7614 zfs device evacuation/removal
[unleashed.git] / usr / src / uts / common / fs / zfs / arc.c
blob9fe3d3a170dc053fd5eceb4358a6b32d2b89ec78
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 * DVA-based Adjustable Replacement Cache
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
75 * The locking model:
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
102 * Note that the majority of the performance stats are manipulated
103 * with atomic operations.
105 * The L2ARC uses the l2ad_mtx on each vdev for the following:
107 * - L2ARC buflist creation
108 * - L2ARC buflist eviction
109 * - L2ARC write completion, which walks L2ARC buflists
110 * - ARC header destruction, as it removes from L2ARC buflists
111 * - ARC header release, as it removes from L2ARC buflists
115 * ARC operation:
117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118 * This structure can point either to a block that is still in the cache or to
119 * one that is only accessible in an L2 ARC device, or it can provide
120 * information about a block that was recently evicted. If a block is
121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122 * information to retrieve it from the L2ARC device. This information is
123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124 * that is in this state cannot access the data directly.
126 * Blocks that are actively being referenced or have not been evicted
127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128 * the arc_buf_hdr_t that will point to the data block in memory. A block can
129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134 * ability to store the physical data (b_pabd) associated with the DVA of the
135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136 * it will match its on-disk compression characteristics. This behavior can be
137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138 * compressed ARC functionality is disabled, the b_pabd will point to an
139 * uncompressed version of the on-disk data.
141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144 * consumer. The ARC will provide references to this data and will keep it
145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146 * data block and will evict any arc_buf_t that is no longer referenced. The
147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148 * "overhead_size" kstat.
150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151 * compressed form. The typical case is that consumers will want uncompressed
152 * data, and when that happens a new data buffer is allocated where the data is
153 * decompressed for them to use. Currently the only consumer who wants
154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156 * with the arc_buf_hdr_t.
158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159 * first one is owned by a compressed send consumer (and therefore references
160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161 * used by any other consumer (and has its own uncompressed copy of the data
162 * buffer).
164 * arc_buf_hdr_t
165 * +-----------+
166 * | fields |
167 * | common to |
168 * | L1- and |
169 * | L2ARC |
170 * +-----------+
171 * | l2arc_buf_hdr_t
172 * | |
173 * +-----------+
174 * | l1arc_buf_hdr_t
175 * | | arc_buf_t
176 * | b_buf +------------>+-----------+ arc_buf_t
177 * | b_pabd +-+ |b_next +---->+-----------+
178 * +-----------+ | |-----------| |b_next +-->NULL
179 * | |b_comp = T | +-----------+
180 * | |b_data +-+ |b_comp = F |
181 * | +-----------+ | |b_data +-+
182 * +->+------+ | +-----------+ |
183 * compressed | | | |
184 * data | |<--------------+ | uncompressed
185 * +------+ compressed, | data
186 * shared +-->+------+
187 * data | |
188 * | |
189 * +------+
191 * When a consumer reads a block, the ARC must first look to see if the
192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193 * arc_buf_t and either copies uncompressed data into a new data buffer from an
194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196 * hdr is compressed and the desired compression characteristics of the
197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200 * be anywhere in the hdr's list.
202 * The diagram below shows an example of an uncompressed ARC hdr that is
203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204 * the last element in the buf list):
206 * arc_buf_hdr_t
207 * +-----------+
208 * | |
209 * | |
210 * | |
211 * +-----------+
212 * l2arc_buf_hdr_t| |
213 * | |
214 * +-----------+
215 * l1arc_buf_hdr_t| |
216 * | | arc_buf_t (shared)
217 * | b_buf +------------>+---------+ arc_buf_t
218 * | | |b_next +---->+---------+
219 * | b_pabd +-+ |---------| |b_next +-->NULL
220 * +-----------+ | | | +---------+
221 * | |b_data +-+ | |
222 * | +---------+ | |b_data +-+
223 * +->+------+ | +---------+ |
224 * | | | |
225 * uncompressed | | | |
226 * data +------+ | |
227 * ^ +->+------+ |
228 * | uncompressed | | |
229 * | data | | |
230 * | +------+ |
231 * +---------------------------------+
233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234 * since the physical block is about to be rewritten. The new data contents
235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236 * it may compress the data before writing it to disk. The ARC will be called
237 * with the transformed data and will bcopy the transformed on-disk block into
238 * a newly allocated b_pabd. Writes are always done into buffers which have
239 * either been loaned (and hence are new and don't have other readers) or
240 * buffers which have been released (and hence have their own hdr, if there
241 * were originally other readers of the buf's original hdr). This ensures that
242 * the ARC only needs to update a single buf and its hdr after a write occurs.
244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246 * that when compressed ARC is enabled that the L2ARC blocks are identical
247 * to the on-disk block in the main data pool. This provides a significant
248 * advantage since the ARC can leverage the bp's checksum when reading from the
249 * L2ARC to determine if the contents are valid. However, if the compressed
250 * ARC is disabled, then the L2ARC's block must be transformed to look
251 * like the physical block in the main data pool before comparing the
252 * checksum and determining its validity.
255 #include <sys/spa.h>
256 #include <sys/zio.h>
257 #include <sys/spa_impl.h>
258 #include <sys/zio_compress.h>
259 #include <sys/zio_checksum.h>
260 #include <sys/zfs_context.h>
261 #include <sys/arc.h>
262 #include <sys/refcount.h>
263 #include <sys/vdev.h>
264 #include <sys/vdev_impl.h>
265 #include <sys/dsl_pool.h>
266 #include <sys/zio_checksum.h>
267 #include <sys/multilist.h>
268 #include <sys/abd.h>
269 #ifdef _KERNEL
270 #include <sys/vmsystm.h>
271 #include <vm/anon.h>
272 #include <sys/fs/swapnode.h>
273 #include <sys/dnlc.h>
274 #endif
275 #include <sys/callb.h>
276 #include <sys/kstat.h>
277 #include <zfs_fletcher.h>
279 #ifndef _KERNEL
280 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
281 boolean_t arc_watch = B_FALSE;
282 int arc_procfd;
283 #endif
285 static kmutex_t arc_reclaim_lock;
286 static kcondvar_t arc_reclaim_thread_cv;
287 static boolean_t arc_reclaim_thread_exit;
288 static kcondvar_t arc_reclaim_waiters_cv;
290 uint_t arc_reduce_dnlc_percent = 3;
293 * The number of headers to evict in arc_evict_state_impl() before
294 * dropping the sublist lock and evicting from another sublist. A lower
295 * value means we're more likely to evict the "correct" header (i.e. the
296 * oldest header in the arc state), but comes with higher overhead
297 * (i.e. more invocations of arc_evict_state_impl()).
299 int zfs_arc_evict_batch_limit = 10;
301 /* number of seconds before growing cache again */
302 static int arc_grow_retry = 60;
304 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
305 int zfs_arc_overflow_shift = 8;
307 /* shift of arc_c for calculating both min and max arc_p */
308 static int arc_p_min_shift = 4;
310 /* log2(fraction of arc to reclaim) */
311 static int arc_shrink_shift = 7;
314 * log2(fraction of ARC which must be free to allow growing).
315 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
316 * when reading a new block into the ARC, we will evict an equal-sized block
317 * from the ARC.
319 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
320 * we will still not allow it to grow.
322 int arc_no_grow_shift = 5;
326 * minimum lifespan of a prefetch block in clock ticks
327 * (initialized in arc_init())
329 static int arc_min_prefetch_lifespan;
332 * If this percent of memory is free, don't throttle.
334 int arc_lotsfree_percent = 10;
336 static int arc_dead;
339 * The arc has filled available memory and has now warmed up.
341 static boolean_t arc_warm;
344 * log2 fraction of the zio arena to keep free.
346 int arc_zio_arena_free_shift = 2;
349 * These tunables are for performance analysis.
351 uint64_t zfs_arc_max;
352 uint64_t zfs_arc_min;
353 uint64_t zfs_arc_meta_limit = 0;
354 uint64_t zfs_arc_meta_min = 0;
355 int zfs_arc_grow_retry = 0;
356 int zfs_arc_shrink_shift = 0;
357 int zfs_arc_p_min_shift = 0;
358 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
360 boolean_t zfs_compressed_arc_enabled = B_TRUE;
363 * Note that buffers can be in one of 6 states:
364 * ARC_anon - anonymous (discussed below)
365 * ARC_mru - recently used, currently cached
366 * ARC_mru_ghost - recentely used, no longer in cache
367 * ARC_mfu - frequently used, currently cached
368 * ARC_mfu_ghost - frequently used, no longer in cache
369 * ARC_l2c_only - exists in L2ARC but not other states
370 * When there are no active references to the buffer, they are
371 * are linked onto a list in one of these arc states. These are
372 * the only buffers that can be evicted or deleted. Within each
373 * state there are multiple lists, one for meta-data and one for
374 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
375 * etc.) is tracked separately so that it can be managed more
376 * explicitly: favored over data, limited explicitly.
378 * Anonymous buffers are buffers that are not associated with
379 * a DVA. These are buffers that hold dirty block copies
380 * before they are written to stable storage. By definition,
381 * they are "ref'd" and are considered part of arc_mru
382 * that cannot be freed. Generally, they will aquire a DVA
383 * as they are written and migrate onto the arc_mru list.
385 * The ARC_l2c_only state is for buffers that are in the second
386 * level ARC but no longer in any of the ARC_m* lists. The second
387 * level ARC itself may also contain buffers that are in any of
388 * the ARC_m* states - meaning that a buffer can exist in two
389 * places. The reason for the ARC_l2c_only state is to keep the
390 * buffer header in the hash table, so that reads that hit the
391 * second level ARC benefit from these fast lookups.
394 typedef struct arc_state {
396 * list of evictable buffers
398 multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
400 * total amount of evictable data in this state
402 refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
404 * total amount of data in this state; this includes: evictable,
405 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
407 refcount_t arcs_size;
408 } arc_state_t;
410 /* The 6 states: */
411 static arc_state_t ARC_anon;
412 static arc_state_t ARC_mru;
413 static arc_state_t ARC_mru_ghost;
414 static arc_state_t ARC_mfu;
415 static arc_state_t ARC_mfu_ghost;
416 static arc_state_t ARC_l2c_only;
418 typedef struct arc_stats {
419 kstat_named_t arcstat_hits;
420 kstat_named_t arcstat_misses;
421 kstat_named_t arcstat_demand_data_hits;
422 kstat_named_t arcstat_demand_data_misses;
423 kstat_named_t arcstat_demand_metadata_hits;
424 kstat_named_t arcstat_demand_metadata_misses;
425 kstat_named_t arcstat_prefetch_data_hits;
426 kstat_named_t arcstat_prefetch_data_misses;
427 kstat_named_t arcstat_prefetch_metadata_hits;
428 kstat_named_t arcstat_prefetch_metadata_misses;
429 kstat_named_t arcstat_mru_hits;
430 kstat_named_t arcstat_mru_ghost_hits;
431 kstat_named_t arcstat_mfu_hits;
432 kstat_named_t arcstat_mfu_ghost_hits;
433 kstat_named_t arcstat_deleted;
435 * Number of buffers that could not be evicted because the hash lock
436 * was held by another thread. The lock may not necessarily be held
437 * by something using the same buffer, since hash locks are shared
438 * by multiple buffers.
440 kstat_named_t arcstat_mutex_miss;
442 * Number of buffers skipped because they have I/O in progress, are
443 * indrect prefetch buffers that have not lived long enough, or are
444 * not from the spa we're trying to evict from.
446 kstat_named_t arcstat_evict_skip;
448 * Number of times arc_evict_state() was unable to evict enough
449 * buffers to reach it's target amount.
451 kstat_named_t arcstat_evict_not_enough;
452 kstat_named_t arcstat_evict_l2_cached;
453 kstat_named_t arcstat_evict_l2_eligible;
454 kstat_named_t arcstat_evict_l2_ineligible;
455 kstat_named_t arcstat_evict_l2_skip;
456 kstat_named_t arcstat_hash_elements;
457 kstat_named_t arcstat_hash_elements_max;
458 kstat_named_t arcstat_hash_collisions;
459 kstat_named_t arcstat_hash_chains;
460 kstat_named_t arcstat_hash_chain_max;
461 kstat_named_t arcstat_p;
462 kstat_named_t arcstat_c;
463 kstat_named_t arcstat_c_min;
464 kstat_named_t arcstat_c_max;
465 kstat_named_t arcstat_size;
467 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
468 * Note that the compressed bytes may match the uncompressed bytes
469 * if the block is either not compressed or compressed arc is disabled.
471 kstat_named_t arcstat_compressed_size;
473 * Uncompressed size of the data stored in b_pabd. If compressed
474 * arc is disabled then this value will be identical to the stat
475 * above.
477 kstat_named_t arcstat_uncompressed_size;
479 * Number of bytes stored in all the arc_buf_t's. This is classified
480 * as "overhead" since this data is typically short-lived and will
481 * be evicted from the arc when it becomes unreferenced unless the
482 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
483 * values have been set (see comment in dbuf.c for more information).
485 kstat_named_t arcstat_overhead_size;
487 * Number of bytes consumed by internal ARC structures necessary
488 * for tracking purposes; these structures are not actually
489 * backed by ARC buffers. This includes arc_buf_hdr_t structures
490 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
491 * caches), and arc_buf_t structures (allocated via arc_buf_t
492 * cache).
494 kstat_named_t arcstat_hdr_size;
496 * Number of bytes consumed by ARC buffers of type equal to
497 * ARC_BUFC_DATA. This is generally consumed by buffers backing
498 * on disk user data (e.g. plain file contents).
500 kstat_named_t arcstat_data_size;
502 * Number of bytes consumed by ARC buffers of type equal to
503 * ARC_BUFC_METADATA. This is generally consumed by buffers
504 * backing on disk data that is used for internal ZFS
505 * structures (e.g. ZAP, dnode, indirect blocks, etc).
507 kstat_named_t arcstat_metadata_size;
509 * Number of bytes consumed by various buffers and structures
510 * not actually backed with ARC buffers. This includes bonus
511 * buffers (allocated directly via zio_buf_* functions),
512 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
513 * cache), and dnode_t structures (allocated via dnode_t cache).
515 kstat_named_t arcstat_other_size;
517 * Total number of bytes consumed by ARC buffers residing in the
518 * arc_anon state. This includes *all* buffers in the arc_anon
519 * state; e.g. data, metadata, evictable, and unevictable buffers
520 * are all included in this value.
522 kstat_named_t arcstat_anon_size;
524 * Number of bytes consumed by ARC buffers that meet the
525 * following criteria: backing buffers of type ARC_BUFC_DATA,
526 * residing in the arc_anon state, and are eligible for eviction
527 * (e.g. have no outstanding holds on the buffer).
529 kstat_named_t arcstat_anon_evictable_data;
531 * Number of bytes consumed by ARC buffers that meet the
532 * following criteria: backing buffers of type ARC_BUFC_METADATA,
533 * residing in the arc_anon state, and are eligible for eviction
534 * (e.g. have no outstanding holds on the buffer).
536 kstat_named_t arcstat_anon_evictable_metadata;
538 * Total number of bytes consumed by ARC buffers residing in the
539 * arc_mru state. This includes *all* buffers in the arc_mru
540 * state; e.g. data, metadata, evictable, and unevictable buffers
541 * are all included in this value.
543 kstat_named_t arcstat_mru_size;
545 * Number of bytes consumed by ARC buffers that meet the
546 * following criteria: backing buffers of type ARC_BUFC_DATA,
547 * residing in the arc_mru state, and are eligible for eviction
548 * (e.g. have no outstanding holds on the buffer).
550 kstat_named_t arcstat_mru_evictable_data;
552 * Number of bytes consumed by ARC buffers that meet the
553 * following criteria: backing buffers of type ARC_BUFC_METADATA,
554 * residing in the arc_mru state, and are eligible for eviction
555 * (e.g. have no outstanding holds on the buffer).
557 kstat_named_t arcstat_mru_evictable_metadata;
559 * Total number of bytes that *would have been* consumed by ARC
560 * buffers in the arc_mru_ghost state. The key thing to note
561 * here, is the fact that this size doesn't actually indicate
562 * RAM consumption. The ghost lists only consist of headers and
563 * don't actually have ARC buffers linked off of these headers.
564 * Thus, *if* the headers had associated ARC buffers, these
565 * buffers *would have* consumed this number of bytes.
567 kstat_named_t arcstat_mru_ghost_size;
569 * Number of bytes that *would have been* consumed by ARC
570 * buffers that are eligible for eviction, of type
571 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
573 kstat_named_t arcstat_mru_ghost_evictable_data;
575 * Number of bytes that *would have been* consumed by ARC
576 * buffers that are eligible for eviction, of type
577 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
579 kstat_named_t arcstat_mru_ghost_evictable_metadata;
581 * Total number of bytes consumed by ARC buffers residing in the
582 * arc_mfu state. This includes *all* buffers in the arc_mfu
583 * state; e.g. data, metadata, evictable, and unevictable buffers
584 * are all included in this value.
586 kstat_named_t arcstat_mfu_size;
588 * Number of bytes consumed by ARC buffers that are eligible for
589 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
590 * state.
592 kstat_named_t arcstat_mfu_evictable_data;
594 * Number of bytes consumed by ARC buffers that are eligible for
595 * eviction, of type ARC_BUFC_METADATA, and reside in the
596 * arc_mfu state.
598 kstat_named_t arcstat_mfu_evictable_metadata;
600 * Total number of bytes that *would have been* consumed by ARC
601 * buffers in the arc_mfu_ghost state. See the comment above
602 * arcstat_mru_ghost_size for more details.
604 kstat_named_t arcstat_mfu_ghost_size;
606 * Number of bytes that *would have been* consumed by ARC
607 * buffers that are eligible for eviction, of type
608 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
610 kstat_named_t arcstat_mfu_ghost_evictable_data;
612 * Number of bytes that *would have been* consumed by ARC
613 * buffers that are eligible for eviction, of type
614 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
616 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
617 kstat_named_t arcstat_l2_hits;
618 kstat_named_t arcstat_l2_misses;
619 kstat_named_t arcstat_l2_feeds;
620 kstat_named_t arcstat_l2_rw_clash;
621 kstat_named_t arcstat_l2_read_bytes;
622 kstat_named_t arcstat_l2_write_bytes;
623 kstat_named_t arcstat_l2_writes_sent;
624 kstat_named_t arcstat_l2_writes_done;
625 kstat_named_t arcstat_l2_writes_error;
626 kstat_named_t arcstat_l2_writes_lock_retry;
627 kstat_named_t arcstat_l2_evict_lock_retry;
628 kstat_named_t arcstat_l2_evict_reading;
629 kstat_named_t arcstat_l2_evict_l1cached;
630 kstat_named_t arcstat_l2_free_on_write;
631 kstat_named_t arcstat_l2_abort_lowmem;
632 kstat_named_t arcstat_l2_cksum_bad;
633 kstat_named_t arcstat_l2_io_error;
634 kstat_named_t arcstat_l2_lsize;
635 kstat_named_t arcstat_l2_psize;
636 kstat_named_t arcstat_l2_hdr_size;
637 kstat_named_t arcstat_memory_throttle_count;
638 kstat_named_t arcstat_meta_used;
639 kstat_named_t arcstat_meta_limit;
640 kstat_named_t arcstat_meta_max;
641 kstat_named_t arcstat_meta_min;
642 kstat_named_t arcstat_sync_wait_for_async;
643 kstat_named_t arcstat_demand_hit_predictive_prefetch;
644 } arc_stats_t;
646 static arc_stats_t arc_stats = {
647 { "hits", KSTAT_DATA_UINT64 },
648 { "misses", KSTAT_DATA_UINT64 },
649 { "demand_data_hits", KSTAT_DATA_UINT64 },
650 { "demand_data_misses", KSTAT_DATA_UINT64 },
651 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
652 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
653 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
654 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
655 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
656 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
657 { "mru_hits", KSTAT_DATA_UINT64 },
658 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
659 { "mfu_hits", KSTAT_DATA_UINT64 },
660 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
661 { "deleted", KSTAT_DATA_UINT64 },
662 { "mutex_miss", KSTAT_DATA_UINT64 },
663 { "evict_skip", KSTAT_DATA_UINT64 },
664 { "evict_not_enough", KSTAT_DATA_UINT64 },
665 { "evict_l2_cached", KSTAT_DATA_UINT64 },
666 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
667 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
668 { "evict_l2_skip", KSTAT_DATA_UINT64 },
669 { "hash_elements", KSTAT_DATA_UINT64 },
670 { "hash_elements_max", KSTAT_DATA_UINT64 },
671 { "hash_collisions", KSTAT_DATA_UINT64 },
672 { "hash_chains", KSTAT_DATA_UINT64 },
673 { "hash_chain_max", KSTAT_DATA_UINT64 },
674 { "p", KSTAT_DATA_UINT64 },
675 { "c", KSTAT_DATA_UINT64 },
676 { "c_min", KSTAT_DATA_UINT64 },
677 { "c_max", KSTAT_DATA_UINT64 },
678 { "size", KSTAT_DATA_UINT64 },
679 { "compressed_size", KSTAT_DATA_UINT64 },
680 { "uncompressed_size", KSTAT_DATA_UINT64 },
681 { "overhead_size", KSTAT_DATA_UINT64 },
682 { "hdr_size", KSTAT_DATA_UINT64 },
683 { "data_size", KSTAT_DATA_UINT64 },
684 { "metadata_size", KSTAT_DATA_UINT64 },
685 { "other_size", KSTAT_DATA_UINT64 },
686 { "anon_size", KSTAT_DATA_UINT64 },
687 { "anon_evictable_data", KSTAT_DATA_UINT64 },
688 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
689 { "mru_size", KSTAT_DATA_UINT64 },
690 { "mru_evictable_data", KSTAT_DATA_UINT64 },
691 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
692 { "mru_ghost_size", KSTAT_DATA_UINT64 },
693 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
694 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
695 { "mfu_size", KSTAT_DATA_UINT64 },
696 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
697 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
698 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
699 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
700 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
701 { "l2_hits", KSTAT_DATA_UINT64 },
702 { "l2_misses", KSTAT_DATA_UINT64 },
703 { "l2_feeds", KSTAT_DATA_UINT64 },
704 { "l2_rw_clash", KSTAT_DATA_UINT64 },
705 { "l2_read_bytes", KSTAT_DATA_UINT64 },
706 { "l2_write_bytes", KSTAT_DATA_UINT64 },
707 { "l2_writes_sent", KSTAT_DATA_UINT64 },
708 { "l2_writes_done", KSTAT_DATA_UINT64 },
709 { "l2_writes_error", KSTAT_DATA_UINT64 },
710 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
711 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
712 { "l2_evict_reading", KSTAT_DATA_UINT64 },
713 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
714 { "l2_free_on_write", KSTAT_DATA_UINT64 },
715 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
716 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
717 { "l2_io_error", KSTAT_DATA_UINT64 },
718 { "l2_size", KSTAT_DATA_UINT64 },
719 { "l2_asize", KSTAT_DATA_UINT64 },
720 { "l2_hdr_size", KSTAT_DATA_UINT64 },
721 { "memory_throttle_count", KSTAT_DATA_UINT64 },
722 { "arc_meta_used", KSTAT_DATA_UINT64 },
723 { "arc_meta_limit", KSTAT_DATA_UINT64 },
724 { "arc_meta_max", KSTAT_DATA_UINT64 },
725 { "arc_meta_min", KSTAT_DATA_UINT64 },
726 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
727 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
730 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
732 #define ARCSTAT_INCR(stat, val) \
733 atomic_add_64(&arc_stats.stat.value.ui64, (val))
735 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
736 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
738 #define ARCSTAT_MAX(stat, val) { \
739 uint64_t m; \
740 while ((val) > (m = arc_stats.stat.value.ui64) && \
741 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
742 continue; \
745 #define ARCSTAT_MAXSTAT(stat) \
746 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
749 * We define a macro to allow ARC hits/misses to be easily broken down by
750 * two separate conditions, giving a total of four different subtypes for
751 * each of hits and misses (so eight statistics total).
753 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
754 if (cond1) { \
755 if (cond2) { \
756 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
757 } else { \
758 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
760 } else { \
761 if (cond2) { \
762 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
763 } else { \
764 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
768 kstat_t *arc_ksp;
769 static arc_state_t *arc_anon;
770 static arc_state_t *arc_mru;
771 static arc_state_t *arc_mru_ghost;
772 static arc_state_t *arc_mfu;
773 static arc_state_t *arc_mfu_ghost;
774 static arc_state_t *arc_l2c_only;
777 * There are several ARC variables that are critical to export as kstats --
778 * but we don't want to have to grovel around in the kstat whenever we wish to
779 * manipulate them. For these variables, we therefore define them to be in
780 * terms of the statistic variable. This assures that we are not introducing
781 * the possibility of inconsistency by having shadow copies of the variables,
782 * while still allowing the code to be readable.
