfree(spa->spa_comment);
1348 spa->spa_comment = NULL;
1351 spa_config_exit(spa, SCL_ALL, FTAG);
1355 * Load (or re-load) the current list of vdevs describing the active spares for
1356 * this pool. When this is called, we have some form of basic information in
1357 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1358 * then re-generate a more complete list including status information.
1360 void
1361 spa_load_spares(spa_t *spa)
1363 nvlist_t **spares;
1364 uint_t nspares;
1365 int i;
1366 vdev_t *vd, *tvd;
1368 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1371 * First, close and free any existing spare vdevs.
1373 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1374 vd = spa->spa_spares.sav_vdevs[i];
1376 /* Undo the call to spa_activate() below */
1377 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1378 B_FALSE)) != NULL && tvd->vdev_isspare)
1379 spa_spare_remove(tvd);
1380 vdev_close(vd);
1381 vdev_free(vd);
1384 if (spa->spa_spares.sav_vdevs)
1385 kmem_free(spa->spa_spares.sav_vdevs,
1386 spa->spa_spares.sav_count * sizeof (void *));
1388 if (spa->spa_spares.sav_config == NULL)
1389 nspares = 0;
1390 else
1391 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1392 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1394 spa->spa_spares.sav_count = (int)nspares;
1395 spa->spa_spares.sav_vdevs = NULL;
1397 if (nspares == 0)
1398 return;
1401 * Construct the array of vdevs, opening them to get status in the
1402 * process. For each spare, there is potentially two different vdev_t
1403 * structures associated with it: one in the list of spares (used only
1404 * for basic validation purposes) and one in the active vdev
1405 * configuration (if it's spared in). During this phase we open and
1406 * validate each vdev on the spare list. If the vdev also exists in the
1407 * active configuration, then we also mark this vdev as an active spare.
1409 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1410 KM_SLEEP);
1411 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1412 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1413 VDEV_ALLOC_SPARE) == 0);
1414 ASSERT(vd != NULL);
1416 spa->spa_spares.sav_vdevs[i] = vd;
1418 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1419 B_FALSE)) != NULL) {
1420 if (!tvd->vdev_isspare)
1421 spa_spare_add(tvd);
1424 * We only mark the spare active if we were successfully
1425 * able to load the vdev. Otherwise, importing a pool
1426 * with a bad active spare would result in strange
1427 * behavior, because multiple pool would think the spare
1428 * is actively in use.
1430 * There is a vulnerability here to an equally bizarre
1431 * circumstance, where a dead active spare is later
1432 * brought back to life (onlined or otherwise). Given
1433 * the rarity of this scenario, and the extra complexity
1434 * it adds, we ignore the possibility.
1436 if (!vdev_is_dead(tvd))
1437 spa_spare_activate(tvd);
1440 vd->vdev_top = vd;
1441 vd->vdev_aux = &spa->spa_spares;
1443 if (vdev_open(vd) != 0)
1444 continue;
1446 if (vdev_validate_aux(vd) == 0)
1447 spa_spare_add(vd);
1451 * Recompute the stashed list of spares, with status information
1452 * this time.
1454 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1455 DATA_TYPE_NVLIST_ARRAY) == 0);
1457 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1458 KM_SLEEP);
1459 for (i = 0; i < spa->spa_spares.sav_count; i++)
1460 spares[i] = vdev_config_generate(spa,
1461 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1462 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1463 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1464 for (i = 0; i < spa->spa_spares.sav_count; i++)
1465 nvlist_free(spares[i]);
1466 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1470 * Load (or re-load) the current list of vdevs describing the active l2cache for
1471 * this pool. When this is called, we have some form of basic information in
1472 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1473 * then re-generate a more complete list including status information.
1474 * Devices which are already active have their details maintained, and are
1475 * not re-opened.
1477 void
1478 spa_load_l2cache(spa_t *spa)
1480 nvlist_t **l2cache;
1481 uint_t nl2cache;
1482 int i, j, oldnvdevs;
1483 uint64_t guid;
1484 vdev_t *vd, **oldvdevs, **newvdevs;
1485 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1487 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1489 if (sav->sav_config != NULL) {
1490 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1491 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1492 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1493 } else {
1494 nl2cache = 0;
1495 newvdevs = NULL;
1498 oldvdevs = sav->sav_vdevs;
1499 oldnvdevs = sav->sav_count;
1500 sav->sav_vdevs = NULL;
1501 sav->sav_count = 0;
1504 * Process new nvlist of vdevs.
1506 for (i = 0; i < nl2cache; i++) {
1507 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1508 &guid) == 0);
1510 newvdevs[i] = NULL;
1511 for (j = 0; j < oldnvdevs; j++) {
1512 vd = oldvdevs[j];
1513 if (vd != NULL && guid == vd->vdev_guid) {
1515 * Retain previous vdev for add/remove ops.
1517 newvdevs[i] = vd;
1518 oldvdevs[j] = NULL;
1519 break;
1523 if (newvdevs[i] == NULL) {
1525 * Create new vdev
1527 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1528 VDEV_ALLOC_L2CACHE) == 0);
1529 ASSERT(vd != NULL);
1530 newvdevs[i] = vd;
1533 * Commit this vdev as an l2cache device,
1534 * even if it fails to open.
1536 spa_l2cache_add(vd);
1538 vd->vdev_top = vd;
1539 vd->vdev_aux = sav;
1541 spa_l2cache_activate(vd);
1543 if (vdev_open(vd) != 0)
1544 continue;
1546 (void) vdev_validate_aux(vd);
1548 if (!vdev_is_dead(vd))
1549 l2arc_add_vdev(spa, vd);
1554 * Purge vdevs that were dropped
1556 for (i = 0; i < oldnvdevs; i++) {
1557 uint64_t pool;
1559 vd = oldvdevs[i];
1560 if (vd != NULL) {
1561 ASSERT(vd->vdev_isl2cache);
1563 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1564 pool != 0ULL && l2arc_vdev_present(vd))
1565 l2arc_remove_vdev(vd);
1566 vdev_clear_stats(vd);
1567 vdev_free(vd);
1571 if (oldvdevs)
1572 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1574 if (sav->sav_config == NULL)
1575 goto out;
1577 sav->sav_vdevs = newvdevs;
1578 sav->sav_count = (int)nl2cache;
1581 * Recompute the stashed list of l2cache devices, with status
1582 * information this time.
1584 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1585 DATA_TYPE_NVLIST_ARRAY) == 0);
1587 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1588 for (i = 0; i < sav->sav_count; i++)
1589 l2cache[i] = vdev_config_generate(spa,
1590 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1591 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1592 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1593 out:
1594 for (i = 0; i < sav->sav_count; i++)
1595 nvlist_free(l2cache[i]);
1596 if (sav->sav_count)
1597 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1600 static int
1601 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1603 dmu_buf_t *db;
1604 char *packed = NULL;
1605 size_t nvsize = 0;
1606 int error;
1607 *value = NULL;
1609 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1610 if (error != 0)
1611 return (error);
1613 nvsize = *(uint64_t *)db->db_data;
1614 dmu_buf_rele(db, FTAG);
1616 packed = kmem_alloc(nvsize, KM_SLEEP);
1617 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1618 DMU_READ_PREFETCH);
1619 if (error == 0)
1620 error = nvlist_unpack(packed, nvsize, value, 0);
1621 kmem_free(packed, nvsize);
1623 return (error);
1627 * Checks to see if the given vdev could not be opened, in which case we post a
1628 * sysevent to notify the autoreplace code that the device has been removed.
1630 static void
1631 spa_check_removed(vdev_t *vd)
1633 for (int c = 0; c < vd->vdev_children; c++)
1634 spa_check_removed(vd->vdev_child[c]);
1636 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1637 vdev_is_concrete(vd)) {
1638 zfs_post_autoreplace(vd->vdev_spa, vd);
1639 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1643 static void
1644 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1646 ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1648 vd->vdev_top_zap = mvd->vdev_top_zap;
1649 vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1651 for (uint64_t i = 0; i < vd->vdev_children; i++) {
1652 spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1657 * Validate the current config against the MOS config
1659 static boolean_t
1660 spa_config_valid(spa_t *spa, nvlist_t *config)
1662 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1663 nvlist_t *nv;
1665 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1667 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1668 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1670 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1673 * If we're doing a normal import, then build up any additional
1674 * diagnostic information about missing devices in this config.
1675 * We'll pass this up to the user for further processing.
1677 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1678 nvlist_t **child, *nv;
1679 uint64_t idx = 0;
1681 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1682 KM_SLEEP);
1683 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1685 for (int c = 0; c < rvd->vdev_children; c++) {
1686 vdev_t *tvd = rvd->vdev_child[c];
1687 vdev_t *mtvd = mrvd->vdev_child[c];
1689 if (tvd->vdev_ops == &vdev_missing_ops &&
1690 mtvd->vdev_ops != &vdev_missing_ops &&
1691 mtvd->vdev_islog)
1692 child[idx++] = vdev_config_generate(spa, mtvd,
1693 B_FALSE, 0);
1696 if (idx) {
1697 VERIFY(nvlist_add_nvlist_array(nv,
1698 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1699 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1700 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1702 for (int i = 0; i < idx; i++)
1703 nvlist_free(child[i]);
1705 nvlist_free(nv);
1706 kmem_free(child, rvd->vdev_children * sizeof (char **));
1710 * Compare the root vdev tree with the information we have
1711 * from the MOS config (mrvd). Check each top-level vdev
1712 * with the corresponding MOS config top-level (mtvd).
1714 for (int c = 0; c < rvd->vdev_children; c++) {
1715 vdev_t *tvd = rvd->vdev_child[c];
1716 vdev_t *mtvd = mrvd->vdev_child[c];
1719 * Resolve any "missing" vdevs in the current configuration.
1720 * Also trust the MOS config about any "indirect" vdevs.
1721 * If we find that the MOS config has more accurate information
1722 * about the top-level vdev then use that vdev instead.
1724 if ((tvd->vdev_ops == &vdev_missing_ops &&
1725 mtvd->vdev_ops != &vdev_missing_ops) ||
1726 (mtvd->vdev_ops == &vdev_indirect_ops &&
1727 tvd->vdev_ops != &vdev_indirect_ops)) {
1730 * Device specific actions.
1732 if (mtvd->vdev_islog) {
1733 if (!(spa->spa_import_flags &
1734 ZFS_IMPORT_MISSING_LOG)) {
1735 continue;
1738 spa_set_log_state(spa, SPA_LOG_CLEAR);
1739 } else if (mtvd->vdev_ops != &vdev_indirect_ops) {
1740 continue;
1744 * Swap the missing vdev with the data we were
1745 * able to obtain from the MOS config.
1747 vdev_remove_child(rvd, tvd);
1748 vdev_remove_child(mrvd, mtvd);
1750 vdev_add_child(rvd, mtvd);
1751 vdev_add_child(mrvd, tvd);
1753 vdev_reopen(rvd);
1754 } else {
1755 if (mtvd->vdev_islog) {
1757 * Load the slog device's state from the MOS
1758 * config since it's possible that the label
1759 * does not contain the most up-to-date
1760 * information.
1762 vdev_load_log_state(tvd, mtvd);
1763 vdev_reopen(tvd);
1767 * Per-vdev ZAP info is stored exclusively in the MOS.
1769 spa_config_valid_zaps(tvd, mtvd);
1773 * Never trust this info from userland; always use what's
1774 * in the MOS. This prevents it from getting out of sync
1775 * with the rest of the info in the MOS.
1777 tvd->vdev_removing = mtvd->vdev_removing;
1778 tvd->vdev_indirect_config = mtvd->vdev_indirect_config;
1781 vdev_free(mrvd);
1782 spa_config_exit(spa, SCL_ALL, FTAG);
1785 * Ensure we were able to validate the config.
1787 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1791 * Check for missing log devices
1793 static boolean_t
1794 spa_check_logs(spa_t *spa)
1796 boolean_t rv = B_FALSE;
1797 dsl_pool_t *dp = spa_get_dsl(spa);
1799 switch (spa->spa_log_state) {
1800 case SPA_LOG_MISSING:
1801 /* need to recheck in case slog has been restored */
1802 case SPA_LOG_UNKNOWN:
1803 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1804 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1805 if (rv)
1806 spa_set_log_state(spa, SPA_LOG_MISSING);
1807 break;
1809 return (rv);
1812 static boolean_t
1813 spa_passivate_log(spa_t *spa)
1815 vdev_t *rvd = spa->spa_root_vdev;
1816 boolean_t slog_found = B_FALSE;
1818 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1820 if (!spa_has_slogs(spa))
1821 return (B_FALSE);
1823 for (int c = 0; c < rvd->vdev_children; c++) {
1824 vdev_t *tvd = rvd->vdev_child[c];
1825 metaslab_group_t *mg = tvd->vdev_mg;
1827 if (tvd->vdev_islog) {
1828 metaslab_group_passivate(mg);
1829 slog_found = B_TRUE;
1833 return (slog_found);
1836 static void
1837 spa_activate_log(spa_t *spa)
1839 vdev_t *rvd = spa->spa_root_vdev;
1841 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1843 for (int c = 0; c < rvd->vdev_children; c++) {
1844 vdev_t *tvd = rvd->vdev_child[c];
1845 metaslab_group_t *mg = tvd->vdev_mg;
1847 if (tvd->vdev_islog)
1848 metaslab_group_activate(mg);
1853 spa_reset_logs(spa_t *spa)
1855 int error;
1857 error = dmu_objset_find(spa_name(spa), zil_reset,
1858 NULL, DS_FIND_CHILDREN);
1859 if (error == 0) {
1861 * We successfully offlined the log device, sync out the
1862 * current txg so that the "stubby" block can be removed
1863 * by zil_sync().
1865 txg_wait_synced(spa->spa_dsl_pool, 0);
1867 return (error);
1870 static void
1871 spa_aux_check_removed(spa_aux_vdev_t *sav)
1873 for (int i = 0; i < sav->sav_count; i++)
1874 spa_check_removed(sav->sav_vdevs[i]);
1877 void
1878 spa_claim_notify(zio_t *zio)
1880 spa_t *spa = zio->io_spa;
1882 if (zio->io_error)
1883 return;
1885 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1886 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1887 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1888 mutex_exit(&spa->spa_props_lock);
1891 typedef struct spa_load_error {
1892 uint64_t sle_meta_count;
1893 uint64_t sle_data_count;
1894 } spa_load_error_t;
1896 static void
1897 spa_load_verify_done(zio_t *zio)
1899 blkptr_t *bp = zio->io_bp;
1900 spa_load_error_t *sle = zio->io_private;
1901 dmu_object_type_t type = BP_GET_TYPE(bp);
1902 int error = zio->io_error;
1903 spa_t *spa = zio->io_spa;
1905 abd_free(zio->io_abd);
1906 if (error) {
1907 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1908 type != DMU_OT_INTENT_LOG)
1909 atomic_inc_64(&sle->sle_meta_count);
1910 else
1911 atomic_inc_64(&sle->sle_data_count);
1914 mutex_enter(&spa->spa_scrub_lock);
1915 spa->spa_scrub_inflight--;
1916 cv_broadcast(&spa->spa_scrub_io_cv);
1917 mutex_exit(&spa->spa_scrub_lock);
1921 * Maximum number of concurrent scrub i/os to create while verifying
1922 * a pool while importing it.
1924 int spa_load_verify_maxinflight = 10000;
1925 boolean_t spa_load_verify_metadata = B_TRUE;
1926 boolean_t spa_load_verify_data = B_TRUE;
1928 /*ARGSUSED*/
1929 static int
1930 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1931 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1933 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1934 return (0);
1936 * Note: normally this routine will not be called if
1937 * spa_load_verify_metadata is not set. However, it may be useful
1938 * to manually set the flag after the traversal has begun.
1940 if (!spa_load_verify_metadata)
1941 return (0);
1942 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1943 return (0);
1945 zio_t *rio = arg;
1946 size_t size = BP_GET_PSIZE(bp);
1948 mutex_enter(&spa->spa_scrub_lock);
1949 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1950 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1951 spa->spa_scrub_inflight++;
1952 mutex_exit(&spa->spa_scrub_lock);
1954 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1955 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1956 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1957 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1958 return (0);
1961 /* ARGSUSED */
1963 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1965 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1966 return (SET_ERROR(ENAMETOOLONG));
1968 return (0);
1971 static int
1972 spa_load_verify(spa_t *spa)
1974 zio_t *rio;
1975 spa_load_error_t sle = { 0 };
1976 zpool_rewind_policy_t policy;
1977 boolean_t verify_ok = B_FALSE;
1978 int error = 0;
1980 zpool_get_rewind_policy(spa->spa_config, &policy);
1982 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1983 return (0);
1985 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1986 error = dmu_objset_find_dp(spa->spa_dsl_pool,
1987 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1988 DS_FIND_CHILDREN);
1989 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1990 if (error != 0)
1991 return (error);
1993 rio = zio_root(spa, NULL, &sle,
1994 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1996 if (spa_load_verify_metadata) {
1997 error = traverse_pool(spa, spa->spa_verify_min_txg,
1998 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1999 spa_load_verify_cb, rio);
2002 (void) zio_wait(rio);
2004 spa->spa_load_meta_errors = sle.sle_meta_count;
2005 spa->spa_load_data_errors = sle.sle_data_count;
2007 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2008 sle.sle_data_count <= policy.zrp_maxdata) {
2009 int64_t loss = 0;
2011 verify_ok = B_TRUE;
2012 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2013 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2015 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2016 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2017 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2018 VERIFY(nvlist_add_int64(spa->spa_load_info,
2019 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2020 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2021 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2022 } else {
2023 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2026 if (error) {
2027 if (error != ENXIO && error != EIO)
2028 error = SET_ERROR(EIO);
2029 return (error);
2032 return (verify_ok ? 0 : EIO);
2036 * Find a value in the pool props object.
2038 static void
2039 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2041 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2042 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2046 * Find a value in the pool directory object.
2048 static int
2049 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2051 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2052 name, sizeof (uint64_t), 1, val));
2055 static int
2056 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2058 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2059 return (SET_ERROR(err));
2063 * Fix up config after a partly-completed split. This is done with the
2064 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2065 * pool have that entry in their config, but only the splitting one contains
2066 * a list of all the guids of the vdevs that are being split off.