784 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
785 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
786 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
787 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
788 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
789 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
790 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
791 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
792 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
794 /* compressed size of entire arc */
795 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
796 /* uncompressed size of entire arc */
797 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
798 /* number of bytes in the arc from arc_buf_t's */
799 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
801 static int arc_no_grow; /* Don't try to grow cache size */
802 static uint64_t arc_tempreserve;
803 static uint64_t arc_loaned_bytes;
805 typedef struct arc_callback arc_callback_t;
807 struct arc_callback {
808 void *acb_private;
809 arc_done_func_t *acb_done;
810 arc_buf_t *acb_buf;
811 boolean_t acb_compressed;
812 zio_t *acb_zio_dummy;
813 arc_callback_t *acb_next;
816 typedef struct arc_write_callback arc_write_callback_t;
818 struct arc_write_callback {
819 void *awcb_private;
820 arc_done_func_t *awcb_ready;
821 arc_done_func_t *awcb_children_ready;
822 arc_done_func_t *awcb_physdone;
823 arc_done_func_t *awcb_done;
824 arc_buf_t *awcb_buf;
828 * ARC buffers are separated into multiple structs as a memory saving measure:
829 * - Common fields struct, always defined, and embedded within it:
830 * - L2-only fields, always allocated but undefined when not in L2ARC
831 * - L1-only fields, only allocated when in L1ARC
833 * Buffer in L1 Buffer only in L2
834 * +------------------------+ +------------------------+
835 * | arc_buf_hdr_t | | arc_buf_hdr_t |
836 * | | | |
837 * | | | |
838 * | | | |
839 * +------------------------+ +------------------------+
840 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
841 * | (undefined if L1-only) | | |
842 * +------------------------+ +------------------------+
843 * | l1arc_buf_hdr_t |
844 * | |
845 * | |
846 * | |
847 * | |
848 * +------------------------+
850 * Because it's possible for the L2ARC to become extremely large, we can wind
851 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
852 * is minimized by only allocating the fields necessary for an L1-cached buffer
853 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
854 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
855 * words in pointers. arc_hdr_realloc() is used to switch a header between
856 * these two allocation states.
858 typedef struct l1arc_buf_hdr {
859 kmutex_t b_freeze_lock;
860 zio_cksum_t *b_freeze_cksum;
861 #ifdef ZFS_DEBUG
863 * Used for debugging with kmem_flags - by allocating and freeing
864 * b_thawed when the buffer is thawed, we get a record of the stack
865 * trace that thawed it.
867 void *b_thawed;
868 #endif
870 arc_buf_t *b_buf;
871 uint32_t b_bufcnt;
872 /* for waiting on writes to complete */
873 kcondvar_t b_cv;
874 uint8_t b_byteswap;
876 /* protected by arc state mutex */
877 arc_state_t *b_state;
878 multilist_node_t b_arc_node;
880 /* updated atomically */
881 clock_t b_arc_access;
883 /* self protecting */
884 refcount_t b_refcnt;
886 arc_callback_t *b_acb;
887 abd_t *b_pabd;
888 } l1arc_buf_hdr_t;
890 typedef struct l2arc_dev l2arc_dev_t;
892 typedef struct l2arc_buf_hdr {
893 /* protected by arc_buf_hdr mutex */
894 l2arc_dev_t *b_dev; /* L2ARC device */
895 uint64_t b_daddr; /* disk address, offset byte */
897 list_node_t b_l2node;
898 } l2arc_buf_hdr_t;
900 struct arc_buf_hdr {
901 /* protected by hash lock */
902 dva_t b_dva;
903 uint64_t b_birth;
905 arc_buf_contents_t b_type;
906 arc_buf_hdr_t *b_hash_next;
907 arc_flags_t b_flags;
910 * This field stores the size of the data buffer after
911 * compression, and is set in the arc's zio completion handlers.
912 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
914 * While the block pointers can store up to 32MB in their psize
915 * field, we can only store up to 32MB minus 512B. This is due
916 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
917 * a field of zeros represents 512B in the bp). We can't use a
918 * bias of 1 since we need to reserve a psize of zero, here, to
919 * represent holes and embedded blocks.
921 * This isn't a problem in practice, since the maximum size of a
922 * buffer is limited to 16MB, so we never need to store 32MB in
923 * this field. Even in the upstream illumos code base, the
924 * maximum size of a buffer is limited to 16MB.
926 uint16_t b_psize;
929 * This field stores the size of the data buffer before
930 * compression, and cannot change once set. It is in units
931 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
933 uint16_t b_lsize; /* immutable */
934 uint64_t b_spa; /* immutable */
936 /* L2ARC fields. Undefined when not in L2ARC. */
937 l2arc_buf_hdr_t b_l2hdr;
938 /* L1ARC fields. Undefined when in l2arc_only state */
939 l1arc_buf_hdr_t b_l1hdr;
942 #define GHOST_STATE(state) \
943 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
944 (state) == arc_l2c_only)
946 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
947 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
948 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
949 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
950 #define HDR_COMPRESSION_ENABLED(hdr) \
951 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
953 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
954 #define HDR_L2_READING(hdr) \
955 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
956 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
957 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
958 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
959 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
960 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
962 #define HDR_ISTYPE_METADATA(hdr) \
963 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
964 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
966 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
967 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
969 /* For storing compression mode in b_flags */
970 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
972 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
973 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
974 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
975 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
977 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
978 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
979 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
982 * Other sizes
985 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
986 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
989 * Hash table routines
992 #define HT_LOCK_PAD 64
994 struct ht_lock {
995 kmutex_t ht_lock;
996 #ifdef _KERNEL
997 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
998 #endif
1001 #define BUF_LOCKS 256
1002 typedef struct buf_hash_table {
1003 uint64_t ht_mask;
1004 arc_buf_hdr_t **ht_table;
1005 struct ht_lock ht_locks[BUF_LOCKS];
1006 } buf_hash_table_t;
1008 static buf_hash_table_t buf_hash_table;
1010 #define BUF_HASH_INDEX(spa, dva, birth) \
1011 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1012 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1013 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1014 #define HDR_LOCK(hdr) \
1015 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1017 uint64_t zfs_crc64_table[256];
1020 * Level 2 ARC
1023 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
1024 #define L2ARC_HEADROOM 2 /* num of writes */
1026 * If we discover during ARC scan any buffers to be compressed, we boost
1027 * our headroom for the next scanning cycle by this percentage multiple.
1029 #define L2ARC_HEADROOM_BOOST 200
1030 #define L2ARC_FEED_SECS 1 /* caching interval secs */
1031 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
1033 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
1034 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
1036 /* L2ARC Performance Tunables */
1037 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
1038 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
1039 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
1040 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1041 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
1042 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
1043 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
1044 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
1045 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
1048 * L2ARC Internals
1050 struct l2arc_dev {
1051 vdev_t *l2ad_vdev; /* vdev */
1052 spa_t *l2ad_spa; /* spa */
1053 uint64_t l2ad_hand; /* next write location */
1054 uint64_t l2ad_start; /* first addr on device */
1055 uint64_t l2ad_end; /* last addr on device */
1056 boolean_t l2ad_first; /* first sweep through */
1057 boolean_t l2ad_writing; /* currently writing */
1058 kmutex_t l2ad_mtx; /* lock for buffer list */
1059 list_t l2ad_buflist; /* buffer list */
1060 list_node_t l2ad_node; /* device list node */
1061 refcount_t l2ad_alloc; /* allocated bytes */
1064 static list_t L2ARC_dev_list; /* device list */
1065 static list_t *l2arc_dev_list; /* device list pointer */
1066 static kmutex_t l2arc_dev_mtx; /* device list mutex */
1067 static l2arc_dev_t *l2arc_dev_last; /* last device used */
1068 static list_t L2ARC_free_on_write; /* free after write buf list */
1069 static list_t *l2arc_free_on_write; /* free after write list ptr */
1070 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
1071 static uint64_t l2arc_ndev; /* number of devices */
1073 typedef struct l2arc_read_callback {
1074 arc_buf_hdr_t *l2rcb_hdr; /* read header */
1075 blkptr_t l2rcb_bp; /* original blkptr */
1076 zbookmark_phys_t l2rcb_zb; /* original bookmark */
1077 int l2rcb_flags; /* original flags */
1078 abd_t *l2rcb_abd; /* temporary buffer */
1079 } l2arc_read_callback_t;
1081 typedef struct l2arc_write_callback {
1082 l2arc_dev_t *l2wcb_dev; /* device info */
1083 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
1084 } l2arc_write_callback_t;
1086 typedef struct l2arc_data_free {
1087 /* protected by l2arc_free_on_write_mtx */
1088 abd_t *l2df_abd;
1089 size_t l2df_size;
1090 arc_buf_contents_t l2df_type;
1091 list_node_t l2df_list_node;
1092 } l2arc_data_free_t;
1094 static kmutex_t l2arc_feed_thr_lock;
1095 static kcondvar_t l2arc_feed_thr_cv;
1096 static uint8_t l2arc_thread_exit;
1098 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1099 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1100 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1101 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1102 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1103 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1104 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1105 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1106 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1107 static boolean_t arc_is_overflowing();
1108 static void arc_buf_watch(arc_buf_t *);
1110 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1111 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1112 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1113 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1115 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1116 static void l2arc_read_done(zio_t *);
1118 static uint64_t
1119 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1121 uint8_t *vdva = (uint8_t *)dva;
1122 uint64_t crc = -1ULL;
1123 int i;
1125 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1127 for (i = 0; i < sizeof (dva_t); i++)
1128 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1130 crc ^= (spa>>8) ^ birth;
1132 return (crc);
1135 #define HDR_EMPTY(hdr) \
1136 ((hdr)->b_dva.dva_word[0] == 0 && \
1137 (hdr)->b_dva.dva_word[1] == 0)
1139 #define HDR_EQUAL(spa, dva, birth, hdr) \
1140 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1141 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1142 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1144 static void
1145 buf_discard_identity(arc_buf_hdr_t *hdr)
1147 hdr->b_dva.dva_word[0] = 0;
1148 hdr->b_dva.dva_word[1] = 0;
1149 hdr->b_birth = 0;
1152 static arc_buf_hdr_t *
1153 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1155 const dva_t *dva = BP_IDENTITY(bp);
1156 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1157 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1158 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1159 arc_buf_hdr_t *hdr;
1161 mutex_enter(hash_lock);
1162 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1163 hdr = hdr->b_hash_next) {
1164 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1165 *lockp = hash_lock;
1166 return (hdr);
1169 mutex_exit(hash_lock);
1170 *lockp = NULL;
1171 return (NULL);
1175 * Insert an entry into the hash table. If there is already an element
1176 * equal to elem in the hash table, then the already existing element
1177 * will be returned and the new element will not be inserted.
1178 * Otherwise returns NULL.
1179 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1181 static arc_buf_hdr_t *
1182 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1184 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1185 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1186 arc_buf_hdr_t *fhdr;
1187 uint32_t i;
1189 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1190 ASSERT(hdr->b_birth != 0);
1191 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1193 if (lockp != NULL) {
1194 *lockp = hash_lock;
1195 mutex_enter(hash_lock);
1196 } else {
1197 ASSERT(MUTEX_HELD(hash_lock));
1200 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1201 fhdr = fhdr->b_hash_next, i++) {
1202 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1203 return (fhdr);
1206 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1207 buf_hash_table.ht_table[idx] = hdr;
1208 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1210 /* collect some hash table performance data */
1211 if (i > 0) {
1212 ARCSTAT_BUMP(arcstat_hash_collisions);
1213 if (i == 1)
1214 ARCSTAT_BUMP(arcstat_hash_chains);
1216 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1219 ARCSTAT_BUMP(arcstat_hash_elements);
1220 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1222 return (NULL);
1225 static void
1226 buf_hash_remove(arc_buf_hdr_t *hdr)
1228 arc_buf_hdr_t *fhdr, **hdrp;
1229 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1231 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1232 ASSERT(HDR_IN_HASH_TABLE(hdr));
1234 hdrp = &buf_hash_table.ht_table[idx];
1235 while ((fhdr = *hdrp) != hdr) {
1236 ASSERT3P(fhdr, !=, NULL);
1237 hdrp = &fhdr->b_hash_next;
1239 *hdrp = hdr->b_hash_next;
1240 hdr->b_hash_next = NULL;
1241 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1243 /* collect some hash table performance data */
1244 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1246 if (buf_hash_table.ht_table[idx] &&
1247 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1248 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1252 * Global data structures and functions for the buf kmem cache.
1254 static kmem_cache_t *hdr_full_cache;
1255 static kmem_cache_t *hdr_l2only_cache;
1256 static kmem_cache_t *buf_cache;
1258 static void
1259 buf_fini(void)
1261 int i;
1263 kmem_free(buf_hash_table.ht_table,
1264 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1265 for (i = 0; i < BUF_LOCKS; i++)
1266 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1267 kmem_cache_destroy(hdr_full_cache);
1268 kmem_cache_destroy(hdr_l2only_cache);
1269 kmem_cache_destroy(buf_cache);
1273 * Constructor callback - called when the cache is empty
1274 * and a new buf is requested.
1276 /* ARGSUSED */
1277 static int
1278 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1280 arc_buf_hdr_t *hdr = vbuf;
1282 bzero(hdr, HDR_FULL_SIZE);
1283 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1284 refcount_create(&hdr->b_l1hdr.b_refcnt);
1285 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1286 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1287 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1289 return (0);
1292 /* ARGSUSED */
1293 static int
1294 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1296 arc_buf_hdr_t *hdr = vbuf;
1298 bzero(hdr, HDR_L2ONLY_SIZE);
1299 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1301 return (0);
1304 /* ARGSUSED */
1305 static int
1306 buf_cons(void *vbuf, void *unused, int kmflag)
1308 arc_buf_t *buf = vbuf;
1310 bzero(buf, sizeof (arc_buf_t));
1311 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1312 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1314 return (0);
1318 * Destructor callback - called when a cached buf is
1319 * no longer required.
1321 /* ARGSUSED */
1322 static void
1323 hdr_full_dest(void *vbuf, void *unused)
1325 arc_buf_hdr_t *hdr = vbuf;
1327 ASSERT(HDR_EMPTY(hdr));
1328 cv_destroy(&hdr->b_l1hdr.b_cv);
1329 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1330 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1331 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1332 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1335 /* ARGSUSED */
1336 static void
1337 hdr_l2only_dest(void *vbuf, void *unused)
1339 arc_buf_hdr_t *hdr = vbuf;
1341 ASSERT(HDR_EMPTY(hdr));
1342 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1345 /* ARGSUSED */
1346 static void
1347 buf_dest(void *vbuf, void *unused)
1349 arc_buf_t *buf = vbuf;
1351 mutex_destroy(&buf->b_evict_lock);
1352 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1356 * Reclaim callback -- invoked when memory is low.
1358 /* ARGSUSED */
1359 static void
1360 hdr_recl(void *unused)
1362 dprintf("hdr_recl called\n");
1364 * umem calls the reclaim func when we destroy the buf cache,
1365 * which is after we do arc_fini().
1367 if (!arc_dead)
1368 cv_signal(&arc_reclaim_thread_cv);
1371 static void
1372 buf_init(void)
1374 uint64_t *ct;
1375 uint64_t hsize = 1ULL << 12;
1376 int i, j;
1379 * The hash table is big enough to fill all of physical memory
1380 * with an average block size of zfs_arc_average_blocksize (default 8K).
1381 * By default, the table will take up
1382 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1384 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1385 hsize <<= 1;
1386 retry:
1387 buf_hash_table.ht_mask = hsize - 1;
1388 buf_hash_table.ht_table =
1389 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1390 if (buf_hash_table.ht_table == NULL) {
1391 ASSERT(hsize > (1ULL << 8));
1392 hsize >>= 1;
1393 goto retry;
1396 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1397 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1398 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1399 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1400 NULL, NULL, 0);
1401 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1402 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1404 for (i = 0; i < 256; i++)
1405 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1406 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1408 for (i = 0; i < BUF_LOCKS; i++) {
1409 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1410 NULL, MUTEX_DEFAULT, NULL);
1415 * This is the size that the buf occupies in memory. If the buf is compressed,
1416 * it will correspond to the compressed size. You should use this method of
1417 * getting the buf size unless you explicitly need the logical size.
1419 int32_t
1420 arc_buf_size(arc_buf_t *buf)
1422 return (ARC_BUF_COMPRESSED(buf) ?
1423 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1426 int32_t
1427 arc_buf_lsize(arc_buf_t *buf)
1429 return (HDR_GET_LSIZE(buf->b_hdr));
1432 enum zio_compress
1433 arc_get_compression(arc_buf_t *buf)
1435 return (ARC_BUF_COMPRESSED(buf) ?
1436 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1439 #define ARC_MINTIME (hz>>4) /* 62 ms */
1441 static inline boolean_t
1442 arc_buf_is_shared(arc_buf_t *buf)
1444 boolean_t shared = (buf->b_data != NULL &&
1445 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1446 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1447 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1448 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1449 IMPLY(shared, ARC_BUF_SHARED(buf));
1450 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1453 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1454 * already being shared" requirement prevents us from doing that.
1457 return (shared);
1461 * Free the checksum associated with this header. If there is no checksum, this
1462 * is a no-op.
1464 static inline void
1465 arc_cksum_free(arc_buf_hdr_t *hdr)
1467 ASSERT(HDR_HAS_L1HDR(hdr));
1468 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1469 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1470 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1471 hdr->b_l1hdr.b_freeze_cksum = NULL;
1473 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1477 * Return true iff at least one of the bufs on hdr is not compressed.
1479 static boolean_t
1480 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1482 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1483 if (!ARC_BUF_COMPRESSED(b)) {
1484 return (B_TRUE);
1487 return (B_FALSE);
1491 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1492 * matches the checksum that is stored in the hdr. If there is no checksum,
1493 * or if the buf is compressed, this is a no-op.
1495 static void
1496 arc_cksum_verify(arc_buf_t *buf)
1498 arc_buf_hdr_t *hdr = buf->b_hdr;
1499 zio_cksum_t zc;
1501 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1502 return;
1504 if (ARC_BUF_COMPRESSED(buf)) {
1505 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1506 arc_hdr_has_uncompressed_buf(hdr));
1507 return;
1510 ASSERT(HDR_HAS_L1HDR(hdr));
1512 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1513 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1514 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1515 return;
1518 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1519 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1520 panic("buffer modified while frozen!");
1521 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1524 static boolean_t
1525 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1527 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1528 boolean_t valid_cksum;
1530 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1531 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1534 * We rely on the blkptr's checksum to determine if the block
1535 * is valid or not. When compressed arc is enabled, the l2arc
1536 * writes the block to the l2arc just as it appears in the pool.
1537 * This allows us to use the blkptr's checksum to validate the
1538 * data that we just read off of the l2arc without having to store
1539 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1540 * arc is disabled, then the data written to the l2arc is always
1541 * uncompressed and won't match the block as it exists in the main
1542 * pool. When this is the case, we must first compress it if it is
1543 * compressed on the main pool before we can validate the checksum.
1545 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1546 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1547 uint64_t lsize = HDR_GET_LSIZE(hdr);
1548 uint64_t csize;
1550 void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1551 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1553 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1554 if (csize < HDR_GET_PSIZE(hdr)) {
1556 * Compressed blocks are always a multiple of the
1557 * smallest ashift in the pool. Ideally, we would
1558 * like to round up the csize to the next
1559 * spa_min_ashift but that value may have changed
1560 * since the block was last written. Instead,
1561 * we rely on the fact that the hdr's psize
1562 * was set to the psize of the block when it was
1563 * last written. We set the csize to that value
1564 * and zero out any part that should not contain
1565 * data.
1567 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1568 csize = HDR_GET_PSIZE(hdr);
1570 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1574 * Block pointers always store the checksum for the logical data.
1575 * If the block pointer has the gang bit set, then the checksum
1576 * it represents is for the reconstituted data and not for an
1577 * individual gang member. The zio pipeline, however, must be able to
1578 * determine the checksum of each of the gang constituents so it
1579 * treats the checksum comparison differently than what we need
1580 * for l2arc blocks. This prevents us from using the
1581 * zio_checksum_error() interface directly. Instead we must call the
1582 * zio_checksum_error_impl() so that we can ensure the checksum is
1583 * generated using the correct checksum algorithm and accounts for the
1584 * logical I/O size and not just a gang fragment.
1586 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1587 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1588 zio->io_offset, NULL) == 0);
1589 zio_pop_transforms(zio);
1590 return (valid_cksum);
1594 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1595 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1596 * isn't modified later on. If buf is compressed or there is already a checksum
1597 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1599 static void
1600 arc_cksum_compute(arc_buf_t *buf)
1602 arc_buf_hdr_t *hdr = buf->b_hdr;
1604 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1605 return;
1607 ASSERT(HDR_HAS_L1HDR(hdr));
1609 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1610 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1611 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1612 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1613 return;
1614 } else if (ARC_BUF_COMPRESSED(buf)) {
1615 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1616 return;
1619 ASSERT(!ARC_BUF_COMPRESSED(buf));
1620 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1621 KM_SLEEP);
1622 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1623 hdr->b_l1hdr.b_freeze_cksum);
1624 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1625 arc_buf_watch(buf);
1628 #ifndef _KERNEL
1629 typedef struct procctl {
1630 long cmd;
1631 prwatch_t prwatch;
1632 } procctl_t;
1633 #endif
1635 /* ARGSUSED */
1636 static void
1637 arc_buf_unwatch(arc_buf_t *buf)
1639 #ifndef _KERNEL
1640 if (arc_watch) {
1641 int result;
1642 procctl_t ctl;
1643 ctl.cmd = PCWATCH;
1644 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1645 ctl.prwatch.pr_size = 0;
1646 ctl.prwatch.pr_wflags = 0;
1647 result = write(arc_procfd, &ctl, sizeof (ctl));
1648 ASSERT3U(result, ==, sizeof (ctl));
1650 #endif
1653 /* ARGSUSED */
1654 static void
1655 arc_buf_watch(arc_buf_t *buf)
1657 #ifndef _KERNEL
1658 if (arc_watch) {
1659 int result;
1660 procctl_t ctl;
1661 ctl.cmd = PCWATCH;
1662 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1663 ctl.prwatch.pr_size = arc_buf_size(buf);
1664 ctl.prwatch.pr_wflags = WA_WRITE;
1665 result = write(arc_procfd, &ctl, sizeof (ctl));
1666 ASSERT3U(result, ==, sizeof (ctl));
1668 #endif
1671 static arc_buf_contents_t
1672 arc_buf_type(arc_buf_hdr_t *hdr)
1674 arc_buf_contents_t type;
1675 if (HDR_ISTYPE_METADATA(hdr)) {
1676 type = ARC_BUFC_METADATA;
1677 } else {
1678 type = ARC_BUFC_DATA;
1680 VERIFY3U(hdr->b_type, ==, type);
1681 return (type);
1684 boolean_t
1685 arc_is_metadata(arc_buf_t *buf)
1687 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1690 static uint32_t
1691 arc_bufc_to_flags(arc_buf_contents_t type)
1693 switch (type) {
1694 case ARC_BUFC_DATA:
1695 /* metadata field is 0 if buffer contains normal data */
1696 return (0);
1697 case ARC_BUFC_METADATA:
1698 return (ARC_FLAG_BUFC_METADATA);
1699 default:
1700 break;
1702 panic("undefined ARC buffer type!");
1703 return ((uint32_t)-1);
1706 void
1707 arc_buf_thaw(arc_buf_t *buf)
1709 arc_buf_hdr_t *hdr = buf->b_hdr;
1711 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1712 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1714 arc_cksum_verify(buf);
1717 * Compressed buffers do not manipulate the b_freeze_cksum or
1718 * allocate b_thawed.
1720 if (ARC_BUF_COMPRESSED(buf)) {
1721 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1722 arc_hdr_has_uncompressed_buf(hdr));
1723 return;
1726 ASSERT(HDR_HAS_L1HDR(hdr));
1727 arc_cksum_free(hdr);
1729 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1730 #ifdef ZFS_DEBUG
1731 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1732 if (hdr->b_l1hdr.b_thawed != NULL)
1733 kmem_free(hdr->b_l1hdr.b_thawed, 1);
1734 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1736 #endif
1738 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1740 arc_buf_unwatch(buf);
1743 void
1744 arc_buf_freeze(arc_buf_t *buf)
1746 arc_buf_hdr_t *hdr = buf->b_hdr;
1747 kmutex_t *hash_lock;
1749 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1750 return;
1752 if (ARC_BUF_COMPRESSED(buf)) {
1753 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1754 arc_hdr_has_uncompressed_buf(hdr));
1755 return;
1758 hash_lock = HDR_LOCK(hdr);
1759 mutex_enter(hash_lock);
1761 ASSERT(HDR_HAS_L1HDR(hdr));
1762 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1763 hdr->b_l1hdr.b_state == arc_anon);
1764 arc_cksum_compute(buf);
1765 mutex_exit(hash_lock);
1769 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1770 * the following functions should be used to ensure that the flags are
1771 * updated in a thread-safe way. When manipulating the flags either
1772 * the hash_lock must be held or the hdr must be undiscoverable. This
1773 * ensures that we're not racing with any other threads when updating
1774 * the flags.
1776 static inline void
1777 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1779 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1780 hdr->b_flags |= flags;
1783 static inline void
1784 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1786 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1787 hdr->b_flags &= ~flags;
1791 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1792 * done in a special way since we have to clear and set bits
1793 * at the same time. Consumers that wish to set the compression bits
1794 * must use this function to ensure that the flags are updated in
1795 * thread-safe manner.
1797 static void
1798 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1800 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1803 * Holes and embedded blocks will always have a psize = 0 so
1804 * we ignore the compression of the blkptr and set the
1805 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1806 * Holes and embedded blocks remain anonymous so we don't
1807 * want to uncompress them. Mark them as uncompressed.
1809 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1810 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1811 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1812 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1813 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1814 } else {
1815 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1816 HDR_SET_COMPRESS(hdr, cmp);
1817 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1818 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1823 * Looks for another buf on the same hdr which has the data decompressed, copies
1824 * from it, and returns true. If no such buf exists, returns false.
1826 static boolean_t
1827 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1829 arc_buf_hdr_t *hdr = buf->b_hdr;
1830 boolean_t copied = B_FALSE;
1832 ASSERT(HDR_HAS_L1HDR(hdr));
1833 ASSERT3P(buf->b_data, !=, NULL);
1834 ASSERT(!ARC_BUF_COMPRESSED(buf));
1836 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1837 from = from->b_next) {
1838 /* can't use our own data buffer */
1839 if (from == buf) {
1840 continue;
1843 if (!ARC_BUF_COMPRESSED(from)) {
1844 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1845 copied = B_TRUE;
1846 break;
1851 * There were no decompressed bufs, so there should not be a
1852 * checksum on the hdr either.
1854 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1856 return (copied);
1860 * Given a buf that has a data buffer attached to it, this function will
1861 * efficiently fill the buf with data of the specified compression setting from
1862 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1863 * are already sharing a data buf, no copy is performed.
1865 * If the buf is marked as compressed but uncompressed data was requested, this
1866 * will allocate a new data buffer for the buf, remove that flag, and fill the
1867 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1868 * uncompressed data, and (since we haven't added support for it yet) if you
1869 * want compressed data your buf must already be marked as compressed and have
1870 * the correct-sized data buffer.
1872 static int
1873 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1875 arc_buf_hdr_t *hdr = buf->b_hdr;
1876 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1877 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1879 ASSERT3P(buf->b_data, !=, NULL);
1880 IMPLY(compressed, hdr_compressed);
1881 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1883 if (hdr_compressed == compressed) {
1884 if (!arc_buf_is_shared(buf)) {
1885 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1886 arc_buf_size(buf));
1888 } else {
1889 ASSERT(hdr_compressed);
1890 ASSERT(!compressed);
1891 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1894 * If the buf is sharing its data with the hdr, unlink it and
1895 * allocate a new data buffer for the buf.
1897 if (arc_buf_is_shared(buf)) {
1898 ASSERT(ARC_BUF_COMPRESSED(buf));
1900 /* We need to give the buf it's own b_data */
1901 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1902 buf->b_data =
1903 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1904 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1906 /* Previously overhead was 0; just add new overhead */
1907 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1908 } else if (ARC_BUF_COMPRESSED(buf)) {
1909 /* We need to reallocate the buf's b_data */
1910 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1911 buf);
1912 buf->b_data =
1913 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1915 /* We increased the size of b_data; update overhead */
1916 ARCSTAT_INCR(arcstat_overhead_size,
1917 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1921 * Regardless of the buf's previous compression settings, it
1922 * should not be compressed at the end of this function.
1924 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1927 * Try copying the data from another buf which already has a
1928 * decompressed version. If that's not possible, it's time to
1929 * bite the bullet and decompress the data from the hdr.
1931 if (arc_buf_try_copy_decompressed_data(buf)) {
1932 /* Skip byteswapping and checksumming (already done) */
1933 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1934 return (0);
1935 } else {
1936 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1937 hdr->b_l1hdr.b_pabd, buf->b_data,
1938 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1941 * Absent hardware errors or software bugs, this should
1942 * be impossible, but log it anyway so we can debug it.
1944 if (error != 0) {
1945 zfs_dbgmsg(
1946 "hdr %p, compress %d, psize %d, lsize %d",
1947 hdr, HDR_GET_COMPRESS(hdr),
1948 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1949 return (SET_ERROR(EIO));
1954 /* Byteswap the buf's data if necessary */
1955 if (bswap != DMU_BSWAP_NUMFUNCS) {
1956 ASSERT(!HDR_SHARED_DATA(hdr));
1957 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1958 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1961 /* Compute the hdr's checksum if necessary */
1962 arc_cksum_compute(buf);
1964 return (0);
1968 arc_decompress(arc_buf_t *buf)
1970 return (arc_buf_fill(buf, B_FALSE));
1974 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1976 static uint64_t
1977 arc_hdr_size(arc_buf_hdr_t *hdr)
1979 uint64_t size;
1981 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1982 HDR_GET_PSIZE(hdr) > 0) {
1983 size = HDR_GET_PSIZE(hdr);
1984 } else {
1985 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1986 size = HDR_GET_LSIZE(hdr);
1988 return (size);
1992 * Increment the amount of evictable space in the arc_state_t's refcount.
1993 * We account for the space used by the hdr and the arc buf individually
1994 * so that we can add and remove them from the refcount individually.
1996 static void
1997 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1999 arc_buf_contents_t type = arc_buf_type(hdr);
2001 ASSERT(HDR_HAS_L1HDR(hdr));
2003 if (GHOST_STATE(state)) {
2004 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2005 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2006 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2007 (void) refcount_add_many(&state->arcs_esize[type],
2008 HDR_GET_LSIZE(hdr), hdr);
2009 return;
2012 ASSERT(!GHOST_STATE(state));
2013 if (hdr->b_l1hdr.b_pabd != NULL) {
2014 (void) refcount_add_many(&state->arcs_esize[type],
2015 arc_hdr_size(hdr), hdr);
2017 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2018 buf = buf->b_next) {
2019 if (arc_buf_is_shared(buf))
2020 continue;
2021 (void) refcount_add_many(&state->arcs_esize[type],
2022 arc_buf_size(buf), buf);
2027 * Decrement the amount of evictable space in the arc_state_t's refcount.
2028 * We account for the space used by the hdr and the arc buf individually
2029 * so that we can add and remove them from the refcount individually.
2031 static void
2032 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2034 arc_buf_contents_t type = arc_buf_type(hdr);
2036 ASSERT(HDR_HAS_L1HDR(hdr));
2038 if (GHOST_STATE(state)) {
2039 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2040 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2041 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2042 (void) refcount_remove_many(&state->arcs_esize[type],
2043 HDR_GET_LSIZE(hdr), hdr);
2044 return;
2047 ASSERT(!GHOST_STATE(state));
2048 if (hdr->b_l1hdr.b_pabd != NULL) {
2049 (void) refcount_remove_many(&state->arcs_esize[type],
2050 arc_hdr_size(hdr), hdr);
2052 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2053 buf = buf->b_next) {
2054 if (arc_buf_is_shared(buf))
2055 continue;
2056 (void) refcount_remove_many(&state->arcs_esize[type],
2057 arc_buf_size(buf), buf);
2062 * Add a reference to this hdr indicating that someone is actively
2063 * referencing that memory. When the refcount transitions from 0 to 1,
2064 * we remove it from the respective arc_state_t list to indicate that
2065 * it is not evictable.
2067 static void
2068 add_reference(arc_buf_hdr_t *hdr, void *tag)
2070 ASSERT(HDR_HAS_L1HDR(hdr));
2071 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2072 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2073 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2074 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2077 arc_state_t *state = hdr->b_l1hdr.b_state;
2079 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2080 (state != arc_anon)) {
2081 /* We don't use the L2-only state list. */
2082 if (state != arc_l2c_only) {
2083 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2084 hdr);
2085 arc_evictable_space_decrement(hdr, state);
2087 /* remove the prefetch flag if we get a reference */
2088 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2093 * Remove a reference from this hdr. When the reference transitions from
2094 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2095 * list making it eligible for eviction.
2097 static int
2098 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2100 int cnt;
2101 arc_state_t *state = hdr->b_l1hdr.b_state;
2103 ASSERT(HDR_HAS_L1HDR(hdr));
2104 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2105 ASSERT(!GHOST_STATE(state));
2108 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2109 * check to prevent usage of the arc_l2c_only list.
2111 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2112 (state != arc_anon)) {
2113 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2114 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2115 arc_evictable_space_increment(hdr, state);
2117 return (cnt);
2121 * Move the supplied buffer to the indicated state. The hash lock
2122 * for the buffer must be held by the caller.
2124 static void
2125 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2126 kmutex_t *hash_lock)
2128 arc_state_t *old_state;
2129 int64_t refcnt;
2130 uint32_t bufcnt;
2131 boolean_t update_old, update_new;
2132 arc_buf_contents_t buftype = arc_buf_type(hdr);
2135 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2136 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2137 * L1 hdr doesn't always exist when we change state to arc_anon before
2138 * destroying a header, in which case reallocating to add the L1 hdr is
2139 * pointless.
2141 if (HDR_HAS_L1HDR(hdr)) {
2142 old_state = hdr->b_l1hdr.b_state;
2143 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2144 bufcnt = hdr->b_l1hdr.b_bufcnt;
2145 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2146 } else {
2147 old_state = arc_l2c_only;
2148 refcnt = 0;
2149 bufcnt = 0;
2150 update_old = B_FALSE;
2152 update_new = update_old;
2154 ASSERT(MUTEX_HELD(hash_lock));
2155 ASSERT3P(new_state, !=, old_state);
2156 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2157 ASSERT(old_state != arc_anon || bufcnt <= 1);
2160 * If this buffer is evictable, transfer it from the
2161 * old state list to the new state list.
2163 if (refcnt == 0) {
2164 if (old_state != arc_anon && old_state != arc_l2c_only) {
2165 ASSERT(HDR_HAS_L1HDR(hdr));
2166 multilist_remove(old_state->arcs_list[buftype], hdr);
2168 if (GHOST_STATE(old_state)) {
2169 ASSERT0(bufcnt);
2170 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2171 update_old = B_TRUE;
2173 arc_evictable_space_decrement(hdr, old_state);
2175 if (new_state != arc_anon && new_state != arc_l2c_only) {
2178 * An L1 header always exists here, since if we're
2179 * moving to some L1-cached state (i.e. not l2c_only or
2180 * anonymous), we realloc the header to add an L1hdr
2181 * beforehand.
2183 ASSERT(HDR_HAS_L1HDR(hdr));
2184 multilist_insert(new_state->arcs_list[buftype], hdr);
2186 if (GHOST_STATE(new_state)) {
2187 ASSERT0(bufcnt);
2188 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2189 update_new = B_TRUE;
2191 arc_evictable_space_increment(hdr, new_state);
2195 ASSERT(!HDR_EMPTY(hdr));
2196 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2197 buf_hash_remove(hdr);
2199 /* adjust state sizes (ignore arc_l2c_only) */
2201 if (update_new && new_state != arc_l2c_only) {
2202 ASSERT(HDR_HAS_L1HDR(hdr));
2203 if (GHOST_STATE(new_state)) {
2204 ASSERT0(bufcnt);
2207 * When moving a header to a ghost state, we first
2208 * remove all arc buffers. Thus, we'll have a
2209 * bufcnt of zero, and no arc buffer to use for
2210 * the reference. As a result, we use the arc
2211 * header pointer for the reference.
2213 (void) refcount_add_many(&new_state->arcs_size,
2214 HDR_GET_LSIZE(hdr), hdr);
2215 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2216 } else {
2217 uint32_t buffers = 0;
2220 * Each individual buffer holds a unique reference,
2221 * thus we must remove each of these references one
2222 * at a time.
2224 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2225 buf = buf->b_next) {
2226 ASSERT3U(bufcnt, !=, 0);
2227 buffers++;
2230 * When the arc_buf_t is sharing the data
2231 * block with the hdr, the owner of the
2232 * reference belongs to the hdr. Only
2233 * add to the refcount if the arc_buf_t is
2234 * not shared.
2236 if (arc_buf_is_shared(buf))
2237 continue;
2239 (void) refcount_add_many(&new_state->arcs_size,
2240 arc_buf_size(buf), buf);
2242 ASSERT3U(bufcnt, ==, buffers);
2244 if (hdr->b_l1hdr.b_pabd != NULL) {
2245 (void) refcount_add_many(&new_state->arcs_size,
2246 arc_hdr_size(hdr), hdr);
2247 } else {
2248 ASSERT(GHOST_STATE(old_state));
2253 if (update_old && old_state != arc_l2c_only) {
2254 ASSERT(HDR_HAS_L1HDR(hdr));
2255 if (GHOST_STATE(old_state)) {
2256 ASSERT0(bufcnt);
2257 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2260 * When moving a header off of a ghost state,
2261 * the header will not contain any arc buffers.
2262 * We use the arc header pointer for the reference
2263 * which is exactly what we did when we put the
2264 * header on the ghost state.
2267 (void) refcount_remove_many(&old_state->arcs_size,
2268 HDR_GET_LSIZE(hdr), hdr);
2269 } else {
2270 uint32_t buffers = 0;
2273 * Each individual buffer holds a unique reference,
2274 * thus we must remove each of these references one
2275 * at a time.
2277 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2278 buf = buf->b_next) {
2279 ASSERT3U(bufcnt, !=, 0);
2280 buffers++;
2283 * When the arc_buf_t is sharing the data
2284 * block with the hdr, the owner of the
2285 * reference belongs to the hdr. Only
2286 * add to the refcount if the arc_buf_t is
2287 * not shared.
2289 if (arc_buf_is_shared(buf))
2290 continue;
2292 (void) refcount_remove_many(
2293 &old_state->arcs_size, arc_buf_size(buf),
2294 buf);
2296 ASSERT3U(bufcnt, ==, buffers);
2297 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2298 (void) refcount_remove_many(
2299 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2303 if (HDR_HAS_L1HDR(hdr))
2304 hdr->b_l1hdr.b_state = new_state;
2307 * L2 headers should never be on the L2 state list since they don't
2308 * have L1 headers allocated.
2310 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2311 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2314 void
2315 arc_space_consume(uint64_t space, arc_space_type_t type)
2317 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2319 switch (type) {
2320 case ARC_SPACE_DATA:
2321 ARCSTAT_INCR(arcstat_data_size, space);
2322 break;
2323 case ARC_SPACE_META:
2324 ARCSTAT_INCR(arcstat_metadata_size, space);
2325 break;
2326 case ARC_SPACE_OTHER:
2327 ARCSTAT_INCR(arcstat_other_size, space);
2328 break;
2329 case ARC_SPACE_HDRS:
2330 ARCSTAT_INCR(arcstat_hdr_size, space);
2331 break;
2332 case ARC_SPACE_L2HDRS:
2333 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2334 break;
2337 if (type != ARC_SPACE_DATA)
2338 ARCSTAT_INCR(arcstat_meta_used, space);
2340 atomic_add_64(&arc_size, space);
2343 void
2344 arc_space_return(uint64_t space, arc_space_type_t type)
2346 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2348 switch (type) {
2349 case ARC_SPACE_DATA:
2350 ARCSTAT_INCR(arcstat_data_size, -space);
2351 break;
2352 case ARC_SPACE_META:
2353 ARCSTAT_INCR(arcstat_metadata_size, -space);
2354 break;
2355 case ARC_SPACE_OTHER:
2356 ARCSTAT_INCR(arcstat_other_size, -space);
2357 break;
2358 case ARC_SPACE_HDRS:
2359 ARCSTAT_INCR(arcstat_hdr_size, -space);
2360 break;
2361 case ARC_SPACE_L2HDRS:
2362 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2363 break;
2366 if (type != ARC_SPACE_DATA) {
2367 ASSERT(arc_meta_used >= space);
2368 if (arc_meta_max < arc_meta_used)
2369 arc_meta_max = arc_meta_used;
2370 ARCSTAT_INCR(arcstat_meta_used, -space);
2373 ASSERT(arc_size >= space);
2374 atomic_add_64(&arc_size, -space);
2378 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2379 * with the hdr's b_pabd.
2381 static boolean_t
2382 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2385 * The criteria for sharing a hdr's data are:
2386 * 1. the hdr's compression matches the buf's compression
2387 * 2. the hdr doesn't need to be byteswapped
2388 * 3. the hdr isn't already being shared
2389 * 4. the buf is either compressed or it is the last buf in the hdr list
2391 * Criterion #4 maintains the invariant that shared uncompressed
2392 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2393 * might ask, "if a compressed buf is allocated first, won't that be the
2394 * last thing in the list?", but in that case it's impossible to create
2395 * a shared uncompressed buf anyway (because the hdr must be compressed
2396 * to have the compressed buf). You might also think that #3 is
2397 * sufficient to make this guarantee, however it's possible
2398 * (specifically in the rare L2ARC write race mentioned in
2399 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2400 * is sharable, but wasn't at the time of its allocation. Rather than
2401 * allow a new shared uncompressed buf to be created and then shuffle
2402 * the list around to make it the last element, this simply disallows
2403 * sharing if the new buf isn't the first to be added.
2405 ASSERT3P(buf->b_hdr, ==, hdr);
2406 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2407 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2408 return (buf_compressed == hdr_compressed &&
2409 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2410 !HDR_SHARED_DATA(hdr) &&
2411 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2415 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2416 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2417 * copy was made successfully, or an error code otherwise.
2419 static int
2420 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2421 boolean_t fill, arc_buf_t **ret)
2423 arc_buf_t *buf;
2425 ASSERT(HDR_HAS_L1HDR(hdr));
2426 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2427 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2428 hdr->b_type == ARC_BUFC_METADATA);
2429 ASSERT3P(ret, !=, NULL);
2430 ASSERT3P(*ret, ==, NULL);
2432 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2433 buf->b_hdr = hdr;
2434 buf->b_data = NULL;
2435 buf->b_next = hdr->b_l1hdr.b_buf;
2436 buf->b_flags = 0;
2438 add_reference(hdr, tag);
2441 * We're about to change the hdr's b_flags. We must either
2442 * hold the hash_lock or be undiscoverable.
2444 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2447 * Only honor requests for compressed bufs if the hdr is actually
2448 * compressed.
2450 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2451 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2454 * If the hdr's data can be shared then we share the data buffer and
2455 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2456 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2457 * buffer to store the buf's data.
2459 * There are two additional restrictions here because we're sharing
2460 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2461 * actively involved in an L2ARC write, because if this buf is used by
2462 * an arc_write() then the hdr's data buffer will be released when the
2463 * write completes, even though the L2ARC write might still be using it.
2464 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2465 * need to be ABD-aware.
2467 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2468 abd_is_linear(hdr->b_l1hdr.b_pabd);
2470 /* Set up b_data and sharing */
2471 if (can_share) {
2472 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2473 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2474 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2475 } else {
2476 buf->b_data =
2477 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2478 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2480 VERIFY3P(buf->b_data, !=, NULL);
2482 hdr->b_l1hdr.b_buf = buf;
2483 hdr->b_l1hdr.b_bufcnt += 1;
2486 * If the user wants the data from the hdr, we need to either copy or
2487 * decompress the data.
2489 if (fill) {
2490 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2493 return (0);
2496 static char *arc_onloan_tag = "onloan";
2498 static inline void
2499 arc_loaned_bytes_update(int64_t delta)
2501 atomic_add_64(&arc_loaned_bytes, delta);
2503 /* assert that it did not wrap around */
2504 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2508 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2509 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2510 * buffers must be returned to the arc before they can be used by the DMU or
2511 * freed.
2513 arc_buf_t *
2514 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2516 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2517 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2519 arc_loaned_bytes_update(size);
2521 return (buf);
2524 arc_buf_t *
2525 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2526 enum zio_compress compression_type)
2528 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2529 psize, lsize, compression_type);
2531 arc_loaned_bytes_update(psize);
2533 return (buf);
2538 * Return a loaned arc buffer to the arc.
2540 void
2541 arc_return_buf(arc_buf_t *buf, void *tag)
2543 arc_buf_hdr_t *hdr = buf->b_hdr;
2545 ASSERT3P(buf->b_data, !=, NULL);
2546 ASSERT(HDR_HAS_L1HDR(hdr));
2547 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2548 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2550 arc_loaned_bytes_update(-arc_buf_size(buf));
2553 /* Detach an arc_buf from a dbuf (tag) */
2554 void
2555 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2557 arc_buf_hdr_t *hdr = buf->b_hdr;
2559 ASSERT3P(buf->b_data, !=, NULL);
2560 ASSERT(HDR_HAS_L1HDR(hdr));
2561 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2562 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2564 arc_loaned_bytes_update(arc_buf_size(buf));
2567 static void
2568 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2570 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2572 df->l2df_abd = abd;
2573 df->l2df_size = size;
2574 df->l2df_type = type;
2575 mutex_enter(&l2arc_free_on_write_mtx);
2576 list_insert_head(l2arc_free_on_write, df);
2577 mutex_exit(&l2arc_free_on_write_mtx);
2580 static void
2581 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2583 arc_state_t *state = hdr->b_l1hdr.b_state;
2584 arc_buf_contents_t type = arc_buf_type(hdr);
2585 uint64_t size = arc_hdr_size(hdr);
2587 /* protected by hash lock, if in the hash table */
2588 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2589 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2590 ASSERT(state != arc_anon && state != arc_l2c_only);
2592 (void) refcount_remove_many(&state->arcs_esize[type],
2593 size, hdr);
2595 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2596 if (type == ARC_BUFC_METADATA) {
2597 arc_space_return(size, ARC_SPACE_META);
2598 } else {
2599 ASSERT(type == ARC_BUFC_DATA);
2600 arc_space_return(size, ARC_SPACE_DATA);
2603 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2607 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2608 * data buffer, we transfer the refcount ownership to the hdr and update
2609 * the appropriate kstats.
2611 static void
2612 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2614 arc_state_t *state = hdr->b_l1hdr.b_state;
2616 ASSERT(arc_can_share(hdr, buf));
2617 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2618 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2621 * Start sharing the data buffer. We transfer the
2622 * refcount ownership to the hdr since it always owns
2623 * the refcount whenever an arc_buf_t is shared.
2625 refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2626 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2627 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2628 HDR_ISTYPE_METADATA(hdr));
2629 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2630 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2633 * Since we've transferred ownership to the hdr we need
2634 * to increment its compressed and uncompressed kstats and
2635 * decrement the overhead size.
2637 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2638 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2639 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2642 static void
2643 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2645 arc_state_t *state = hdr->b_l1hdr.b_state;
2647 ASSERT(arc_buf_is_shared(buf));
2648 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2649 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2652 * We are no longer sharing this buffer so we need
2653 * to transfer its ownership to the rightful owner.
2655 refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2656 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2657 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2658 abd_put(hdr->b_l1hdr.b_pabd);
2659 hdr->b_l1hdr.b_pabd = NULL;
2660 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2663 * Since the buffer is no longer shared between
2664 * the arc buf and the hdr, count it as overhead.
2666 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2667 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2668 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2672 * Remove an arc_buf_t from the hdr's buf list and return the last
2673 * arc_buf_t on the list. If no buffers remain on the list then return
2674 * NULL.
2676 static arc_buf_t *
2677 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2679 ASSERT(HDR_HAS_L1HDR(hdr));
2680 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2682 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2683 arc_buf_t *lastbuf = NULL;
2686 * Remove the buf from the hdr list and locate the last
2687 * remaining buffer on the list.
2689 while (*bufp != NULL) {
2690 if (*bufp == buf)
2691 *bufp = buf->b_next;
2694 * If we've removed a buffer in the middle of
2695 * the list then update the lastbuf and update
2696 * bufp.
2698 if (*bufp != NULL) {
2699 lastbuf = *bufp;
2700 bufp = &(*bufp)->b_next;
2703 buf->b_next = NULL;
2704 ASSERT3P(lastbuf, !=, buf);
2705 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2706 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2707 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2709 return (lastbuf);
2713 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2714 * list and free it.
2716 static void
2717 arc_buf_destroy_impl(arc_buf_t *buf)
2719 arc_buf_hdr_t *hdr = buf->b_hdr;
2722 * Free up the data associated with the buf but only if we're not
2723 * sharing this with the hdr. If we are sharing it with the hdr, the
2724 * hdr is responsible for doing the free.
2726 if (buf->b_data != NULL) {
2728 * We're about to change the hdr's b_flags. We must either
2729 * hold the hash_lock or be undiscoverable.
2731 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2733 arc_cksum_verify(buf);
2734 arc_buf_unwatch(buf);
2736 if (arc_buf_is_shared(buf)) {
2737 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2738 } else {
2739 uint64_t size = arc_buf_size(buf);
2740 arc_free_data_buf(hdr, buf->b_data, size, buf);
2741 ARCSTAT_INCR(arcstat_overhead_size, -size);
2743 buf->b_data = NULL;
2745 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2746 hdr->b_l1hdr.b_bufcnt -= 1;
2749 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2751 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2753 * If the current arc_buf_t is sharing its data buffer with the
2754 * hdr, then reassign the hdr's b_pabd to share it with the new
2755 * buffer at the end of the list. The shared buffer is always
2756 * the last one on the hdr's buffer list.
2758 * There is an equivalent case for compressed bufs, but since
2759 * they aren't guaranteed to be the last buf in the list and
2760 * that is an exceedingly rare case, we just allow that space be
2761 * wasted temporarily.
2763 if (lastbuf != NULL) {
2764 /* Only one buf can be shared at once */
2765 VERIFY(!arc_buf_is_shared(lastbuf));
2766 /* hdr is uncompressed so can't have compressed buf */
2767 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2769 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2770 arc_hdr_free_pabd(hdr);
2773 * We must setup a new shared block between the
2774 * last buffer and the hdr. The data would have
2775 * been allocated by the arc buf so we need to transfer
2776 * ownership to the hdr since it's now being shared.