2068 * This function determines what to do with that list: either rejoin
2069 * all the disks to the pool, or complete the splitting process. To attempt
2070 * the rejoin, each disk that is offlined is marked online again, and
2071 * we do a reopen() call. If the vdev label for every disk that was
2072 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2073 * then we call vdev_split() on each disk, and complete the split.
2075 * Otherwise we leave the config alone, with all the vdevs in place in
2076 * the original pool.
2078 static void
2079 spa_try_repair(spa_t *spa, nvlist_t *config)
2081 uint_t extracted;
2082 uint64_t *glist;
2083 uint_t i, gcount;
2084 nvlist_t *nvl;
2085 vdev_t **vd;
2086 boolean_t attempt_reopen;
2088 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2089 return;
2091 /* check that the config is complete */
2092 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2093 &glist, &gcount) != 0)
2094 return;
2096 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2098 /* attempt to online all the vdevs & validate */
2099 attempt_reopen = B_TRUE;
2100 for (i = 0; i < gcount; i++) {
2101 if (glist[i] == 0) /* vdev is hole */
2102 continue;
2104 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2105 if (vd[i] == NULL) {
2107 * Don't bother attempting to reopen the disks;
2108 * just do the split.
2110 attempt_reopen = B_FALSE;
2111 } else {
2112 /* attempt to re-online it */
2113 vd[i]->vdev_offline = B_FALSE;
2117 if (attempt_reopen) {
2118 vdev_reopen(spa->spa_root_vdev);
2120 /* check each device to see what state it's in */
2121 for (extracted = 0, i = 0; i < gcount; i++) {
2122 if (vd[i] != NULL &&
2123 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2124 break;
2125 ++extracted;
2130 * If every disk has been moved to the new pool, or if we never
2131 * even attempted to look at them, then we split them off for
2132 * good.
2134 if (!attempt_reopen || gcount == extracted) {
2135 for (i = 0; i < gcount; i++)
2136 if (vd[i] != NULL)
2137 vdev_split(vd[i]);
2138 vdev_reopen(spa->spa_root_vdev);
2141 kmem_free(vd, gcount * sizeof (vdev_t *));
2144 static int
2145 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2146 boolean_t mosconfig)
2148 nvlist_t *config = spa->spa_config;
2149 char *ereport = FM_EREPORT_ZFS_POOL;
2150 char *comment;
2151 int error;
2152 uint64_t pool_guid;
2153 nvlist_t *nvl;
2155 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2156 return (SET_ERROR(EINVAL));
2158 ASSERT(spa->spa_comment == NULL);
2159 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2160 spa->spa_comment = spa_strdup(comment);
2163 * Versioning wasn't explicitly added to the label until later, so if
2164 * it's not present treat it as the initial version.
2166 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2167 &spa->spa_ubsync.ub_version) != 0)
2168 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2170 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2171 &spa->spa_config_txg);
2173 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2174 spa_guid_exists(pool_guid, 0)) {
2175 error = SET_ERROR(EEXIST);
2176 } else {
2177 spa->spa_config_guid = pool_guid;
2179 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2180 &nvl) == 0) {
2181 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2182 KM_SLEEP) == 0);
2185 nvlist_free(spa->spa_load_info);
2186 spa->spa_load_info = fnvlist_alloc();
2188 gethrestime(&spa->spa_loaded_ts);
2189 error = spa_load_impl(spa, pool_guid, config, state, type,
2190 mosconfig, &ereport);
2194 * Don't count references from objsets that are already closed
2195 * and are making their way through the eviction process.
2197 spa_evicting_os_wait(spa);
2198 spa->spa_minref = refcount_count(&spa->spa_refcount);
2199 if (error) {
2200 if (error != EEXIST) {
2201 spa->spa_loaded_ts.tv_sec = 0;
2202 spa->spa_loaded_ts.tv_nsec = 0;
2204 if (error != EBADF) {
2205 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2208 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2209 spa->spa_ena = 0;
2211 return (error);
2215 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2216 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2217 * spa's per-vdev ZAP list.
2219 static uint64_t
2220 vdev_count_verify_zaps(vdev_t *vd)
2222 spa_t *spa = vd->vdev_spa;
2223 uint64_t total = 0;
2224 if (vd->vdev_top_zap != 0) {
2225 total++;
2226 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2227 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2229 if (vd->vdev_leaf_zap != 0) {
2230 total++;
2231 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2232 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2235 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2236 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2239 return (total);
2243 * Load an existing storage pool, using the pool's builtin spa_config as a
2244 * source of configuration information.
2246 static int
2247 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2248 spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
2249 char **ereport)
2251 int error = 0;
2252 nvlist_t *nvroot = NULL;
2253 nvlist_t *label;
2254 vdev_t *rvd;
2255 uberblock_t *ub = &spa->spa_uberblock;
2256 uint64_t children, config_cache_txg = spa->spa_config_txg;
2257 int orig_mode = spa->spa_mode;
2258 int parse;
2259 uint64_t obj;
2260 boolean_t missing_feat_write = B_FALSE;
2263 * If this is an untrusted config, access the pool in read-only mode.
2264 * This prevents things like resilvering recently removed devices.
2266 if (!trust_config)
2267 spa->spa_mode = FREAD;
2269 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2271 spa->spa_load_state = state;
2273 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2274 return (SET_ERROR(EINVAL));
2276 parse = (type == SPA_IMPORT_EXISTING ?
2277 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2280 * Create "The Godfather" zio to hold all async IOs
2282 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2283 KM_SLEEP);
2284 for (int i = 0; i < max_ncpus; i++) {
2285 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2286 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2287 ZIO_FLAG_GODFATHER);
2291 * Parse the configuration into a vdev tree. We explicitly set the
2292 * value that will be returned by spa_version() since parsing the
2293 * configuration requires knowing the version number.
2295 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2296 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2297 spa_config_exit(spa, SCL_ALL, FTAG);
2299 if (error != 0)
2300 return (error);
2302 ASSERT(spa->spa_root_vdev == rvd);
2303 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2304 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2306 if (type != SPA_IMPORT_ASSEMBLE) {
2307 ASSERT(spa_guid(spa) == pool_guid);
2311 * Try to open all vdevs, loading each label in the process.
2313 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2314 error = vdev_open(rvd);
2315 spa_config_exit(spa, SCL_ALL, FTAG);
2316 if (error != 0)
2317 return (error);
2320 * We need to validate the vdev labels against the configuration that
2321 * we have in hand, which is dependent on the setting of mosconfig. If
2322 * mosconfig is true then we're validating the vdev labels based on
2323 * that config. Otherwise, we're validating against the cached config
2324 * (zpool.cache) that was read when we loaded the zfs module, and then
2325 * later we will recursively call spa_load() and validate against
2326 * the vdev config.
2328 * If we're assembling a new pool that's been split off from an
2329 * existing pool, the labels haven't yet been updated so we skip
2330 * validation for now.
2332 if (type != SPA_IMPORT_ASSEMBLE) {
2333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2334 error = vdev_validate(rvd, trust_config);
2335 spa_config_exit(spa, SCL_ALL, FTAG);
2337 if (error != 0)
2338 return (error);
2340 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2341 return (SET_ERROR(ENXIO));
2345 * Find the best uberblock.
2347 vdev_uberblock_load(rvd, ub, &label);
2350 * If we weren't able to find a single valid uberblock, return failure.
2352 if (ub->ub_txg == 0) {
2353 nvlist_free(label);
2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2358 * If the pool has an unsupported version we can't open it.
2360 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2361 nvlist_free(label);
2362 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2365 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2366 nvlist_t *features;
2369 * If we weren't able to find what's necessary for reading the
2370 * MOS in the label, return failure.
2372 if (label == NULL || nvlist_lookup_nvlist(label,
2373 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2374 nvlist_free(label);
2375 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2376 ENXIO));
2380 * Update our in-core representation with the definitive values
2381 * from the label.
2383 nvlist_free(spa->spa_label_features);
2384 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2387 nvlist_free(label);
2390 * Look through entries in the label nvlist's features_for_read. If
2391 * there is a feature listed there which we don't understand then we
2392 * cannot open a pool.
2394 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2395 nvlist_t *unsup_feat;
2397 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2400 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2401 NULL); nvp != NULL;
2402 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2403 if (!zfeature_is_supported(nvpair_name(nvp))) {
2404 VERIFY(nvlist_add_string(unsup_feat,
2405 nvpair_name(nvp), "") == 0);
2409 if (!nvlist_empty(unsup_feat)) {
2410 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2411 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2412 nvlist_free(unsup_feat);
2413 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2414 ENOTSUP));
2417 nvlist_free(unsup_feat);
2421 * If the vdev guid sum doesn't match the uberblock, we have an
2422 * incomplete configuration. We first check to see if the pool
2423 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2424 * If it is, defer the vdev_guid_sum check till later so we
2425 * can handle missing vdevs.
2427 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2428 &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE &&
2429 rvd->vdev_guid_sum != ub->ub_guid_sum)
2430 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2432 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2433 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2434 spa_try_repair(spa, config);
2435 spa_config_exit(spa, SCL_ALL, FTAG);
2436 nvlist_free(spa->spa_config_splitting);
2437 spa->spa_config_splitting = NULL;
2441 * Initialize internal SPA structures.
2443 spa->spa_state = POOL_STATE_ACTIVE;
2444 spa->spa_ubsync = spa->spa_uberblock;
2445 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2446 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2447 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2448 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2449 spa->spa_claim_max_txg = spa->spa_first_txg;
2450 spa->spa_prev_software_version = ub->ub_software_version;
2453 * Everything that we read before we do spa_remove_init() must
2454 * have been rewritten after the last device removal was initiated.
2455 * Otherwise we could be reading from indirect vdevs before
2456 * we have loaded their mappings.
2459 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2460 if (error)
2461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2464 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2468 * Validate the config, using the MOS config to fill in any
2469 * information which might be missing. If we fail to validate
2470 * the config then declare the pool unfit for use. If we're
2471 * assembling a pool from a split, the log is not transferred
2472 * over.
2474 if (type != SPA_IMPORT_ASSEMBLE) {
2475 nvlist_t *mos_config;
2476 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2479 if (!spa_config_valid(spa, mos_config)) {
2480 nvlist_free(mos_config);
2481 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2482 ENXIO));
2484 nvlist_free(mos_config);
2487 * Now that we've validated the config, check the state of the
2488 * root vdev. If it can't be opened, it indicates one or
2489 * more toplevel vdevs are faulted.
2491 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2492 return (SET_ERROR(ENXIO));
2496 * Everything that we read before spa_remove_init() must be stored
2497 * on concreted vdevs. Therefore we do this as early as possible.
2499 if (spa_remove_init(spa) != 0)
2500 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2502 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2503 boolean_t missing_feat_read = B_FALSE;
2504 nvlist_t *unsup_feat, *enabled_feat;
2506 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2507 &spa->spa_feat_for_read_obj) != 0) {
2508 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2512 &spa->spa_feat_for_write_obj) != 0) {
2513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2517 &spa->spa_feat_desc_obj) != 0) {
2518 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521 enabled_feat = fnvlist_alloc();
2522 unsup_feat = fnvlist_alloc();
2524 if (!spa_features_check(spa, B_FALSE,
2525 unsup_feat, enabled_feat))
2526 missing_feat_read = B_TRUE;
2528 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2529 if (!spa_features_check(spa, B_TRUE,
2530 unsup_feat, enabled_feat)) {
2531 missing_feat_write = B_TRUE;
2535 fnvlist_add_nvlist(spa->spa_load_info,
2536 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2538 if (!nvlist_empty(unsup_feat)) {
2539 fnvlist_add_nvlist(spa->spa_load_info,
2540 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2543 fnvlist_free(enabled_feat);
2544 fnvlist_free(unsup_feat);
2546 if (!missing_feat_read) {
2547 fnvlist_add_boolean(spa->spa_load_info,
2548 ZPOOL_CONFIG_CAN_RDONLY);
2552 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2553 * twofold: to determine whether the pool is available for
2554 * import in read-write mode and (if it is not) whether the
2555 * pool is available for import in read-only mode. If the pool
2556 * is available for import in read-write mode, it is displayed
2557 * as available in userland; if it is not available for import
2558 * in read-only mode, it is displayed as unavailable in
2559 * userland. If the pool is available for import in read-only
2560 * mode but not read-write mode, it is displayed as unavailable
2561 * in userland with a special note that the pool is actually
2562 * available for open in read-only mode.
2564 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2565 * missing a feature for write, we must first determine whether
2566 * the pool can be opened read-only before returning to
2567 * userland in order to know whether to display the
2568 * abovementioned note.
2570 if (missing_feat_read || (missing_feat_write &&
2571 spa_writeable(spa))) {
2572 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2573 ENOTSUP));
2577 * Load refcounts for ZFS features from disk into an in-memory
2578 * cache during SPA initialization.
2580 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2581 uint64_t refcount;
2583 error = feature_get_refcount_from_disk(spa,
2584 &spa_feature_table[i], &refcount);
2585 if (error == 0) {
2586 spa->spa_feat_refcount_cache[i] = refcount;
2587 } else if (error == ENOTSUP) {
2588 spa->spa_feat_refcount_cache[i] =
2589 SPA_FEATURE_DISABLED;
2590 } else {
2591 return (spa_vdev_err(rvd,
2592 VDEV_AUX_CORRUPT_DATA, EIO));
2597 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2598 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2599 &spa->spa_feat_enabled_txg_obj) != 0)
2600 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603 spa->spa_is_initializing = B_TRUE;
2604 error = dsl_pool_open(spa->spa_dsl_pool);
2605 spa->spa_is_initializing = B_FALSE;
2606 if (error != 0)
2607 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2609 if (!trust_config) {
2610 uint64_t hostid;
2611 nvlist_t *policy = NULL;
2612 nvlist_t *mos_config;
2614 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2615 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2617 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2618 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2619 char *hostname;
2620 unsigned long myhostid = 0;
2622 VERIFY(nvlist_lookup_string(mos_config,
2623 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2625 #ifdef _KERNEL
2626 myhostid = zone_get_hostid(NULL);
2627 #else /* _KERNEL */
2629 * We're emulating the system's hostid in userland, so
2630 * we can't use zone_get_hostid().
2632 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2633 #endif /* _KERNEL */
2634 if (hostid != 0 && myhostid != 0 &&
2635 hostid != myhostid) {
2636 nvlist_free(mos_config);
2637 cmn_err(CE_WARN, "pool '%s' could not be "
2638 "loaded as it was last accessed by "
2639 "another system (host: %s hostid: 0x%lx). "
2640 "See: http://illumos.org/msg/ZFS-8000-EY",
2641 spa_name(spa), hostname,
2642 (unsigned long)hostid);
2643 return (SET_ERROR(EBADF));
2646 if (nvlist_lookup_nvlist(spa->spa_config,
2647 ZPOOL_REWIND_POLICY, &policy) == 0)
2648 VERIFY(nvlist_add_nvlist(mos_config,
2649 ZPOOL_REWIND_POLICY, policy) == 0);
2651 spa_config_set(spa, mos_config);
2652 spa_unload(spa);
2653 spa_deactivate(spa);
2654 spa_activate(spa, orig_mode);
2656 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2659 /* Grab the secret checksum salt from the MOS. */
2660 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2661 DMU_POOL_CHECKSUM_SALT, 1,
2662 sizeof (spa->spa_cksum_salt.zcs_bytes),
2663 spa->spa_cksum_salt.zcs_bytes);
2664 if (error == ENOENT) {
2665 /* Generate a new salt for subsequent use */
2666 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2667 sizeof (spa->spa_cksum_salt.zcs_bytes));
2668 } else if (error != 0) {
2669 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2673 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2674 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2675 if (error != 0)
2676 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2679 * Load the bit that tells us to use the new accounting function
2680 * (raid-z deflation). If we have an older pool, this will not
2681 * be present.
2683 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2684 if (error != 0 && error != ENOENT)
2685 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2687 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2688 &spa->spa_creation_version);
2689 if (error != 0 && error != ENOENT)
2690 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2693 * Load the persistent error log. If we have an older pool, this will
2694 * not be present.
2696 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2697 if (error != 0 && error != ENOENT)
2698 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2700 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2701 &spa->spa_errlog_scrub);
2702 if (error != 0 && error != ENOENT)
2703 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2706 * Load the history object. If we have an older pool, this
2707 * will not be present.
2709 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2710 if (error != 0 && error != ENOENT)
2711 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2714 * Load the per-vdev ZAP map. If we have an older pool, this will not
2715 * be present; in this case, defer its creation to a later time to
2716 * avoid dirtying the MOS this early / out of sync context. See
2717 * spa_sync_config_object.
2720 /* The sentinel is only available in the MOS config. */
2721 nvlist_t *mos_config;
2722 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2723 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2725 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2726 &spa->spa_all_vdev_zaps);
2728 if (error == ENOENT) {
2729 VERIFY(!nvlist_exists(mos_config,
2730 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2731 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2732 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2733 } else if (error != 0) {
2734 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2735 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2737 * An older version of ZFS overwrote the sentinel value, so
2738 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2739 * destruction to later; see spa_sync_config_object.
2741 spa->spa_avz_action = AVZ_ACTION_DESTROY;
2743 * We're assuming that no vdevs have had their ZAPs created
2744 * before this. Better be sure of it.
2746 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2748 nvlist_free(mos_config);
2751 * If we're assembling the pool from the split-off vdevs of
2752 * an existing pool, we don't want to attach the spares & cache
2753 * devices.
2757 * Load any hot spares for this pool.
2759 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2760 if (error != 0 && error != ENOENT)
2761 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2762 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2763 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2764 if (load_nvlist(spa, spa->spa_spares.sav_object,
2765 &spa->spa_spares.sav_config) != 0)
2766 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2768 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2769 spa_load_spares(spa);
2770 spa_config_exit(spa, SCL_ALL, FTAG);
2771 } else if (error == 0) {
2772 spa->spa_spares.sav_sync = B_TRUE;
2776 * Load any level 2 ARC devices for this pool.