2778 arc_share_buf(hdr, lastbuf);
2780 } else if (HDR_SHARED_DATA(hdr)) {
2782 * Uncompressed shared buffers are always at the end
2783 * of the list. Compressed buffers don't have the
2784 * same requirements. This makes it hard to
2785 * simply assert that the lastbuf is shared so
2786 * we rely on the hdr's compression flags to determine
2787 * if we have a compressed, shared buffer.
2789 ASSERT3P(lastbuf, !=, NULL);
2790 ASSERT(arc_buf_is_shared(lastbuf) ||
2791 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2795 * Free the checksum if we're removing the last uncompressed buf from
2796 * this hdr.
2798 if (!arc_hdr_has_uncompressed_buf(hdr)) {
2799 arc_cksum_free(hdr);
2802 /* clean up the buf */
2803 buf->b_hdr = NULL;
2804 kmem_cache_free(buf_cache, buf);
2807 static void
2808 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2810 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2811 ASSERT(HDR_HAS_L1HDR(hdr));
2812 ASSERT(!HDR_SHARED_DATA(hdr));
2814 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2815 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2816 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2817 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2819 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2820 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2823 static void
2824 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2826 ASSERT(HDR_HAS_L1HDR(hdr));
2827 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2830 * If the hdr is currently being written to the l2arc then
2831 * we defer freeing the data by adding it to the l2arc_free_on_write
2832 * list. The l2arc will free the data once it's finished
2833 * writing it to the l2arc device.
2835 if (HDR_L2_WRITING(hdr)) {
2836 arc_hdr_free_on_write(hdr);
2837 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2838 } else {
2839 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2840 arc_hdr_size(hdr), hdr);
2842 hdr->b_l1hdr.b_pabd = NULL;
2843 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2845 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2846 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2849 static arc_buf_hdr_t *
2850 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2851 enum zio_compress compression_type, arc_buf_contents_t type)
2853 arc_buf_hdr_t *hdr;
2855 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2857 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2858 ASSERT(HDR_EMPTY(hdr));
2859 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2860 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2861 HDR_SET_PSIZE(hdr, psize);
2862 HDR_SET_LSIZE(hdr, lsize);
2863 hdr->b_spa = spa;
2864 hdr->b_type = type;
2865 hdr->b_flags = 0;
2866 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2867 arc_hdr_set_compress(hdr, compression_type);
2869 hdr->b_l1hdr.b_state = arc_anon;
2870 hdr->b_l1hdr.b_arc_access = 0;
2871 hdr->b_l1hdr.b_bufcnt = 0;
2872 hdr->b_l1hdr.b_buf = NULL;
2875 * Allocate the hdr's buffer. This will contain either
2876 * the compressed or uncompressed data depending on the block
2877 * it references and compressed arc enablement.
2879 arc_hdr_alloc_pabd(hdr);
2880 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2882 return (hdr);
2886 * Transition between the two allocation states for the arc_buf_hdr struct.
2887 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2888 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2889 * version is used when a cache buffer is only in the L2ARC in order to reduce
2890 * memory usage.
2892 static arc_buf_hdr_t *
2893 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2895 ASSERT(HDR_HAS_L2HDR(hdr));
2897 arc_buf_hdr_t *nhdr;
2898 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2900 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2901 (old == hdr_l2only_cache && new == hdr_full_cache));
2903 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2905 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2906 buf_hash_remove(hdr);
2908 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2910 if (new == hdr_full_cache) {
2911 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2913 * arc_access and arc_change_state need to be aware that a
2914 * header has just come out of L2ARC, so we set its state to
2915 * l2c_only even though it's about to change.
2917 nhdr->b_l1hdr.b_state = arc_l2c_only;
2919 /* Verify previous threads set to NULL before freeing */
2920 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2921 } else {
2922 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2923 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2924 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2927 * If we've reached here, We must have been called from
2928 * arc_evict_hdr(), as such we should have already been
2929 * removed from any ghost list we were previously on
2930 * (which protects us from racing with arc_evict_state),
2931 * thus no locking is needed during this check.
2933 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2936 * A buffer must not be moved into the arc_l2c_only
2937 * state if it's not finished being written out to the
2938 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2939 * might try to be accessed, even though it was removed.
2941 VERIFY(!HDR_L2_WRITING(hdr));
2942 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2944 #ifdef ZFS_DEBUG
2945 if (hdr->b_l1hdr.b_thawed != NULL) {
2946 kmem_free(hdr->b_l1hdr.b_thawed, 1);
2947 hdr->b_l1hdr.b_thawed = NULL;
2949 #endif
2951 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2954 * The header has been reallocated so we need to re-insert it into any
2955 * lists it was on.
2957 (void) buf_hash_insert(nhdr, NULL);
2959 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2961 mutex_enter(&dev->l2ad_mtx);
2964 * We must place the realloc'ed header back into the list at
2965 * the same spot. Otherwise, if it's placed earlier in the list,
2966 * l2arc_write_buffers() could find it during the function's
2967 * write phase, and try to write it out to the l2arc.
2969 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2970 list_remove(&dev->l2ad_buflist, hdr);
2972 mutex_exit(&dev->l2ad_mtx);
2975 * Since we're using the pointer address as the tag when
2976 * incrementing and decrementing the l2ad_alloc refcount, we
2977 * must remove the old pointer (that we're about to destroy) and
2978 * add the new pointer to the refcount. Otherwise we'd remove
2979 * the wrong pointer address when calling arc_hdr_destroy() later.
2982 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2983 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2985 buf_discard_identity(hdr);
2986 kmem_cache_free(old, hdr);
2988 return (nhdr);
2992 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2993 * The buf is returned thawed since we expect the consumer to modify it.
2995 arc_buf_t *
2996 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2998 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2999 ZIO_COMPRESS_OFF, type);
3000 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3002 arc_buf_t *buf = NULL;
3003 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3004 arc_buf_thaw(buf);
3006 return (buf);
3010 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3011 * for bufs containing metadata.
3013 arc_buf_t *
3014 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3015 enum zio_compress compression_type)
3017 ASSERT3U(lsize, >, 0);
3018 ASSERT3U(lsize, >=, psize);
3019 ASSERT(compression_type > ZIO_COMPRESS_OFF);
3020 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3022 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3023 compression_type, ARC_BUFC_DATA);
3024 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3026 arc_buf_t *buf = NULL;
3027 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3028 arc_buf_thaw(buf);
3029 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3031 if (!arc_buf_is_shared(buf)) {
3033 * To ensure that the hdr has the correct data in it if we call
3034 * arc_decompress() on this buf before it's been written to
3035 * disk, it's easiest if we just set up sharing between the
3036 * buf and the hdr.
3038 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3039 arc_hdr_free_pabd(hdr);
3040 arc_share_buf(hdr, buf);
3043 return (buf);
3046 static void
3047 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3049 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3050 l2arc_dev_t *dev = l2hdr->b_dev;
3051 uint64_t psize = arc_hdr_size(hdr);
3053 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3054 ASSERT(HDR_HAS_L2HDR(hdr));
3056 list_remove(&dev->l2ad_buflist, hdr);
3058 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3059 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3061 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3063 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3064 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3067 static void
3068 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3070 if (HDR_HAS_L1HDR(hdr)) {
3071 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3072 hdr->b_l1hdr.b_bufcnt > 0);
3073 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3074 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3076 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3077 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3079 if (!HDR_EMPTY(hdr))
3080 buf_discard_identity(hdr);
3082 if (HDR_HAS_L2HDR(hdr)) {
3083 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3084 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3086 if (!buflist_held)
3087 mutex_enter(&dev->l2ad_mtx);
3090 * Even though we checked this conditional above, we
3091 * need to check this again now that we have the
3092 * l2ad_mtx. This is because we could be racing with
3093 * another thread calling l2arc_evict() which might have
3094 * destroyed this header's L2 portion as we were waiting
3095 * to acquire the l2ad_mtx. If that happens, we don't
3096 * want to re-destroy the header's L2 portion.
3098 if (HDR_HAS_L2HDR(hdr))
3099 arc_hdr_l2hdr_destroy(hdr);
3101 if (!buflist_held)
3102 mutex_exit(&dev->l2ad_mtx);
3105 if (HDR_HAS_L1HDR(hdr)) {
3106 arc_cksum_free(hdr);
3108 while (hdr->b_l1hdr.b_buf != NULL)
3109 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3111 #ifdef ZFS_DEBUG
3112 if (hdr->b_l1hdr.b_thawed != NULL) {
3113 kmem_free(hdr->b_l1hdr.b_thawed, 1);
3114 hdr->b_l1hdr.b_thawed = NULL;
3116 #endif
3118 if (hdr->b_l1hdr.b_pabd != NULL) {
3119 arc_hdr_free_pabd(hdr);
3123 ASSERT3P(hdr->b_hash_next, ==, NULL);
3124 if (HDR_HAS_L1HDR(hdr)) {
3125 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3126 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3127 kmem_cache_free(hdr_full_cache, hdr);
3128 } else {
3129 kmem_cache_free(hdr_l2only_cache, hdr);
3133 void
3134 arc_buf_destroy(arc_buf_t *buf, void* tag)
3136 arc_buf_hdr_t *hdr = buf->b_hdr;
3137 kmutex_t *hash_lock = HDR_LOCK(hdr);
3139 if (hdr->b_l1hdr.b_state == arc_anon) {
3140 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3141 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3142 VERIFY0(remove_reference(hdr, NULL, tag));
3143 arc_hdr_destroy(hdr);
3144 return;
3147 mutex_enter(hash_lock);
3148 ASSERT3P(hdr, ==, buf->b_hdr);
3149 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3150 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3151 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3152 ASSERT3P(buf->b_data, !=, NULL);
3154 (void) remove_reference(hdr, hash_lock, tag);
3155 arc_buf_destroy_impl(buf);
3156 mutex_exit(hash_lock);
3160 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3161 * state of the header is dependent on it's state prior to entering this
3162 * function. The following transitions are possible:
3164 * - arc_mru -> arc_mru_ghost
3165 * - arc_mfu -> arc_mfu_ghost
3166 * - arc_mru_ghost -> arc_l2c_only
3167 * - arc_mru_ghost -> deleted
3168 * - arc_mfu_ghost -> arc_l2c_only
3169 * - arc_mfu_ghost -> deleted
3171 static int64_t
3172 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3174 arc_state_t *evicted_state, *state;
3175 int64_t bytes_evicted = 0;
3177 ASSERT(MUTEX_HELD(hash_lock));
3178 ASSERT(HDR_HAS_L1HDR(hdr));
3180 state = hdr->b_l1hdr.b_state;
3181 if (GHOST_STATE(state)) {
3182 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3183 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3186 * l2arc_write_buffers() relies on a header's L1 portion
3187 * (i.e. its b_pabd field) during it's write phase.
3188 * Thus, we cannot push a header onto the arc_l2c_only
3189 * state (removing it's L1 piece) until the header is
3190 * done being written to the l2arc.
3192 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3193 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3194 return (bytes_evicted);
3197 ARCSTAT_BUMP(arcstat_deleted);
3198 bytes_evicted += HDR_GET_LSIZE(hdr);
3200 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3202 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3203 if (HDR_HAS_L2HDR(hdr)) {
3205 * This buffer is cached on the 2nd Level ARC;
3206 * don't destroy the header.
3208 arc_change_state(arc_l2c_only, hdr, hash_lock);
3210 * dropping from L1+L2 cached to L2-only,
3211 * realloc to remove the L1 header.
3213 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3214 hdr_l2only_cache);
3215 } else {
3216 arc_change_state(arc_anon, hdr, hash_lock);
3217 arc_hdr_destroy(hdr);
3219 return (bytes_evicted);
3222 ASSERT(state == arc_mru || state == arc_mfu);
3223 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3225 /* prefetch buffers have a minimum lifespan */
3226 if (HDR_IO_IN_PROGRESS(hdr) ||
3227 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3228 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3229 arc_min_prefetch_lifespan)) {
3230 ARCSTAT_BUMP(arcstat_evict_skip);
3231 return (bytes_evicted);
3234 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3235 while (hdr->b_l1hdr.b_buf) {
3236 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3237 if (!mutex_tryenter(&buf->b_evict_lock)) {
3238 ARCSTAT_BUMP(arcstat_mutex_miss);
3239 break;
3241 if (buf->b_data != NULL)
3242 bytes_evicted += HDR_GET_LSIZE(hdr);
3243 mutex_exit(&buf->b_evict_lock);
3244 arc_buf_destroy_impl(buf);
3247 if (HDR_HAS_L2HDR(hdr)) {
3248 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3249 } else {
3250 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3251 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3252 HDR_GET_LSIZE(hdr));
3253 } else {
3254 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3255 HDR_GET_LSIZE(hdr));
3259 if (hdr->b_l1hdr.b_bufcnt == 0) {
3260 arc_cksum_free(hdr);
3262 bytes_evicted += arc_hdr_size(hdr);
3265 * If this hdr is being evicted and has a compressed
3266 * buffer then we discard it here before we change states.
3267 * This ensures that the accounting is updated correctly
3268 * in arc_free_data_impl().
3270 arc_hdr_free_pabd(hdr);
3272 arc_change_state(evicted_state, hdr, hash_lock);
3273 ASSERT(HDR_IN_HASH_TABLE(hdr));
3274 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3275 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3278 return (bytes_evicted);
3281 static uint64_t
3282 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3283 uint64_t spa, int64_t bytes)
3285 multilist_sublist_t *mls;
3286 uint64_t bytes_evicted = 0;
3287 arc_buf_hdr_t *hdr;
3288 kmutex_t *hash_lock;
3289 int evict_count = 0;
3291 ASSERT3P(marker, !=, NULL);
3292 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3294 mls = multilist_sublist_lock(ml, idx);
3296 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3297 hdr = multilist_sublist_prev(mls, marker)) {
3298 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3299 (evict_count >= zfs_arc_evict_batch_limit))
3300 break;
3303 * To keep our iteration location, move the marker
3304 * forward. Since we're not holding hdr's hash lock, we
3305 * must be very careful and not remove 'hdr' from the
3306 * sublist. Otherwise, other consumers might mistake the
3307 * 'hdr' as not being on a sublist when they call the
3308 * multilist_link_active() function (they all rely on
3309 * the hash lock protecting concurrent insertions and
3310 * removals). multilist_sublist_move_forward() was
3311 * specifically implemented to ensure this is the case
3312 * (only 'marker' will be removed and re-inserted).
3314 multilist_sublist_move_forward(mls, marker);
3317 * The only case where the b_spa field should ever be
3318 * zero, is the marker headers inserted by
3319 * arc_evict_state(). It's possible for multiple threads
3320 * to be calling arc_evict_state() concurrently (e.g.
3321 * dsl_pool_close() and zio_inject_fault()), so we must
3322 * skip any markers we see from these other threads.
3324 if (hdr->b_spa == 0)
3325 continue;
3327 /* we're only interested in evicting buffers of a certain spa */
3328 if (spa != 0 && hdr->b_spa != spa) {
3329 ARCSTAT_BUMP(arcstat_evict_skip);
3330 continue;
3333 hash_lock = HDR_LOCK(hdr);
3336 * We aren't calling this function from any code path
3337 * that would already be holding a hash lock, so we're
3338 * asserting on this assumption to be defensive in case
3339 * this ever changes. Without this check, it would be
3340 * possible to incorrectly increment arcstat_mutex_miss
3341 * below (e.g. if the code changed such that we called
3342 * this function with a hash lock held).
3344 ASSERT(!MUTEX_HELD(hash_lock));
3346 if (mutex_tryenter(hash_lock)) {
3347 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3348 mutex_exit(hash_lock);
3350 bytes_evicted += evicted;
3353 * If evicted is zero, arc_evict_hdr() must have
3354 * decided to skip this header, don't increment
3355 * evict_count in this case.
3357 if (evicted != 0)
3358 evict_count++;
3361 * If arc_size isn't overflowing, signal any
3362 * threads that might happen to be waiting.
3364 * For each header evicted, we wake up a single
3365 * thread. If we used cv_broadcast, we could
3366 * wake up "too many" threads causing arc_size
3367 * to significantly overflow arc_c; since
3368 * arc_get_data_impl() doesn't check for overflow
3369 * when it's woken up (it doesn't because it's
3370 * possible for the ARC to be overflowing while
3371 * full of un-evictable buffers, and the
3372 * function should proceed in this case).
3374 * If threads are left sleeping, due to not
3375 * using cv_broadcast, they will be woken up
3376 * just before arc_reclaim_thread() sleeps.
3378 mutex_enter(&arc_reclaim_lock);
3379 if (!arc_is_overflowing())
3380 cv_signal(&arc_reclaim_waiters_cv);
3381 mutex_exit(&arc_reclaim_lock);
3382 } else {
3383 ARCSTAT_BUMP(arcstat_mutex_miss);
3387 multilist_sublist_unlock(mls);
3389 return (bytes_evicted);
3393 * Evict buffers from the given arc state, until we've removed the
3394 * specified number of bytes. Move the removed buffers to the
3395 * appropriate evict state.
3397 * This function makes a "best effort". It skips over any buffers
3398 * it can't get a hash_lock on, and so, may not catch all candidates.
3399 * It may also return without evicting as much space as requested.
3401 * If bytes is specified using the special value ARC_EVICT_ALL, this
3402 * will evict all available (i.e. unlocked and evictable) buffers from
3403 * the given arc state; which is used by arc_flush().
3405 static uint64_t
3406 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3407 arc_buf_contents_t type)
3409 uint64_t total_evicted = 0;
3410 multilist_t *ml = state->arcs_list[type];
3411 int num_sublists;
3412 arc_buf_hdr_t **markers;
3414 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3416 num_sublists = multilist_get_num_sublists(ml);
3419 * If we've tried to evict from each sublist, made some
3420 * progress, but still have not hit the target number of bytes
3421 * to evict, we want to keep trying. The markers allow us to
3422 * pick up where we left off for each individual sublist, rather
3423 * than starting from the tail each time.
3425 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3426 for (int i = 0; i < num_sublists; i++) {
3427 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3430 * A b_spa of 0 is used to indicate that this header is
3431 * a marker. This fact is used in arc_adjust_type() and
3432 * arc_evict_state_impl().
3434 markers[i]->b_spa = 0;
3436 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3437 multilist_sublist_insert_tail(mls, markers[i]);
3438 multilist_sublist_unlock(mls);
3442 * While we haven't hit our target number of bytes to evict, or
3443 * we're evicting all available buffers.
3445 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3447 * Start eviction using a randomly selected sublist,
3448 * this is to try and evenly balance eviction across all
3449 * sublists. Always starting at the same sublist
3450 * (e.g. index 0) would cause evictions to favor certain
3451 * sublists over others.
3453 int sublist_idx = multilist_get_random_index(ml);
3454 uint64_t scan_evicted = 0;
3456 for (int i = 0; i < num_sublists; i++) {
3457 uint64_t bytes_remaining;
3458 uint64_t bytes_evicted;
3460 if (bytes == ARC_EVICT_ALL)
3461 bytes_remaining = ARC_EVICT_ALL;
3462 else if (total_evicted < bytes)
3463 bytes_remaining = bytes - total_evicted;
3464 else
3465 break;
3467 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3468 markers[sublist_idx], spa, bytes_remaining);
3470 scan_evicted += bytes_evicted;
3471 total_evicted += bytes_evicted;
3473 /* we've reached the end, wrap to the beginning */
3474 if (++sublist_idx >= num_sublists)
3475 sublist_idx = 0;
3479 * If we didn't evict anything during this scan, we have
3480 * no reason to believe we'll evict more during another
3481 * scan, so break the loop.
3483 if (scan_evicted == 0) {
3484 /* This isn't possible, let's make that obvious */
3485 ASSERT3S(bytes, !=, 0);
3488 * When bytes is ARC_EVICT_ALL, the only way to
3489 * break the loop is when scan_evicted is zero.
3490 * In that case, we actually have evicted enough,
3491 * so we don't want to increment the kstat.
3493 if (bytes != ARC_EVICT_ALL) {
3494 ASSERT3S(total_evicted, <, bytes);
3495 ARCSTAT_BUMP(arcstat_evict_not_enough);
3498 break;
3502 for (int i = 0; i < num_sublists; i++) {
3503 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3504 multilist_sublist_remove(mls, markers[i]);
3505 multilist_sublist_unlock(mls);
3507 kmem_cache_free(hdr_full_cache, markers[i]);
3509 kmem_free(markers, sizeof (*markers) * num_sublists);
3511 return (total_evicted);
3515 * Flush all "evictable" data of the given type from the arc state
3516 * specified. This will not evict any "active" buffers (i.e. referenced).
3518 * When 'retry' is set to B_FALSE, the function will make a single pass
3519 * over the state and evict any buffers that it can. Since it doesn't
3520 * continually retry the eviction, it might end up leaving some buffers
3521 * in the ARC due to lock misses.
3523 * When 'retry' is set to B_TRUE, the function will continually retry the
3524 * eviction until *all* evictable buffers have been removed from the
3525 * state. As a result, if concurrent insertions into the state are
3526 * allowed (e.g. if the ARC isn't shutting down), this function might
3527 * wind up in an infinite loop, continually trying to evict buffers.
3529 static uint64_t
3530 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3531 boolean_t retry)
3533 uint64_t evicted = 0;
3535 while (refcount_count(&state->arcs_esize[type]) != 0) {
3536 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3538 if (!retry)
3539 break;
3542 return (evicted);
3546 * Evict the specified number of bytes from the state specified,
3547 * restricting eviction to the spa and type given. This function
3548 * prevents us from trying to evict more from a state's list than
3549 * is "evictable", and to skip evicting altogether when passed a
3550 * negative value for "bytes". In contrast, arc_evict_state() will
3551 * evict everything it can, when passed a negative value for "bytes".
3553 static uint64_t
3554 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3555 arc_buf_contents_t type)
3557 int64_t delta;
3559 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3560 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3561 return (arc_evict_state(state, spa, delta, type));
3564 return (0);
3568 * Evict metadata buffers from the cache, such that arc_meta_used is
3569 * capped by the arc_meta_limit tunable.
3571 static uint64_t
3572 arc_adjust_meta(void)
3574 uint64_t total_evicted = 0;
3575 int64_t target;
3578 * If we're over the meta limit, we want to evict enough
3579 * metadata to get back under the meta limit. We don't want to
3580 * evict so much that we drop the MRU below arc_p, though. If
3581 * we're over the meta limit more than we're over arc_p, we
3582 * evict some from the MRU here, and some from the MFU below.
3584 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3585 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3586 refcount_count(&arc_mru->arcs_size) - arc_p));
3588 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3591 * Similar to the above, we want to evict enough bytes to get us
3592 * below the meta limit, but not so much as to drop us below the
3593 * space allotted to the MFU (which is defined as arc_c - arc_p).
3595 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3596 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3598 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3600 return (total_evicted);
3604 * Return the type of the oldest buffer in the given arc state
3606 * This function will select a random sublist of type ARC_BUFC_DATA and
3607 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3608 * is compared, and the type which contains the "older" buffer will be
3609 * returned.
3611 static arc_buf_contents_t
3612 arc_adjust_type(arc_state_t *state)
3614 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3615 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3616 int data_idx = multilist_get_random_index(data_ml);
3617 int meta_idx = multilist_get_random_index(meta_ml);
3618 multilist_sublist_t *data_mls;
3619 multilist_sublist_t *meta_mls;
3620 arc_buf_contents_t type;
3621 arc_buf_hdr_t *data_hdr;
3622 arc_buf_hdr_t *meta_hdr;
3625 * We keep the sublist lock until we're finished, to prevent
3626 * the headers from being destroyed via arc_evict_state().
3628 data_mls = multilist_sublist_lock(data_ml, data_idx);
3629 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3632 * These two loops are to ensure we skip any markers that
3633 * might be at the tail of the lists due to arc_evict_state().
3636 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3637 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3638 if (data_hdr->b_spa != 0)
3639 break;
3642 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3643 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3644 if (meta_hdr->b_spa != 0)
3645 break;
3648 if (data_hdr == NULL && meta_hdr == NULL) {
3649 type = ARC_BUFC_DATA;
3650 } else if (data_hdr == NULL) {
3651 ASSERT3P(meta_hdr, !=, NULL);
3652 type = ARC_BUFC_METADATA;
3653 } else if (meta_hdr == NULL) {
3654 ASSERT3P(data_hdr, !=, NULL);
3655 type = ARC_BUFC_DATA;
3656 } else {
3657 ASSERT3P(data_hdr, !=, NULL);
3658 ASSERT3P(meta_hdr, !=, NULL);
3660 /* The headers can't be on the sublist without an L1 header */
3661 ASSERT(HDR_HAS_L1HDR(data_hdr));
3662 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3664 if (data_hdr->b_l1hdr.b_arc_access <
3665 meta_hdr->b_l1hdr.b_arc_access) {
3666 type = ARC_BUFC_DATA;
3667 } else {
3668 type = ARC_BUFC_METADATA;
3672 multilist_sublist_unlock(meta_mls);
3673 multilist_sublist_unlock(data_mls);
3675 return (type);
3679 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3681 static uint64_t
3682 arc_adjust(void)
3684 uint64_t total_evicted = 0;
3685 uint64_t bytes;
3686 int64_t target;
3689 * If we're over arc_meta_limit, we want to correct that before
3690 * potentially evicting data buffers below.
3692 total_evicted += arc_adjust_meta();
3695 * Adjust MRU size
3697 * If we're over the target cache size, we want to evict enough
3698 * from the list to get back to our target size. We don't want
3699 * to evict too much from the MRU, such that it drops below
3700 * arc_p. So, if we're over our target cache size more than
3701 * the MRU is over arc_p, we'll evict enough to get back to
3702 * arc_p here, and then evict more from the MFU below.