2778 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2779 &spa->spa_l2cache.sav_object);
2780 if (error != 0 && error != ENOENT)
2781 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2782 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2783 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2784 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2785 &spa->spa_l2cache.sav_config) != 0)
2786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2788 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2789 spa_load_l2cache(spa);
2790 spa_config_exit(spa, SCL_ALL, FTAG);
2791 } else if (error == 0) {
2792 spa->spa_l2cache.sav_sync = B_TRUE;
2795 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2797 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2798 if (error && error != ENOENT)
2799 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2801 if (error == 0) {
2802 uint64_t autoreplace;
2804 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2805 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2806 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2807 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2808 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2809 spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
2810 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2811 &spa->spa_dedup_ditto);
2813 spa->spa_autoreplace = (autoreplace != 0);
2817 * If the 'autoreplace' property is set, then post a resource notifying
2818 * the ZFS DE that it should not issue any faults for unopenable
2819 * devices. We also iterate over the vdevs, and post a sysevent for any
2820 * unopenable vdevs so that the normal autoreplace handler can take
2821 * over.
2823 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2824 spa_check_removed(spa->spa_root_vdev);
2826 * For the import case, this is done in spa_import(), because
2827 * at this point we're using the spare definitions from
2828 * the MOS config, not necessarily from the userland config.
2830 if (state != SPA_LOAD_IMPORT) {
2831 spa_aux_check_removed(&spa->spa_spares);
2832 spa_aux_check_removed(&spa->spa_l2cache);
2837 * Load the vdev state for all toplevel vdevs.
2839 error = vdev_load(rvd);
2840 if (error != 0) {
2841 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2844 error = spa_condense_init(spa);
2845 if (error != 0) {
2846 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2850 * Propagate the leaf DTLs we just loaded all the way up the tree.
2852 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2853 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2854 spa_config_exit(spa, SCL_ALL, FTAG);
2857 * Load the DDTs (dedup tables).
2859 error = ddt_load(spa);
2860 if (error != 0)
2861 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2863 spa_update_dspace(spa);
2865 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa) &&
2866 spa_check_logs(spa)) {
2867 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2868 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2871 if (missing_feat_write) {
2872 ASSERT(state == SPA_LOAD_TRYIMPORT);
2875 * At this point, we know that we can open the pool in
2876 * read-only mode but not read-write mode. We now have enough
2877 * information and can return to userland.
2879 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2883 * We've successfully opened the pool, verify that we're ready
2884 * to start pushing transactions.
2886 if (state != SPA_LOAD_TRYIMPORT) {
2887 if (error = spa_load_verify(spa))
2888 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2889 error));
2892 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2893 spa->spa_load_max_txg == UINT64_MAX)) {
2894 dmu_tx_t *tx;
2895 int need_update = B_FALSE;
2896 dsl_pool_t *dp = spa_get_dsl(spa);
2899 * We must check this before we start the sync thread, because
2900 * we only want to start a condense thread for condense
2901 * operations that were in progress when the pool was
2902 * imported. Once we start syncing, spa_sync() could
2903 * initiate a condense (and start a thread for it). In
2904 * that case it would be wrong to start a second
2905 * condense thread.
2907 boolean_t condense_in_progress =
2908 (spa->spa_condensing_indirect != NULL);
2910 ASSERT(state != SPA_LOAD_TRYIMPORT);
2913 * Claim log blocks that haven't been committed yet.
2914 * This must all happen in a single txg.
2915 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2916 * invoked from zil_claim_log_block()'s i/o done callback.
2917 * Price of rollback is that we abandon the log.
2919 spa->spa_claiming = B_TRUE;
2921 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2922 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2923 zil_claim, tx, DS_FIND_CHILDREN);
2924 dmu_tx_commit(tx);
2926 spa->spa_claiming = B_FALSE;
2928 spa_set_log_state(spa, SPA_LOG_GOOD);
2929 spa->spa_sync_on = B_TRUE;
2930 txg_sync_start(spa->spa_dsl_pool);
2933 * Wait for all claims to sync. We sync up to the highest
2934 * claimed log block birth time so that claimed log blocks
2935 * don't appear to be from the future. spa_claim_max_txg
2936 * will have been set for us by either zil_check_log_chain()
2937 * (invoked from spa_check_logs()) or zil_claim() above.
2939 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2942 * If the config cache is stale, or we have uninitialized
2943 * metaslabs (see spa_vdev_add()), then update the config.
2945 * If this is a verbatim import, trust the current
2946 * in-core spa_config and update the disk labels.
2948 if (config_cache_txg != spa->spa_config_txg ||
2949 state == SPA_LOAD_IMPORT ||
2950 state == SPA_LOAD_RECOVER ||
2951 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2952 need_update = B_TRUE;
2954 for (int c = 0; c < rvd->vdev_children; c++)
2955 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2956 need_update = B_TRUE;
2959 * Update the config cache asychronously in case we're the
2960 * root pool, in which case the config cache isn't writable yet.
2962 if (need_update)
2963 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2966 * Check all DTLs to see if anything needs resilvering.
2968 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2969 vdev_resilver_needed(rvd, NULL, NULL))
2970 spa_async_request(spa, SPA_ASYNC_RESILVER);
2973 * Log the fact that we booted up (so that we can detect if
2974 * we rebooted in the middle of an operation).
2976 spa_history_log_version(spa, "open");
2979 * Delete any inconsistent datasets.
2981 (void) dmu_objset_find(spa_name(spa),
2982 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2985 * Clean up any stale temporary dataset userrefs.
2987 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2990 * Note: unlike condensing, we don't need an analogous
2991 * "removal_in_progress" dance because no other thread
2992 * can start a removal while we hold the spa_namespace_lock.
2994 spa_restart_removal(spa);
2996 if (condense_in_progress)
2997 spa_condense_indirect_restart(spa);
3000 return (0);
3003 static int
3004 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3006 int mode = spa->spa_mode;
3008 spa_unload(spa);
3009 spa_deactivate(spa);
3011 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3013 spa_activate(spa, mode);
3014 spa_async_suspend(spa);
3016 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3020 * If spa_load() fails this function will try loading prior txg's. If
3021 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3022 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3023 * function will not rewind the pool and will return the same error as
3024 * spa_load().
3026 static int
3027 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3028 uint64_t max_request, int rewind_flags)
3030 nvlist_t *loadinfo = NULL;
3031 nvlist_t *config = NULL;
3032 int load_error, rewind_error;
3033 uint64_t safe_rewind_txg;
3034 uint64_t min_txg;
3036 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3037 spa->spa_load_max_txg = spa->spa_load_txg;
3038 spa_set_log_state(spa, SPA_LOG_CLEAR);
3039 } else {
3040 spa->spa_load_max_txg = max_request;
3041 if (max_request != UINT64_MAX)
3042 spa->spa_extreme_rewind = B_TRUE;
3045 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3046 mosconfig);
3047 if (load_error == 0)
3048 return (0);
3050 if (spa->spa_root_vdev != NULL)
3051 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3053 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3054 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3056 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3057 nvlist_free(config);
3058 return (load_error);
3061 if (state == SPA_LOAD_RECOVER) {
3062 /* Price of rolling back is discarding txgs, including log */
3063 spa_set_log_state(spa, SPA_LOG_CLEAR);
3064 } else {
3066 * If we aren't rolling back save the load info from our first
3067 * import attempt so that we can restore it after attempting
3068 * to rewind.
3070 loadinfo = spa->spa_load_info;
3071 spa->spa_load_info = fnvlist_alloc();
3074 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3075 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3076 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3077 TXG_INITIAL : safe_rewind_txg;
3080 * Continue as long as we're finding errors, we're still within
3081 * the acceptable rewind range, and we're still finding uberblocks
3083 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3084 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3085 if (spa->spa_load_max_txg < safe_rewind_txg)
3086 spa->spa_extreme_rewind = B_TRUE;
3087 rewind_error = spa_load_retry(spa, state, mosconfig);
3090 spa->spa_extreme_rewind = B_FALSE;
3091 spa->spa_load_max_txg = UINT64_MAX;
3093 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3094 spa_config_set(spa, config);
3095 else
3096 nvlist_free(config);
3098 if (state == SPA_LOAD_RECOVER) {
3099 ASSERT3P(loadinfo, ==, NULL);
3100 return (rewind_error);
3101 } else {
3102 /* Store the rewind info as part of the initial load info */
3103 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3104 spa->spa_load_info);
3106 /* Restore the initial load info */
3107 fnvlist_free(spa->spa_load_info);
3108 spa->spa_load_info = loadinfo;
3110 return (load_error);
3115 * Pool Open/Import
3117 * The import case is identical to an open except that the configuration is sent
3118 * down from userland, instead of grabbed from the configuration cache. For the
3119 * case of an open, the pool configuration will exist in the
3120 * POOL_STATE_UNINITIALIZED state.
3122 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3123 * the same time open the pool, without having to keep around the spa_t in some
3124 * ambiguous state.
3126 static int
3127 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3128 nvlist_t **config)
3130 spa_t *spa;
3131 spa_load_state_t state = SPA_LOAD_OPEN;
3132 int error;
3133 int locked = B_FALSE;
3135 *spapp = NULL;
3138 * As disgusting as this is, we need to support recursive calls to this
3139 * function because dsl_dir_open() is called during spa_load(), and ends
3140 * up calling spa_open() again. The real fix is to figure out how to
3141 * avoid dsl_dir_open() calling this in the first place.
3143 if (mutex_owner(&spa_namespace_lock) != curthread) {
3144 mutex_enter(&spa_namespace_lock);
3145 locked = B_TRUE;
3148 if ((spa = spa_lookup(pool)) == NULL) {
3149 if (locked)
3150 mutex_exit(&spa_namespace_lock);
3151 return (SET_ERROR(ENOENT));
3154 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3155 zpool_rewind_policy_t policy;
3157 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3158 &policy);
3159 if (policy.zrp_request & ZPOOL_DO_REWIND)
3160 state = SPA_LOAD_RECOVER;
3162 spa_activate(spa, spa_mode_global);
3164 if (state != SPA_LOAD_RECOVER)
3165 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3167 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3168 policy.zrp_request);
3170 if (error == EBADF) {
3172 * If vdev_validate() returns failure (indicated by
3173 * EBADF), it indicates that one of the vdevs indicates
3174 * that the pool has been exported or destroyed. If
3175 * this is the case, the config cache is out of sync and
3176 * we should remove the pool from the namespace.
3178 spa_unload(spa);
3179 spa_deactivate(spa);
3180 spa_write_cachefile(spa, B_TRUE, B_TRUE);
3181 spa_remove(spa);
3182 if (locked)
3183 mutex_exit(&spa_namespace_lock);
3184 return (SET_ERROR(ENOENT));
3187 if (error) {
3189 * We can't open the pool, but we still have useful
3190 * information: the state of each vdev after the
3191 * attempted vdev_open(). Return this to the user.
3193 if (config != NULL && spa->spa_config) {
3194 VERIFY(nvlist_dup(spa->spa_config, config,
3195 KM_SLEEP) == 0);
3196 VERIFY(nvlist_add_nvlist(*config,
3197 ZPOOL_CONFIG_LOAD_INFO,
3198 spa->spa_load_info) == 0);
3200 spa_unload(spa);
3201 spa_deactivate(spa);
3202 spa->spa_last_open_failed = error;
3203 if (locked)
3204 mutex_exit(&spa_namespace_lock);
3205 *spapp = NULL;
3206 return (error);
3210 spa_open_ref(spa, tag);
3212 if (config != NULL)
3213 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3216 * If we've recovered the pool, pass back any information we
3217 * gathered while doing the load.
3219 if (state == SPA_LOAD_RECOVER) {
3220 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3221 spa->spa_load_info) == 0);
3224 if (locked) {
3225 spa->spa_last_open_failed = 0;
3226 spa->spa_last_ubsync_txg = 0;
3227 spa->spa_load_txg = 0;
3228 mutex_exit(&spa_namespace_lock);
3231 *spapp = spa;
3233 return (0);
3237 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3238 nvlist_t **config)
3240 return (spa_open_common(name, spapp, tag, policy, config));
3244 spa_open(const char *name, spa_t **spapp, void *tag)
3246 return (spa_open_common(name, spapp, tag, NULL, NULL));
3250 * Lookup the given spa_t, incrementing the inject count in the process,
3251 * preventing it from being exported or destroyed.
3253 spa_t *
3254 spa_inject_addref(char *name)
3256 spa_t *spa;
3258 mutex_enter(&spa_namespace_lock);
3259 if ((spa = spa_lookup(name)) == NULL) {
3260 mutex_exit(&spa_namespace_lock);
3261 return (NULL);
3263 spa->spa_inject_ref++;
3264 mutex_exit(&spa_namespace_lock);
3266 return (spa);
3269 void
3270 spa_inject_delref(spa_t *spa)
3272 mutex_enter(&spa_namespace_lock);
3273 spa->spa_inject_ref--;
3274 mutex_exit(&spa_namespace_lock);
3278 * Add spares device information to the nvlist.
3280 static void
3281 spa_add_spares(spa_t *spa, nvlist_t *config)
3283 nvlist_t **spares;
3284 uint_t i, nspares;
3285 nvlist_t *nvroot;
3286 uint64_t guid;
3287 vdev_stat_t *vs;
3288 uint_t vsc;
3289 uint64_t pool;
3291 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3293 if (spa->spa_spares.sav_count == 0)
3294 return;
3296 VERIFY(nvlist_lookup_nvlist(config,
3297 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3298 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3299 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3300 if (nspares != 0) {
3301 VERIFY(nvlist_add_nvlist_array(nvroot,
3302 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3303 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3304 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3307 * Go through and find any spares which have since been
3308 * repurposed as an active spare. If this is the case, update
3309 * their status appropriately.
3311 for (i = 0; i < nspares; i++) {
3312 VERIFY(nvlist_lookup_uint64(spares[i],
3313 ZPOOL_CONFIG_GUID, &guid) == 0);
3314 if (spa_spare_exists(guid, &pool, NULL) &&
3315 pool != 0ULL) {
3316 VERIFY(nvlist_lookup_uint64_array(
3317 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3318 (uint64_t **)&vs, &vsc) == 0);
3319 vs->vs_state = VDEV_STATE_CANT_OPEN;
3320 vs->vs_aux = VDEV_AUX_SPARED;
3327 * Add l2cache device information to the nvlist, including vdev stats.
3329 static void
3330 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3332 nvlist_t **l2cache;
3333 uint_t i, j, nl2cache;
3334 nvlist_t *nvroot;
3335 uint64_t guid;
3336 vdev_t *vd;
3337 vdev_stat_t *vs;
3338 uint_t vsc;
3340 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3342 if (spa->spa_l2cache.sav_count == 0)
3343 return;
3345 VERIFY(nvlist_lookup_nvlist(config,
3346 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3347 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3348 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3349 if (nl2cache != 0) {
3350 VERIFY(nvlist_add_nvlist_array(nvroot,
3351 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3352 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3353 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3356 * Update level 2 cache device stats.
3359 for (i = 0; i < nl2cache; i++) {
3360 VERIFY(nvlist_lookup_uint64(l2cache[i],
3361 ZPOOL_CONFIG_GUID, &guid) == 0);
3363 vd = NULL;
3364 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3365 if (guid ==
3366 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3367 vd = spa->spa_l2cache.sav_vdevs[j];
3368 break;
3371 ASSERT(vd != NULL);
3373 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3374 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3375 == 0);
3376 vdev_get_stats(vd, vs);
3381 static void
3382 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3384 nvlist_t *features;
3385 zap_cursor_t zc;
3386 zap_attribute_t za;
3388 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3389 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3391 if (spa->spa_feat_for_read_obj != 0) {
3392 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3393 spa->spa_feat_for_read_obj);
3394 zap_cursor_retrieve(&zc, &za) == 0;
3395 zap_cursor_advance(&zc)) {
3396 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3397 za.za_num_integers == 1);
3398 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3399 za.za_first_integer));
3401 zap_cursor_fini(&zc);
3404 if (spa->spa_feat_for_write_obj != 0) {
3405 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3406 spa->spa_feat_for_write_obj);
3407 zap_cursor_retrieve(&zc, &za) == 0;
3408 zap_cursor_advance(&zc)) {
3409 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3410 za.za_num_integers == 1);
3411 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3412 za.za_first_integer));
3414 zap_cursor_fini(&zc);
3417 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3418 features) == 0);
3419 nvlist_free(features);
3423 spa_get_stats(const char *name, nvlist_t **config,
3424 char *altroot, size_t buflen)
3426 int error;
3427 spa_t *spa;
3429 *config = NULL;
3430 error = spa_open_common(name, &spa, FTAG, NULL, config);
3432 if (spa != NULL) {
3434 * This still leaves a window of inconsistency where the spares
3435 * or l2cache devices could change and the config would be
3436 * self-inconsistent.
3438 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3440 if (*config != NULL) {
3441 uint64_t loadtimes[2];
3443 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3444 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3445 VERIFY(nvlist_add_uint64_array(*config,
3446 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3448 VERIFY(nvlist_add_uint64(*config,
3449 ZPOOL_CONFIG_ERRCOUNT,
3450 spa_get_errlog_size(spa)) == 0);
3452 if (spa_suspended(spa))
3453 VERIFY(nvlist_add_uint64(*config,
3454 ZPOOL_CONFIG_SUSPENDED,
3455 spa->spa_failmode) == 0);
3457 spa_add_spares(spa, *config);
3458 spa_add_l2cache(spa, *config);
3459 spa_add_feature_stats(spa, *config);
3464 * We want to get the alternate root even for faulted pools, so we cheat
3465 * and call spa_lookup() directly.
3467 if (altroot) {
3468 if (spa == NULL) {
3469 mutex_enter(&spa_namespace_lock);
3470 spa = spa_lookup(name);
3471 if (spa)
3472 spa_altroot(spa, altroot, buflen);
3473 else
3474 altroot[0] = '\0';
3475 spa = NULL;
3476 mutex_exit(&spa_namespace_lock);
3477 } else {
3478 spa_altroot(spa, altroot, buflen);
3482 if (spa != NULL) {
3483 spa_config_exit(spa, SCL_CONFIG, FTAG);
3484 spa_close(spa, FTAG);
3487 return (error);
3491 * Validate that the auxiliary device array is well formed. We must have an
3492 * array of nvlists, each which describes a valid leaf vdev. If this is an
3493 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3494 * specified, as long as they are well-formed.