3704 target = MIN((int64_t)(arc_size - arc_c),
3705 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3706 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3709 * If we're below arc_meta_min, always prefer to evict data.
3710 * Otherwise, try to satisfy the requested number of bytes to
3711 * evict from the type which contains older buffers; in an
3712 * effort to keep newer buffers in the cache regardless of their
3713 * type. If we cannot satisfy the number of bytes from this
3714 * type, spill over into the next type.
3716 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3717 arc_meta_used > arc_meta_min) {
3718 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3719 total_evicted += bytes;
3722 * If we couldn't evict our target number of bytes from
3723 * metadata, we try to get the rest from data.
3725 target -= bytes;
3727 total_evicted +=
3728 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3729 } else {
3730 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3731 total_evicted += bytes;
3734 * If we couldn't evict our target number of bytes from
3735 * data, we try to get the rest from metadata.
3737 target -= bytes;
3739 total_evicted +=
3740 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3744 * Adjust MFU size
3746 * Now that we've tried to evict enough from the MRU to get its
3747 * size back to arc_p, if we're still above the target cache
3748 * size, we evict the rest from the MFU.
3750 target = arc_size - arc_c;
3752 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3753 arc_meta_used > arc_meta_min) {
3754 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3755 total_evicted += bytes;
3758 * If we couldn't evict our target number of bytes from
3759 * metadata, we try to get the rest from data.
3761 target -= bytes;
3763 total_evicted +=
3764 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3765 } else {
3766 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3767 total_evicted += bytes;
3770 * If we couldn't evict our target number of bytes from
3771 * data, we try to get the rest from data.
3773 target -= bytes;
3775 total_evicted +=
3776 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3780 * Adjust ghost lists
3782 * In addition to the above, the ARC also defines target values
3783 * for the ghost lists. The sum of the mru list and mru ghost
3784 * list should never exceed the target size of the cache, and
3785 * the sum of the mru list, mfu list, mru ghost list, and mfu
3786 * ghost list should never exceed twice the target size of the
3787 * cache. The following logic enforces these limits on the ghost
3788 * caches, and evicts from them as needed.
3790 target = refcount_count(&arc_mru->arcs_size) +
3791 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3793 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3794 total_evicted += bytes;
3796 target -= bytes;
3798 total_evicted +=
3799 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3802 * We assume the sum of the mru list and mfu list is less than
3803 * or equal to arc_c (we enforced this above), which means we
3804 * can use the simpler of the two equations below:
3806 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3807 * mru ghost + mfu ghost <= arc_c
3809 target = refcount_count(&arc_mru_ghost->arcs_size) +
3810 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3812 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3813 total_evicted += bytes;
3815 target -= bytes;
3817 total_evicted +=
3818 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3820 return (total_evicted);
3823 void
3824 arc_flush(spa_t *spa, boolean_t retry)
3826 uint64_t guid = 0;
3829 * If retry is B_TRUE, a spa must not be specified since we have
3830 * no good way to determine if all of a spa's buffers have been
3831 * evicted from an arc state.
3833 ASSERT(!retry || spa == 0);
3835 if (spa != NULL)
3836 guid = spa_load_guid(spa);
3838 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3839 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3841 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3842 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3844 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3845 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3847 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3848 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3851 void
3852 arc_shrink(int64_t to_free)
3854 if (arc_c > arc_c_min) {
3856 if (arc_c > arc_c_min + to_free)
3857 atomic_add_64(&arc_c, -to_free);
3858 else
3859 arc_c = arc_c_min;
3861 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3862 if (arc_c > arc_size)
3863 arc_c = MAX(arc_size, arc_c_min);
3864 if (arc_p > arc_c)
3865 arc_p = (arc_c >> 1);
3866 ASSERT(arc_c >= arc_c_min);
3867 ASSERT((int64_t)arc_p >= 0);
3870 if (arc_size > arc_c)
3871 (void) arc_adjust();
3874 typedef enum free_memory_reason_t {
3875 FMR_UNKNOWN,
3876 FMR_NEEDFREE,
3877 FMR_LOTSFREE,
3878 FMR_SWAPFS_MINFREE,
3879 FMR_PAGES_PP_MAXIMUM,
3880 FMR_HEAP_ARENA,
3881 FMR_ZIO_ARENA,
3882 } free_memory_reason_t;
3884 int64_t last_free_memory;
3885 free_memory_reason_t last_free_reason;
3888 * Additional reserve of pages for pp_reserve.
3890 int64_t arc_pages_pp_reserve = 64;
3893 * Additional reserve of pages for swapfs.
3895 int64_t arc_swapfs_reserve = 64;
3898 * Return the amount of memory that can be consumed before reclaim will be
3899 * needed. Positive if there is sufficient free memory, negative indicates
3900 * the amount of memory that needs to be freed up.
3902 static int64_t
3903 arc_available_memory(void)
3905 int64_t lowest = INT64_MAX;
3906 int64_t n;
3907 free_memory_reason_t r = FMR_UNKNOWN;
3909 #ifdef _KERNEL
3910 if (needfree > 0) {
3911 n = PAGESIZE * (-needfree);
3912 if (n < lowest) {
3913 lowest = n;
3914 r = FMR_NEEDFREE;
3919 * check that we're out of range of the pageout scanner. It starts to
3920 * schedule paging if freemem is less than lotsfree and needfree.
3921 * lotsfree is the high-water mark for pageout, and needfree is the
3922 * number of needed free pages. We add extra pages here to make sure
3923 * the scanner doesn't start up while we're freeing memory.
3925 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3926 if (n < lowest) {
3927 lowest = n;
3928 r = FMR_LOTSFREE;
3932 * check to make sure that swapfs has enough space so that anon
3933 * reservations can still succeed. anon_resvmem() checks that the
3934 * availrmem is greater than swapfs_minfree, and the number of reserved
3935 * swap pages. We also add a bit of extra here just to prevent
3936 * circumstances from getting really dire.
3938 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3939 desfree - arc_swapfs_reserve);
3940 if (n < lowest) {
3941 lowest = n;
3942 r = FMR_SWAPFS_MINFREE;
3947 * Check that we have enough availrmem that memory locking (e.g., via
3948 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3949 * stores the number of pages that cannot be locked; when availrmem
3950 * drops below pages_pp_maximum, page locking mechanisms such as
3951 * page_pp_lock() will fail.)
3953 n = PAGESIZE * (availrmem - pages_pp_maximum -
3954 arc_pages_pp_reserve);
3955 if (n < lowest) {
3956 lowest = n;
3957 r = FMR_PAGES_PP_MAXIMUM;
3960 #if defined(__i386)
3962 * If we're on an i386 platform, it's possible that we'll exhaust the
3963 * kernel heap space before we ever run out of available physical
3964 * memory. Most checks of the size of the heap_area compare against
3965 * tune.t_minarmem, which is the minimum available real memory that we
3966 * can have in the system. However, this is generally fixed at 25 pages
3967 * which is so low that it's useless. In this comparison, we seek to
3968 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3969 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3970 * free)
3972 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3973 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3974 if (n < lowest) {
3975 lowest = n;
3976 r = FMR_HEAP_ARENA;
3978 #endif
3981 * If zio data pages are being allocated out of a separate heap segment,
3982 * then enforce that the size of available vmem for this arena remains
3983 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
3985 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
3986 * memory (in the zio_arena) free, which can avoid memory
3987 * fragmentation issues.
3989 if (zio_arena != NULL) {
3990 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3991 (vmem_size(zio_arena, VMEM_ALLOC) >>
3992 arc_zio_arena_free_shift);
3993 if (n < lowest) {
3994 lowest = n;
3995 r = FMR_ZIO_ARENA;
3998 #else
3999 /* Every 100 calls, free a small amount */
4000 if (spa_get_random(100) == 0)
4001 lowest = -1024;
4002 #endif
4004 last_free_memory = lowest;
4005 last_free_reason = r;
4007 return (lowest);
4012 * Determine if the system is under memory pressure and is asking
4013 * to reclaim memory. A return value of B_TRUE indicates that the system
4014 * is under memory pressure and that the arc should adjust accordingly.
4016 static boolean_t
4017 arc_reclaim_needed(void)
4019 return (arc_available_memory() < 0);
4022 static void
4023 arc_kmem_reap_now(void)
4025 size_t i;
4026 kmem_cache_t *prev_cache = NULL;
4027 kmem_cache_t *prev_data_cache = NULL;
4028 extern kmem_cache_t *zio_buf_cache[];
4029 extern kmem_cache_t *zio_data_buf_cache[];
4030 extern kmem_cache_t *range_seg_cache;
4031 extern kmem_cache_t *abd_chunk_cache;
4033 #ifdef _KERNEL
4034 if (arc_meta_used >= arc_meta_limit) {
4036 * We are exceeding our meta-data cache limit.
4037 * Purge some DNLC entries to release holds on meta-data.
4039 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4041 #if defined(__i386)
4043 * Reclaim unused memory from all kmem caches.
4045 kmem_reap();
4046 #endif
4047 #endif
4049 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4050 if (zio_buf_cache[i] != prev_cache) {
4051 prev_cache = zio_buf_cache[i];
4052 kmem_cache_reap_now(zio_buf_cache[i]);
4054 if (zio_data_buf_cache[i] != prev_data_cache) {
4055 prev_data_cache = zio_data_buf_cache[i];
4056 kmem_cache_reap_now(zio_data_buf_cache[i]);
4059 kmem_cache_reap_now(abd_chunk_cache);
4060 kmem_cache_reap_now(buf_cache);
4061 kmem_cache_reap_now(hdr_full_cache);
4062 kmem_cache_reap_now(hdr_l2only_cache);
4063 kmem_cache_reap_now(range_seg_cache);
4065 if (zio_arena != NULL) {
4067 * Ask the vmem arena to reclaim unused memory from its
4068 * quantum caches.
4070 vmem_qcache_reap(zio_arena);
4075 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4076 * enough data and signal them to proceed. When this happens, the threads in
4077 * arc_get_data_impl() are sleeping while holding the hash lock for their
4078 * particular arc header. Thus, we must be careful to never sleep on a
4079 * hash lock in this thread. This is to prevent the following deadlock:
4081 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4082 * waiting for the reclaim thread to signal it.
4084 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4085 * fails, and goes to sleep forever.
4087 * This possible deadlock is avoided by always acquiring a hash lock
4088 * using mutex_tryenter() from arc_reclaim_thread().
4090 /* ARGSUSED */
4091 static void
4092 arc_reclaim_thread(void *unused)
4094 hrtime_t growtime = 0;
4095 callb_cpr_t cpr;
4097 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4099 mutex_enter(&arc_reclaim_lock);
4100 while (!arc_reclaim_thread_exit) {
4101 uint64_t evicted = 0;
4104 * This is necessary in order for the mdb ::arc dcmd to
4105 * show up to date information. Since the ::arc command
4106 * does not call the kstat's update function, without
4107 * this call, the command may show stale stats for the
4108 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4109 * with this change, the data might be up to 1 second
4110 * out of date; but that should suffice. The arc_state_t
4111 * structures can be queried directly if more accurate
4112 * information is needed.
4114 if (arc_ksp != NULL)
4115 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4117 mutex_exit(&arc_reclaim_lock);
4120 * We call arc_adjust() before (possibly) calling
4121 * arc_kmem_reap_now(), so that we can wake up
4122 * arc_get_data_impl() sooner.
4124 evicted = arc_adjust();
4126 int64_t free_memory = arc_available_memory();
4127 if (free_memory < 0) {
4129 arc_no_grow = B_TRUE;
4130 arc_warm = B_TRUE;
4133 * Wait at least zfs_grow_retry (default 60) seconds
4134 * before considering growing.
4136 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4138 arc_kmem_reap_now();
4141 * If we are still low on memory, shrink the ARC
4142 * so that we have arc_shrink_min free space.
4144 free_memory = arc_available_memory();
4146 int64_t to_free =
4147 (arc_c >> arc_shrink_shift) - free_memory;
4148 if (to_free > 0) {
4149 #ifdef _KERNEL
4150 to_free = MAX(to_free, ptob(needfree));
4151 #endif
4152 arc_shrink(to_free);
4154 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4155 arc_no_grow = B_TRUE;
4156 } else if (gethrtime() >= growtime) {
4157 arc_no_grow = B_FALSE;
4160 mutex_enter(&arc_reclaim_lock);
4163 * If evicted is zero, we couldn't evict anything via
4164 * arc_adjust(). This could be due to hash lock
4165 * collisions, but more likely due to the majority of
4166 * arc buffers being unevictable. Therefore, even if
4167 * arc_size is above arc_c, another pass is unlikely to
4168 * be helpful and could potentially cause us to enter an
4169 * infinite loop.
4171 if (arc_size <= arc_c || evicted == 0) {
4173 * We're either no longer overflowing, or we
4174 * can't evict anything more, so we should wake
4175 * up any threads before we go to sleep.
4177 cv_broadcast(&arc_reclaim_waiters_cv);
4180 * Block until signaled, or after one second (we
4181 * might need to perform arc_kmem_reap_now()
4182 * even if we aren't being signalled)
4184 CALLB_CPR_SAFE_BEGIN(&cpr);
4185 (void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4186 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4187 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4191 arc_reclaim_thread_exit = B_FALSE;
4192 cv_broadcast(&arc_reclaim_thread_cv);
4193 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4194 thread_exit();
4198 * Adapt arc info given the number of bytes we are trying to add and
4199 * the state that we are comming from. This function is only called
4200 * when we are adding new content to the cache.
4202 static void
4203 arc_adapt(int bytes, arc_state_t *state)
4205 int mult;
4206 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4207 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4208 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4210 if (state == arc_l2c_only)
4211 return;
4213 ASSERT(bytes > 0);
4215 * Adapt the target size of the MRU list:
4216 * - if we just hit in the MRU ghost list, then increase
4217 * the target size of the MRU list.
4218 * - if we just hit in the MFU ghost list, then increase
4219 * the target size of the MFU list by decreasing the
4220 * target size of the MRU list.
4222 if (state == arc_mru_ghost) {
4223 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4224 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4226 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4227 } else if (state == arc_mfu_ghost) {
4228 uint64_t delta;
4230 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4231 mult = MIN(mult, 10);
4233 delta = MIN(bytes * mult, arc_p);
4234 arc_p = MAX(arc_p_min, arc_p - delta);
4236 ASSERT((int64_t)arc_p >= 0);
4238 if (arc_reclaim_needed()) {
4239 cv_signal(&arc_reclaim_thread_cv);
4240 return;
4243 if (arc_no_grow)
4244 return;
4246 if (arc_c >= arc_c_max)
4247 return;
4250 * If we're within (2 * maxblocksize) bytes of the target
4251 * cache size, increment the target cache size
4253 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4254 atomic_add_64(&arc_c, (int64_t)bytes);
4255 if (arc_c > arc_c_max)
4256 arc_c = arc_c_max;
4257 else if (state == arc_anon)
4258 atomic_add_64(&arc_p, (int64_t)bytes);
4259 if (arc_p > arc_c)
4260 arc_p = arc_c;
4262 ASSERT((int64_t)arc_p >= 0);
4266 * Check if arc_size has grown past our upper threshold, determined by
4267 * zfs_arc_overflow_shift.
4269 static boolean_t
4270 arc_is_overflowing(void)
4272 /* Always allow at least one block of overflow */
4273 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4274 arc_c >> zfs_arc_overflow_shift);
4276 return (arc_size >= arc_c + overflow);
4279 static abd_t *
4280 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4282 arc_buf_contents_t type = arc_buf_type(hdr);
4284 arc_get_data_impl(hdr, size, tag);
4285 if (type == ARC_BUFC_METADATA) {
4286 return (abd_alloc(size, B_TRUE));
4287 } else {
4288 ASSERT(type == ARC_BUFC_DATA);
4289 return (abd_alloc(size, B_FALSE));
4293 static void *
4294 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4296 arc_buf_contents_t type = arc_buf_type(hdr);
4298 arc_get_data_impl(hdr, size, tag);
4299 if (type == ARC_BUFC_METADATA) {
4300 return (zio_buf_alloc(size));
4301 } else {
4302 ASSERT(type == ARC_BUFC_DATA);
4303 return (zio_data_buf_alloc(size));
4308 * Allocate a block and return it to the caller. If we are hitting the
4309 * hard limit for the cache size, we must sleep, waiting for the eviction
4310 * thread to catch up. If we're past the target size but below the hard
4311 * limit, we'll only signal the reclaim thread and continue on.
4313 static void
4314 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4316 arc_state_t *state = hdr->b_l1hdr.b_state;
4317 arc_buf_contents_t type = arc_buf_type(hdr);
4319 arc_adapt(size, state);
4322 * If arc_size is currently overflowing, and has grown past our
4323 * upper limit, we must be adding data faster than the evict
4324 * thread can evict. Thus, to ensure we don't compound the
4325 * problem by adding more data and forcing arc_size to grow even
4326 * further past it's target size, we halt and wait for the
4327 * eviction thread to catch up.
4329 * It's also possible that the reclaim thread is unable to evict
4330 * enough buffers to get arc_size below the overflow limit (e.g.
4331 * due to buffers being un-evictable, or hash lock collisions).
4332 * In this case, we want to proceed regardless if we're
4333 * overflowing; thus we don't use a while loop here.
4335 if (arc_is_overflowing()) {
4336 mutex_enter(&arc_reclaim_lock);
4339 * Now that we've acquired the lock, we may no longer be
4340 * over the overflow limit, lets check.
4342 * We're ignoring the case of spurious wake ups. If that
4343 * were to happen, it'd let this thread consume an ARC
4344 * buffer before it should have (i.e. before we're under
4345 * the overflow limit and were signalled by the reclaim
4346 * thread). As long as that is a rare occurrence, it
4347 * shouldn't cause any harm.
4349 if (arc_is_overflowing()) {
4350 cv_signal(&arc_reclaim_thread_cv);
4351 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4354 mutex_exit(&arc_reclaim_lock);
4357 VERIFY3U(hdr->b_type, ==, type);
4358 if (type == ARC_BUFC_METADATA) {
4359 arc_space_consume(size, ARC_SPACE_META);
4360 } else {
4361 arc_space_consume(size, ARC_SPACE_DATA);
4365 * Update the state size. Note that ghost states have a
4366 * "ghost size" and so don't need to be updated.
4368 if (!GHOST_STATE(state)) {
4370 (void) refcount_add_many(&state->arcs_size, size, tag);
4373 * If this is reached via arc_read, the link is
4374 * protected by the hash lock. If reached via
4375 * arc_buf_alloc, the header should not be accessed by
4376 * any other thread. And, if reached via arc_read_done,
4377 * the hash lock will protect it if it's found in the
4378 * hash table; otherwise no other thread should be
4379 * trying to [add|remove]_reference it.
4381 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4382 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4383 (void) refcount_add_many(&state->arcs_esize[type],
4384 size, tag);
4388 * If we are growing the cache, and we are adding anonymous
4389 * data, and we have outgrown arc_p, update arc_p
4391 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4392 (refcount_count(&arc_anon->arcs_size) +
4393 refcount_count(&arc_mru->arcs_size) > arc_p))
4394 arc_p = MIN(arc_c, arc_p + size);
4398 static void
4399 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4401 arc_free_data_impl(hdr, size, tag);
4402 abd_free(abd);
4405 static void
4406 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4408 arc_buf_contents_t type = arc_buf_type(hdr);
4410 arc_free_data_impl(hdr, size, tag);
4411 if (type == ARC_BUFC_METADATA) {
4412 zio_buf_free(buf, size);
4413 } else {
4414 ASSERT(type == ARC_BUFC_DATA);
4415 zio_data_buf_free(buf, size);
4420 * Free the arc data buffer.
4422 static void
4423 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4425 arc_state_t *state = hdr->b_l1hdr.b_state;
4426 arc_buf_contents_t type = arc_buf_type(hdr);
4428 /* protected by hash lock, if in the hash table */
4429 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4430 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4431 ASSERT(state != arc_anon && state != arc_l2c_only);
4433 (void) refcount_remove_many(&state->arcs_esize[type],
4434 size, tag);
4436 (void) refcount_remove_many(&state->arcs_size, size, tag);
4438 VERIFY3U(hdr->b_type, ==, type);
4439 if (type == ARC_BUFC_METADATA) {
4440 arc_space_return(size, ARC_SPACE_META);
4441 } else {
4442 ASSERT(type == ARC_BUFC_DATA);
4443 arc_space_return(size, ARC_SPACE_DATA);
4448 * This routine is called whenever a buffer is accessed.
4449 * NOTE: the hash lock is dropped in this function.
4451 static void
4452 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4454 clock_t now;
4456 ASSERT(MUTEX_HELD(hash_lock));
4457 ASSERT(HDR_HAS_L1HDR(hdr));
4459 if (hdr->b_l1hdr.b_state == arc_anon) {
4461 * This buffer is not in the cache, and does not
4462 * appear in our "ghost" list. Add the new buffer
4463 * to the MRU state.
4466 ASSERT0(hdr->b_l1hdr.b_arc_access);
4467 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4468 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4469 arc_change_state(arc_mru, hdr, hash_lock);
4471 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4472 now = ddi_get_lbolt();
4475 * If this buffer is here because of a prefetch, then either:
4476 * - clear the flag if this is a "referencing" read
4477 * (any subsequent access will bump this into the MFU state).
4478 * or
4479 * - move the buffer to the head of the list if this is
4480 * another prefetch (to make it less likely to be evicted).
4482 if (HDR_PREFETCH(hdr)) {
4483 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4484 /* link protected by hash lock */
4485 ASSERT(multilist_link_active(
4486 &hdr->b_l1hdr.b_arc_node));
4487 } else {
4488 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4489 ARCSTAT_BUMP(arcstat_mru_hits);
4491 hdr->b_l1hdr.b_arc_access = now;
4492 return;
4496 * This buffer has been "accessed" only once so far,
4497 * but it is still in the cache. Move it to the MFU
4498 * state.
4500 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4502 * More than 125ms have passed since we
4503 * instantiated this buffer. Move it to the
4504 * most frequently used state.
4506 hdr->b_l1hdr.b_arc_access = now;
4507 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4508 arc_change_state(arc_mfu, hdr, hash_lock);
4510 ARCSTAT_BUMP(arcstat_mru_hits);
4511 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4512 arc_state_t *new_state;
4514 * This buffer has been "accessed" recently, but
4515 * was evicted from the cache. Move it to the
4516 * MFU state.
4519 if (HDR_PREFETCH(hdr)) {
4520 new_state = arc_mru;
4521 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4522 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4523 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4524 } else {
4525 new_state = arc_mfu;
4526 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4529 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4530 arc_change_state(new_state, hdr, hash_lock);
4532 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4533 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4535 * This buffer has been accessed more than once and is
4536 * still in the cache. Keep it in the MFU state.
4538 * NOTE: an add_reference() that occurred when we did
4539 * the arc_read() will have kicked this off the list.
4540 * If it was a prefetch, we will explicitly move it to
4541 * the head of the list now.
4543 if ((HDR_PREFETCH(hdr)) != 0) {
4544 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4545 /* link protected by hash_lock */
4546 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4548 ARCSTAT_BUMP(arcstat_mfu_hits);
4549 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4550 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4551 arc_state_t *new_state = arc_mfu;
4553 * This buffer has been accessed more than once but has
4554 * been evicted from the cache. Move it back to the
4555 * MFU state.
4558 if (HDR_PREFETCH(hdr)) {
4560 * This is a prefetch access...
4561 * move this block back to the MRU state.
4563 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4564 new_state = arc_mru;
4567 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4568 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4569 arc_change_state(new_state, hdr, hash_lock);
4571 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4572 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4574 * This buffer is on the 2nd Level ARC.
4577 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4578 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4579 arc_change_state(arc_mfu, hdr, hash_lock);
4580 } else {
4581 ASSERT(!"invalid arc state");
4585 /* a generic arc_done_func_t which you can use */
4586 /* ARGSUSED */
4587 void
4588 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4590 if (zio == NULL || zio->io_error == 0)
4591 bcopy(buf->b_data, arg, arc_buf_size(buf));
4592 arc_buf_destroy(buf, arg);
4595 /* a generic arc_done_func_t */
4596 void
4597 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4599 arc_buf_t **bufp = arg;
4600 if (zio && zio->io_error) {
4601 arc_buf_destroy(buf, arg);
4602 *bufp = NULL;
4603 } else {
4604 *bufp = buf;
4605 ASSERT(buf->b_data);
4609 static void
4610 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4612 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4613 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4614 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4615 } else {
4616 if (HDR_COMPRESSION_ENABLED(hdr)) {
4617 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4618 BP_GET_COMPRESS(bp));
4620 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4621 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4625 static void
4626 arc_read_done(zio_t *zio)
4628 arc_buf_hdr_t *hdr = zio->io_private;
4629 kmutex_t *hash_lock = NULL;
4630 arc_callback_t *callback_list;
4631 arc_callback_t *acb;
4632 boolean_t freeable = B_FALSE;
4633 boolean_t no_zio_error = (zio->io_error == 0);
4636 * The hdr was inserted into hash-table and removed from lists
4637 * prior to starting I/O. We should find this header, since
4638 * it's in the hash table, and it should be legit since it's
4639 * not possible to evict it during the I/O. The only possible
4640 * reason for it not to be found is if we were freed during the
4641 * read.