3496 static int
3497 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3498 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3499 vdev_labeltype_t label)
3501 nvlist_t **dev;
3502 uint_t i, ndev;
3503 vdev_t *vd;
3504 int error;
3506 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3509 * It's acceptable to have no devs specified.
3511 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3512 return (0);
3514 if (ndev == 0)
3515 return (SET_ERROR(EINVAL));
3518 * Make sure the pool is formatted with a version that supports this
3519 * device type.
3521 if (spa_version(spa) < version)
3522 return (SET_ERROR(ENOTSUP));
3525 * Set the pending device list so we correctly handle device in-use
3526 * checking.
3528 sav->sav_pending = dev;
3529 sav->sav_npending = ndev;
3531 for (i = 0; i < ndev; i++) {
3532 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3533 mode)) != 0)
3534 goto out;
3536 if (!vd->vdev_ops->vdev_op_leaf) {
3537 vdev_free(vd);
3538 error = SET_ERROR(EINVAL);
3539 goto out;
3543 * The L2ARC currently only supports disk devices in
3544 * kernel context. For user-level testing, we allow it.
3546 #ifdef _KERNEL
3547 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3548 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3549 error = SET_ERROR(ENOTBLK);
3550 vdev_free(vd);
3551 goto out;
3553 #endif
3554 vd->vdev_top = vd;
3556 if ((error = vdev_open(vd)) == 0 &&
3557 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3558 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3559 vd->vdev_guid) == 0);
3562 vdev_free(vd);
3564 if (error &&
3565 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3566 goto out;
3567 else
3568 error = 0;
3571 out:
3572 sav->sav_pending = NULL;
3573 sav->sav_npending = 0;
3574 return (error);
3577 static int
3578 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3580 int error;
3582 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3584 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3585 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3586 VDEV_LABEL_SPARE)) != 0) {
3587 return (error);
3590 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3591 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3592 VDEV_LABEL_L2CACHE));
3595 static void
3596 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3597 const char *config)
3599 int i;
3601 if (sav->sav_config != NULL) {
3602 nvlist_t **olddevs;
3603 uint_t oldndevs;
3604 nvlist_t **newdevs;
3607 * Generate new dev list by concatentating with the
3608 * current dev list.
3610 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3611 &olddevs, &oldndevs) == 0);
3613 newdevs = kmem_alloc(sizeof (void *) *
3614 (ndevs + oldndevs), KM_SLEEP);
3615 for (i = 0; i < oldndevs; i++)
3616 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3617 KM_SLEEP) == 0);
3618 for (i = 0; i < ndevs; i++)
3619 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3620 KM_SLEEP) == 0);
3622 VERIFY(nvlist_remove(sav->sav_config, config,
3623 DATA_TYPE_NVLIST_ARRAY) == 0);
3625 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3626 config, newdevs, ndevs + oldndevs) == 0);
3627 for (i = 0; i < oldndevs + ndevs; i++)
3628 nvlist_free(newdevs[i]);
3629 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3630 } else {
3632 * Generate a new dev list.
3634 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3635 KM_SLEEP) == 0);
3636 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3637 devs, ndevs) == 0);
3642 * Stop and drop level 2 ARC devices
3644 void
3645 spa_l2cache_drop(spa_t *spa)
3647 vdev_t *vd;
3648 int i;
3649 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3651 for (i = 0; i < sav->sav_count; i++) {
3652 uint64_t pool;
3654 vd = sav->sav_vdevs[i];
3655 ASSERT(vd != NULL);
3657 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3658 pool != 0ULL && l2arc_vdev_present(vd))
3659 l2arc_remove_vdev(vd);
3664 * Pool Creation
3667 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3668 nvlist_t *zplprops)
3670 spa_t *spa;
3671 char *altroot = NULL;
3672 vdev_t *rvd;
3673 dsl_pool_t *dp;
3674 dmu_tx_t *tx;
3675 int error = 0;
3676 uint64_t txg = TXG_INITIAL;
3677 nvlist_t **spares, **l2cache;
3678 uint_t nspares, nl2cache;
3679 uint64_t version, obj;
3680 boolean_t has_features;
3683 * If this pool already exists, return failure.
3685 mutex_enter(&spa_namespace_lock);
3686 if (spa_lookup(pool) != NULL) {
3687 mutex_exit(&spa_namespace_lock);
3688 return (SET_ERROR(EEXIST));
3692 * Allocate a new spa_t structure.
3694 (void) nvlist_lookup_string(props,
3695 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3696 spa = spa_add(pool, NULL, altroot);
3697 spa_activate(spa, spa_mode_global);
3699 if (props && (error = spa_prop_validate(spa, props))) {
3700 spa_deactivate(spa);
3701 spa_remove(spa);
3702 mutex_exit(&spa_namespace_lock);
3703 return (error);
3706 has_features = B_FALSE;
3707 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3708 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3709 if (zpool_prop_feature(nvpair_name(elem)))
3710 has_features = B_TRUE;
3713 if (has_features || nvlist_lookup_uint64(props,
3714 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3715 version = SPA_VERSION;
3717 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3719 spa->spa_first_txg = txg;
3720 spa->spa_uberblock.ub_txg = txg - 1;
3721 spa->spa_uberblock.ub_version = version;
3722 spa->spa_ubsync = spa->spa_uberblock;
3723 spa->spa_load_state = SPA_LOAD_CREATE;
3724 spa->spa_removing_phys.sr_state = DSS_NONE;
3725 spa->spa_removing_phys.sr_removing_vdev = -1;
3726 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
3729 * Create "The Godfather" zio to hold all async IOs
3731 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3732 KM_SLEEP);
3733 for (int i = 0; i < max_ncpus; i++) {
3734 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3735 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3736 ZIO_FLAG_GODFATHER);
3740 * Create the root vdev.
3742 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3744 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3746 ASSERT(error != 0 || rvd != NULL);
3747 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3749 if (error == 0 && !zfs_allocatable_devs(nvroot))
3750 error = SET_ERROR(EINVAL);
3752 if (error == 0 &&
3753 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3754 (error = spa_validate_aux(spa, nvroot, txg,
3755 VDEV_ALLOC_ADD)) == 0) {
3756 for (int c = 0; c < rvd->vdev_children; c++) {
3757 vdev_metaslab_set_size(rvd->vdev_child[c]);
3758 vdev_expand(rvd->vdev_child[c], txg);
3762 spa_config_exit(spa, SCL_ALL, FTAG);
3764 if (error != 0) {
3765 spa_unload(spa);
3766 spa_deactivate(spa);
3767 spa_remove(spa);
3768 mutex_exit(&spa_namespace_lock);
3769 return (error);
3773 * Get the list of spares, if specified.
3775 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3776 &spares, &nspares) == 0) {
3777 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3778 KM_SLEEP) == 0);
3779 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3780 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3781 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3782 spa_load_spares(spa);
3783 spa_config_exit(spa, SCL_ALL, FTAG);
3784 spa->spa_spares.sav_sync = B_TRUE;
3788 * Get the list of level 2 cache devices, if specified.
3790 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3791 &l2cache, &nl2cache) == 0) {
3792 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3793 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3794 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3795 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3796 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3797 spa_load_l2cache(spa);
3798 spa_config_exit(spa, SCL_ALL, FTAG);
3799 spa->spa_l2cache.sav_sync = B_TRUE;
3802 spa->spa_is_initializing = B_TRUE;
3803 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3804 spa->spa_meta_objset = dp->dp_meta_objset;
3805 spa->spa_is_initializing = B_FALSE;
3808 * Create DDTs (dedup tables).
3810 ddt_create(spa);
3812 spa_update_dspace(spa);
3814 tx = dmu_tx_create_assigned(dp, txg);
3817 * Create the pool config object.
3819 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3820 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3821 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3823 if (zap_add(spa->spa_meta_objset,
3824 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3825 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3826 cmn_err(CE_PANIC, "failed to add pool config");
3829 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3830 spa_feature_create_zap_objects(spa, tx);
3832 if (zap_add(spa->spa_meta_objset,
3833 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3834 sizeof (uint64_t), 1, &version, tx) != 0) {
3835 cmn_err(CE_PANIC, "failed to add pool version");
3838 /* Newly created pools with the right version are always deflated. */
3839 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3840 spa->spa_deflate = TRUE;
3841 if (zap_add(spa->spa_meta_objset,
3842 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3843 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3844 cmn_err(CE_PANIC, "failed to add deflate");
3849 * Create the deferred-free bpobj. Turn off compression
3850 * because sync-to-convergence takes longer if the blocksize
3851 * keeps changing.
3853 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3854 dmu_object_set_compress(spa->spa_meta_objset, obj,
3855 ZIO_COMPRESS_OFF, tx);
3856 if (zap_add(spa->spa_meta_objset,
3857 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3858 sizeof (uint64_t), 1, &obj, tx) != 0) {
3859 cmn_err(CE_PANIC, "failed to add bpobj");
3861 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3862 spa->spa_meta_objset, obj));
3865 * Create the pool's history object.
3867 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3868 spa_history_create_obj(spa, tx);
3871 * Generate some random noise for salted checksums to operate on.
3873 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3874 sizeof (spa->spa_cksum_salt.zcs_bytes));
3877 * Set pool properties.
3879 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3880 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3881 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3882 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3884 if (props != NULL) {
3885 spa_configfile_set(spa, props, B_FALSE);
3886 spa_sync_props(props, tx);
3889 dmu_tx_commit(tx);
3891 spa->spa_sync_on = B_TRUE;
3892 txg_sync_start(spa->spa_dsl_pool);
3895 * We explicitly wait for the first transaction to complete so that our
3896 * bean counters are appropriately updated.
3898 txg_wait_synced(spa->spa_dsl_pool, txg);
3900 spa_write_cachefile(spa, B_FALSE, B_TRUE);
3901 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
3903 spa_history_log_version(spa, "create");
3906 * Don't count references from objsets that are already closed
3907 * and are making their way through the eviction process.
3909 spa_evicting_os_wait(spa);
3910 spa->spa_minref = refcount_count(&spa->spa_refcount);
3911 spa->spa_load_state = SPA_LOAD_NONE;
3913 mutex_exit(&spa_namespace_lock);
3915 return (0);
3918 #ifdef _KERNEL
3920 * Get the root pool information from the root disk, then import the root pool
3921 * during the system boot up time.
3923 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3925 static nvlist_t *
3926 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3928 nvlist_t *config;
3929 nvlist_t *nvtop, *nvroot;
3930 uint64_t pgid;
3932 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3933 return (NULL);
3936 * Add this top-level vdev to the child array.
3938 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3939 &nvtop) == 0);
3940 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3941 &pgid) == 0);
3942 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3945 * Put this pool's top-level vdevs into a root vdev.
3947 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3948 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3949 VDEV_TYPE_ROOT) == 0);
3950 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3951 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3952 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3953 &nvtop, 1) == 0);
3956 * Replace the existing vdev_tree with the new root vdev in
3957 * this pool's configuration (remove the old, add the new).
3959 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3960 nvlist_free(nvroot);
3961 return (config);
3965 * Walk the vdev tree and see if we can find a device with "better"
3966 * configuration. A configuration is "better" if the label on that
3967 * device has a more recent txg.
3969 static void
3970 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3972 for (int c = 0; c < vd->vdev_children; c++)
3973 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3975 if (vd->vdev_ops->vdev_op_leaf) {
3976 nvlist_t *label;
3977 uint64_t label_txg;
3979 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3980 &label) != 0)
3981 return;
3983 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3984 &label_txg) == 0);
3987 * Do we have a better boot device?
3989 if (label_txg > *txg) {
3990 *txg = label_txg;
3991 *avd = vd;
3993 nvlist_free(label);
3998 * Import a root pool.
4000 * For x86. devpath_list will consist of devid and/or physpath name of
4001 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4002 * The GRUB "findroot" command will return the vdev we should boot.
4004 * For Sparc, devpath_list consists the physpath name of the booting device
4005 * no matter the rootpool is a single device pool or a mirrored pool.
4006 * e.g.
4007 * "/pci@1f,0/ide@d/disk@0,0:a"
4010 spa_import_rootpool(char *devpath, char *devid)
4012 spa_t *spa;
4013 vdev_t *rvd, *bvd, *avd = NULL;
4014 nvlist_t *config, *nvtop;
4015 uint64_t guid, txg;
4016 char *pname;
4017 int error;
4020 * Read the label from the boot device and generate a configuration.
4022 config = spa_generate_rootconf(devpath, devid, &guid);
4023 #if defined(_OBP) && defined(_KERNEL)
4024 if (config == NULL) {
4025 if (strstr(devpath, "/iscsi/ssd") != NULL) {
4026 /* iscsi boot */
4027 get_iscsi_bootpath_phy(devpath);
4028 config = spa_generate_rootconf(devpath, devid, &guid);
4031 #endif
4032 if (config == NULL) {
4033 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4034 devpath);
4035 return (SET_ERROR(EIO));
4038 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4039 &pname) == 0);
4040 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4042 mutex_enter(&spa_namespace_lock);
4043 if ((spa = spa_lookup(pname)) != NULL) {
4045 * Remove the existing root pool from the namespace so that we
4046 * can replace it with the correct config we just read in.
4048 spa_remove(spa);
4051 spa = spa_add(pname, config, NULL);
4052 spa->spa_is_root = B_TRUE;
4053 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4056 * Build up a vdev tree based on the boot device's label config.
4058 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4059 &nvtop) == 0);
4060 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4062 VDEV_ALLOC_ROOTPOOL);
4063 spa_config_exit(spa, SCL_ALL, FTAG);
4064 if (error) {
4065 mutex_exit(&spa_namespace_lock);
4066 nvlist_free(config);
4067 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4068 pname);
4069 return (error);
4073 * Get the boot vdev.
4075 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4076 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4077 (u_longlong_t)guid);
4078 error = SET_ERROR(ENOENT);
4079 goto out;
4083 * Determine if there is a better boot device.
4085 avd = bvd;
4086 spa_alt_rootvdev(rvd, &avd, &txg);
4087 if (avd != bvd) {
4088 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4089 "try booting from '%s'", avd->vdev_path);
4090 error = SET_ERROR(EINVAL);
4091 goto out;
4095 * If the boot device is part of a spare vdev then ensure that
4096 * we're booting off the active spare.
4098 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4099 !bvd->vdev_isspare) {
4100 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4101 "try booting from '%s'",
4102 bvd->vdev_parent->
4103 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4104 error = SET_ERROR(EINVAL);
4105 goto out;
4108 error = 0;
4109 out:
4110 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4111 vdev_free(rvd);
4112 spa_config_exit(spa, SCL_ALL, FTAG);
4113 mutex_exit(&spa_namespace_lock);
4115 nvlist_free(config);
4116 return (error);
4119 #endif
4122 * Import a non-root pool into the system.
4125 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4127 spa_t *spa;
4128 char *altroot = NULL;
4129 spa_load_state_t state = SPA_LOAD_IMPORT;
4130 zpool_rewind_policy_t policy;
4131 uint64_t mode = spa_mode_global;
4132 uint64_t readonly = B_FALSE;
4133 int error;
4134 nvlist_t *nvroot;
4135 nvlist_t **spares, **l2cache;
4136 uint_t nspares, nl2cache;
4139 * If a pool with this name exists, return failure.
4141 mutex_enter(&spa_namespace_lock);
4142 if (spa_lookup(pool) != NULL) {
4143 mutex_exit(&spa_namespace_lock);
4144 return (SET_ERROR(EEXIST));
4148 * Create and initialize the spa structure.
4150 (void) nvlist_lookup_string(props,
4151 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4152 (void) nvlist_lookup_uint64(props,
4153 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4154 if (readonly)
4155 mode = FREAD;
4156 spa = spa_add(pool, config, altroot);
4157 spa->spa_import_flags = flags;
4160 * Verbatim import - Take a pool and insert it into the namespace
4161 * as if it had been loaded at boot.
4163 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4164 if (props != NULL)
4165 spa_configfile_set(spa, props, B_FALSE);
4167 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4168 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4170 mutex_exit(&spa_namespace_lock);
4171 return (0);
4174 spa_activate(spa, mode);
4177 * Don't start async tasks until we know everything is healthy.
4179 spa_async_suspend(spa);
4181 zpool_get_rewind_policy(config, &policy);
4182 if (policy.zrp_request & ZPOOL_DO_REWIND)
4183 state = SPA_LOAD_RECOVER;
4186 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4187 * because the user-supplied config is actually the one to trust when
4188 * doing an import.
4190 if (state != SPA_LOAD_RECOVER)
4191 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4193 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4194 policy.zrp_request);
4197 * Propagate anything learned while loading the pool and pass it
4198 * back to caller (i.e. rewind info, missing devices, etc).
4200 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4201 spa->spa_load_info) == 0);
4203 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4205 * Toss any existing sparelist, as it doesn't have any validity
4206 * anymore, and conflicts with spa_has_spare().
4208 if (spa->spa_spares.sav_config) {
4209 nvlist_free(spa->spa_spares.sav_config);
4210 spa->spa_spares.sav_config = NULL;
4211 spa_load_spares(spa);
4213 if (spa->spa_l2cache.sav_config) {
4214 nvlist_free(spa->spa_l2cache.sav_config);
4215 spa->spa_l2cache.sav_config = NULL;
4216 spa_load_l2cache(spa);
4219 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4220 &nvroot) == 0);
4221 if (error == 0)
4222 error = spa_validate_aux(spa, nvroot, -1ULL,
4223 VDEV_ALLOC_SPARE);
4224 if (error == 0)
4225 error = spa_validate_aux(spa, nvroot, -1ULL,
4226 VDEV_ALLOC_L2CACHE);
4227 spa_config_exit(spa, SCL_ALL, FTAG);
4229 if (props != NULL)
4230 spa_configfile_set(spa, props, B_FALSE);
4232 if (error != 0 || (props && spa_writeable(spa) &&
4233 (error = spa_prop_set(spa, props)))) {
4234 spa_unload(spa);
4235 spa_deactivate(spa);
4236 spa_remove(spa);
4237 mutex_exit(&spa_namespace_lock);
4238 return (error);
4241 spa_async_resume(spa);
4244 * Override any spares and level 2 cache devices as specified by
4245 * the user, as these may have correct device names/devids, etc.
4247 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4248 &spares, &nspares) == 0) {
4249 if (spa->spa_spares.sav_config)
4250 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4251 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4252 else
4253 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4254 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4255 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4256 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4257 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4258 spa_load_spares(spa);
4259 spa_config_exit(spa, SCL_ALL, FTAG);
4260 spa->spa_spares.sav_sync = B_TRUE;
4262 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4263 &l2cache, &nl2cache) == 0) {
4264 if (spa->spa_l2cache.sav_config)
4265 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4266 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4267 else
4268 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4269 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4270 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4271 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4272 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4273 spa_load_l2cache(spa);
4274 spa_config_exit(spa, SCL_ALL, FTAG);
4275 spa->spa_l2cache.sav_sync = B_TRUE;
4279 * Check for any removed devices.
4281 if (spa->spa_autoreplace) {
4282 spa_aux_check_removed(&spa->spa_spares);
4283 spa_aux_check_removed(&spa->spa_l2cache);
4286 if (spa_writeable(spa)) {
4288 * Update the config cache to include the newly-imported pool.
4290 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4294 * It's possible that the pool was expanded while it was exported.
4295 * We kick off an async task to handle this for us.
4297 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4299 spa_history_log_version(spa, "import");
4301 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4303 mutex_exit(&spa_namespace_lock);
4305 return (0);
4308 nvlist_t *
4309 spa_tryimport(nvlist_t *tryconfig)
4311 nvlist_t *config = NULL;
4312 char *poolname;
4313 spa_t *spa;
4314 uint64_t state;
4315 int error;
4317 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4318 return (NULL);
4320 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4321 return (NULL);
4324 * Create and initialize the spa structure.
4326 mutex_enter(&spa_namespace_lock);
4327 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4328 spa_activate(spa, FREAD);
4331 * Pass off the heavy lifting to spa_load().
4332 * Pass TRUE for mosconfig because the user-supplied config
4333 * is actually the one to trust when doing an import.
4335 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4338 * If 'tryconfig' was at least parsable, return the current config.
4340 if (spa->spa_root_vdev != NULL) {
4341 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4342 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4343 poolname) == 0);
4344 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4345 state) == 0);
4346 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4347 spa->spa_uberblock.ub_timestamp) == 0);
4348 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4349 spa->spa_load_info) == 0);
4352 * If the bootfs property exists on this pool then we
4353 * copy it out so that external consumers can tell which
4354 * pools are bootable.
4356 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4357 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4360 * We have to play games with the name since the
4361 * pool was opened as TRYIMPORT_NAME.
4363 if (dsl_dsobj_to_dsname(spa_name(spa),
4364 spa->spa_bootfs, tmpname) == 0) {
4365 char *cp;
4366 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4368 cp = strchr(tmpname, '/');
4369 if (cp == NULL) {
4370 (void) strlcpy(dsname, tmpname,
4371 MAXPATHLEN);
4372 } else {
4373 (void) snprintf(dsname, MAXPATHLEN,
4374 "%s/%s", poolname, ++cp);
4376 VERIFY(nvlist_add_string(config,
4377 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4378 kmem_free(dsname, MAXPATHLEN);
4380 kmem_free(tmpname, MAXPATHLEN);
4384 * Add the list of hot spares and level 2 cache devices.
4386 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4387 spa_add_spares(spa, config);
4388 spa_add_l2cache(spa, config);
4389 spa_config_exit(spa, SCL_CONFIG, FTAG);
4392 spa_unload(spa);
4393 spa_deactivate(spa);
4394 spa_remove(spa);
4395 mutex_exit(&spa_namespace_lock);
4397 return (config);
4401 * Pool export/destroy
4403 * The act of destroying or exporting a pool is very simple. We make sure there
4404 * is no more pending I/O and any references to the pool are gone. Then, we
4405 * update the pool state and sync all the labels to disk, removing the
4406 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4407 * we don't sync the labels or remove the configuration cache.
4409 static int
4410 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4411 boolean_t force, boolean_t hardforce)
4413 spa_t *spa;
4415 if (oldconfig)
4416 *oldconfig = NULL;
4418 if (!(spa_mode_global & FWRITE))
4419 return (SET_ERROR(EROFS));
4421 mutex_enter(&spa_namespace_lock);
4422 if ((spa = spa_lookup(pool)) == NULL) {
4423 mutex_exit(&spa_namespace_lock);
4424 return (SET_ERROR(ENOENT));
4428 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4429 * reacquire the namespace lock, and see if we can export.
4431 spa_open_ref(spa, FTAG);
4432 mutex_exit(&spa_namespace_lock);
4433 spa_async_suspend(spa);
4434 mutex_enter(&spa_namespace_lock);
4435 spa_close(spa, FTAG);
4438 * The pool will be in core if it's openable,
4439 * in which case we can modify its state.
4441 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4443 * Objsets may be open only because they're dirty, so we
4444 * have to force it to sync before checking spa_refcnt.
4446 txg_wait_synced(spa->spa_dsl_pool, 0);
4447 spa_evicting_os_wait(spa);
4450 * A pool cannot be exported or destroyed if there are active
4451 * references. If we are resetting a pool, allow references by
4452 * fault injection handlers.
4454 if (!spa_refcount_zero(spa) ||
4455 (spa->spa_inject_ref != 0 &&
4456 new_state != POOL_STATE_UNINITIALIZED)) {
4457 spa_async_resume(spa);
4458 mutex_exit(&spa_namespace_lock);
4459 return (SET_ERROR(EBUSY));
4463 * A pool cannot be exported if it has an active shared spare.
4464 * This is to prevent other pools stealing the active spare
4465 * from an exported pool. At user's own will, such pool can
4466 * be forcedly exported.
4468 if (!force && new_state == POOL_STATE_EXPORTED &&
4469 spa_has_active_shared_spare(spa)) {
4470 spa_async_resume(spa);
4471 mutex_exit(&spa_namespace_lock);
4472 return (SET_ERROR(EXDEV));
4476 * We want this to be reflected on every label,
4477 * so mark them all dirty. spa_unload() will do the
4478 * final sync that pushes these changes out.
4480 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4481 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4482 spa->spa_state = new_state;
4483 spa->spa_final_txg = spa_last_synced_txg(spa) +
4484 TXG_DEFER_SIZE + 1;
4485 vdev_config_dirty(spa->spa_root_vdev);
4486 spa_config_exit(spa, SCL_ALL, FTAG);
4490 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4492 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4493 spa_unload(spa);
4494 spa_deactivate(spa);
4497 if (oldconfig && spa->spa_config)
4498 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4500 if (new_state != POOL_STATE_UNINITIALIZED) {
4501 if (!hardforce)
4502 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4503 spa_remove(spa);
4505 mutex_exit(&spa_namespace_lock);
4507 return (0);
4511 * Destroy a storage pool.
4514 spa_destroy(char *pool)
4516 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4517 B_FALSE, B_FALSE));
4521 * Export a storage pool.
4524 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4525 boolean_t hardforce)
4527 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4528 force, hardforce));
4532 * Similar to spa_export(), this unloads the spa_t without actually removing it
4533 * from the namespace in any way.
4536 spa_reset(char *pool)
4538 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4539 B_FALSE, B_FALSE));
4543 * ==========================================================================
4544 * Device manipulation
4545 * ==========================================================================
4549 * Add a device to a storage pool.
4552 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4554 uint64_t txg, id;
4555 int error;
4556 vdev_t *rvd = spa->spa_root_vdev;
4557 vdev_t *vd, *tvd;
4558 nvlist_t **spares, **l2cache;
4559 uint_t nspares, nl2cache;
4561 ASSERT(spa_writeable(spa));
4563 txg = spa_vdev_enter(spa);
4565 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4566 VDEV_ALLOC_ADD)) != 0)
4567 return (spa_vdev_exit(spa, NULL, txg, error));
4569 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4571 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4572 &nspares) != 0)
4573 nspares = 0;
4575 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4576 &nl2cache) != 0)
4577 nl2cache = 0;
4579 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4580 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4582 if (vd->vdev_children != 0 &&
4583 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4584 return (spa_vdev_exit(spa, vd, txg, error));
4587 * We must validate the spares and l2cache devices after checking the
4588 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4590 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4591 return (spa_vdev_exit(spa, vd, txg, error));
4594 * If we are in the middle of a device removal, we can only add
4595 * devices which match the existing devices in the pool.
4596 * If we are in the middle of a removal, or have some indirect
4597 * vdevs, we can not add raidz toplevels.
4599 if (spa->spa_vdev_removal != NULL ||
4600 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
4601 for (int c = 0; c < vd->vdev_children; c++) {
4602 tvd = vd->vdev_child[c];
4603 if (spa->spa_vdev_removal != NULL &&
4604 tvd->vdev_ashift !=
4605 spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
4606 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4608 /* Fail if top level vdev is raidz */
4609 if (tvd->vdev_ops == &vdev_raidz_ops) {
4610 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4613 * Need the top level mirror to be
4614 * a mirror of leaf vdevs only
4616 if (tvd->vdev_ops == &vdev_mirror_ops) {
4617 for (uint64_t cid = 0;
4618 cid < tvd->vdev_children; cid++) {
4619 vdev_t *cvd = tvd->vdev_child[cid];
4620 if (!cvd->vdev_ops->vdev_op_leaf) {
4621 return (spa_vdev_exit(spa, vd,
4622 txg, EINVAL));
4629 for (int c = 0; c < vd->vdev_children; c++) {
4632 * Set the vdev id to the first hole, if one exists.
4634 for (id = 0; id < rvd->vdev_children; id++) {
4635 if (rvd->vdev_child[id]->vdev_ishole) {
4636 vdev_free(rvd->vdev_child[id]);
4637 break;
4640 tvd = vd->vdev_child[c];
4641 vdev_remove_child(vd, tvd);
4642 tvd->vdev_id = id;
4643 vdev_add_child(rvd, tvd);
4644 vdev_config_dirty(tvd);
4647 if (nspares != 0) {
4648 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4649 ZPOOL_CONFIG_SPARES);
4650 spa_load_spares(spa);
4651 spa->spa_spares.sav_sync = B_TRUE;
4654 if (nl2cache != 0) {
4655 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4656 ZPOOL_CONFIG_L2CACHE);
4657 spa_load_l2cache(spa);
4658 spa->spa_l2cache.sav_sync = B_TRUE;
4662 * We have to be careful when adding new vdevs to an existing pool.
4663 * If other threads start allocating from these vdevs before we
4664 * sync the config cache, and we lose power, then upon reboot we may
4665 * fail to open the pool because there are DVAs that the config cache
4666 * can't translate. Therefore, we first add the vdevs without
4667 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4668 * and then let spa_config_update() initialize the new metaslabs.
4670 * spa_load() checks for added-but-not-initialized vdevs, so that
4671 * if we lose power at any point in this sequence, the remaining
4672 * steps will be completed the next time we load the pool.
4674 (void) spa_vdev_exit(spa, vd, txg, 0);
4676 mutex_enter(&spa_namespace_lock);
4677 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4678 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
4679 mutex_exit(&spa_namespace_lock);
4681 return (0);
4685 * Attach a device to a mirror. The arguments are the path to any device
4686 * in the mirror, and the nvroot for the new device. If the path specifies
4687 * a device that is not mirrored, we automatically insert the mirror vdev.
4689 * If 'replacing' is specified, the new device is intended to replace the
4690 * existing device; in this case the two devices are made into their own
4691 * mirror using the 'replacing' vdev, which is functionally identical to
4692 * the mirror vdev (it actually reuses all the same ops) but has a few
4693 * extra rules: you can't attach to it after it's been created, and upon
4694 * completion of resilvering, the first disk (the one being replaced)
4695 * is automatically detached.
4698 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4700 uint64_t txg, dtl_max_txg;
4701 vdev_t *rvd = spa->spa_root_vdev;
4702 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4703 vdev_ops_t *pvops;
4704 char *oldvdpath, *newvdpath;
4705 int newvd_isspare;
4706 int error;
4708 ASSERT(spa_writeable(spa));
4710 txg = spa_vdev_enter(spa);
4712 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4714 if (spa->spa_vdev_removal != NULL ||
4715 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
4716 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4719 if (oldvd == NULL)
4720 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4722 if (!oldvd->vdev_ops->vdev_op_leaf)
4723 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4725 pvd = oldvd->vdev_parent;
4727 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4728 VDEV_ALLOC_ATTACH)) != 0)
4729 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4731 if (newrootvd->vdev_children != 1)
4732 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4734 newvd = newrootvd->vdev_child[0];
4736 if (!newvd->vdev_ops->vdev_op_leaf)
4737 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4739 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4740 return (spa_vdev_exit(spa, newrootvd, txg, error));
4743 * Spares can't replace logs
4745 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4746 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4748 if (!replacing) {
4750 * For attach, the only allowable parent is a mirror or the root
4751 * vdev.
4753 if (pvd->vdev_ops != &vdev_mirror_ops &&
4754 pvd->vdev_ops != &vdev_root_ops)
4755 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4757 pvops = &vdev_mirror_ops;
4758 } else {
4760 * Active hot spares can only be replaced by inactive hot
4761 * spares.
4763 if (pvd->vdev_ops == &vdev_spare_ops &&
4764 oldvd->vdev_isspare &&
4765 !spa_has_spare(spa, newvd->vdev_guid))
4766 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4769 * If the source is a hot spare, and the parent isn't already a
4770 * spare, then we want to create a new hot spare. Otherwise, we
4771 * want to create a replacing vdev. The user is not allowed to
4772 * attach to a spared vdev child unless the 'isspare' state is
4773 * the same (spare replaces spare, non-spare replaces
4774 * non-spare).
4776 if (pvd->vdev_ops == &vdev_replacing_ops &&
4777 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4778 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4779 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4780 newvd->vdev_isspare != oldvd->vdev_isspare) {
4781 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4784 if (newvd->vdev_isspare)
4785 pvops = &vdev_spare_ops;
4786 else
4787 pvops = &vdev_replacing_ops;
4791 * Make sure the new device is big enough.
4793 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4794 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4797 * The new device cannot have a higher alignment requirement
4798 * than the top-level vdev.
4800 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4801 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4804 * If this is an in-place replacement, update oldvd's path and devid
4805 * to make it distinguishable from newvd, and unopenable from now on.
4807 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4808 spa_strfree(oldvd->vdev_path);
4809 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4810 KM_SLEEP);
4811 (void) sprintf(oldvd->vdev_path, "%s/%s",
4812 newvd->vdev_path, "old");
4813 if (oldvd->vdev_devid != NULL) {
4814 spa_strfree(oldvd->vdev_devid);
4815 oldvd->vdev_devid = NULL;
4819 /* mark the device being resilvered */
4820 newvd->vdev_resilver_txg = txg;
4823 * If the parent is not a mirror, or if we're replacing, insert the new
4824 * mirror/replacing/spare vdev above oldvd.
4826 if (pvd->vdev_ops != pvops)
4827 pvd = vdev_add_parent(oldvd, pvops);
4829 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4830 ASSERT(pvd->vdev_ops == pvops);
4831 ASSERT(oldvd->vdev_parent == pvd);
4834 * Extract the new device from its root and add it to pvd.
4836 vdev_remove_child(newrootvd, newvd);
4837 newvd->vdev_id = pvd->vdev_children;
4838 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4839 vdev_add_child(pvd, newvd);
4841 tvd = newvd->vdev_top;
4842 ASSERT(pvd->vdev_top == tvd);
4843 ASSERT(tvd->vdev_parent == rvd);
4845 vdev_config_dirty(tvd);
4848 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4849 * for any dmu_sync-ed blocks. It will propagate upward when
4850 * spa_vdev_exit() calls vdev_dtl_reassess().
4852 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4854 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4855 dtl_max_txg - TXG_INITIAL);
4857 if (newvd->vdev_isspare) {
4858 spa_spare_activate(newvd);
4859 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
4862 oldvdpath = spa_strdup(oldvd->vdev_path);
4863 newvdpath = spa_strdup(newvd->vdev_path);
4864 newvd_isspare = newvd->vdev_isspare;
4867 * Mark newvd's DTL dirty in this txg.
4869 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4872 * Schedule the resilver to restart in the future. We do this to
4873 * ensure that dmu_sync-ed blocks have been stitched into the
4874 * respective datasets.
4876 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4878 if (spa->spa_bootfs)
4879 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4881 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
4884 * Commit the config
4886 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4888 spa_history_log_internal(spa, "vdev attach", NULL,
4889 "%s vdev=%s %s vdev=%s",
4890 replacing && newvd_isspare ? "spare in" :
4891 replacing ? "replace" : "attach", newvdpath,
4892 replacing ? "for" : "to", oldvdpath);
4894 spa_strfree(oldvdpath);
4895 spa_strfree(newvdpath);
4897 return (0);
4901 * Detach a device from a mirror or replacing vdev.
4903 * If 'replace_done' is specified, only detach if the parent
4904 * is a replacing vdev.
4907 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4909 uint64_t txg;
4910 int error;
4911 vdev_t *rvd = spa->spa_root_vdev;
4912 vdev_t *vd, *pvd, *cvd, *tvd;
4913 boolean_t unspare = B_FALSE;
4914 uint64_t unspare_guid = 0;
4915 char *vdpath;
4917 ASSERT(spa_writeable(spa));
4919 txg = spa_vdev_enter(spa);
4921 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4923 if (vd == NULL)
4924 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4926 if (!vd->vdev_ops->vdev_op_leaf)
4927 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4929 pvd = vd->vdev_parent;
4932 * If the parent/child relationship is not as expected, don't do it.
4933 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4934 * vdev that's replacing B with C. The user's intent in replacing
4935 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4936 * the replace by detaching C, the expected behavior is to end up
4937 * M(A,B). But suppose that right after deciding to detach C,
4938 * the replacement of B completes. We would have M(A,C), and then
4939 * ask to detach C, which would leave us with just A -- not what
4940 * the user wanted. To prevent this, we make sure that the
4941 * parent/child relationship hasn't changed -- in this example,
4942 * that C's parent is still the replacing vdev R.