4643 if (HDR_IN_HASH_TABLE(hdr)) {
4644 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4645 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4646 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4647 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4648 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4650 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4651 &hash_lock);
4653 ASSERT((found == hdr &&
4654 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4655 (found == hdr && HDR_L2_READING(hdr)));
4656 ASSERT3P(hash_lock, !=, NULL);
4659 if (no_zio_error) {
4660 /* byteswap if necessary */
4661 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4662 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4663 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4664 } else {
4665 hdr->b_l1hdr.b_byteswap =
4666 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4668 } else {
4669 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4673 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4674 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4675 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4677 callback_list = hdr->b_l1hdr.b_acb;
4678 ASSERT3P(callback_list, !=, NULL);
4680 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4682 * Only call arc_access on anonymous buffers. This is because
4683 * if we've issued an I/O for an evicted buffer, we've already
4684 * called arc_access (to prevent any simultaneous readers from
4685 * getting confused).
4687 arc_access(hdr, hash_lock);
4691 * If a read request has a callback (i.e. acb_done is not NULL), then we
4692 * make a buf containing the data according to the parameters which were
4693 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4694 * aren't needlessly decompressing the data multiple times.
4696 int callback_cnt = 0;
4697 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4698 if (!acb->acb_done)
4699 continue;
4701 /* This is a demand read since prefetches don't use callbacks */
4702 callback_cnt++;
4704 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4705 acb->acb_compressed, no_zio_error, &acb->acb_buf);
4706 if (no_zio_error) {
4707 zio->io_error = error;
4710 hdr->b_l1hdr.b_acb = NULL;
4711 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4712 if (callback_cnt == 0) {
4713 ASSERT(HDR_PREFETCH(hdr));
4714 ASSERT0(hdr->b_l1hdr.b_bufcnt);
4715 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4718 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4719 callback_list != NULL);
4721 if (no_zio_error) {
4722 arc_hdr_verify(hdr, zio->io_bp);
4723 } else {
4724 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4725 if (hdr->b_l1hdr.b_state != arc_anon)
4726 arc_change_state(arc_anon, hdr, hash_lock);
4727 if (HDR_IN_HASH_TABLE(hdr))
4728 buf_hash_remove(hdr);
4729 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4733 * Broadcast before we drop the hash_lock to avoid the possibility
4734 * that the hdr (and hence the cv) might be freed before we get to
4735 * the cv_broadcast().
4737 cv_broadcast(&hdr->b_l1hdr.b_cv);
4739 if (hash_lock != NULL) {
4740 mutex_exit(hash_lock);
4741 } else {
4743 * This block was freed while we waited for the read to
4744 * complete. It has been removed from the hash table and
4745 * moved to the anonymous state (so that it won't show up
4746 * in the cache).
4748 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4749 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4752 /* execute each callback and free its structure */
4753 while ((acb = callback_list) != NULL) {
4754 if (acb->acb_done)
4755 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4757 if (acb->acb_zio_dummy != NULL) {
4758 acb->acb_zio_dummy->io_error = zio->io_error;
4759 zio_nowait(acb->acb_zio_dummy);
4762 callback_list = acb->acb_next;
4763 kmem_free(acb, sizeof (arc_callback_t));
4766 if (freeable)
4767 arc_hdr_destroy(hdr);
4771 * "Read" the block at the specified DVA (in bp) via the
4772 * cache. If the block is found in the cache, invoke the provided
4773 * callback immediately and return. Note that the `zio' parameter
4774 * in the callback will be NULL in this case, since no IO was
4775 * required. If the block is not in the cache pass the read request
4776 * on to the spa with a substitute callback function, so that the
4777 * requested block will be added to the cache.
4779 * If a read request arrives for a block that has a read in-progress,
4780 * either wait for the in-progress read to complete (and return the
4781 * results); or, if this is a read with a "done" func, add a record
4782 * to the read to invoke the "done" func when the read completes,
4783 * and return; or just return.
4785 * arc_read_done() will invoke all the requested "done" functions
4786 * for readers of this block.
4789 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4790 void *private, zio_priority_t priority, int zio_flags,
4791 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4793 arc_buf_hdr_t *hdr = NULL;
4794 kmutex_t *hash_lock = NULL;
4795 zio_t *rzio;
4796 uint64_t guid = spa_load_guid(spa);
4797 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4799 ASSERT(!BP_IS_EMBEDDED(bp) ||
4800 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4802 top:
4803 if (!BP_IS_EMBEDDED(bp)) {
4805 * Embedded BP's have no DVA and require no I/O to "read".
4806 * Create an anonymous arc buf to back it.
4808 hdr = buf_hash_find(guid, bp, &hash_lock);
4811 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4812 arc_buf_t *buf = NULL;
4813 *arc_flags |= ARC_FLAG_CACHED;
4815 if (HDR_IO_IN_PROGRESS(hdr)) {
4817 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4818 priority == ZIO_PRIORITY_SYNC_READ) {
4820 * This sync read must wait for an
4821 * in-progress async read (e.g. a predictive
4822 * prefetch). Async reads are queued
4823 * separately at the vdev_queue layer, so
4824 * this is a form of priority inversion.
4825 * Ideally, we would "inherit" the demand
4826 * i/o's priority by moving the i/o from
4827 * the async queue to the synchronous queue,
4828 * but there is currently no mechanism to do
4829 * so. Track this so that we can evaluate
4830 * the magnitude of this potential performance
4831 * problem.
4833 * Note that if the prefetch i/o is already
4834 * active (has been issued to the device),
4835 * the prefetch improved performance, because
4836 * we issued it sooner than we would have
4837 * without the prefetch.
4839 DTRACE_PROBE1(arc__sync__wait__for__async,
4840 arc_buf_hdr_t *, hdr);
4841 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4843 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4844 arc_hdr_clear_flags(hdr,
4845 ARC_FLAG_PREDICTIVE_PREFETCH);
4848 if (*arc_flags & ARC_FLAG_WAIT) {
4849 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4850 mutex_exit(hash_lock);
4851 goto top;
4853 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4855 if (done) {
4856 arc_callback_t *acb = NULL;
4858 acb = kmem_zalloc(sizeof (arc_callback_t),
4859 KM_SLEEP);
4860 acb->acb_done = done;
4861 acb->acb_private = private;
4862 acb->acb_compressed = compressed_read;
4863 if (pio != NULL)
4864 acb->acb_zio_dummy = zio_null(pio,
4865 spa, NULL, NULL, NULL, zio_flags);
4867 ASSERT3P(acb->acb_done, !=, NULL);
4868 acb->acb_next = hdr->b_l1hdr.b_acb;
4869 hdr->b_l1hdr.b_acb = acb;
4870 mutex_exit(hash_lock);
4871 return (0);
4873 mutex_exit(hash_lock);
4874 return (0);
4877 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4878 hdr->b_l1hdr.b_state == arc_mfu);
4880 if (done) {
4881 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4883 * This is a demand read which does not have to
4884 * wait for i/o because we did a predictive
4885 * prefetch i/o for it, which has completed.
4887 DTRACE_PROBE1(
4888 arc__demand__hit__predictive__prefetch,
4889 arc_buf_hdr_t *, hdr);
4890 ARCSTAT_BUMP(
4891 arcstat_demand_hit_predictive_prefetch);
4892 arc_hdr_clear_flags(hdr,
4893 ARC_FLAG_PREDICTIVE_PREFETCH);
4895 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4897 /* Get a buf with the desired data in it. */
4898 VERIFY0(arc_buf_alloc_impl(hdr, private,
4899 compressed_read, B_TRUE, &buf));
4900 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4901 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4902 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4904 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4905 arc_access(hdr, hash_lock);
4906 if (*arc_flags & ARC_FLAG_L2CACHE)
4907 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4908 mutex_exit(hash_lock);
4909 ARCSTAT_BUMP(arcstat_hits);
4910 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4911 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4912 data, metadata, hits);
4914 if (done)
4915 done(NULL, buf, private);
4916 } else {
4917 uint64_t lsize = BP_GET_LSIZE(bp);
4918 uint64_t psize = BP_GET_PSIZE(bp);
4919 arc_callback_t *acb;
4920 vdev_t *vd = NULL;
4921 uint64_t addr = 0;
4922 boolean_t devw = B_FALSE;
4923 uint64_t size;
4925 if (hdr == NULL) {
4926 /* this block is not in the cache */
4927 arc_buf_hdr_t *exists = NULL;
4928 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4929 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4930 BP_GET_COMPRESS(bp), type);
4932 if (!BP_IS_EMBEDDED(bp)) {
4933 hdr->b_dva = *BP_IDENTITY(bp);
4934 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4935 exists = buf_hash_insert(hdr, &hash_lock);
4937 if (exists != NULL) {
4938 /* somebody beat us to the hash insert */
4939 mutex_exit(hash_lock);
4940 buf_discard_identity(hdr);
4941 arc_hdr_destroy(hdr);
4942 goto top; /* restart the IO request */
4944 } else {
4946 * This block is in the ghost cache. If it was L2-only
4947 * (and thus didn't have an L1 hdr), we realloc the
4948 * header to add an L1 hdr.
4950 if (!HDR_HAS_L1HDR(hdr)) {
4951 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4952 hdr_full_cache);
4954 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
4955 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4956 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4957 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4958 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4959 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4962 * This is a delicate dance that we play here.
4963 * This hdr is in the ghost list so we access it
4964 * to move it out of the ghost list before we
4965 * initiate the read. If it's a prefetch then
4966 * it won't have a callback so we'll remove the
4967 * reference that arc_buf_alloc_impl() created. We
4968 * do this after we've called arc_access() to
4969 * avoid hitting an assert in remove_reference().
4971 arc_access(hdr, hash_lock);
4972 arc_hdr_alloc_pabd(hdr);
4974 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4975 size = arc_hdr_size(hdr);
4978 * If compression is enabled on the hdr, then will do
4979 * RAW I/O and will store the compressed data in the hdr's
4980 * data block. Otherwise, the hdr's data block will contain
4981 * the uncompressed data.
4983 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
4984 zio_flags |= ZIO_FLAG_RAW;
4987 if (*arc_flags & ARC_FLAG_PREFETCH)
4988 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4989 if (*arc_flags & ARC_FLAG_L2CACHE)
4990 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4991 if (BP_GET_LEVEL(bp) > 0)
4992 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
4993 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4994 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
4995 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4997 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4998 acb->acb_done = done;
4999 acb->acb_private = private;
5000 acb->acb_compressed = compressed_read;
5002 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5003 hdr->b_l1hdr.b_acb = acb;
5004 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5006 if (HDR_HAS_L2HDR(hdr) &&
5007 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5008 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5009 addr = hdr->b_l2hdr.b_daddr;
5011 * Lock out L2ARC device removal.
5013 if (vdev_is_dead(vd) ||
5014 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5015 vd = NULL;
5018 if (priority == ZIO_PRIORITY_ASYNC_READ)
5019 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5020 else
5021 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5023 if (hash_lock != NULL)
5024 mutex_exit(hash_lock);
5027 * At this point, we have a level 1 cache miss. Try again in
5028 * L2ARC if possible.
5030 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5032 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5033 uint64_t, lsize, zbookmark_phys_t *, zb);
5034 ARCSTAT_BUMP(arcstat_misses);
5035 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5036 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5037 data, metadata, misses);
5039 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5041 * Read from the L2ARC if the following are true:
5042 * 1. The L2ARC vdev was previously cached.
5043 * 2. This buffer still has L2ARC metadata.
5044 * 3. This buffer isn't currently writing to the L2ARC.
5045 * 4. The L2ARC entry wasn't evicted, which may
5046 * also have invalidated the vdev.
5047 * 5. This isn't prefetch and l2arc_noprefetch is set.
5049 if (HDR_HAS_L2HDR(hdr) &&
5050 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5051 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5052 l2arc_read_callback_t *cb;
5053 abd_t *abd;
5054 uint64_t asize;
5056 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5057 ARCSTAT_BUMP(arcstat_l2_hits);
5059 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5060 KM_SLEEP);
5061 cb->l2rcb_hdr = hdr;
5062 cb->l2rcb_bp = *bp;
5063 cb->l2rcb_zb = *zb;
5064 cb->l2rcb_flags = zio_flags;
5066 asize = vdev_psize_to_asize(vd, size);
5067 if (asize != size) {
5068 abd = abd_alloc_for_io(asize,
5069 HDR_ISTYPE_METADATA(hdr));
5070 cb->l2rcb_abd = abd;
5071 } else {
5072 abd = hdr->b_l1hdr.b_pabd;
5075 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5076 addr + asize <= vd->vdev_psize -
5077 VDEV_LABEL_END_SIZE);
5080 * l2arc read. The SCL_L2ARC lock will be
5081 * released by l2arc_read_done().
5082 * Issue a null zio if the underlying buffer
5083 * was squashed to zero size by compression.
5085 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5086 ZIO_COMPRESS_EMPTY);
5087 rzio = zio_read_phys(pio, vd, addr,
5088 asize, abd,
5089 ZIO_CHECKSUM_OFF,
5090 l2arc_read_done, cb, priority,
5091 zio_flags | ZIO_FLAG_DONT_CACHE |
5092 ZIO_FLAG_CANFAIL |
5093 ZIO_FLAG_DONT_PROPAGATE |
5094 ZIO_FLAG_DONT_RETRY, B_FALSE);
5095 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5096 zio_t *, rzio);
5097 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5099 if (*arc_flags & ARC_FLAG_NOWAIT) {
5100 zio_nowait(rzio);
5101 return (0);
5104 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5105 if (zio_wait(rzio) == 0)
5106 return (0);
5108 /* l2arc read error; goto zio_read() */
5109 } else {
5110 DTRACE_PROBE1(l2arc__miss,
5111 arc_buf_hdr_t *, hdr);
5112 ARCSTAT_BUMP(arcstat_l2_misses);
5113 if (HDR_L2_WRITING(hdr))
5114 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5115 spa_config_exit(spa, SCL_L2ARC, vd);
5117 } else {
5118 if (vd != NULL)
5119 spa_config_exit(spa, SCL_L2ARC, vd);
5120 if (l2arc_ndev != 0) {
5121 DTRACE_PROBE1(l2arc__miss,
5122 arc_buf_hdr_t *, hdr);
5123 ARCSTAT_BUMP(arcstat_l2_misses);
5127 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5128 arc_read_done, hdr, priority, zio_flags, zb);
5130 if (*arc_flags & ARC_FLAG_WAIT)
5131 return (zio_wait(rzio));
5133 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5134 zio_nowait(rzio);
5136 return (0);
5140 * Notify the arc that a block was freed, and thus will never be used again.
5142 void
5143 arc_freed(spa_t *spa, const blkptr_t *bp)
5145 arc_buf_hdr_t *hdr;
5146 kmutex_t *hash_lock;
5147 uint64_t guid = spa_load_guid(spa);
5149 ASSERT(!BP_IS_EMBEDDED(bp));
5151 hdr = buf_hash_find(guid, bp, &hash_lock);
5152 if (hdr == NULL)
5153 return;
5156 * We might be trying to free a block that is still doing I/O
5157 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5158 * dmu_sync-ed block). If this block is being prefetched, then it
5159 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5160 * until the I/O completes. A block may also have a reference if it is
5161 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5162 * have written the new block to its final resting place on disk but
5163 * without the dedup flag set. This would have left the hdr in the MRU
5164 * state and discoverable. When the txg finally syncs it detects that
5165 * the block was overridden in open context and issues an override I/O.
5166 * Since this is a dedup block, the override I/O will determine if the
5167 * block is already in the DDT. If so, then it will replace the io_bp
5168 * with the bp from the DDT and allow the I/O to finish. When the I/O
5169 * reaches the done callback, dbuf_write_override_done, it will
5170 * check to see if the io_bp and io_bp_override are identical.
5171 * If they are not, then it indicates that the bp was replaced with
5172 * the bp in the DDT and the override bp is freed. This allows
5173 * us to arrive here with a reference on a block that is being
5174 * freed. So if we have an I/O in progress, or a reference to
5175 * this hdr, then we don't destroy the hdr.
5177 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5178 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5179 arc_change_state(arc_anon, hdr, hash_lock);
5180 arc_hdr_destroy(hdr);
5181 mutex_exit(hash_lock);
5182 } else {
5183 mutex_exit(hash_lock);
5189 * Release this buffer from the cache, making it an anonymous buffer. This
5190 * must be done after a read and prior to modifying the buffer contents.
5191 * If the buffer has more than one reference, we must make
5192 * a new hdr for the buffer.
5194 void
5195 arc_release(arc_buf_t *buf, void *tag)
5197 arc_buf_hdr_t *hdr = buf->b_hdr;
5200 * It would be nice to assert that if it's DMU metadata (level >
5201 * 0 || it's the dnode file), then it must be syncing context.
5202 * But we don't know that information at this level.
5205 mutex_enter(&buf->b_evict_lock);
5207 ASSERT(HDR_HAS_L1HDR(hdr));
5210 * We don't grab the hash lock prior to this check, because if
5211 * the buffer's header is in the arc_anon state, it won't be
5212 * linked into the hash table.
5214 if (hdr->b_l1hdr.b_state == arc_anon) {
5215 mutex_exit(&buf->b_evict_lock);
5216 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5217 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5218 ASSERT(!HDR_HAS_L2HDR(hdr));
5219 ASSERT(HDR_EMPTY(hdr));
5221 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5222 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5223 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5225 hdr->b_l1hdr.b_arc_access = 0;
5228 * If the buf is being overridden then it may already
5229 * have a hdr that is not empty.
5231 buf_discard_identity(hdr);
5232 arc_buf_thaw(buf);
5234 return;
5237 kmutex_t *hash_lock = HDR_LOCK(hdr);
5238 mutex_enter(hash_lock);
5241 * This assignment is only valid as long as the hash_lock is
5242 * held, we must be careful not to reference state or the
5243 * b_state field after dropping the lock.
5245 arc_state_t *state = hdr->b_l1hdr.b_state;
5246 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5247 ASSERT3P(state, !=, arc_anon);
5249 /* this buffer is not on any list */
5250 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5252 if (HDR_HAS_L2HDR(hdr)) {
5253 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5256 * We have to recheck this conditional again now that
5257 * we're holding the l2ad_mtx to prevent a race with
5258 * another thread which might be concurrently calling
5259 * l2arc_evict(). In that case, l2arc_evict() might have
5260 * destroyed the header's L2 portion as we were waiting
5261 * to acquire the l2ad_mtx.
5263 if (HDR_HAS_L2HDR(hdr))
5264 arc_hdr_l2hdr_destroy(hdr);
5266 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5270 * Do we have more than one buf?
5272 if (hdr->b_l1hdr.b_bufcnt > 1) {
5273 arc_buf_hdr_t *nhdr;
5274 uint64_t spa = hdr->b_spa;
5275 uint64_t psize = HDR_GET_PSIZE(hdr);
5276 uint64_t lsize = HDR_GET_LSIZE(hdr);
5277 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5278 arc_buf_contents_t type = arc_buf_type(hdr);
5279 VERIFY3U(hdr->b_type, ==, type);
5281 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5282 (void) remove_reference(hdr, hash_lock, tag);
5284 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5285 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5286 ASSERT(ARC_BUF_LAST(buf));
5290 * Pull the data off of this hdr and attach it to
5291 * a new anonymous hdr. Also find the last buffer
5292 * in the hdr's buffer list.
5294 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5295 ASSERT3P(lastbuf, !=, NULL);
5298 * If the current arc_buf_t and the hdr are sharing their data
5299 * buffer, then we must stop sharing that block.
5301 if (arc_buf_is_shared(buf)) {
5302 VERIFY(!arc_buf_is_shared(lastbuf));
5305 * First, sever the block sharing relationship between
5306 * buf and the arc_buf_hdr_t.
5308 arc_unshare_buf(hdr, buf);
5311 * Now we need to recreate the hdr's b_pabd. Since we
5312 * have lastbuf handy, we try to share with it, but if
5313 * we can't then we allocate a new b_pabd and copy the
5314 * data from buf into it.
5316 if (arc_can_share(hdr, lastbuf)) {
5317 arc_share_buf(hdr, lastbuf);
5318 } else {
5319 arc_hdr_alloc_pabd(hdr);
5320 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5321 buf->b_data, psize);
5323 VERIFY3P(lastbuf->b_data, !=, NULL);
5324 } else if (HDR_SHARED_DATA(hdr)) {
5326 * Uncompressed shared buffers are always at the end
5327 * of the list. Compressed buffers don't have the
5328 * same requirements. This makes it hard to
5329 * simply assert that the lastbuf is shared so
5330 * we rely on the hdr's compression flags to determine
5331 * if we have a compressed, shared buffer.
5333 ASSERT(arc_buf_is_shared(lastbuf) ||
5334 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5335 ASSERT(!ARC_BUF_SHARED(buf));
5337 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5338 ASSERT3P(state, !=, arc_l2c_only);
5340 (void) refcount_remove_many(&state->arcs_size,
5341 arc_buf_size(buf), buf);
5343 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5344 ASSERT3P(state, !=, arc_l2c_only);
5345 (void) refcount_remove_many(&state->arcs_esize[type],
5346 arc_buf_size(buf), buf);
5349 hdr->b_l1hdr.b_bufcnt -= 1;
5350 arc_cksum_verify(buf);
5351 arc_buf_unwatch(buf);
5353 mutex_exit(hash_lock);
5356 * Allocate a new hdr. The new hdr will contain a b_pabd
5357 * buffer which will be freed in arc_write().
5359 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5360 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5361 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5362 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5363 VERIFY3U(nhdr->b_type, ==, type);
5364 ASSERT(!HDR_SHARED_DATA(nhdr));
5366 nhdr->b_l1hdr.b_buf = buf;
5367 nhdr->b_l1hdr.b_bufcnt = 1;
5368 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5369 buf->b_hdr = nhdr;
5371 mutex_exit(&buf->b_evict_lock);
5372 (void) refcount_add_many(&arc_anon->arcs_size,
5373 arc_buf_size(buf), buf);
5374 } else {
5375 mutex_exit(&buf->b_evict_lock);
5376 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5377 /* protected by hash lock, or hdr is on arc_anon */
5378 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5379 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5380 arc_change_state(arc_anon, hdr, hash_lock);
5381 hdr->b_l1hdr.b_arc_access = 0;
5382 mutex_exit(hash_lock);
5384 buf_discard_identity(hdr);
5385 arc_buf_thaw(buf);
5390 arc_released(arc_buf_t *buf)
5392 int released;
5394 mutex_enter(&buf->b_evict_lock);
5395 released = (buf->b_data != NULL &&
5396 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5397 mutex_exit(&buf->b_evict_lock);
5398 return (released);
5401 #ifdef ZFS_DEBUG
5403 arc_referenced(arc_buf_t *buf)
5405 int referenced;
5407 mutex_enter(&buf->b_evict_lock);
5408 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5409 mutex_exit(&buf->b_evict_lock);
5410 return (referenced);
5412 #endif
5414 static void
5415 arc_write_ready(zio_t *zio)
5417 arc_write_callback_t *callback = zio->io_private;
5418 arc_buf_t *buf = callback->awcb_buf;
5419 arc_buf_hdr_t *hdr = buf->b_hdr;
5420 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5422 ASSERT(HDR_HAS_L1HDR(hdr));
5423 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5424 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5427 * If we're reexecuting this zio because the pool suspended, then
5428 * cleanup any state that was previously set the first time the
5429 * callback was invoked.
5431 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5432 arc_cksum_free(hdr);
5433 arc_buf_unwatch(buf);
5434 if (hdr->b_l1hdr.b_pabd != NULL) {
5435 if (arc_buf_is_shared(buf)) {
5436 arc_unshare_buf(hdr, buf);
5437 } else {
5438 arc_hdr_free_pabd(hdr);
5442 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5443 ASSERT(!HDR_SHARED_DATA(hdr));
5444 ASSERT(!arc_buf_is_shared(buf));
5446 callback->awcb_ready(zio, buf, callback->awcb_private);
5448 if (HDR_IO_IN_PROGRESS(hdr))
5449 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5451 arc_cksum_compute(buf);
5452 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5454 enum zio_compress compress;
5455 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5456 compress = ZIO_COMPRESS_OFF;
5457 } else {
5458 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5459 compress = BP_GET_COMPRESS(zio->io_bp);
5461 HDR_SET_PSIZE(hdr, psize);
5462 arc_hdr_set_compress(hdr, compress);
5466 * Fill the hdr with data. If the hdr is compressed, the data we want
5467 * is available from the zio, otherwise we can take it from the buf.
5469 * We might be able to share the buf's data with the hdr here. However,
5470 * doing so would cause the ARC to be full of linear ABDs if we write a
5471 * lot of shareable data. As a compromise, we check whether scattered
5472 * ABDs are allowed, and assume that if they are then the user wants
5473 * the ARC to be primarily filled with them regardless of the data being
5474 * written. Therefore, if they're allowed then we allocate one and copy
5475 * the data into it; otherwise, we share the data directly if we can.
5477 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5478 arc_hdr_alloc_pabd(hdr);
5481 * Ideally, we would always copy the io_abd into b_pabd, but the
5482 * user may have disabled compressed ARC, thus we must check the
5483 * hdr's compression setting rather than the io_bp's.
5485 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5486 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5487 ZIO_COMPRESS_OFF);
5488 ASSERT3U(psize, >, 0);
5490 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5491 } else {
5492 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5494 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5495 arc_buf_size(buf));
5497 } else {
5498 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5499 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5500 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5502 arc_share_buf(hdr, buf);
5505 arc_hdr_verify(hdr, zio->io_bp);
5508 static void
5509 arc_write_children_ready(zio_t *zio)
5511 arc_write_callback_t *callback = zio->io_private;
5512 arc_buf_t *buf = callback->awcb_buf;
5514 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5518 * The SPA calls this callback for each physical write that happens on behalf
5519 * of a logical write. See the comment in dbuf_write_physdone() for details.
5521 static void
5522 arc_write_physdone(zio_t *zio)
5524 arc_write_callback_t *cb = zio->io_private;
5525 if (cb->awcb_physdone != NULL)
5526 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5529 static void
5530 arc_write_done(zio_t *zio)
5532 arc_write_callback_t *callback = zio->io_private;
5533 arc_buf_t *buf = callback->awcb_buf;
5534 arc_buf_hdr_t *hdr = buf->b_hdr;
5536 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5538 if (zio->io_error == 0) {
5539 arc_hdr_verify(hdr, zio->io_bp);
5541 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5542 buf_discard_identity(hdr);
5543 } else {
5544 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5545 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5547 } else {
5548 ASSERT(HDR_EMPTY(hdr));
5552 * If the block to be written was all-zero or compressed enough to be
5553 * embedded in the BP, no write was performed so there will be no
5554 * dva/birth/checksum. The buffer must therefore remain anonymous
5555 * (and uncached).
5557 if (!HDR_EMPTY(hdr)) {
5558 arc_buf_hdr_t *exists;
5559 kmutex_t *hash_lock;
5561 ASSERT3U(zio->io_error, ==, 0);
5563 arc_cksum_verify(buf);
5565 exists = buf_hash_insert(hdr, &hash_lock);
5566 if (exists != NULL) {
5568 * This can only happen if we overwrite for
5569 * sync-to-convergence, because we remove
5570 * buffers from the hash table when we arc_free().
5572 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5573 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5574 panic("bad overwrite, hdr=%p exists=%p",
5575 (void *)hdr, (void *)exists);
5576 ASSERT(refcount_is_zero(
5577 &exists->b_l1hdr.b_refcnt));
5578 arc_change_state(arc_anon, exists, hash_lock);
5579 mutex_exit(hash_lock);
5580 arc_hdr_destroy(exists);
5581 exists = buf_hash_insert(hdr, &hash_lock);
5582 ASSERT3P(exists, ==, NULL);
5583 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5584 /* nopwrite */
5585 ASSERT(zio->io_prop.zp_nopwrite);
5586 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5587 panic("bad nopwrite, hdr=%p exists=%p",
5588 (void *)hdr, (void *)exists);
5589 } else {
5590 /* Dedup */
5591 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5592 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5593 ASSERT(BP_GET_DEDUP(zio->io_bp));
5594 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5597 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5598 /* if it's not anon, we are doing a scrub */
5599 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5600 arc_access(hdr, hash_lock);
5601 mutex_exit(hash_lock);
5602 } else {
5603 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5606 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5607 callback->awcb_done(zio, buf, callback->awcb_private);
5609 abd_put(zio->io_abd);
5610 kmem_free(callback, sizeof (arc_write_callback_t));
5613 zio_t *
5614 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5615 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5616 arc_done_func_t *children_ready, arc_done_func_t *physdone,
5617 arc_done_func_t *done, void *private, zio_priority_t priority,
5618 int zio_flags, const zbookmark_phys_t *zb)
5620 arc_buf_hdr_t *hdr = buf->b_hdr;
5621 arc_write_callback_t *callback;
5622 zio_t *zio;
5623 zio_prop_t localprop = *zp;
5625 ASSERT3P(ready, !=, NULL);
5626 ASSERT3P(done, !=, NULL);
5627 ASSERT(!HDR_IO_ERROR(hdr));
5628 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5629 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5630 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5631 if (l2arc)
5632 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5633 if (ARC_BUF_COMPRESSED(buf)) {
5635 * We're writing a pre-compressed buffer. Make the
5636 * compression algorithm requested by the zio_prop_t match
5637 * the pre-compressed buffer's compression algorithm.
5639 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5641 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5642 zio_flags |= ZIO_FLAG_RAW;
5644 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5645 callback->awcb_ready = ready;
5646 callback->awcb_children_ready = children_ready;
5647 callback->awcb_physdone = physdone;
5648 callback->awcb_done = done;
5649 callback->awcb_private = private;
5650 callback->awcb_buf = buf;
5653 * The hdr's b_pabd is now stale, free it now. A new data block
5654 * will be allocated when the zio pipeline calls arc_write_ready().
5656 if (hdr->b_l1hdr.b_pabd != NULL) {
5658 * If the buf is currently sharing the data block with
5659 * the hdr then we need to break that relationship here.
5660 * The hdr will remain with a NULL data pointer and the
5661 * buf will take sole ownership of the block.
5663 if (arc_buf_is_shared(buf)) {
5664 arc_unshare_buf(hdr, buf);
5665 } else {
5666 arc_hdr_free_pabd(hdr);
5668 VERIFY3P(buf->b_data, !=, NULL);
5669 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5671 ASSERT(!arc_buf_is_shared(buf));
5672 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5674 zio = zio_write(pio, spa, txg, bp,
5675 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5676 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5677 (children_ready != NULL) ? arc_write_children_ready : NULL,
5678 arc_write_physdone, arc_write_done, callback,
5679 priority, zio_flags, zb);
5681 return (zio);
5684 static int
5685 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5687 #ifdef _KERNEL
5688 uint64_t available_memory = ptob(freemem);
5689 static uint64_t page_load = 0;
5690 static uint64_t last_txg = 0;
5692 #if defined(__i386)
5693 available_memory =
5694 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5695 #endif
5697 if (freemem > physmem * arc_lotsfree_percent / 100)
5698 return (0);
5700 if (txg > last_txg) {
5701 last_txg = txg;
5702 page_load = 0;
5705 * If we are in pageout, we know that memory is already tight,
5706 * the arc is already going to be evicting, so we just want to
5707 * continue to let page writes occur as quickly as possible.
5709 if (curproc == proc_pageout) {
5710 if (page_load > MAX(ptob(minfree), available_memory) / 4)
5711 return (SET_ERROR(ERESTART));
5712 /* Note: reserve is inflated, so we deflate */
5713 page_load += reserve / 8;
5714 return (0);
5715 } else if (page_load > 0 && arc_reclaim_needed()) {
5716 /* memory is low, delay before restarting */
5717 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5718 return (SET_ERROR(EAGAIN));
5720 page_load = 0;
5721 #endif
5722 return (0);
5725 void
5726 arc_tempreserve_clear(uint64_t reserve)
5728 atomic_add_64(&arc_tempreserve, -reserve);
5729 ASSERT((int64_t)arc_tempreserve >= 0);
5733 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5735 int error;
5736 uint64_t anon_size;
5738 if (reserve > arc_c/4 && !arc_no_grow)
5739 arc_c = MIN(arc_c_max, reserve * 4);
5740 if (reserve > arc_c)
5741 return (SET_ERROR(ENOMEM));
5744 * Don't count loaned bufs as in flight dirty data to prevent long
5745 * network delays from blocking transactions that are ready to be
5746 * assigned to a txg.
5749 /* assert that it has not wrapped around */
5750 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5752 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5753 arc_loaned_bytes), 0);
5756 * Writes will, almost always, require additional memory allocations
5757 * in order to compress/encrypt/etc the data. We therefore need to
5758 * make sure that there is sufficient available memory for this.
5760 error = arc_memory_throttle(reserve, txg);
5761 if (error != 0)
5762 return (error);
5765 * Throttle writes when the amount of dirty data in the cache
5766 * gets too large. We try to keep the cache less than half full
5767 * of dirty blocks so that our sync times don't grow too large.
5768 * Note: if two requests come in concurrently, we might let them
5769 * both succeed, when one of them should fail. Not a huge deal.
5772 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5773 anon_size > arc_c / 4) {
5774 uint64_t meta_esize =
5775 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5776 uint64_t data_esize =
5777 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5778 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5779 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5780 arc_tempreserve >> 10, meta_esize >> 10,
5781 data_esize >> 10, reserve >> 10, arc_c >> 10);
5782 return (SET_ERROR(ERESTART));
5784 atomic_add_64(&arc_tempreserve, reserve);
5785 return (0);
5788 static void
5789 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5790 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5792 size->value.ui64 = refcount_count(&state->arcs_size);
5793 evict_data->value.ui64 =
5794 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5795 evict_metadata->value.ui64 =
5796 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5799 static int
5800 arc_kstat_update(kstat_t *ksp, int rw)
5802 arc_stats_t *as = ksp->ks_data;
5804 if (rw == KSTAT_WRITE) {
5805 return (EACCES);
5806 } else {
5807 arc_kstat_update_state(arc_anon,
5808 &as->arcstat_anon_size,
5809 &as->arcstat_anon_evictable_data,
5810 &as->arcstat_anon_evictable_metadata);
5811 arc_kstat_update_state(arc_mru,
5812 &as->arcstat_mru_size,
5813 &as->arcstat_mru_evictable_data,
5814 &as->arcstat_mru_evictable_metadata);
5815 arc_kstat_update_state(arc_mru_ghost,
5816 &as->arcstat_mru_ghost_size,
5817 &as->arcstat_mru_ghost_evictable_data,
5818 &as->arcstat_mru_ghost_evictable_metadata);
5819 arc_kstat_update_state(arc_mfu,
5820 &as->arcstat_mfu_size,
5821 &as->arcstat_mfu_evictable_data,
5822 &as->arcstat_mfu_evictable_metadata);
5823 arc_kstat_update_state(arc_mfu_ghost,
5824 &as->arcstat_mfu_ghost_size,
5825 &as->arcstat_mfu_ghost_evictable_data,
5826 &as->arcstat_mfu_ghost_evictable_metadata);
5829 return (0);
5833 * This function *must* return indices evenly distributed between all
5834 * sublists of the multilist. This is needed due to how the ARC eviction
5835 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5836 * distributed between all sublists and uses this assumption when
5837 * deciding which sublist to evict from and how much to evict from it.
5839 unsigned int
5840 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5842 arc_buf_hdr_t *hdr = obj;
5845 * We rely on b_dva to generate evenly distributed index
5846 * numbers using buf_hash below. So, as an added precaution,
5847 * let's make sure we never add empty buffers to the arc lists.
5849 ASSERT(!HDR_EMPTY(hdr));
5852 * The assumption here, is the hash value for a given
5853 * arc_buf_hdr_t will remain constant throughout it's lifetime
5854 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5855 * Thus, we don't need to store the header's sublist index
5856 * on insertion, as this index can be recalculated on removal.
5858 * Also, the low order bits of the hash value are thought to be
5859 * distributed evenly. Otherwise, in the case that the multilist
5860 * has a power of two number of sublists, each sublists' usage
5861 * would not be evenly distributed.
5863 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5864 multilist_get_num_sublists(ml));
5867 static void
5868 arc_state_init(void)
5870 arc_anon = &ARC_anon;
5871 arc_mru = &ARC_mru;
5872 arc_mru_ghost = &ARC_mru_ghost;
5873 arc_mfu = &ARC_mfu;
5874 arc_mfu_ghost = &ARC_mfu_ghost;
5875 arc_l2c_only = &ARC_l2c_only;
5877 arc_mru->arcs_list[ARC_BUFC_METADATA] =
5878 multilist_create(sizeof (arc_buf_hdr_t),
5879 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5880 arc_state_multilist_index_func);
5881 arc_mru->arcs_list[ARC_BUFC_DATA] =
5882 multilist_create(sizeof (arc_buf_hdr_t),
5883 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5884 arc_state_multilist_index_func);
5885 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
5886 multilist_create(sizeof (arc_buf_hdr_t),
5887 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5888 arc_state_multilist_index_func);
5889 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
5890 multilist_create(sizeof (arc_buf_hdr_t),
5891 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5892 arc_state_multilist_index_func);
5893 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
5894 multilist_create(sizeof (arc_buf_hdr_t),
5895 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5896 arc_state_multilist_index_func);
5897 arc_mfu->arcs_list[ARC_BUFC_DATA] =
5898 multilist_create(sizeof (arc_buf_hdr_t),
5899 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5900 arc_state_multilist_index_func);
5901 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
5902 multilist_create(sizeof (arc_buf_hdr_t),
5903 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5904 arc_state_multilist_index_func);
5905 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
5906 multilist_create(sizeof (arc_buf_hdr_t),
5907 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5908 arc_state_multilist_index_func);
5909 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
5910 multilist_create(sizeof (arc_buf_hdr_t),
5911 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5912 arc_state_multilist_index_func);
5913 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
5914 multilist_create(sizeof (arc_buf_hdr_t),
5915 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5916 arc_state_multilist_index_func);
5918 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5919 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5920 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5921 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5922 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5923 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5924 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5925 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5926 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5927 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5928 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5929 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5931 refcount_create(&arc_anon->arcs_size);
5932 refcount_create(&arc_mru->arcs_size);
5933 refcount_create(&arc_mru_ghost->arcs_size);
5934 refcount_create(&arc_mfu->arcs_size);
5935 refcount_create(&arc_mfu_ghost->arcs_size);
5936 refcount_create(&arc_l2c_only->arcs_size);
5939 static void
5940 arc_state_fini(void)
5942 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5943 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5944 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5945 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5946 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5947 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5948 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5949 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5950 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5951 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5952 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5953 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5955 refcount_destroy(&arc_anon->arcs_size);
5956 refcount_destroy(&arc_mru->arcs_size);
5957 refcount_destroy(&arc_mru_ghost->arcs_size);
5958 refcount_destroy(&arc_mfu->arcs_size);
5959 refcount_destroy(&arc_mfu_ghost->arcs_size);
5960 refcount_destroy(&arc_l2c_only->arcs_size);
5962 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
5963 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5964 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5965 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5966 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
5967 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5968 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
5969 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5972 uint64_t
5973 arc_max_bytes(void)
5975 return (arc_c_max);
5978 void
5979 arc_init(void)
5982 * allmem is "all memory that we could possibly use".
5984 #ifdef _KERNEL
5985 uint64_t allmem = ptob(physmem - swapfs_minfree);
5986 #else
5987 uint64_t allmem = (physmem * PAGESIZE) / 2;
5988 #endif
5990 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5991 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5992 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5994 /* Convert seconds to clock ticks */
5995 arc_min_prefetch_lifespan = 1 * hz;
5997 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5998 arc_c_min = MAX(allmem / 32, 64 << 20);
5999 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6000 if (allmem >= 1 << 30)
6001 arc_c_max = allmem - (1 << 30);
6002 else
6003 arc_c_max = arc_c_min;
6004 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6007 * In userland, there's only the memory pressure that we artificially
6008 * create (see arc_available_memory()). Don't let arc_c get too
6009 * small, because it can cause transactions to be larger than
6010 * arc_c, causing arc_tempreserve_space() to fail.
6012 #ifndef _KERNEL
6013 arc_c_min = arc_c_max / 2;
6014 #endif
6017 * Allow the tunables to override our calculations if they are
6018 * reasonable (ie. over 64MB)
6020 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6021 arc_c_max = zfs_arc_max;
6022 arc_c_min = MIN(arc_c_min, arc_c_max);
6024 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6025 arc_c_min = zfs_arc_min;
6027 arc_c = arc_c_max;
6028 arc_p = (arc_c >> 1);
6029 arc_size = 0;
6031 /* limit meta-data to 1/4 of the arc capacity */
6032 arc_meta_limit = arc_c_max / 4;
6034 #ifdef _KERNEL
6036 * Metadata is stored in the kernel's heap. Don't let us
6037 * use more than half the heap for the ARC.
6039 arc_meta_limit = MIN(arc_meta_limit,
6040 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6041 #endif
6043 /* Allow the tunable to override if it is reasonable */
6044 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6045 arc_meta_limit = zfs_arc_meta_limit;
6047 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6048 arc_c_min = arc_meta_limit / 2;
6050 if (zfs_arc_meta_min > 0) {
6051 arc_meta_min = zfs_arc_meta_min;
6052 } else {
6053 arc_meta_min = arc_c_min / 2;
6056 if (zfs_arc_grow_retry > 0)
6057 arc_grow_retry = zfs_arc_grow_retry;
6059 if (zfs_arc_shrink_shift > 0)
6060 arc_shrink_shift = zfs_arc_shrink_shift;
6063 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6065 if (arc_no_grow_shift >= arc_shrink_shift)
6066 arc_no_grow_shift = arc_shrink_shift - 1;
6068 if (zfs_arc_p_min_shift > 0)
6069 arc_p_min_shift = zfs_arc_p_min_shift;
6071 /* if kmem_flags are set, lets try to use less memory */
6072 if (kmem_debugging())
6073 arc_c = arc_c / 2;
6074 if (arc_c < arc_c_min)
6075 arc_c = arc_c_min;
6077 arc_state_init();
6078 buf_init();
6080 arc_reclaim_thread_exit = B_FALSE;
6082 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6083 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6085 if (arc_ksp != NULL) {
6086 arc_ksp->ks_data = &arc_stats;
6087 arc_ksp->ks_update = arc_kstat_update;
6088 kstat_install(arc_ksp);
6091 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6092 TS_RUN, minclsyspri);
6094 arc_dead = B_FALSE;
6095 arc_warm = B_FALSE;
6098 * Calculate maximum amount of dirty data per pool.
6100 * If it has been set by /etc/system, take that.
6101 * Otherwise, use a percentage of physical memory defined by
6102 * zfs_dirty_data_max_percent (default 10%) with a cap at
6103 * zfs_dirty_data_max_max (default 4GB).
6105 if (zfs_dirty_data_max == 0) {
6106 zfs_dirty_data_max = physmem * PAGESIZE *
6107 zfs_dirty_data_max_percent / 100;
6108 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6109 zfs_dirty_data_max_max);
6113 void
6114 arc_fini(void)
6116 mutex_enter(&arc_reclaim_lock);
6117 arc_reclaim_thread_exit = B_TRUE;
6119 * The reclaim thread will set arc_reclaim_thread_exit back to
6120 * B_FALSE when it is finished exiting; we're waiting for that.
6122 while (arc_reclaim_thread_exit) {
6123 cv_signal(&arc_reclaim_thread_cv);
6124 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6126 mutex_exit(&arc_reclaim_lock);
6128 /* Use B_TRUE to ensure *all* buffers are evicted */
6129 arc_flush(NULL, B_TRUE);
6131 arc_dead = B_TRUE;
6133 if (arc_ksp != NULL) {
6134 kstat_delete(arc_ksp);
6135 arc_ksp = NULL;
6138 mutex_destroy(&arc_reclaim_lock);
6139 cv_destroy(&arc_reclaim_thread_cv);
6140 cv_destroy(&arc_reclaim_waiters_cv);
6142 arc_state_fini();
6143 buf_fini();
6145 ASSERT0(arc_loaned_bytes);
6149 * Level 2 ARC
6151 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6152 * It uses dedicated storage devices to hold cached data, which are populated
6153 * using large infrequent writes. The main role of this cache is to boost
6154 * the performance of random read workloads. The intended L2ARC devices
6155 * include short-stroked disks, solid state disks, and other media with
6156 * substantially faster read latency than disk.
6158 * +-----------------------+
6159 * | ARC |
6160 * +-----------------------+
6161 * | ^ ^
6162 * | | |
6163 * l2arc_feed_thread() arc_read()
6164 * | | |
6165 * | l2arc read |
6166 * V | |
6167 * +---------------+ |
6168 * | L2ARC | |
6169 * +---------------+ |
6170 * | ^ |
6171 * l2arc_write() | |
6172 * | | |
6173 * V | |
6174 * +-------+ +-------+
6175 * | vdev | | vdev |
6176 * | cache | | cache |
6177 * +-------+ +-------+
6178 * +=========+ .-----.
6179 * : L2ARC : |-_____-|
6180 * : devices : | Disks |
6181 * +=========+ `-_____-'
6183 * Read requests are satisfied from the following sources, in order:
6185 * 1) ARC
6186 * 2) vdev cache of L2ARC devices
6187 * 3) L2ARC devices
6188 * 4) vdev cache of disks
6189 * 5) disks
6191 * Some L2ARC device types exhibit extremely slow write performance.
6192 * To accommodate for this there are some significant differences between
6193 * the L2ARC and traditional cache design:
6195 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6196 * the ARC behave as usual, freeing buffers and placing headers on ghost
6197 * lists. The ARC does not send buffers to the L2ARC during eviction as
6198 * this would add inflated write latencies for all ARC memory pressure.
6200 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6201 * It does this by periodically scanning buffers from the eviction-end of
6202 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6203 * not already there. It scans until a headroom of buffers is satisfied,
6204 * which itself is a buffer for ARC eviction. If a compressible buffer is
6205 * found during scanning and selected for writing to an L2ARC device, we
6206 * temporarily boost scanning headroom during the next scan cycle to make
6207 * sure we adapt to compression effects (which might significantly reduce
6208 * the data volume we write to L2ARC). The thread that does this is
6209 * l2arc_feed_thread(), illustrated below; example sizes are included to
6210 * provide a better sense of ratio than this diagram:
6212 * head --> tail
6213 * +---------------------+----------+
6214 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6215 * +---------------------+----------+ | o L2ARC eligible
6216 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6217 * +---------------------+----------+ |
6218 * 15.9 Gbytes ^ 32 Mbytes |
6219 * headroom |
6220 * l2arc_feed_thread()
6222 * l2arc write hand <--[oooo]--'
6223 * | 8 Mbyte
6224 * | write max
6226 * +==============================+
6227 * L2ARC dev |####|#|###|###| |####| ... |
6228 * +==============================+
6229 * 32 Gbytes
6231 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6232 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6233 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6234 * safe to say that this is an uncommon case, since buffers at the end of
6235 * the ARC lists have moved there due to inactivity.
6237 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6238 * then the L2ARC simply misses copying some buffers. This serves as a
6239 * pressure valve to prevent heavy read workloads from both stalling the ARC
6240 * with waits and clogging the L2ARC with writes. This also helps prevent
6241 * the potential for the L2ARC to churn if it attempts to cache content too
6242 * quickly, such as during backups of the entire pool.
6244 * 5. After system boot and before the ARC has filled main memory, there are
6245 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6246 * lists can remain mostly static. Instead of searching from tail of these
6247 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6248 * for eligible buffers, greatly increasing its chance of finding them.
6250 * The L2ARC device write speed is also boosted during this time so that
6251 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6252 * there are no L2ARC reads, and no fear of degrading read performance
6253 * through increased writes.
6255 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6256 * the vdev queue can aggregate them into larger and fewer writes. Each
6257 * device is written to in a rotor fashion, sweeping writes through
6258 * available space then repeating.
6260 * 7. The L2ARC does not store dirty content. It never needs to flush
6261 * write buffers back to disk based storage.
6263 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6264 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6266 * The performance of the L2ARC can be tweaked by a number of tunables, which
6267 * may be necessary for different workloads:
6269 * l2arc_write_max max write bytes per interval
6270 * l2arc_write_boost extra write bytes during device warmup
6271 * l2arc_noprefetch skip caching prefetched buffers
6272 * l2arc_headroom number of max device writes to precache
6273 * l2arc_headroom_boost when we find compressed buffers during ARC
6274 * scanning, we multiply headroom by this
6275 * percentage factor for the next scan cycle,
6276 * since more compressed buffers are likely to
6277 * be present
6278 * l2arc_feed_secs seconds between L2ARC writing
6280 * Tunables may be removed or added as future performance improvements are
6281 * integrated, and also may become zpool properties.
6283 * There are three key functions that control how the L2ARC warms up:
6285 * l2arc_write_eligible() check if a buffer is eligible to cache
6286 * l2arc_write_size() calculate how much to write
6287 * l2arc_write_interval() calculate sleep delay between writes
6289 * These three functions determine what to write, how much, and how quickly
6290 * to send writes.
6293 static boolean_t
6294 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6297 * A buffer is *not* eligible for the L2ARC if it:
6298 * 1. belongs to a different spa.
6299 * 2. is already cached on the L2ARC.
6300 * 3. has an I/O in progress (it may be an incomplete read).
6301 * 4. is flagged not eligible (zfs property).
6303 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6304 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6305 return (B_FALSE);
6307 return (B_TRUE);
6310 static uint64_t
6311 l2arc_write_size(void)
6313 uint64_t size;
6316 * Make sure our globals have meaningful values in case the user
6317 * altered them.
6319 size = l2arc_write_max;
6320 if (size == 0) {
6321 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6322 "be greater than zero, resetting it to the default (%d)",
6323 L2ARC_WRITE_SIZE);
6324 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6327 if (arc_warm == B_FALSE)
6328 size += l2arc_write_boost;
6330 return (size);
6334 static clock_t
6335 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6337 clock_t interval, next, now;
6340 * If the ARC lists are busy, increase our write rate; if the
6341 * lists are stale, idle back. This is achieved by checking
6342 * how much we previously wrote - if it was more than half of
6343 * what we wanted, schedule the next write much sooner.
6345 if (l2arc_feed_again && wrote > (wanted / 2))
6346 interval = (hz * l2arc_feed_min_ms) / 1000;
6347 else
6348 interval = hz * l2arc_feed_secs;
6350 now = ddi_get_lbolt();
6351 next = MAX(now, MIN(now + interval, began + interval));
6353 return (next);
6357 * Cycle through L2ARC devices. This is how L2ARC load balances.