4944 if (pvd->vdev_guid != pguid && pguid != 0)
4945 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4948 * Only 'replacing' or 'spare' vdevs can be replaced.
4950 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4951 pvd->vdev_ops != &vdev_spare_ops)
4952 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4954 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4955 spa_version(spa) >= SPA_VERSION_SPARES);
4958 * Only mirror, replacing, and spare vdevs support detach.
4960 if (pvd->vdev_ops != &vdev_replacing_ops &&
4961 pvd->vdev_ops != &vdev_mirror_ops &&
4962 pvd->vdev_ops != &vdev_spare_ops)
4963 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4966 * If this device has the only valid copy of some data,
4967 * we cannot safely detach it.
4969 if (vdev_dtl_required(vd))
4970 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4972 ASSERT(pvd->vdev_children >= 2);
4975 * If we are detaching the second disk from a replacing vdev, then
4976 * check to see if we changed the original vdev's path to have "/old"
4977 * at the end in spa_vdev_attach(). If so, undo that change now.
4979 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4980 vd->vdev_path != NULL) {
4981 size_t len = strlen(vd->vdev_path);
4983 for (int c = 0; c < pvd->vdev_children; c++) {
4984 cvd = pvd->vdev_child[c];
4986 if (cvd == vd || cvd->vdev_path == NULL)
4987 continue;
4989 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4990 strcmp(cvd->vdev_path + len, "/old") == 0) {
4991 spa_strfree(cvd->vdev_path);
4992 cvd->vdev_path = spa_strdup(vd->vdev_path);
4993 break;
4999 * If we are detaching the original disk from a spare, then it implies
5000 * that the spare should become a real disk, and be removed from the
5001 * active spare list for the pool.
5003 if (pvd->vdev_ops == &vdev_spare_ops &&
5004 vd->vdev_id == 0 &&
5005 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5006 unspare = B_TRUE;
5009 * Erase the disk labels so the disk can be used for other things.
5010 * This must be done after all other error cases are handled,
5011 * but before we disembowel vd (so we can still do I/O to it).
5012 * But if we can't do it, don't treat the error as fatal --
5013 * it may be that the unwritability of the disk is the reason
5014 * it's being detached!
5016 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5019 * Remove vd from its parent and compact the parent's children.
5021 vdev_remove_child(pvd, vd);
5022 vdev_compact_children(pvd);
5025 * Remember one of the remaining children so we can get tvd below.
5027 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5030 * If we need to remove the remaining child from the list of hot spares,
5031 * do it now, marking the vdev as no longer a spare in the process.
5032 * We must do this before vdev_remove_parent(), because that can
5033 * change the GUID if it creates a new toplevel GUID. For a similar
5034 * reason, we must remove the spare now, in the same txg as the detach;
5035 * otherwise someone could attach a new sibling, change the GUID, and
5036 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5038 if (unspare) {
5039 ASSERT(cvd->vdev_isspare);
5040 spa_spare_remove(cvd);
5041 unspare_guid = cvd->vdev_guid;
5042 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5043 cvd->vdev_unspare = B_TRUE;
5047 * If the parent mirror/replacing vdev only has one child,
5048 * the parent is no longer needed. Remove it from the tree.
5050 if (pvd->vdev_children == 1) {
5051 if (pvd->vdev_ops == &vdev_spare_ops)
5052 cvd->vdev_unspare = B_FALSE;
5053 vdev_remove_parent(cvd);
5058 * We don't set tvd until now because the parent we just removed
5059 * may have been the previous top-level vdev.
5061 tvd = cvd->vdev_top;
5062 ASSERT(tvd->vdev_parent == rvd);
5065 * Reevaluate the parent vdev state.
5067 vdev_propagate_state(cvd);
5070 * If the 'autoexpand' property is set on the pool then automatically
5071 * try to expand the size of the pool. For example if the device we
5072 * just detached was smaller than the others, it may be possible to
5073 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5074 * first so that we can obtain the updated sizes of the leaf vdevs.
5076 if (spa->spa_autoexpand) {
5077 vdev_reopen(tvd);
5078 vdev_expand(tvd, txg);
5081 vdev_config_dirty(tvd);
5084 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5085 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5086 * But first make sure we're not on any *other* txg's DTL list, to
5087 * prevent vd from being accessed after it's freed.
5089 vdpath = spa_strdup(vd->vdev_path);
5090 for (int t = 0; t < TXG_SIZE; t++)
5091 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5092 vd->vdev_detached = B_TRUE;
5093 vdev_dirty(tvd, VDD_DTL, vd, txg);
5095 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5097 /* hang on to the spa before we release the lock */
5098 spa_open_ref(spa, FTAG);
5100 error = spa_vdev_exit(spa, vd, txg, 0);
5102 spa_history_log_internal(spa, "detach", NULL,
5103 "vdev=%s", vdpath);
5104 spa_strfree(vdpath);
5107 * If this was the removal of the original device in a hot spare vdev,
5108 * then we want to go through and remove the device from the hot spare
5109 * list of every other pool.
5111 if (unspare) {
5112 spa_t *altspa = NULL;
5114 mutex_enter(&spa_namespace_lock);
5115 while ((altspa = spa_next(altspa)) != NULL) {
5116 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5117 altspa == spa)
5118 continue;
5120 spa_open_ref(altspa, FTAG);
5121 mutex_exit(&spa_namespace_lock);
5122 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5123 mutex_enter(&spa_namespace_lock);
5124 spa_close(altspa, FTAG);
5126 mutex_exit(&spa_namespace_lock);
5128 /* search the rest of the vdevs for spares to remove */
5129 spa_vdev_resilver_done(spa);
5132 /* all done with the spa; OK to release */
5133 mutex_enter(&spa_namespace_lock);
5134 spa_close(spa, FTAG);
5135 mutex_exit(&spa_namespace_lock);
5137 return (error);
5141 * Split a set of devices from their mirrors, and create a new pool from them.
5144 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5145 nvlist_t *props, boolean_t exp)
5147 int error = 0;
5148 uint64_t txg, *glist;
5149 spa_t *newspa;
5150 uint_t c, children, lastlog;
5151 nvlist_t **child, *nvl, *tmp;
5152 dmu_tx_t *tx;
5153 char *altroot = NULL;
5154 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5155 boolean_t activate_slog;
5157 ASSERT(spa_writeable(spa));
5159 txg = spa_vdev_enter(spa);
5161 /* clear the log and flush everything up to now */
5162 activate_slog = spa_passivate_log(spa);
5163 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5164 error = spa_reset_logs(spa);
5165 txg = spa_vdev_config_enter(spa);
5167 if (activate_slog)
5168 spa_activate_log(spa);
5170 if (error != 0)
5171 return (spa_vdev_exit(spa, NULL, txg, error));
5173 /* check new spa name before going any further */
5174 if (spa_lookup(newname) != NULL)
5175 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5178 * scan through all the children to ensure they're all mirrors
5180 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5181 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5182 &children) != 0)
5183 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5185 /* first, check to ensure we've got the right child count */
5186 rvd = spa->spa_root_vdev;
5187 lastlog = 0;
5188 for (c = 0; c < rvd->vdev_children; c++) {
5189 vdev_t *vd = rvd->vdev_child[c];
5191 /* don't count the holes & logs as children */
5192 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
5193 if (lastlog == 0)
5194 lastlog = c;
5195 continue;
5198 lastlog = 0;
5200 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5201 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5203 /* next, ensure no spare or cache devices are part of the split */
5204 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5205 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5206 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5208 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5209 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5211 /* then, loop over each vdev and validate it */
5212 for (c = 0; c < children; c++) {
5213 uint64_t is_hole = 0;
5215 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5216 &is_hole);
5218 if (is_hole != 0) {
5219 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5220 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5221 continue;
5222 } else {
5223 error = SET_ERROR(EINVAL);
5224 break;
5228 /* which disk is going to be split? */
5229 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5230 &glist[c]) != 0) {
5231 error = SET_ERROR(EINVAL);
5232 break;
5235 /* look it up in the spa */
5236 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5237 if (vml[c] == NULL) {
5238 error = SET_ERROR(ENODEV);
5239 break;
5242 /* make sure there's nothing stopping the split */
5243 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5244 vml[c]->vdev_islog ||
5245 !vdev_is_concrete(vml[c]) ||
5246 vml[c]->vdev_isspare ||
5247 vml[c]->vdev_isl2cache ||
5248 !vdev_writeable(vml[c]) ||
5249 vml[c]->vdev_children != 0 ||
5250 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5251 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5252 error = SET_ERROR(EINVAL);
5253 break;
5256 if (vdev_dtl_required(vml[c])) {
5257 error = SET_ERROR(EBUSY);
5258 break;
5261 /* we need certain info from the top level */
5262 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5263 vml[c]->vdev_top->vdev_ms_array) == 0);
5264 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5265 vml[c]->vdev_top->vdev_ms_shift) == 0);
5266 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5267 vml[c]->vdev_top->vdev_asize) == 0);
5268 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5269 vml[c]->vdev_top->vdev_ashift) == 0);
5271 /* transfer per-vdev ZAPs */
5272 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5273 VERIFY0(nvlist_add_uint64(child[c],
5274 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5276 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5277 VERIFY0(nvlist_add_uint64(child[c],
5278 ZPOOL_CONFIG_VDEV_TOP_ZAP,
5279 vml[c]->vdev_parent->vdev_top_zap));
5282 if (error != 0) {
5283 kmem_free(vml, children * sizeof (vdev_t *));
5284 kmem_free(glist, children * sizeof (uint64_t));
5285 return (spa_vdev_exit(spa, NULL, txg, error));
5288 /* stop writers from using the disks */
5289 for (c = 0; c < children; c++) {
5290 if (vml[c] != NULL)
5291 vml[c]->vdev_offline = B_TRUE;
5293 vdev_reopen(spa->spa_root_vdev);
5296 * Temporarily record the splitting vdevs in the spa config. This
5297 * will disappear once the config is regenerated.
5299 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5300 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5301 glist, children) == 0);
5302 kmem_free(glist, children * sizeof (uint64_t));
5304 mutex_enter(&spa->spa_props_lock);
5305 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5306 nvl) == 0);
5307 mutex_exit(&spa->spa_props_lock);
5308 spa->spa_config_splitting = nvl;
5309 vdev_config_dirty(spa->spa_root_vdev);
5311 /* configure and create the new pool */
5312 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5313 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5314 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5315 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5316 spa_version(spa)) == 0);
5317 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5318 spa->spa_config_txg) == 0);
5319 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5320 spa_generate_guid(NULL)) == 0);
5321 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5322 (void) nvlist_lookup_string(props,
5323 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5325 /* add the new pool to the namespace */
5326 newspa = spa_add(newname, config, altroot);
5327 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5328 newspa->spa_config_txg = spa->spa_config_txg;
5329 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5331 /* release the spa config lock, retaining the namespace lock */
5332 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5334 if (zio_injection_enabled)
5335 zio_handle_panic_injection(spa, FTAG, 1);
5337 spa_activate(newspa, spa_mode_global);
5338 spa_async_suspend(newspa);
5340 /* create the new pool from the disks of the original pool */
5341 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5342 if (error)
5343 goto out;
5345 /* if that worked, generate a real config for the new pool */
5346 if (newspa->spa_root_vdev != NULL) {
5347 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5348 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5349 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5350 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5351 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5352 B_TRUE));
5355 /* set the props */
5356 if (props != NULL) {
5357 spa_configfile_set(newspa, props, B_FALSE);
5358 error = spa_prop_set(newspa, props);
5359 if (error)
5360 goto out;
5363 /* flush everything */
5364 txg = spa_vdev_config_enter(newspa);
5365 vdev_config_dirty(newspa->spa_root_vdev);
5366 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5368 if (zio_injection_enabled)
5369 zio_handle_panic_injection(spa, FTAG, 2);
5371 spa_async_resume(newspa);
5373 /* finally, update the original pool's config */
5374 txg = spa_vdev_config_enter(spa);
5375 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5376 error = dmu_tx_assign(tx, TXG_WAIT);
5377 if (error != 0)
5378 dmu_tx_abort(tx);
5379 for (c = 0; c < children; c++) {
5380 if (vml[c] != NULL) {
5381 vdev_split(vml[c]);
5382 if (error == 0)
5383 spa_history_log_internal(spa, "detach", tx,
5384 "vdev=%s", vml[c]->vdev_path);
5386 vdev_free(vml[c]);
5389 spa->spa_avz_action = AVZ_ACTION_REBUILD;
5390 vdev_config_dirty(spa->spa_root_vdev);
5391 spa->spa_config_splitting = NULL;
5392 nvlist_free(nvl);
5393 if (error == 0)
5394 dmu_tx_commit(tx);
5395 (void) spa_vdev_exit(spa, NULL, txg, 0);
5397 if (zio_injection_enabled)
5398 zio_handle_panic_injection(spa, FTAG, 3);
5400 /* split is complete; log a history record */
5401 spa_history_log_internal(newspa, "split", NULL,
5402 "from pool %s", spa_name(spa));
5404 kmem_free(vml, children * sizeof (vdev_t *));
5406 /* if we're not going to mount the filesystems in userland, export */
5407 if (exp)
5408 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5409 B_FALSE, B_FALSE);
5411 return (error);
5413 out:
5414 spa_unload(newspa);
5415 spa_deactivate(newspa);
5416 spa_remove(newspa);
5418 txg = spa_vdev_config_enter(spa);
5420 /* re-online all offlined disks */
5421 for (c = 0; c < children; c++) {
5422 if (vml[c] != NULL)
5423 vml[c]->vdev_offline = B_FALSE;
5425 vdev_reopen(spa->spa_root_vdev);
5427 nvlist_free(spa->spa_config_splitting);
5428 spa->spa_config_splitting = NULL;
5429 (void) spa_vdev_exit(spa, NULL, txg, error);
5431 kmem_free(vml, children * sizeof (vdev_t *));
5432 return (error);
5436 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5437 * currently spared, so we can detach it.
5439 static vdev_t *
5440 spa_vdev_resilver_done_hunt(vdev_t *vd)
5442 vdev_t *newvd, *oldvd;
5444 for (int c = 0; c < vd->vdev_children; c++) {
5445 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5446 if (oldvd != NULL)
5447 return (oldvd);
5451 * Check for a completed replacement. We always consider the first
5452 * vdev in the list to be the oldest vdev, and the last one to be
5453 * the newest (see spa_vdev_attach() for how that works). In
5454 * the case where the newest vdev is faulted, we will not automatically
5455 * remove it after a resilver completes. This is OK as it will require
5456 * user intervention to determine which disk the admin wishes to keep.
5458 if (vd->vdev_ops == &vdev_replacing_ops) {
5459 ASSERT(vd->vdev_children > 1);
5461 newvd = vd->vdev_child[vd->vdev_children - 1];
5462 oldvd = vd->vdev_child[0];
5464 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5465 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5466 !vdev_dtl_required(oldvd))
5467 return (oldvd);
5471 * Check for a completed resilver with the 'unspare' flag set.
5473 if (vd->vdev_ops == &vdev_spare_ops) {
5474 vdev_t *first = vd->vdev_child[0];
5475 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5477 if (last->vdev_unspare) {
5478 oldvd = first;
5479 newvd = last;
5480 } else if (first->vdev_unspare) {
5481 oldvd = last;
5482 newvd = first;
5483 } else {
5484 oldvd = NULL;
5487 if (oldvd != NULL &&
5488 vdev_dtl_empty(newvd, DTL_MISSING) &&
5489 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5490 !vdev_dtl_required(oldvd))
5491 return (oldvd);
5494 * If there are more than two spares attached to a disk,
5495 * and those spares are not required, then we want to
5496 * attempt to free them up now so that they can be used
5497 * by other pools. Once we're back down to a single
5498 * disk+spare, we stop removing them.
5500 if (vd->vdev_children > 2) {
5501 newvd = vd->vdev_child[1];
5503 if (newvd->vdev_isspare && last->vdev_isspare &&
5504 vdev_dtl_empty(last, DTL_MISSING) &&
5505 vdev_dtl_empty(last, DTL_OUTAGE) &&
5506 !vdev_dtl_required(newvd))
5507 return (newvd);
5511 return (NULL);
5514 static void
5515 spa_vdev_resilver_done(spa_t *spa)
5517 vdev_t *vd, *pvd, *ppvd;
5518 uint64_t guid, sguid, pguid, ppguid;
5520 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5522 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5523 pvd = vd->vdev_parent;
5524 ppvd = pvd->vdev_parent;
5525 guid = vd->vdev_guid;
5526 pguid = pvd->vdev_guid;
5527 ppguid = ppvd->vdev_guid;
5528 sguid = 0;
5530 * If we have just finished replacing a hot spared device, then
5531 * we need to detach the parent's first child (the original hot
5532 * spare) as well.
5534 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5535 ppvd->vdev_children == 2) {
5536 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5537 sguid = ppvd->vdev_child[1]->vdev_guid;
5539 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5541 spa_config_exit(spa, SCL_ALL, FTAG);
5542 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5543 return;
5544 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5545 return;
5546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5549 spa_config_exit(spa, SCL_ALL, FTAG);
5553 * Update the stored path or FRU for this vdev.
5556 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5557 boolean_t ispath)
5559 vdev_t *vd;
5560 boolean_t sync = B_FALSE;
5562 ASSERT(spa_writeable(spa));
5564 spa_vdev_state_enter(spa, SCL_ALL);
5566 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5567 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5569 if (!vd->vdev_ops->vdev_op_leaf)
5570 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5572 if (ispath) {
5573 if (strcmp(value, vd->vdev_path) != 0) {
5574 spa_strfree(vd->vdev_path);
5575 vd->vdev_path = spa_strdup(value);
5576 sync = B_TRUE;
5578 } else {
5579 if (vd->vdev_fru == NULL) {
5580 vd->vdev_fru = spa_strdup(value);
5581 sync = B_TRUE;
5582 } else if (strcmp(value, vd->vdev_fru) != 0) {
5583 spa_strfree(vd->vdev_fru);
5584 vd->vdev_fru = spa_strdup(value);
5585 sync = B_TRUE;
5589 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5593 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5595 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5599 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5601 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5605 * ==========================================================================
5606 * SPA Scanning
5607 * ==========================================================================
5610 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
5612 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5614 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5615 return (SET_ERROR(EBUSY));
5617 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
5621 spa_scan_stop(spa_t *spa)
5623 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5624 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5625 return (SET_ERROR(EBUSY));
5626 return (dsl_scan_cancel(spa->spa_dsl_pool));
5630 spa_scan(spa_t *spa, pool_scan_func_t func)
5632 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5634 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5635 return (SET_ERROR(ENOTSUP));
5638 * If a resilver was requested, but there is no DTL on a
5639 * writeable leaf device, we have nothing to do.
5641 if (func == POOL_SCAN_RESILVER &&
5642 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5643 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5644 return (0);
5647 return (dsl_scan(spa->spa_dsl_pool, func));
5651 * ==========================================================================
5652 * SPA async task processing
5653 * ==========================================================================
5656 static void
5657 spa_async_remove(spa_t *spa, vdev_t *vd)
5659 if (vd->vdev_remove_wanted) {
5660 vd->vdev_remove_wanted = B_FALSE;
5661 vd->vdev_delayed_close = B_FALSE;
5662 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5665 * We want to clear the stats, but we don't want to do a full
5666 * vdev_clear() as that will cause us to throw away
5667 * degraded/faulted state as well as attempt to reopen the
5668 * device, all of which is a waste.
5670 vd->vdev_stat.vs_read_errors = 0;
5671 vd->vdev_stat.vs_write_errors = 0;
5672 vd->vdev_stat.vs_checksum_errors = 0;
5674 vdev_state_dirty(vd->vdev_top);
5677 for (int c = 0; c < vd->vdev_children; c++)
5678 spa_async_remove(spa, vd->vdev_child[c]);
5681 static void
5682 spa_async_probe(spa_t *spa, vdev_t *vd)
5684 if (vd->vdev_probe_wanted) {
5685 vd->vdev_probe_wanted = B_FALSE;
5686 vdev_reopen(vd); /* vdev_open() does the actual probe */
5689 for (int c = 0; c < vd->vdev_children; c++)
5690 spa_async_probe(spa, vd->vdev_child[c]);
5693 static void
5694 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5696 sysevent_id_t eid;
5697 nvlist_t *attr;
5698 char *physpath;
5700 if (!spa->spa_autoexpand)
5701 return;
5703 for (int c = 0; c < vd->vdev_children; c++) {
5704 vdev_t *cvd = vd->vdev_child[c];
5705 spa_async_autoexpand(spa, cvd);
5708 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5709 return;
5711 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5712 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5714 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5715 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5717 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5718 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5720 nvlist_free(attr);
5721 kmem_free(physpath, MAXPATHLEN);
5724 static void
5725 spa_async_thread(void *arg)
5727 spa_t *spa = (spa_t *)arg;
5728 int tasks;
5730 ASSERT(spa->spa_sync_on);
5732 mutex_enter(&spa->spa_async_lock);
5733 tasks = spa->spa_async_tasks;
5734 spa->spa_async_tasks = 0;
5735 mutex_exit(&spa->spa_async_lock);
5738 * See if the config needs to be updated.
5740 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5741 uint64_t old_space, new_space;
5743 mutex_enter(&spa_namespace_lock);
5744 old_space = metaslab_class_get_space(spa_normal_class(spa));
5745 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5746 new_space = metaslab_class_get_space(spa_normal_class(spa));
5747 mutex_exit(&spa_namespace_lock);
5750 * If the pool grew as a result of the config update,
5751 * then log an internal history event.
5753 if (new_space != old_space) {
5754 spa_history_log_internal(spa, "vdev online", NULL,
5755 "pool '%s' size: %llu(+%llu)",
5756 spa_name(spa), new_space, new_space - old_space);
5761 * See if any devices need to be marked REMOVED.
5763 if (tasks & SPA_ASYNC_REMOVE) {
5764 spa_vdev_state_enter(spa, SCL_NONE);
5765 spa_async_remove(spa, spa->spa_root_vdev);
5766 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5767 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5768 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5769 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5770 (void) spa_vdev_state_exit(spa, NULL, 0);
5773 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5774 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5775 spa_async_autoexpand(spa, spa->spa_root_vdev);
5776 spa_config_exit(spa, SCL_CONFIG, FTAG);
5780 * See if any devices need to be probed.
5782 if (tasks & SPA_ASYNC_PROBE) {
5783 spa_vdev_state_enter(spa, SCL_NONE);
5784 spa_async_probe(spa, spa->spa_root_vdev);
5785 (void) spa_vdev_state_exit(spa, NULL, 0);
5789 * If any devices are done replacing, detach them.
5791 if (tasks & SPA_ASYNC_RESILVER_DONE)
5792 spa_vdev_resilver_done(spa);
5795 * Kick off a resilver.
5797 if (tasks & SPA_ASYNC_RESILVER)
5798 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5801 * Let the world know that we're done.
5803 mutex_enter(&spa->spa_async_lock);
5804 spa->spa_async_thread = NULL;
5805 cv_broadcast(&spa->spa_async_cv);
5806 mutex_exit(&spa->spa_async_lock);
5807 thread_exit();
5810 void
5811 spa_async_suspend(spa_t *spa)
5813 mutex_enter(&spa->spa_async_lock);
5814 spa->spa_async_suspended++;
5815 while (spa->spa_async_thread != NULL ||
5816 spa->spa_condense_thread != NULL)
5817 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5818 mutex_exit(&spa->spa_async_lock);
5820 spa_vdev_remove_suspend(spa);
5823 void
5824 spa_async_resume(spa_t *spa)
5826 mutex_enter(&spa->spa_async_lock);
5827 ASSERT(spa->spa_async_suspended != 0);
5828 spa->spa_async_suspended--;
5829 mutex_exit(&spa->spa_async_lock);
5830 spa_restart_removal(spa);
5833 static boolean_t
5834 spa_async_tasks_pending(spa_t *spa)
5836 uint_t non_config_tasks;
5837 uint_t config_task;
5838 boolean_t config_task_suspended;
5840 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5841 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5842 if (spa->spa_ccw_fail_time == 0) {
5843 config_task_suspended = B_FALSE;
5844 } else {
5845 config_task_suspended =
5846 (gethrtime() - spa->spa_ccw_fail_time) <
5847 (zfs_ccw_retry_interval * NANOSEC);
5850 return (non_config_tasks || (config_task && !config_task_suspended));
5853 static void
5854 spa_async_dispatch(spa_t *spa)
5856 mutex_enter(&spa->spa_async_lock);
5857 if (spa_async_tasks_pending(spa) &&
5858 !spa->spa_async_suspended &&
5859 spa->spa_async_thread == NULL &&
5860 rootdir != NULL)
5861 spa->spa_async_thread = thread_create(NULL, 0,
5862 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5863 mutex_exit(&spa->spa_async_lock);
5866 void
5867 spa_async_request(spa_t *spa, int task)
5869 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5870 mutex_enter(&spa->spa_async_lock);
5871 spa->spa_async_tasks |= task;
5872 mutex_exit(&spa->spa_async_lock);
5876 * ==========================================================================
5877 * SPA syncing routines
5878 * ==========================================================================
5881 static int
5882 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5884 bpobj_t *bpo = arg;
5885 bpobj_enqueue(bpo, bp, tx);
5886 return (0);
5889 static int
5890 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5892 zio_t *zio = arg;
5894 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5895 zio->io_flags));
5896 return (0);
5900 * Note: this simple function is not inlined to make it easier to dtrace the
5901 * amount of time spent syncing frees.
5903 static void
5904 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5906 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5907 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5908 VERIFY(zio_wait(zio) == 0);
5912 * Note: this simple function is not inlined to make it easier to dtrace the
5913 * amount of time spent syncing deferred frees.
5915 static void
5916 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5918 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5919 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5920 spa_free_sync_cb, zio, tx), ==, 0);
5921 VERIFY0(zio_wait(zio));
5925 static void
5926 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5928 char *packed = NULL;
5929 size_t bufsize;
5930 size_t nvsize = 0;
5931 dmu_buf_t *db;
5933 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5936 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5937 * information. This avoids the dmu_buf_will_dirty() path and
5938 * saves us a pre-read to get data we don't actually care about.
5940 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5941 packed = kmem_alloc(bufsize, KM_SLEEP);
5943 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5944 KM_SLEEP) == 0);
5945 bzero(packed + nvsize, bufsize - nvsize);
5947 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5949 kmem_free(packed, bufsize);
5951 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5952 dmu_buf_will_dirty(db, tx);
5953 *(uint64_t *)db->db_data = nvsize;
5954 dmu_buf_rele(db, FTAG);
5957 static void
5958 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5959 const char *config, const char *entry)
5961 nvlist_t *nvroot;
5962 nvlist_t **list;
5963 int i;
5965 if (!sav->sav_sync)
5966 return;
5969 * Update the MOS nvlist describing the list of available devices.
5970 * spa_validate_aux() will have already made sure this nvlist is
5971 * valid and the vdevs are labeled appropriately.
5973 if (sav->sav_object == 0) {
5974 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5975 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5976 sizeof (uint64_t), tx);
5977 VERIFY(zap_update(spa->spa_meta_objset,
5978 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5979 &sav->sav_object, tx) == 0);
5982 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5983 if (sav->sav_count == 0) {
5984 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5985 } else {
5986 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5987 for (i = 0; i < sav->sav_count; i++)
5988 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5989 B_FALSE, VDEV_CONFIG_L2CACHE);
5990 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5991 sav->sav_count) == 0);
5992 for (i = 0; i < sav->sav_count; i++)
5993 nvlist_free(list[i]);
5994 kmem_free(list, sav->sav_count * sizeof (void *));
5997 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5998 nvlist_free(nvroot);
6000 sav->sav_sync = B_FALSE;
6004 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6005 * The all-vdev ZAP must be empty.
6007 static void
6008 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6010 spa_t *spa = vd->vdev_spa;
6011 if (vd->vdev_top_zap != 0) {
6012 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6013 vd->vdev_top_zap, tx));
6015 if (vd->vdev_leaf_zap != 0) {
6016 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6017 vd->vdev_leaf_zap, tx));
6019 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6020 spa_avz_build(vd->vdev_child[i], avz, tx);
6024 static void
6025 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6027 nvlist_t *config;
6030 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6031 * its config may not be dirty but we still need to build per-vdev ZAPs.
6032 * Similarly, if the pool is being assembled (e.g. after a split), we
6033 * need to rebuild the AVZ although the config may not be dirty.
6035 if (list_is_empty(&spa->spa_config_dirty_list) &&
6036 spa->spa_avz_action == AVZ_ACTION_NONE)
6037 return;
6039 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6041 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6042 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6043 spa->spa_all_vdev_zaps != 0);
6045 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6046 /* Make and build the new AVZ */
6047 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6048 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6049 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6051 /* Diff old AVZ with new one */
6052 zap_cursor_t zc;
6053 zap_attribute_t za;
6055 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6056 spa->spa_all_vdev_zaps);
6057 zap_cursor_retrieve(&zc, &za) == 0;
6058 zap_cursor_advance(&zc)) {
6059 uint64_t vdzap = za.za_first_integer;
6060 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6061 vdzap) == ENOENT) {
6063 * ZAP is listed in old AVZ but not in new one;
6064 * destroy it
6066 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6067 tx));
6071 zap_cursor_fini(&zc);
6073 /* Destroy the old AVZ */
6074 VERIFY0(zap_destroy(spa->spa_meta_objset,
6075 spa->spa_all_vdev_zaps, tx));
6077 /* Replace the old AVZ in the dir obj with the new one */
6078 VERIFY0(zap_update(spa->spa_meta_objset,
6079 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6080 sizeof (new_avz), 1, &new_avz, tx));
6082 spa->spa_all_vdev_zaps = new_avz;
6083 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6084 zap_cursor_t zc;
6085 zap_attribute_t za;
6087 /* Walk through the AVZ and destroy all listed ZAPs */
6088 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6089 spa->spa_all_vdev_zaps);
6090 zap_cursor_retrieve(&zc, &za) == 0;
6091 zap_cursor_advance(&zc)) {
6092 uint64_t zap = za.za_first_integer;
6093 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6096 zap_cursor_fini(&zc);
6098 /* Destroy and unlink the AVZ itself */
6099 VERIFY0(zap_destroy(spa->spa_meta_objset,
6100 spa->spa_all_vdev_zaps, tx));
6101 VERIFY0(zap_remove(spa->spa_meta_objset,
6102 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6103 spa->spa_all_vdev_zaps = 0;
6106 if (spa->spa_all_vdev_zaps == 0) {
6107 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6108 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6109 DMU_POOL_VDEV_ZAP_MAP, tx);
6111 spa->spa_avz_action = AVZ_ACTION_NONE;
6113 /* Create ZAPs for vdevs that don't have them. */
6114 vdev_construct_zaps(spa->spa_root_vdev, tx);
6116 config = spa_config_generate(spa, spa->spa_root_vdev,
6117 dmu_tx_get_txg(tx), B_FALSE);
6120 * If we're upgrading the spa version then make sure that
6121 * the config object gets updated with the correct version.
6123 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6124 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6125 spa->spa_uberblock.ub_version);
6127 spa_config_exit(spa, SCL_STATE, FTAG);
6129 nvlist_free(spa->spa_config_syncing);
6130 spa->spa_config_syncing = config;
6132 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6135 static void
6136 spa_sync_version(void *arg, dmu_tx_t *tx)
6138 uint64_t *versionp = arg;
6139 uint64_t version = *versionp;
6140 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6143 * Setting the version is special cased when first creating the pool.
6145 ASSERT(tx->tx_txg != TXG_INITIAL);
6147 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6148 ASSERT(version >= spa_version(spa));
6150 spa->spa_uberblock.ub_version = version;
6151 vdev_config_dirty(spa->spa_root_vdev);
6152 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6156 * Set zpool properties.
6158 static void
6159 spa_sync_props(void *arg, dmu_tx_t *tx)
6161 nvlist_t *nvp = arg;
6162 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6163 objset_t *mos = spa->spa_meta_objset;
6164 nvpair_t *elem = NULL;
6166 mutex_enter(&spa->spa_props_lock);
6168 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6169 uint64_t intval;
6170 char *strval, *fname;
6171 zpool_prop_t prop;
6172 const char *propname;
6173 zprop_type_t proptype;
6174 spa_feature_t fid;
6176 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6177 case ZPROP_INVAL:
6179 * We checked this earlier in spa_prop_validate().
6181 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6183 fname = strchr(nvpair_name(elem), '@') + 1;
6184 VERIFY0(zfeature_lookup_name(fname, &fid));
6186 spa_feature_enable(spa, fid, tx);
6187 spa_history_log_internal(spa, "set", tx,
6188 "%s=enabled", nvpair_name(elem));
6189 break;
6191 case ZPOOL_PROP_VERSION:
6192 intval = fnvpair_value_uint64(elem);
6194 * The version is synced seperatly before other
6195 * properties and should be correct by now.
6197 ASSERT3U(spa_version(spa), >=, intval);
6198 break;
6200 case ZPOOL_PROP_ALTROOT:
6202 * 'altroot' is a non-persistent property. It should
6203 * have been set temporarily at creation or import time.
6205 ASSERT(spa->spa_root != NULL);
6206 break;
6208 case ZPOOL_PROP_READONLY:
6209 case ZPOOL_PROP_CACHEFILE:
6211 * 'readonly' and 'cachefile' are also non-persisitent
6212 * properties.
6214 break;
6215 case ZPOOL_PROP_COMMENT:
6216 strval = fnvpair_value_string(elem);
6217 if (spa->spa_comment != NULL)
6218 spa_strfree(spa->spa_comment);
6219 spa->spa_comment = spa_strdup(strval);
6221 * We need to dirty the configuration on all the vdevs
6222 * so that their labels get updated. It's unnecessary
6223 * to do this for pool creation since the vdev's
6224 * configuratoin has already been dirtied.
6226 if (tx->tx_txg != TXG_INITIAL)
6227 vdev_config_dirty(spa->spa_root_vdev);
6228 spa_history_log_internal(spa, "set", tx,
6229 "%s=%s", nvpair_name(elem), strval);
6230 break;
6231 default:
6233 * Set pool property values in the poolprops mos object.
6235 if (spa->spa_pool_props_object == 0) {
6236 spa->spa_pool_props_object =
6237 zap_create_link(mos, DMU_OT_POOL_PROPS,
6238 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6239 tx);
6242 /* normalize the property name */
6243 propname = zpool_prop_to_name(prop);
6244 proptype = zpool_prop_get_type(prop);
6246 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6247 ASSERT(proptype == PROP_TYPE_STRING);
6248 strval = fnvpair_value_string(elem);
6249 VERIFY0(zap_update(mos,
6250 spa->spa_pool_props_object, propname,
6251 1, strlen(strval) + 1, strval, tx));
6252 spa_history_log_internal(spa, "set", tx,
6253 "%s=%s", nvpair_name(elem), strval);
6254 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6255 intval = fnvpair_value_uint64(elem);
6257 if (proptype == PROP_TYPE_INDEX) {
6258 const char *unused;
6259 VERIFY0(zpool_prop_index_to_string(
6260 prop, intval, &unused));
6262 VERIFY0(zap_update(mos,
6263 spa->spa_pool_props_object, propname,
6264 8, 1, &intval, tx));
6265 spa_history_log_internal(spa, "set", tx,
6266 "%s=%lld", nvpair_name(elem), intval);
6267 } else {
6268 ASSERT(0); /* not allowed */
6271 switch (prop) {
6272 case ZPOOL_PROP_DELEGATION:
6273 spa->spa_delegation = intval;
6274 break;
6275 case ZPOOL_PROP_BOOTFS:
6276 spa->spa_bootfs = intval;
6277 break;
6278 case ZPOOL_PROP_FAILUREMODE:
6279 spa->spa_failmode = intval;
6280 break;
6281 case ZPOOL_PROP_AUTOEXPAND:
6282 spa->spa_autoexpand = intval;
6283 if (tx->tx_txg != TXG_INITIAL)
6284 spa_async_request(spa,
6285 SPA_ASYNC_AUTOEXPAND);
6286 break;
6287 case ZPOOL_PROP_DEDUPDITTO:
6288 spa->spa_dedup_ditto = intval;
6289 break;
6290 default:
6291 break;
6297 mutex_exit(&spa->spa_props_lock);
6301 * Perform one-time upgrade on-disk changes. spa_version() does not
6302 * reflect the new version this txg, so there must be no changes this
6303 * txg to anything that the upgrade code depends on after it executes.