6358 * If a device is returned, this also returns holding the spa config lock.
6360 static l2arc_dev_t *
6361 l2arc_dev_get_next(void)
6363 l2arc_dev_t *first, *next = NULL;
6366 * Lock out the removal of spas (spa_namespace_lock), then removal
6367 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6368 * both locks will be dropped and a spa config lock held instead.
6370 mutex_enter(&spa_namespace_lock);
6371 mutex_enter(&l2arc_dev_mtx);
6373 /* if there are no vdevs, there is nothing to do */
6374 if (l2arc_ndev == 0)
6375 goto out;
6377 first = NULL;
6378 next = l2arc_dev_last;
6379 do {
6380 /* loop around the list looking for a non-faulted vdev */
6381 if (next == NULL) {
6382 next = list_head(l2arc_dev_list);
6383 } else {
6384 next = list_next(l2arc_dev_list, next);
6385 if (next == NULL)
6386 next = list_head(l2arc_dev_list);
6389 /* if we have come back to the start, bail out */
6390 if (first == NULL)
6391 first = next;
6392 else if (next == first)
6393 break;
6395 } while (vdev_is_dead(next->l2ad_vdev));
6397 /* if we were unable to find any usable vdevs, return NULL */
6398 if (vdev_is_dead(next->l2ad_vdev))
6399 next = NULL;
6401 l2arc_dev_last = next;
6403 out:
6404 mutex_exit(&l2arc_dev_mtx);
6407 * Grab the config lock to prevent the 'next' device from being
6408 * removed while we are writing to it.
6410 if (next != NULL)
6411 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6412 mutex_exit(&spa_namespace_lock);
6414 return (next);
6418 * Free buffers that were tagged for destruction.
6420 static void
6421 l2arc_do_free_on_write()
6423 list_t *buflist;
6424 l2arc_data_free_t *df, *df_prev;
6426 mutex_enter(&l2arc_free_on_write_mtx);
6427 buflist = l2arc_free_on_write;
6429 for (df = list_tail(buflist); df; df = df_prev) {
6430 df_prev = list_prev(buflist, df);
6431 ASSERT3P(df->l2df_abd, !=, NULL);
6432 abd_free(df->l2df_abd);
6433 list_remove(buflist, df);
6434 kmem_free(df, sizeof (l2arc_data_free_t));
6437 mutex_exit(&l2arc_free_on_write_mtx);
6441 * A write to a cache device has completed. Update all headers to allow
6442 * reads from these buffers to begin.
6444 static void
6445 l2arc_write_done(zio_t *zio)
6447 l2arc_write_callback_t *cb;
6448 l2arc_dev_t *dev;
6449 list_t *buflist;
6450 arc_buf_hdr_t *head, *hdr, *hdr_prev;
6451 kmutex_t *hash_lock;
6452 int64_t bytes_dropped = 0;
6454 cb = zio->io_private;
6455 ASSERT3P(cb, !=, NULL);
6456 dev = cb->l2wcb_dev;
6457 ASSERT3P(dev, !=, NULL);
6458 head = cb->l2wcb_head;
6459 ASSERT3P(head, !=, NULL);
6460 buflist = &dev->l2ad_buflist;
6461 ASSERT3P(buflist, !=, NULL);
6462 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6463 l2arc_write_callback_t *, cb);
6465 if (zio->io_error != 0)
6466 ARCSTAT_BUMP(arcstat_l2_writes_error);
6469 * All writes completed, or an error was hit.
6471 top:
6472 mutex_enter(&dev->l2ad_mtx);
6473 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6474 hdr_prev = list_prev(buflist, hdr);
6476 hash_lock = HDR_LOCK(hdr);
6479 * We cannot use mutex_enter or else we can deadlock
6480 * with l2arc_write_buffers (due to swapping the order
6481 * the hash lock and l2ad_mtx are taken).
6483 if (!mutex_tryenter(hash_lock)) {
6485 * Missed the hash lock. We must retry so we
6486 * don't leave the ARC_FLAG_L2_WRITING bit set.
6488 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6491 * We don't want to rescan the headers we've
6492 * already marked as having been written out, so
6493 * we reinsert the head node so we can pick up
6494 * where we left off.
6496 list_remove(buflist, head);
6497 list_insert_after(buflist, hdr, head);
6499 mutex_exit(&dev->l2ad_mtx);
6502 * We wait for the hash lock to become available
6503 * to try and prevent busy waiting, and increase
6504 * the chance we'll be able to acquire the lock
6505 * the next time around.
6507 mutex_enter(hash_lock);
6508 mutex_exit(hash_lock);
6509 goto top;
6513 * We could not have been moved into the arc_l2c_only
6514 * state while in-flight due to our ARC_FLAG_L2_WRITING
6515 * bit being set. Let's just ensure that's being enforced.
6517 ASSERT(HDR_HAS_L1HDR(hdr));
6519 if (zio->io_error != 0) {
6521 * Error - drop L2ARC entry.
6523 list_remove(buflist, hdr);
6524 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6526 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6527 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6529 bytes_dropped += arc_hdr_size(hdr);
6530 (void) refcount_remove_many(&dev->l2ad_alloc,
6531 arc_hdr_size(hdr), hdr);
6535 * Allow ARC to begin reads and ghost list evictions to
6536 * this L2ARC entry.
6538 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6540 mutex_exit(hash_lock);
6543 atomic_inc_64(&l2arc_writes_done);
6544 list_remove(buflist, head);
6545 ASSERT(!HDR_HAS_L1HDR(head));
6546 kmem_cache_free(hdr_l2only_cache, head);
6547 mutex_exit(&dev->l2ad_mtx);
6549 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6551 l2arc_do_free_on_write();
6553 kmem_free(cb, sizeof (l2arc_write_callback_t));
6557 * A read to a cache device completed. Validate buffer contents before
6558 * handing over to the regular ARC routines.
6560 static void
6561 l2arc_read_done(zio_t *zio)
6563 l2arc_read_callback_t *cb;
6564 arc_buf_hdr_t *hdr;
6565 kmutex_t *hash_lock;
6566 boolean_t valid_cksum;
6568 ASSERT3P(zio->io_vd, !=, NULL);
6569 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6571 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6573 cb = zio->io_private;
6574 ASSERT3P(cb, !=, NULL);
6575 hdr = cb->l2rcb_hdr;
6576 ASSERT3P(hdr, !=, NULL);
6578 hash_lock = HDR_LOCK(hdr);
6579 mutex_enter(hash_lock);
6580 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6583 * If the data was read into a temporary buffer,
6584 * move it and free the buffer.
6586 if (cb->l2rcb_abd != NULL) {
6587 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6588 if (zio->io_error == 0) {
6589 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6590 arc_hdr_size(hdr));
6594 * The following must be done regardless of whether
6595 * there was an error:
6596 * - free the temporary buffer
6597 * - point zio to the real ARC buffer
6598 * - set zio size accordingly
6599 * These are required because zio is either re-used for
6600 * an I/O of the block in the case of the error
6601 * or the zio is passed to arc_read_done() and it
6602 * needs real data.
6604 abd_free(cb->l2rcb_abd);
6605 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6606 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6609 ASSERT3P(zio->io_abd, !=, NULL);
6612 * Check this survived the L2ARC journey.
6614 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6615 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6616 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
6618 valid_cksum = arc_cksum_is_equal(hdr, zio);
6619 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6620 mutex_exit(hash_lock);
6621 zio->io_private = hdr;
6622 arc_read_done(zio);
6623 } else {
6624 mutex_exit(hash_lock);
6626 * Buffer didn't survive caching. Increment stats and
6627 * reissue to the original storage device.
6629 if (zio->io_error != 0) {
6630 ARCSTAT_BUMP(arcstat_l2_io_error);
6631 } else {
6632 zio->io_error = SET_ERROR(EIO);
6634 if (!valid_cksum)
6635 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6638 * If there's no waiter, issue an async i/o to the primary
6639 * storage now. If there *is* a waiter, the caller must
6640 * issue the i/o in a context where it's OK to block.
6642 if (zio->io_waiter == NULL) {
6643 zio_t *pio = zio_unique_parent(zio);
6645 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6647 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6648 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6649 hdr, zio->io_priority, cb->l2rcb_flags,
6650 &cb->l2rcb_zb));
6654 kmem_free(cb, sizeof (l2arc_read_callback_t));
6658 * This is the list priority from which the L2ARC will search for pages to
6659 * cache. This is used within loops (0..3) to cycle through lists in the
6660 * desired order. This order can have a significant effect on cache
6661 * performance.
6663 * Currently the metadata lists are hit first, MFU then MRU, followed by
6664 * the data lists. This function returns a locked list, and also returns
6665 * the lock pointer.
6667 static multilist_sublist_t *
6668 l2arc_sublist_lock(int list_num)
6670 multilist_t *ml = NULL;
6671 unsigned int idx;
6673 ASSERT(list_num >= 0 && list_num <= 3);
6675 switch (list_num) {
6676 case 0:
6677 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6678 break;
6679 case 1:
6680 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6681 break;
6682 case 2:
6683 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6684 break;
6685 case 3:
6686 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6687 break;
6691 * Return a randomly-selected sublist. This is acceptable
6692 * because the caller feeds only a little bit of data for each
6693 * call (8MB). Subsequent calls will result in different
6694 * sublists being selected.
6696 idx = multilist_get_random_index(ml);
6697 return (multilist_sublist_lock(ml, idx));
6701 * Evict buffers from the device write hand to the distance specified in
6702 * bytes. This distance may span populated buffers, it may span nothing.
6703 * This is clearing a region on the L2ARC device ready for writing.
6704 * If the 'all' boolean is set, every buffer is evicted.
6706 static void
6707 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6709 list_t *buflist;
6710 arc_buf_hdr_t *hdr, *hdr_prev;
6711 kmutex_t *hash_lock;
6712 uint64_t taddr;
6714 buflist = &dev->l2ad_buflist;
6716 if (!all && dev->l2ad_first) {
6718 * This is the first sweep through the device. There is
6719 * nothing to evict.
6721 return;
6724 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6726 * When nearing the end of the device, evict to the end
6727 * before the device write hand jumps to the start.
6729 taddr = dev->l2ad_end;
6730 } else {
6731 taddr = dev->l2ad_hand + distance;
6733 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6734 uint64_t, taddr, boolean_t, all);
6736 top:
6737 mutex_enter(&dev->l2ad_mtx);
6738 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6739 hdr_prev = list_prev(buflist, hdr);
6741 hash_lock = HDR_LOCK(hdr);
6744 * We cannot use mutex_enter or else we can deadlock
6745 * with l2arc_write_buffers (due to swapping the order
6746 * the hash lock and l2ad_mtx are taken).
6748 if (!mutex_tryenter(hash_lock)) {
6750 * Missed the hash lock. Retry.
6752 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6753 mutex_exit(&dev->l2ad_mtx);
6754 mutex_enter(hash_lock);
6755 mutex_exit(hash_lock);
6756 goto top;
6760 * A header can't be on this list if it doesn't have L2 header.
6762 ASSERT(HDR_HAS_L2HDR(hdr));
6764 /* Ensure this header has finished being written. */
6765 ASSERT(!HDR_L2_WRITING(hdr));
6766 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6768 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6769 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6771 * We've evicted to the target address,
6772 * or the end of the device.
6774 mutex_exit(hash_lock);
6775 break;
6778 if (!HDR_HAS_L1HDR(hdr)) {
6779 ASSERT(!HDR_L2_READING(hdr));
6781 * This doesn't exist in the ARC. Destroy.
6782 * arc_hdr_destroy() will call list_remove()
6783 * and decrement arcstat_l2_lsize.
6785 arc_change_state(arc_anon, hdr, hash_lock);
6786 arc_hdr_destroy(hdr);
6787 } else {
6788 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6789 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6791 * Invalidate issued or about to be issued
6792 * reads, since we may be about to write
6793 * over this location.
6795 if (HDR_L2_READING(hdr)) {
6796 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6797 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6800 arc_hdr_l2hdr_destroy(hdr);
6802 mutex_exit(hash_lock);
6804 mutex_exit(&dev->l2ad_mtx);
6808 * Find and write ARC buffers to the L2ARC device.
6810 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6811 * for reading until they have completed writing.
6812 * The headroom_boost is an in-out parameter used to maintain headroom boost
6813 * state between calls to this function.
6815 * Returns the number of bytes actually written (which may be smaller than
6816 * the delta by which the device hand has changed due to alignment).
6818 static uint64_t
6819 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6821 arc_buf_hdr_t *hdr, *hdr_prev, *head;
6822 uint64_t write_asize, write_psize, write_lsize, headroom;
6823 boolean_t full;
6824 l2arc_write_callback_t *cb;
6825 zio_t *pio, *wzio;
6826 uint64_t guid = spa_load_guid(spa);
6828 ASSERT3P(dev->l2ad_vdev, !=, NULL);
6830 pio = NULL;
6831 write_lsize = write_asize = write_psize = 0;
6832 full = B_FALSE;
6833 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6834 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6837 * Copy buffers for L2ARC writing.
6839 for (int try = 0; try <= 3; try++) {
6840 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6841 uint64_t passed_sz = 0;
6844 * L2ARC fast warmup.
6846 * Until the ARC is warm and starts to evict, read from the
6847 * head of the ARC lists rather than the tail.
6849 if (arc_warm == B_FALSE)
6850 hdr = multilist_sublist_head(mls);
6851 else
6852 hdr = multilist_sublist_tail(mls);
6854 headroom = target_sz * l2arc_headroom;
6855 if (zfs_compressed_arc_enabled)
6856 headroom = (headroom * l2arc_headroom_boost) / 100;
6858 for (; hdr; hdr = hdr_prev) {
6859 kmutex_t *hash_lock;
6861 if (arc_warm == B_FALSE)
6862 hdr_prev = multilist_sublist_next(mls, hdr);
6863 else
6864 hdr_prev = multilist_sublist_prev(mls, hdr);
6866 hash_lock = HDR_LOCK(hdr);
6867 if (!mutex_tryenter(hash_lock)) {
6869 * Skip this buffer rather than waiting.
6871 continue;
6874 passed_sz += HDR_GET_LSIZE(hdr);
6875 if (passed_sz > headroom) {
6877 * Searched too far.
6879 mutex_exit(hash_lock);
6880 break;
6883 if (!l2arc_write_eligible(guid, hdr)) {
6884 mutex_exit(hash_lock);
6885 continue;
6889 * We rely on the L1 portion of the header below, so
6890 * it's invalid for this header to have been evicted out
6891 * of the ghost cache, prior to being written out. The
6892 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6894 ASSERT(HDR_HAS_L1HDR(hdr));
6896 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6897 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6898 ASSERT3U(arc_hdr_size(hdr), >, 0);
6899 uint64_t psize = arc_hdr_size(hdr);
6900 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6901 psize);
6903 if ((write_asize + asize) > target_sz) {
6904 full = B_TRUE;
6905 mutex_exit(hash_lock);
6906 break;
6909 if (pio == NULL) {
6911 * Insert a dummy header on the buflist so
6912 * l2arc_write_done() can find where the
6913 * write buffers begin without searching.
6915 mutex_enter(&dev->l2ad_mtx);
6916 list_insert_head(&dev->l2ad_buflist, head);
6917 mutex_exit(&dev->l2ad_mtx);
6919 cb = kmem_alloc(
6920 sizeof (l2arc_write_callback_t), KM_SLEEP);
6921 cb->l2wcb_dev = dev;
6922 cb->l2wcb_head = head;
6923 pio = zio_root(spa, l2arc_write_done, cb,
6924 ZIO_FLAG_CANFAIL);
6927 hdr->b_l2hdr.b_dev = dev;
6928 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6929 arc_hdr_set_flags(hdr,
6930 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
6932 mutex_enter(&dev->l2ad_mtx);
6933 list_insert_head(&dev->l2ad_buflist, hdr);
6934 mutex_exit(&dev->l2ad_mtx);
6936 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
6939 * Normally the L2ARC can use the hdr's data, but if
6940 * we're sharing data between the hdr and one of its
6941 * bufs, L2ARC needs its own copy of the data so that
6942 * the ZIO below can't race with the buf consumer.
6943 * Another case where we need to create a copy of the
6944 * data is when the buffer size is not device-aligned
6945 * and we need to pad the block to make it such.
6946 * That also keeps the clock hand suitably aligned.
6948 * To ensure that the copy will be available for the
6949 * lifetime of the ZIO and be cleaned up afterwards, we
6950 * add it to the l2arc_free_on_write queue.
6952 abd_t *to_write;
6953 if (!HDR_SHARED_DATA(hdr) && psize == asize) {
6954 to_write = hdr->b_l1hdr.b_pabd;
6955 } else {
6956 to_write = abd_alloc_for_io(asize,
6957 HDR_ISTYPE_METADATA(hdr));
6958 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
6959 if (asize != psize) {
6960 abd_zero_off(to_write, psize,
6961 asize - psize);
6963 l2arc_free_abd_on_write(to_write, asize,
6964 arc_buf_type(hdr));
6966 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6967 hdr->b_l2hdr.b_daddr, asize, to_write,
6968 ZIO_CHECKSUM_OFF, NULL, hdr,
6969 ZIO_PRIORITY_ASYNC_WRITE,
6970 ZIO_FLAG_CANFAIL, B_FALSE);
6972 write_lsize += HDR_GET_LSIZE(hdr);
6973 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6974 zio_t *, wzio);
6976 write_psize += psize;
6977 write_asize += asize;
6978 dev->l2ad_hand += asize;
6980 mutex_exit(hash_lock);
6982 (void) zio_nowait(wzio);
6985 multilist_sublist_unlock(mls);
6987 if (full == B_TRUE)
6988 break;
6991 /* No buffers selected for writing? */
6992 if (pio == NULL) {
6993 ASSERT0(write_lsize);
6994 ASSERT(!HDR_HAS_L1HDR(head));
6995 kmem_cache_free(hdr_l2only_cache, head);
6996 return (0);
6999 ASSERT3U(write_asize, <=, target_sz);
7000 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7001 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7002 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7003 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7004 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7007 * Bump device hand to the device start if it is approaching the end.
7008 * l2arc_evict() will already have evicted ahead for this case.
7010 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7011 dev->l2ad_hand = dev->l2ad_start;
7012 dev->l2ad_first = B_FALSE;
7015 dev->l2ad_writing = B_TRUE;
7016 (void) zio_wait(pio);
7017 dev->l2ad_writing = B_FALSE;
7019 return (write_asize);
7023 * This thread feeds the L2ARC at regular intervals. This is the beating
7024 * heart of the L2ARC.
7026 /* ARGSUSED */
7027 static void
7028 l2arc_feed_thread(void *unused)
7030 callb_cpr_t cpr;
7031 l2arc_dev_t *dev;
7032 spa_t *spa;
7033 uint64_t size, wrote;
7034 clock_t begin, next = ddi_get_lbolt();
7036 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7038 mutex_enter(&l2arc_feed_thr_lock);
7040 while (l2arc_thread_exit == 0) {
7041 CALLB_CPR_SAFE_BEGIN(&cpr);
7042 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7043 next);
7044 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7045 next = ddi_get_lbolt() + hz;
7048 * Quick check for L2ARC devices.
7050 mutex_enter(&l2arc_dev_mtx);
7051 if (l2arc_ndev == 0) {
7052 mutex_exit(&l2arc_dev_mtx);
7053 continue;
7055 mutex_exit(&l2arc_dev_mtx);
7056 begin = ddi_get_lbolt();
7059 * This selects the next l2arc device to write to, and in
7060 * doing so the next spa to feed from: dev->l2ad_spa. This
7061 * will return NULL if there are now no l2arc devices or if
7062 * they are all faulted.
7064 * If a device is returned, its spa's config lock is also
7065 * held to prevent device removal. l2arc_dev_get_next()
7066 * will grab and release l2arc_dev_mtx.
7068 if ((dev = l2arc_dev_get_next()) == NULL)
7069 continue;
7071 spa = dev->l2ad_spa;
7072 ASSERT3P(spa, !=, NULL);
7075 * If the pool is read-only then force the feed thread to
7076 * sleep a little longer.
7078 if (!spa_writeable(spa)) {
7079 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7080 spa_config_exit(spa, SCL_L2ARC, dev);
7081 continue;
7085 * Avoid contributing to memory pressure.
7087 if (arc_reclaim_needed()) {
7088 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7089 spa_config_exit(spa, SCL_L2ARC, dev);
7090 continue;
7093 ARCSTAT_BUMP(arcstat_l2_feeds);
7095 size = l2arc_write_size();
7098 * Evict L2ARC buffers that will be overwritten.
7100 l2arc_evict(dev, size, B_FALSE);
7103 * Write ARC buffers.
7105 wrote = l2arc_write_buffers(spa, dev, size);
7108 * Calculate interval between writes.
7110 next = l2arc_write_interval(begin, size, wrote);
7111 spa_config_exit(spa, SCL_L2ARC, dev);
7114 l2arc_thread_exit = 0;
7115 cv_broadcast(&l2arc_feed_thr_cv);
7116 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7117 thread_exit();
7120 boolean_t
7121 l2arc_vdev_present(vdev_t *vd)
7123 l2arc_dev_t *dev;
7125 mutex_enter(&l2arc_dev_mtx);
7126 for (dev = list_head(l2arc_dev_list); dev != NULL;
7127 dev = list_next(l2arc_dev_list, dev)) {
7128 if (dev->l2ad_vdev == vd)
7129 break;
7131 mutex_exit(&l2arc_dev_mtx);
7133 return (dev != NULL);
7137 * Add a vdev for use by the L2ARC. By this point the spa has already
7138 * validated the vdev and opened it.
7140 void
7141 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7143 l2arc_dev_t *adddev;
7145 ASSERT(!l2arc_vdev_present(vd));
7148 * Create a new l2arc device entry.
7150 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7151 adddev->l2ad_spa = spa;
7152 adddev->l2ad_vdev = vd;
7153 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7154 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7155 adddev->l2ad_hand = adddev->l2ad_start;
7156 adddev->l2ad_first = B_TRUE;
7157 adddev->l2ad_writing = B_FALSE;
7159 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7161 * This is a list of all ARC buffers that are still valid on the
7162 * device.
7164 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7165 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7167 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7168 refcount_create(&adddev->l2ad_alloc);
7171 * Add device to global list
7173 mutex_enter(&l2arc_dev_mtx);
7174 list_insert_head(l2arc_dev_list, adddev);
7175 atomic_inc_64(&l2arc_ndev);
7176 mutex_exit(&l2arc_dev_mtx);
7180 * Remove a vdev from the L2ARC.
7182 void
7183 l2arc_remove_vdev(vdev_t *vd)
7185 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7188 * Find the device by vdev
7190 mutex_enter(&l2arc_dev_mtx);
7191 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7192 nextdev = list_next(l2arc_dev_list, dev);
7193 if (vd == dev->l2ad_vdev) {
7194 remdev = dev;
7195 break;
7198 ASSERT3P(remdev, !=, NULL);
7201 * Remove device from global list
7203 list_remove(l2arc_dev_list, remdev);
7204 l2arc_dev_last = NULL; /* may have been invalidated */
7205 atomic_dec_64(&l2arc_ndev);
7206 mutex_exit(&l2arc_dev_mtx);
7209 * Clear all buflists and ARC references. L2ARC device flush.
7211 l2arc_evict(remdev, 0, B_TRUE);
7212 list_destroy(&remdev->l2ad_buflist);
7213 mutex_destroy(&remdev->l2ad_mtx);
7214 refcount_destroy(&remdev->l2ad_alloc);
7215 kmem_free(remdev, sizeof (l2arc_dev_t));
7218 void
7219 l2arc_init(void)
7221 l2arc_thread_exit = 0;
7222 l2arc_ndev = 0;
7223 l2arc_writes_sent = 0;
7224 l2arc_writes_done = 0;
7226 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7227 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7228 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7229 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7231 l2arc_dev_list = &L2ARC_dev_list;
7232 l2arc_free_on_write = &L2ARC_free_on_write;
7233 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7234 offsetof(l2arc_dev_t, l2ad_node));
7235 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7236 offsetof(l2arc_data_free_t, l2df_list_node));
7239 void
7240 l2arc_fini(void)
7243 * This is called from dmu_fini(), which is called from spa_fini();
7244 * Because of this, we can assume that all l2arc devices have
7245 * already been removed when the pools themselves were removed.
7248 l2arc_do_free_on_write();
7250 mutex_destroy(&l2arc_feed_thr_lock);
7251 cv_destroy(&l2arc_feed_thr_cv);
7252 mutex_destroy(&l2arc_dev_mtx);
7253 mutex_destroy(&l2arc_free_on_write_mtx);
7255 list_destroy(l2arc_dev_list);
7256 list_destroy(l2arc_free_on_write);
7259 void
7260 l2arc_start(void)
7262 if (!(spa_mode_global & FWRITE))
7263 return;
7265 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7266 TS_RUN, minclsyspri);
7269 void
7270 l2arc_stop(void)
7272 if (!(spa_mode_global & FWRITE))
7273 return;
7275 mutex_enter(&l2arc_feed_thr_lock);
7276 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7277 l2arc_thread_exit = 1;
7278 while (l2arc_thread_exit != 0)
7279 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7280 mutex_exit(&l2arc_feed_thr_lock);