6304 * Therefore this must be called after dsl_pool_sync() does the sync
6305 * tasks.
6307 static void
6308 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6310 dsl_pool_t *dp = spa->spa_dsl_pool;
6312 ASSERT(spa->spa_sync_pass == 1);
6314 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6316 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6317 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6318 dsl_pool_create_origin(dp, tx);
6320 /* Keeping the origin open increases spa_minref */
6321 spa->spa_minref += 3;
6324 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6325 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6326 dsl_pool_upgrade_clones(dp, tx);
6329 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6330 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6331 dsl_pool_upgrade_dir_clones(dp, tx);
6333 /* Keeping the freedir open increases spa_minref */
6334 spa->spa_minref += 3;
6337 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6338 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6339 spa_feature_create_zap_objects(spa, tx);
6343 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6344 * when possibility to use lz4 compression for metadata was added
6345 * Old pools that have this feature enabled must be upgraded to have
6346 * this feature active
6348 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6349 boolean_t lz4_en = spa_feature_is_enabled(spa,
6350 SPA_FEATURE_LZ4_COMPRESS);
6351 boolean_t lz4_ac = spa_feature_is_active(spa,
6352 SPA_FEATURE_LZ4_COMPRESS);
6354 if (lz4_en && !lz4_ac)
6355 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6359 * If we haven't written the salt, do so now. Note that the
6360 * feature may not be activated yet, but that's fine since
6361 * the presence of this ZAP entry is backwards compatible.
6363 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6364 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6365 VERIFY0(zap_add(spa->spa_meta_objset,
6366 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6367 sizeof (spa->spa_cksum_salt.zcs_bytes),
6368 spa->spa_cksum_salt.zcs_bytes, tx));
6371 rrw_exit(&dp->dp_config_rwlock, FTAG);
6374 static void
6375 vdev_indirect_state_sync_verify(vdev_t *vd)
6377 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6378 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
6380 if (vd->vdev_ops == &vdev_indirect_ops) {
6381 ASSERT(vim != NULL);
6382 ASSERT(vib != NULL);
6385 if (vdev_obsolete_sm_object(vd) != 0) {
6386 ASSERT(vd->vdev_obsolete_sm != NULL);
6387 ASSERT(vd->vdev_removing ||
6388 vd->vdev_ops == &vdev_indirect_ops);
6389 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
6390 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
6392 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
6393 space_map_object(vd->vdev_obsolete_sm));
6394 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
6395 space_map_allocated(vd->vdev_obsolete_sm));
6397 ASSERT(vd->vdev_obsolete_segments != NULL);
6400 * Since frees / remaps to an indirect vdev can only
6401 * happen in syncing context, the obsolete segments
6402 * tree must be empty when we start syncing.
6404 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
6408 * Sync the specified transaction group. New blocks may be dirtied as
6409 * part of the process, so we iterate until it converges.
6411 void
6412 spa_sync(spa_t *spa, uint64_t txg)
6414 dsl_pool_t *dp = spa->spa_dsl_pool;
6415 objset_t *mos = spa->spa_meta_objset;
6416 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6417 vdev_t *rvd = spa->spa_root_vdev;
6418 vdev_t *vd;
6419 dmu_tx_t *tx;
6420 int error;
6421 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6422 zfs_vdev_queue_depth_pct / 100;
6424 VERIFY(spa_writeable(spa));
6427 * Wait for i/os issued in open context that need to complete
6428 * before this txg syncs.
6430 VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
6431 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
6434 * Lock out configuration changes.
6436 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6438 spa->spa_syncing_txg = txg;
6439 spa->spa_sync_pass = 0;
6441 mutex_enter(&spa->spa_alloc_lock);
6442 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6443 mutex_exit(&spa->spa_alloc_lock);
6446 * If there are any pending vdev state changes, convert them
6447 * into config changes that go out with this transaction group.
6449 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6450 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6452 * We need the write lock here because, for aux vdevs,
6453 * calling vdev_config_dirty() modifies sav_config.
6454 * This is ugly and will become unnecessary when we
6455 * eliminate the aux vdev wart by integrating all vdevs
6456 * into the root vdev tree.
6458 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6459 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6460 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6461 vdev_state_clean(vd);
6462 vdev_config_dirty(vd);
6464 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6465 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6467 spa_config_exit(spa, SCL_STATE, FTAG);
6469 tx = dmu_tx_create_assigned(dp, txg);
6471 spa->spa_sync_starttime = gethrtime();
6472 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6473 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6476 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6477 * set spa_deflate if we have no raid-z vdevs.
6479 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6480 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6481 int i;
6483 for (i = 0; i < rvd->vdev_children; i++) {
6484 vd = rvd->vdev_child[i];
6485 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6486 break;
6488 if (i == rvd->vdev_children) {
6489 spa->spa_deflate = TRUE;
6490 VERIFY(0 == zap_add(spa->spa_meta_objset,
6491 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6492 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6497 * Set the top-level vdev's max queue depth. Evaluate each
6498 * top-level's async write queue depth in case it changed.
6499 * The max queue depth will not change in the middle of syncing
6500 * out this txg.
6502 uint64_t queue_depth_total = 0;
6503 for (int c = 0; c < rvd->vdev_children; c++) {
6504 vdev_t *tvd = rvd->vdev_child[c];
6505 metaslab_group_t *mg = tvd->vdev_mg;
6507 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6508 !metaslab_group_initialized(mg))
6509 continue;
6512 * It is safe to do a lock-free check here because only async
6513 * allocations look at mg_max_alloc_queue_depth, and async
6514 * allocations all happen from spa_sync().
6516 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6517 mg->mg_max_alloc_queue_depth = max_queue_depth;
6518 queue_depth_total += mg->mg_max_alloc_queue_depth;
6520 metaslab_class_t *mc = spa_normal_class(spa);
6521 ASSERT0(refcount_count(&mc->mc_alloc_slots));
6522 mc->mc_alloc_max_slots = queue_depth_total;
6523 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6525 ASSERT3U(mc->mc_alloc_max_slots, <=,
6526 max_queue_depth * rvd->vdev_children);
6528 for (int c = 0; c < rvd->vdev_children; c++) {
6529 vdev_t *vd = rvd->vdev_child[c];
6530 vdev_indirect_state_sync_verify(vd);
6532 if (vdev_indirect_should_condense(vd)) {
6533 spa_condense_indirect_start_sync(vd, tx);
6534 break;
6539 * Iterate to convergence.
6541 do {
6542 int pass = ++spa->spa_sync_pass;
6544 spa_sync_config_object(spa, tx);
6545 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6546 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6547 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6548 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6549 spa_errlog_sync(spa, txg);
6550 dsl_pool_sync(dp, txg);
6552 if (pass < zfs_sync_pass_deferred_free) {
6553 spa_sync_frees(spa, free_bpl, tx);
6554 } else {
6556 * We can not defer frees in pass 1, because
6557 * we sync the deferred frees later in pass 1.
6559 ASSERT3U(pass, >, 1);
6560 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6561 &spa->spa_deferred_bpobj, tx);
6564 ddt_sync(spa, txg);
6565 dsl_scan_sync(dp, tx);
6567 if (spa->spa_vdev_removal != NULL)
6568 svr_sync(spa, tx);
6570 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6571 != NULL)
6572 vdev_sync(vd, txg);
6574 if (pass == 1) {
6575 spa_sync_upgrades(spa, tx);
6576 ASSERT3U(txg, >=,
6577 spa->spa_uberblock.ub_rootbp.blk_birth);
6579 * Note: We need to check if the MOS is dirty
6580 * because we could have marked the MOS dirty
6581 * without updating the uberblock (e.g. if we
6582 * have sync tasks but no dirty user data). We
6583 * need to check the uberblock's rootbp because
6584 * it is updated if we have synced out dirty
6585 * data (though in this case the MOS will most
6586 * likely also be dirty due to second order
6587 * effects, we don't want to rely on that here).
6589 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6590 !dmu_objset_is_dirty(mos, txg)) {
6592 * Nothing changed on the first pass,
6593 * therefore this TXG is a no-op. Avoid
6594 * syncing deferred frees, so that we
6595 * can keep this TXG as a no-op.
6597 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6598 txg));
6599 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6600 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6601 break;
6603 spa_sync_deferred_frees(spa, tx);
6606 } while (dmu_objset_is_dirty(mos, txg));
6608 if (!list_is_empty(&spa->spa_config_dirty_list)) {
6610 * Make sure that the number of ZAPs for all the vdevs matches
6611 * the number of ZAPs in the per-vdev ZAP list. This only gets
6612 * called if the config is dirty; otherwise there may be
6613 * outstanding AVZ operations that weren't completed in
6614 * spa_sync_config_object.
6616 uint64_t all_vdev_zap_entry_count;
6617 ASSERT0(zap_count(spa->spa_meta_objset,
6618 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6619 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6620 all_vdev_zap_entry_count);
6623 if (spa->spa_vdev_removal != NULL) {
6624 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
6628 * Rewrite the vdev configuration (which includes the uberblock)
6629 * to commit the transaction group.
6631 * If there are no dirty vdevs, we sync the uberblock to a few
6632 * random top-level vdevs that are known to be visible in the
6633 * config cache (see spa_vdev_add() for a complete description).
6634 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6636 for (;;) {
6638 * We hold SCL_STATE to prevent vdev open/close/etc.
6639 * while we're attempting to write the vdev labels.
6641 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6643 if (list_is_empty(&spa->spa_config_dirty_list)) {
6644 vdev_t *svd[SPA_DVAS_PER_BP];
6645 int svdcount = 0;
6646 int children = rvd->vdev_children;
6647 int c0 = spa_get_random(children);
6649 for (int c = 0; c < children; c++) {
6650 vd = rvd->vdev_child[(c0 + c) % children];
6651 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
6652 !vdev_is_concrete(vd))
6653 continue;
6654 svd[svdcount++] = vd;
6655 if (svdcount == SPA_DVAS_PER_BP)
6656 break;
6658 error = vdev_config_sync(svd, svdcount, txg);
6659 } else {
6660 error = vdev_config_sync(rvd->vdev_child,
6661 rvd->vdev_children, txg);
6664 if (error == 0)
6665 spa->spa_last_synced_guid = rvd->vdev_guid;
6667 spa_config_exit(spa, SCL_STATE, FTAG);
6669 if (error == 0)
6670 break;
6671 zio_suspend(spa, NULL);
6672 zio_resume_wait(spa);
6674 dmu_tx_commit(tx);
6676 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6679 * Clear the dirty config list.
6681 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6682 vdev_config_clean(vd);
6685 * Now that the new config has synced transactionally,
6686 * let it become visible to the config cache.
6688 if (spa->spa_config_syncing != NULL) {
6689 spa_config_set(spa, spa->spa_config_syncing);
6690 spa->spa_config_txg = txg;
6691 spa->spa_config_syncing = NULL;
6694 dsl_pool_sync_done(dp, txg);
6696 mutex_enter(&spa->spa_alloc_lock);
6697 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6698 mutex_exit(&spa->spa_alloc_lock);
6701 * Update usable space statistics.
6703 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6704 vdev_sync_done(vd, txg);
6706 spa_update_dspace(spa);
6709 * It had better be the case that we didn't dirty anything
6710 * since vdev_config_sync().
6712 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6713 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6714 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6716 spa->spa_sync_pass = 0;
6719 * Update the last synced uberblock here. We want to do this at
6720 * the end of spa_sync() so that consumers of spa_last_synced_txg()
6721 * will be guaranteed that all the processing associated with
6722 * that txg has been completed.
6724 spa->spa_ubsync = spa->spa_uberblock;
6725 spa_config_exit(spa, SCL_CONFIG, FTAG);
6727 spa_handle_ignored_writes(spa);
6730 * If any async tasks have been requested, kick them off.
6732 spa_async_dispatch(spa);
6736 * Sync all pools. We don't want to hold the namespace lock across these
6737 * operations, so we take a reference on the spa_t and drop the lock during the
6738 * sync.
6740 void
6741 spa_sync_allpools(void)
6743 spa_t *spa = NULL;
6744 mutex_enter(&spa_namespace_lock);
6745 while ((spa = spa_next(spa)) != NULL) {
6746 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6747 !spa_writeable(spa) || spa_suspended(spa))
6748 continue;
6749 spa_open_ref(spa, FTAG);
6750 mutex_exit(&spa_namespace_lock);
6751 txg_wait_synced(spa_get_dsl(spa), 0);
6752 mutex_enter(&spa_namespace_lock);
6753 spa_close(spa, FTAG);
6755 mutex_exit(&spa_namespace_lock);
6759 * ==========================================================================
6760 * Miscellaneous routines
6761 * ==========================================================================
6765 * Remove all pools in the system.
6767 void
6768 spa_evict_all(void)
6770 spa_t *spa;
6773 * Remove all cached state. All pools should be closed now,
6774 * so every spa in the AVL tree should be unreferenced.
6776 mutex_enter(&spa_namespace_lock);
6777 while ((spa = spa_next(NULL)) != NULL) {
6779 * Stop async tasks. The async thread may need to detach
6780 * a device that's been replaced, which requires grabbing
6781 * spa_namespace_lock, so we must drop it here.
6783 spa_open_ref(spa, FTAG);
6784 mutex_exit(&spa_namespace_lock);
6785 spa_async_suspend(spa);
6786 mutex_enter(&spa_namespace_lock);
6787 spa_close(spa, FTAG);
6789 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6790 spa_unload(spa);
6791 spa_deactivate(spa);
6793 spa_remove(spa);
6795 mutex_exit(&spa_namespace_lock);
6798 vdev_t *
6799 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6801 vdev_t *vd;
6802 int i;
6804 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6805 return (vd);
6807 if (aux) {
6808 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6809 vd = spa->spa_l2cache.sav_vdevs[i];
6810 if (vd->vdev_guid == guid)
6811 return (vd);
6814 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6815 vd = spa->spa_spares.sav_vdevs[i];
6816 if (vd->vdev_guid == guid)
6817 return (vd);
6821 return (NULL);
6824 void
6825 spa_upgrade(spa_t *spa, uint64_t version)
6827 ASSERT(spa_writeable(spa));
6829 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6832 * This should only be called for a non-faulted pool, and since a
6833 * future version would result in an unopenable pool, this shouldn't be
6834 * possible.
6836 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6837 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6839 spa->spa_uberblock.ub_version = version;
6840 vdev_config_dirty(spa->spa_root_vdev);
6842 spa_config_exit(spa, SCL_ALL, FTAG);
6844 txg_wait_synced(spa_get_dsl(spa), 0);
6847 boolean_t
6848 spa_has_spare(spa_t *spa, uint64_t guid)
6850 int i;
6851 uint64_t spareguid;
6852 spa_aux_vdev_t *sav = &spa->spa_spares;
6854 for (i = 0; i < sav->sav_count; i++)
6855 if (sav->sav_vdevs[i]->vdev_guid == guid)
6856 return (B_TRUE);
6858 for (i = 0; i < sav->sav_npending; i++) {
6859 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6860 &spareguid) == 0 && spareguid == guid)
6861 return (B_TRUE);
6864 return (B_FALSE);
6868 * Check if a pool has an active shared spare device.
6869 * Note: reference count of an active spare is 2, as a spare and as a replace
6871 static boolean_t
6872 spa_has_active_shared_spare(spa_t *spa)
6874 int i, refcnt;
6875 uint64_t pool;
6876 spa_aux_vdev_t *sav = &spa->spa_spares;
6878 for (i = 0; i < sav->sav_count; i++) {
6879 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6880 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6881 refcnt > 2)
6882 return (B_TRUE);
6885 return (B_FALSE);
6888 sysevent_t *
6889 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
6891 sysevent_t *ev = NULL;
6892 #ifdef _KERNEL
6893 sysevent_attr_list_t *attr = NULL;
6894 sysevent_value_t value;
6896 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6897 SE_SLEEP);
6898 ASSERT(ev != NULL);
6900 value.value_type = SE_DATA_TYPE_STRING;
6901 value.value.sv_string = spa_name(spa);
6902 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6903 goto done;
6905 value.value_type = SE_DATA_TYPE_UINT64;
6906 value.value.sv_uint64 = spa_guid(spa);
6907 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6908 goto done;
6910 if (vd) {
6911 value.value_type = SE_DATA_TYPE_UINT64;
6912 value.value.sv_uint64 = vd->vdev_guid;
6913 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6914 SE_SLEEP) != 0)
6915 goto done;
6917 if (vd->vdev_path) {
6918 value.value_type = SE_DATA_TYPE_STRING;
6919 value.value.sv_string = vd->vdev_path;
6920 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6921 &value, SE_SLEEP) != 0)
6922 goto done;
6926 if (hist_nvl != NULL) {
6927 fnvlist_merge((nvlist_t *)attr, hist_nvl);
6930 if (sysevent_attach_attributes(ev, attr) != 0)
6931 goto done;
6932 attr = NULL;
6934 done:
6935 if (attr)
6936 sysevent_free_attr(attr);
6938 #endif
6939 return (ev);
6942 void
6943 spa_event_post(sysevent_t *ev)
6945 #ifdef _KERNEL
6946 sysevent_id_t eid;
6948 (void) log_sysevent(ev, SE_SLEEP, &eid);
6949 sysevent_free(ev);
6950 #endif
6953 void
6954 spa_event_discard(sysevent_t *ev)
6956 #ifdef _KERNEL
6957 sysevent_free(ev);
6958 #endif
6962 * Post a sysevent corresponding to the given event. The 'name' must be one of
6963 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6964 * filled in from the spa and (optionally) the vdev and history nvl. This
6965 * doesn't do anything in the userland libzpool, as we don't want consumers to
6966 * misinterpret ztest or zdb as real changes.
6968 void
6969 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
6971 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));